THE PALLET GRAPH OF A FOX COLORING

By
Takuji Nakamura, Yasutaka Nakanishi, and Shin Satoh

(Received January 7, 2013; Revised April 17, 2013)

Abstract

We introduce the notion of a graph associated with a Fox p-coloring of a knot, and show that any non-trivial p-coloring requires at least $\left\lfloor\log _{2} p\right\rfloor+2$ colors. This lower bound is best possible in the sense that there is a p-colorable virtual knot which attains the bound.

1. Introduction

A p-coloring of a diagram D of a knot K, introduced by Fox [1] in 1961, is a map from the set of the arcs of D to $\mathbb{Z} / p \mathbb{Z}$,

$$
\gamma:\{\text { the arcs of } D\} \rightarrow \mathbb{Z} / p \mathbb{Z}
$$

such that at each crossing the sums of the images (called the colors) of the undercrossing arcs is equal to twice the color of the over-crossing arc. We say that a p-coloring γ is trivial if it is a constant map.

Harary and Kauffman [2] study the number of distinct colors appeared in a non-trivially p-colored knot diagram (D, γ). Let $N(D, \gamma)=\# \operatorname{Im}(\gamma)>1$ be the cardinality of the image of γ. For a p-colorable knot K in \mathbb{R}^{3}, we denote by $C_{p}(K)$ the minimal number of $N(D, \gamma)$ for all the non-trivially p-colored diagrams (D, γ) of K. We remark that the notation $C_{p}(K)$ is used in the original paper [2], and also written as $\operatorname{mincol}_{p}(K)$ in some papers.

There are several studies on this number found in $[4,5,6,7]$. In particular, it is known in $[6,7]$ that

- $C_{3}(K)=3$ for any 3 -colorable knot K,
- $C_{5}(K)=4$ for any 5 -colorable knot K,
- $C_{7}(K)=4$ for any 7 -colorable knot K, and
- $C_{11}(K) \geq 5$ for any 11-colorable knot K.

The first aim of this paper is to generalize these results as follows:

2010 Mathematics Subject Classification: Primary 57M25; Secondary 57M27.
Key words and phrases: Pallet graph, knot, coloring, determinant, virtual knot.

THEOREM 1.1. Let p be an odd prime. Any p-colorable knot K satisfies

$$
C_{p}(K) \geq\left\lfloor\log _{2} p\right\rfloor+2,
$$

where $\lfloor x\rfloor$ is the maximal integer less than or equal to x.
All of this can be done as well for virtual knots, with virtual crossings imposing no conditions on the colors: An arc of a virtual knot diagram is a curve that begins and ends at under-crossings, possibly passing through several virtual crossings, and the coloring conditions are derived from real crossings only [3].

For a p-colorable virtual knot K, we denote by $C_{p}^{v}(K)$ the minimal number of $N(D, \gamma)$ for all the non-trivially p-colored diagrams (D, γ) of K in virtual knot category. The second aim of this paper is to prove that the inequality is best possible for virtual knots as follows.

THEOREM 1.2. Let p be an odd prime. There is a p-colorable virtual knot K with

$$
C_{p}^{v}(K)=\left\lfloor\log _{2} p\right\rfloor+2 .
$$

This paper is organized as follows: In Section 2, we introduce a graph associated with a p-coloring which we call the pallet graph. We prove Theorem 1.1 by calculating the determinant of a matrix associated with the pallet graph. In Section 3, we prove Theorem 1.2 by constructing a tree with $\left\lfloor\log _{2} p\right\rfloor+2$ vertices for each p which is the pallet graph of some p-colored virtual knot diagram.

2. Determinant of a matrix

We will start this section with a calculation of a matrix. Let \mathcal{M}_{n} be the set of $n \times n$ matrices with integer entries such that

- each row contains at most two 1 's and at most one -2 , and
- all the entries other than 1 and -2 are 0 .

