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Abstract. We clarify that coined quantum walk is determined by only the
choice of local quantum coins. To do so, we characterize coined quantum walks on
graph by disjoint Euler circles with respect to symmetric arcs. In this paper, we
introduce a new class of coined quantum walk by a special choice of quantum coins
determined by corresponding quantum graph, called quantum graph walk. We
show that a stationary state of quantum graph walk describes the eigenfunction
of the quantum graph.

1. Introduction

The quantum walk has been intensively studied from various kinds of view

points, since it was treated as a part of quantum algorithm in quantum informa-

tion [1] and its strong efficiency to so called quantum speed up search was shown

(see [2] and its references). For example, the Anderson localization [3, 4, 5],

stochastic behaviors comparing with random walks [6], spectral analysis of the

unit circle [7] in relation to the CMV matrix [8], graph isomorphic problem [9],

experimental implementation [10], and so on. Stanly Gudder is one of the origina-

tors of discrete-time quantum walk on graph [11] (1988). At first, for simplicity,

let us consider the walk on one dimensional lattice following the Gudder’s book.

In this walk, each vertex has the left and right chiralities. The total state space

here is spanned by the canonical basis corresponding to these chiralities, that is,

{|j, R〉, |j, L〉 : j ∈ Z}. Let ψ
(L)
n (j) and ψ

(R)
n (j) as scaler valued left and right

amplitudes at time n position x ∈ Z, respectively. The time evolution is given

by the recurrence relations as follows :

ψ(R)
n (j) = aψ

(R)
n−1(j − 1) + ibψ

(L)
n−1(j + 1), (1.1)

ψ(L)
n (j) = ibψ

(R)
n−1(j − 1) + aψ

(L)
n−1(j + 1), (1.2)
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where a, b ∈ R with a2 +b2 = 1. An equivalent expression for this time evolution,

which will be important to our paper, is that: putting ψn(j) = T [ψ
(R)
n (j), ψ

(L)
n (j)],

then

ψn(j) = Qψn−1(j − 1) + Pψn−1(j + 1), (1.3)

where

P =

[
0 ib

0 a

]
, Q =

[
a 0

ib 0

]
.

We can interpret the quantum walk as a walk which has matrix valued weights P

and Q associated with moving to left and right, respectively. Anyway, equations

(1.1) and (1.2) imply that

ψ
(J)
n+1(j) + ψ

(J)
n−1(j) = a

{
ψ(J)

n (j − 1) + ψ(J)
n (j + 1)

}
, (J ∈ {L,R}) (1.4)

which is a discrete-analogue of the mass less Klein-Gordon equation:

∂2ψt(x)

∂t2
= a

∂2ψt(x)

∂x2
.

This is considered as one of the motivations for introducing this walk.

We show another reason for why the total space of QW is described by not

Z but Z × C2. An idea which is across our mind immediately to accomplish a

quantization of a random walk on one dimensional lattice may be as follows: the

probabilities p and 1−p with p > 0 that moving to left and right in random walk

at each time step are replaced with some complexed valued weights α and β so

that its one step time operator is unitary. However we can easily see that the

postulate of its unitarity implies αβ = 0. Thus the walk becomes quite trivial

one, that is it always goes to the same direction. It is the no-go lemma [12]

of quantum walk. So we need left and right chiralities at each vertex in one

dimensional lattice. Reference [13] gives more detailed discussion for a general

graphs around here.

Now in the next, we consider the walk extending to a general graph. Let

G(V,E) be a graph with vertex set V (G) and edge set E(G). In this paper, we

denote the edge e ∈ E(G) between vertices u and v, as e = {u, v} = {v, u}.
For u ∈ V , we define N(u) = {v ∈ V : {u, v} ∈ E}, and du is degree of

u, that is, du = |N(u)|. We define the set of symmetric arcs D(G) as {(u, v) ∈
V (G)×V (G) : {u, v} ∈ E(G)}. We denote arc a = (u, v) ∈ D(G) as o(a) = u and

t(a) = v, where o(a) and t(a) are the origin and the terminus of a, respectively.