We denote by $\operatorname{det}(X)$ the determinant of X.
LEMMA 2.1. Any matrix X in \mathcal{M}_{n} satisfies $|\operatorname{det}(X)| \leq 2^{n}$.
Proof. We prove the lemma by induction on n. For $n=1$, we have $X=(0),(1)$, or (-2) and the inequality holds. For $n>1$, we divide the proof into three cases.
(i) If X has a row which contains no -2 , then the cofactor expansion along the row induces

$$
|\operatorname{det}(X)| \leq 1 \cdot 2^{n-1}+1 \cdot 2^{n-1}=2^{n} .
$$

(ii) If X has a row which contains no 1 but one -2 , then the cofactor expansion along the row induces

$$
|\operatorname{det}(X)| \leq 2 \cdot 2^{n-1}=2^{n}
$$

(iii) Consider the case other than (i) and (ii); that is, every row contains exactly

- one 1 and one -2 , or
- two 1 's and one -2 .

Let \vec{v}_{j} be the j th column of X. We may assume that the $(1,1)$-entry of X is -2 . Consider the matrix

$$
Y=\left(-\sum_{j=1}^{n} \vec{v}_{j}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right) .
$$

Then we see that $Y \in \mathcal{M}_{n}$ and the first row of Y satisfies the case (i). Therefore, we have $|\operatorname{det}(X)|=|\operatorname{det}(Y)| \leq 2^{n}$.

DEFINITION 2.2. Let (D, γ) be a non-trivially p-colored diagram. The pallet graph G of (D, γ) is a simple graph such that
(i) the vertices of G correspond to the colors on the arcs of (D, γ), that is, the elements of the image $\operatorname{Im}(\gamma)$, and
(ii) two different vertices c and c^{\prime} of G are connected by an edge labeled $c^{\prime \prime}=$ $\left(c+c^{\prime}\right) / 2$ if and only if there is a crossing of (D, γ) whose lower arcs admit the colors c and c^{\prime} and the upper admits $c^{\prime \prime}$.

We take a maximal tree of the pallet graph G. Let $e_{1}, e_{2}, \ldots, e_{n-1}$ be the edges of T, and $c_{1}, c_{2}, \ldots, c_{n}$ the vertices of T, where $n=N(D, \gamma)$. We define the $(n-1) \times n$ matrix $A=\left(a_{i j}\right)$ with integer entries such that

- $a_{i j}=1$ if the edge e_{i} is incident to the vertex c_{j},
- $a_{i j}=-2$ if the edge e_{i} is labeled by c_{j}, and
- $a_{i j}=0$ otherwise.

LEMMA 2.3. Let A be the $(n-1) \times n$ matrix as above, and A_{j} the $(n-1) \times(n-1)$ submatrix obtained from A by deleting the j th column $(1 \leq j \leq n)$.
(i) $\operatorname{det}\left(A_{j}\right)$ is divisible by p.
(ii) $\operatorname{det}\left(A_{j}\right)$ is odd.

Proof. (i) The simultaneous equation $A \vec{x}=\overrightarrow{0}$ over the field $\mathbb{Z} / p \mathbb{Z}$ has two independent solutions $\vec{x}={ }^{\mathrm{t}}(1,1, \ldots, 1),{ }^{\mathrm{t}}\left(c_{1}, c_{2}, \ldots, c_{n}\right)$. Since the rank of A is at most $n-2$, we have $\operatorname{det}\left(A_{j}\right) \equiv 0(\bmod p)$.
(ii) The matrix A over \mathbb{Z}_{2} is coincident with the incident matrix of T. For each $1 \leq i \leq n-1$, let $c_{\sigma(i)}$ be the vertex between two endpoints of the edge e_{i} which is farther than the other away from the vertex c_{j}. Since T is a tree, we see that

$$
\operatorname{det}\left(A_{j}\right) \equiv a_{1 \sigma(1)} a_{2 \sigma(2)} \ldots a_{n-1, \sigma(n-1)} \equiv 1(\bmod 2)
$$

Proof of Theorem 1.1. Let (D, γ) be a non-trivially p-colored diagram of a knot K, and A the $(n-1) \times n$ matrix constructed as above, where $n=N(D, \gamma)$. By Lemmas 2.1 and 2.3, it holds that $p \leq\left|\operatorname{det}\left(A_{j}\right)\right|<2^{n-1}$, that is, $n>\log _{2} p+1$.

REMARK 2.4. By definition, the proof of Theorem 1.1 can be also applied for a virtual knot; any p-colorable virtual virtual knot K satisfies

$$
C_{p}^{v}(K) \geq\left\lfloor\log _{2} p\right\rfloor+2 .
$$

3. Construction of a graph

Recall that a pallet graph G over $\mathbb{Z} / p \mathbb{Z}$ satisfies the following properties:
(P1) G is a connected simple graph with two or more vertices.
(P2) If two different vertices c and $c^{\prime} \in \mathbb{Z} / p \mathbb{Z}$ are connected by an edge, then the label $c^{\prime \prime}=\left(c+c^{\prime}\right) / 2$ of the edge also appears as a vertex of G.
We remark that G has at least $\left\lfloor\log _{2} p\right\rfloor+2$ vertices by Theorem 1.1.
LEMMA 3.1. There is a graph G with exactly $\left\lfloor\log _{2} p\right\rfloor+2$ vertices satisfying (P1) and (P2).

Proof. Put $k=\left\lfloor\log _{2} p\right\rfloor$; that is, k is the integer satisfying $2^{k}<p<2^{k+1}$. There are integers $m_{1}, m_{2}, \ldots, m_{s}$ uniquely satisfying

$$
2^{k+1}-p=2^{m_{s}}+\cdots+2^{m_{1}}+1
$$

with $1 \leq m_{1}<m_{2}<\cdots<m_{s}<k$. Since $m_{j+1} \geq m_{j}+1$ and $m_{1} \geq 1$, it holds that $m_{j} \geq j$ for each j. Similarly, since $m_{j-1} \leq m_{j}-1$ and $m_{s} \leq k-1$, it holds that $m_{j} \leq k-1-(s-j)$ for each j. Therefore, we obtain

$$
0 \leq m_{j}-j \leq k-s-1 .
$$

We take $1+(k-s+1)+s=k+2$ elements $a, b(0), b(1), \ldots, b(k-s), c(1), c(2), \ldots$, $c(s)$ in $\mathbb{Z} / p \mathbb{Z}$ such that

$$
\begin{cases}a=0 & \\ b(i)=2^{i} & \text { for } i=0,1, \ldots, k-s, \text { and } \\ c(j)=2^{k-j+1}-\left(2^{m_{s}-j}+\cdots+2^{m_{j}-j}\right) & \text { for } j=1,2, \ldots, s\end{cases}
$$

We connect the vertices corresponding to these numbers to obtain a graph G as follows:
(i) $b(0)$ is connected to a by an edge labeled

$$
\frac{a+b(0)}{2}=\frac{p+1}{2}=2^{k}-\left(2^{m_{s}-1}+\cdots+2^{m_{1}-1}\right)=c(1) .
$$

(ii) For each $1 \leq i \leq k-s, b(i)$ is connected to a by an edge labeled

$$
\frac{a+b(i)}{2}=2^{i-1}=b(i-1)
$$

(iii) For each $1 \leq j \leq s-1, c(j)$ is connected to $b\left(m_{j}-j\right)$ by an edge labeled

$$
\begin{aligned}
\frac{b\left(m_{j}-j\right)+c(j)}{2} & =2^{k-j}-\left(2^{m_{s}-j-1}+\cdots+2^{m_{j+1}-j-1}\right) \\
& =c(j+1)
\end{aligned}
$$

(iv) $c(s)$ is connected to $b\left(m_{s}-s\right)$ by an edge labeled

$$
\frac{b\left(m_{s}-s\right)+c(s)}{2}=2^{k-s}=b(k-s) .
$$

Since the graph G is connected, we have the conclusion.
Figure 1 shows an example of the graph constructed in Lemma 3.1 for $p=601$.

Figure 1

LEMMA 3.2. Let G be a graph satisfying the properties (P1) and (P2). Then there is a non-trivially p-colored virtual knot diagram whose pallet graph is G.