For a = (u, v) ∈ D(G), we denote a−1 as (v, u). The quantum walk on G(V,E)

introduced by Gudder (1988) is defined as an analogue of the one dimensional

lattice case.
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DEFINITION 1. (Definition of quantum walk)

(1) Total space: Let H be the total space of quantum walk.

H = `2(D(G)) = span{|u, v〉 : (u, v) ∈ D(G)}.

Let H = ⊕
∑

u∈V (G) Hu with Hu
∼= span{|u, v〉; v ∈ N(u)}. We denote the

canonical basis of the subspace Hu as {|e(u)
v 〉; v ∈ N(u)}.

(2) Time evolution: To every (u, v) ∈ D, we assign a non-trivial linear map

Hu → Hv with its matrix representation W(u,v) so that |D| × |D| matrix on

H, U , defined by

〈s, t|U |u, v〉 = 1{(u,s)∈D}〈e(s)
t |W(u,s)|e(u)

v 〉

is a |D|-dimensional unitary matrix. The time evolution is the iteration of

the unitary operator U with an initial state Ψ0 ∈ H with ||Ψ0|| = 1 such

that Ψ0
U7→ Ψ1

U7→ Ψ2
U7→ · · · , where Ψj = U jΨ0.

(3) Measure∗ : Denote Ωn as the set of all the n-truncated possible paths from

a vertex o ∈ V (G). The measure µn : 2Ωn → [0, 1] is defined as follows: for

A ∈ 2Ωn ,

µϕ
n(A) =

∣∣∣∣∣∣
∣∣∣∣∣∣

∑
ξ=(o,ξ2...,ξn)∈A

W(ξn−1,ξn) · · ·W(ξ2,ξ3)W(o,ξ2)ϕ

∣∣∣∣∣∣
∣∣∣∣∣∣
2

,

where ϕ is a vector in Ho.

REMARK 1. We can see this is an extension to a general graph of the one

dimensional case in the following sense: for each arc (i, j) with |i− j| = 1, under

the following one-to-one correspondence between the canonical basis, |j, j−1〉 ↔
|j, L〉, |j, j + 1〉 ↔ |j, R〉, the weights of moving left and right at each vertex are

W(j,j+1) = Q and W(j,j−1) = P , (j ∈ Z).

For u ∈ V (G), the measure of Au = {ξ ∈ Ωn : ξn = u} ∈ 2Ωn gives a

distribution since
∑

u∈V (G) µn(Au) = 1, and µn(Au) ∈ [0, 1]. We define the

finding probability of quantum walk at time n, position u by µn(Au). In this

paper, we classify a special case of the discrete-time quantum walks in Def.1,

so called coined quantum walk which is defined by introducing local unitary

operator (called quantum coin) for each u ∈ V (G) on Hu. In [14], we can see the

original form of the Grover walk on general graphs which are most intensively
∗In this paper, we slightly modify the original definition of measure in [11] to emphasize

a correspondence to the random walk on the same graph. In the original definition, indeed,
Ωn = {(q0, . . . , qn) ∈ D(G)n : t(qj) = o(qj+1)}.
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studied by many researchers. The Grover walk is in a special class of coined

quantum walks called “A-type quantum walks with flip flop shift” in this paper.

See Sect. 2 for its detailed definition. We clarify that the investigation of A-type

quantum walk is essential to study of coined quantum walk. More concretely, we

find that for fixed local quantum coins, we can express any coined quantum walks

by an A-type quantum walk with flip flop shift with a permutation (Theorem 2).

Thus a choice of local quantum coins determines the coined quantum walk.

By the way, a quantum graph is a system of a linear Schrödinger equations on

each Euclidean edge with boundary conditions at each joined part, i.e., vertex.

The quantum graph is determined by triple of sequences of parameters (L,λ, A)

with respect to Euclidean edge lengths, boundary conditions, and vector poten-

tials on edge, respectively. See Sect. 4.1 for the detailed setting of the quantum

graph. Quantum graphs have been studied from varions fields of view. For the

review and books on quantum graphs, see [16, 17, 18], for examples.

In this paper, we apply the formulation of quantum graphs according to

Smilansky and his group [18, 19]. Anyway, what is the solution (eigenfunction)

for the system of Schrödinger equations which satisfy the boundary conditions

simultaneously ? To answer it, in this paper, we define a coined quantum walk,

U (L;–;A), by a special choice of local quantum coins determined by corresponding

quantum graph. We call this walk quantum graph walk whose more detailed

definition is denoted in Sect. 4.2. The following result is our main theorem:

THEOREM 1. The quantum graph walk with parameters (L, λ,A) has non-

trivial eigenfunction satisfying all the boundary conditions at vertices simulta-

neously if and only if

U (–;L;A)a∗(k) = a∗(k).

Here a linear transformation of a∗(k) is the eigenfunction of the quantum graph.

(See Eq. (4.52) for an explicit expression for the linear transformation.)

This paper is organized as follows. Section 2 is devoted to special quantum

walks called coin-shift type quantum walks. The time evolution of coin-shift type

quantum walk U has two stages; coin operator C, and the shift operator S. In

the coin-shift type quantum walk, the walk is characterized by the choice of coin

operator. The next of two sections (Sects. 3 and 4), we treat two special classes

of the discrete-time quantum walk. The first is the Szegedy walk introduced by

Szegedy[20] (2004), which is induced by a transition matrix of a random walk on

the same graph. One of the strong facts is that a main part of eigensystems of

the Szegedy walk is obtained once we know the eigensystem of the corresponding

random walk. The Szegedy walk induced by the symmetric random walk, that is,

a walker moves to a neighbor uniformly, becomes the famous Grover walk which
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is most intensively studied in the view point of quantum information. We have

already know the eigensystem of the Szegedy walk is described by the spectrum of

corresponding random walk. The second one is the quantum graph walk induced

by a quantum graph [18, 19]. As we have seen in Theorem 1, we find that the

Schrödinger equation has non trivial solution iff the quantum graph walk has

stationary amplitude. Moreover in the Neumann boundary condition, in the

limit of edge length zero, we can see the Grover walk again. We give its proof

and an expression for the eigenequation of U (–;L;A) which is reduced to vertex

size |V | from square of edge size 2|E|. The common part of the Szegedy walk

and the quantum graph walk is the Grover walk. As far as we know, Ref. [15]

is the first paper which suggests a relation between the quantum graph and

quantum walk. We more clarify and refine its relationship in this paper. One of

the most important suggestions for a usefulness of mapping to quantum walks

is Ref. [21]: Schanz and Smilansky [21] (2000) have already shown a localization

of the quantum graph on random environment of Z mapping to a quantum

scattering evolution which can be interpreted as nothing but now a day a spatial

disorded discrete-time quantum walk with some modifications. Localization is

a recent hot topic of quantum walks. For example, Refs. [3, 4, 5, 6, 7, 22,

23]. Schanz and Smilansky provided strictly the positive return probability for

annealed law by a combinatorial analysis before the quantum walks were so

intensively studied.

2. Quantum walks on graph: reconsideration

In this paper, we treat a connected and simple graph, that is, without self

loops and multiedges. A path is a sequence of vertices of G, u1, u2, . . . , un with

(ui, ui+1) ∈ D(G). The line digraph of
−→
LG(V,A) with the vertex set V and arc

set A is defined as follows:

V
(−→

LG
)

= D(G), A
(−→

LG
)

=

{(
(u, v), (v′, w)

)
∈ V

(−→
LG

)2

: v = v′
}

.