Proof. It is sufficient to construct a Gauss diagram instead of a virtual knot diagram (cf. [3]). We take a closed path of G which passes all the edges of G. Let $c_{1}, c_{2}, \ldots, c_{n}$ be the vertices of G, and $c_{k(1)}, c_{k(2)}, \ldots, c_{k(m)}$ the sequence of vertices on the path in this order.

To construct a Gauss diagram, we divide a circle into m arcs by m points $P_{1}, P_{2}, \ldots, P_{m}=P_{0}$, and assign the color $c_{k(i)}$ to each arc between P_{i-1} and P_{i} $(i=1,2, \ldots, m)$. We take m points $Q_{1}, Q_{2}, \ldots, Q_{m}$ on the circle such that Q_{i} is in the interior of an arc labled $\left(c_{k(i)}+c_{k(i+1)}\right) / 2$, where $c_{k(m+1)}=c_{k(1)}$.

We consider a Gauss diagram equipped with the oriented chords $\overrightarrow{Q_{i} P_{i}}(i=$ $1,2, \ldots, m)$ and any signs on them. The Gauss diagram presents a non-trivially p-colored diagram such that P_{i} and Q_{i} correspond to lower and upper crossings, respectively. Then we see that G is the pallet graph of the p-colored diagram.

Proof of Theorem 1.2. By Lemmas 3.1 and 3.2, there is a non-trivially p-colored virtual knot diagram (D, γ) such that its pallet graph G has exactly $\left\lfloor\log _{2} p\right\rfloor+2$ vertices. The virtual knot K presented by D satisfies $C_{p}^{v}(K) \leq N(D, \gamma)=$ $\left\lfloor\log _{2} p\right\rfloor+2$. The opposite inequality follows by Theorem 1.1.

REMARK 3.3. (i) Several statements proved in this paper hold even for any odd composite p.
(ii) It is an open question whether any p-colorable knot K satisfies

$$
C_{p}(K)=\left\lfloor\log _{2} p\right\rfloor+2 .
$$

The equality holds for $p=3,5,7$ (cf. $[6,7]$).
(iii) Let $\mathrm{c}(K)$ denote the crossing number of K. Since $\mathrm{c}(K) \geq C_{p}(K)$, any p-colorable knot K satisfies

$$
\mathrm{c}(K) \geq\left\lfloor\log _{2} p\right\rfloor+2
$$

by Theorem 1.1. It is an open question whether the equality does not hold for other than the trefoil knot $(p=3)$ and the figure-eight $\operatorname{knot}(p=5)$.

References

[1] R. H. Fox, A quick trip through knot theory, 1962 Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961) pp. 120-167 Prentice-Hall, Englewood Cliffs, N.J.
[2] F. Harary and L. H. Kauffman, Knots and graphs I. Arc graphs and colorings, Adv. in Appl. Math., 22 (1999), no. 3, 312-337.
[3] L. H. Kauffman, Virtual knot theory, European J. Combin., 20 (1999), no. 7, 663-690.
[4] L. H. Kauffman and P. Lopes, On the minimum number of colors for knots, Adv. in Appl. Math., 40 (2008), no. 1, 36-53.
[5] L. H. Kauffman and P. Lopes, The Teneva game, to appear in J. Knot Theory Ramifications, available at arXiv:1204.5011
[6] K. Oshiro, Any 7-colorable knot can be colored by four colors, J. Math. Soc. Japan, 62 (2010), no. 3, 963-973.
[7] S. Satoh, 5-colored knot diagram with four colors, Osaka J. Math., 46 (2009), no. 4, 939-948.

Takuji Nakamura
Department of Engineering Science,
Osaka Electro-Communication University,
Hatsu-cho 18-8, Neyagawa, 572-8530, Japan
E-mail: n-takuji@isc.osakac.ac.jp
Yasutaka Nakanishi
Department of Mathematics, Kobe University,
Rokkodai-cho 1-1, Nada-ku, Kobe 657-8501, Japan
E-mail: nakanisi@math.kobe-u.ac.jp
Shin Satoh
Department of Mathematics, Kobe University,
Rokkodai-cho 1-1, Nada-ku, Kobe 657-8501, Japan
E-mail: shin@math.kobe-u.ac.jp