A cycle in a graph G is a path u1, u2, . . . , un, u1 with (uj, uj⊕n1) ∈ D(H), where

l⊕nm = mod((l+m), n). In particular, if all the uj’s in the sequence are distinct,

then we call it essential cycle. Note that if a cycle (u1, u2), (u2, u3), . . . , (un, u1)

with uj ∈ V (G) in the line digraph
−→
LG is essential, then the sequence u1, u2, . . . ,

un, u1 of the original graph G is also cycle, however its essentiality is not en-

sured. On the other hand, if a sequence u1, u2, . . . , un, u1 is essential in G, then

(u1, u2), (u2, u3), . . . , (un, u1) is also essential in
−→
LG.
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DEFINITION 2. Let π be a partition on
−→
LG such that

π :
−→
LG → {C1, C2, . . . , Cr}, (2.5)

where Cj is an essential cycle of
−→
LG and

⋃r
j=1 V (Cj) = V (

−→
LG), V (Ci)∩V (Cj) =

∅ for i 6= j. We denote the set of all the such partitions as ΠG.

REMARK 2. The following partition called “flip flop partition” belongs to ΠG

for every undirected graph.

πff :
−→
LG = {C1, . . . , C|E(G)|}, (2.6)

where V (Cj) = {ej, e
−1
j }, and A(Cj) = {(ej, e

−1
j ), (e−1

j , ej)} for ej ∈ D(G).

The partition π gives a way to decompose the graph G into mutually disjoint

Euler circles with respect to arcs. Let Πu be the set of all one-to-one correspon-

dence between

{|e(u)
v 〉; v ∈ N(u)} ↔ {|e(v)

u 〉; v ∈ N(u)}.

The former one corresponds to out-neighbor of u, and later one is in-neighbor of

u. There are many partitions in ΠG in fact |ΠG| =
∏

u∈V du! since⊗
u∈V (G)

Πu
∼= ΠG.

Since the out- and in-degrees of all the vertices in Cj are 1, we can define the

following map fπ (see also Fig. 1.):

DEFINITION 3. For π ∈ ΠG with
−→
LG π7→ {C1, . . . , Cr}, we define

fπ : V
(−→

LG
)
→ V (G) (2.7)

such that for any (i, j) ∈ V (
−→
LG),

(
(i, j), (j, fπ(i, j))

)
∈

r⋃
j=1

A(Cj). (2.8)

From now on, we explain a special class of quantum walk called coined quan-

tum walks on graph G under these setting. We choose a partition π from ΠG, and

a sequence of unitary operators {Hj}|V |
j=1, where Hj is a dj-dimensional unitary

operator on the subspace Hj. We call Hj local quantum coin at vertex j. Then

we present two types of time evolutions of QWs, U (G) and U (A), respectively.
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Figure 1 Decomposition into mutually disjoint Euler circles: The 24 = 16 parti-
tions of the circle with four vertices are classified into above 6 patterns
[πj ] (j = 1, 2, . . . , 6) with respect to automorphism. The cardinalities of
each conjugacy classes |[πj ]| (j = 1, 2, . . . , 6) are 1, 1, 4, 2, 4, 4, respec-
tively. Indeed, ΠG =

∑
j |[πj ]| = 16. We see fπ1(1, 2) = 3, fπ1(3, 4) = 1,

fπ2(1, 2) = 1, fπ2(3, 4) = 3, fπ3(1, 2) = 3, fπ3(3, 4) = 3 and so on.

DEFINITION 4. ( Gudder type and Ambainis type QWs. )

U (G) = CSπ, (2.9)

U (A) = SπC. (2.10)

Here Sπ and C are called shift and coin flip operators defined by

Sπ|i, j〉 = |j, fπ(i, j)〉, (2.11)

C =
∑

j∈V (G)

⊕Hj, (2.12)

that is

C|i, j〉 =
∑

k∈N(i)

〈e(i)
k |Hi|e(i)

j 〉|i, k〉.

The first type determined by U (G) is a generalization of Gudder (1988) of d-

dimensional lattice case. The second one U (A) is motivated by the most popular

time evolution for the study of QWs by Ambainis et al (2001). We call such time
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Figure 2 Comparison between G-type and A-type QWs with flip flop πff : We assign
local quantum coins Hj (j = 1, 2, 3, 4) which determines the weight of the
“pivot turn” at each vertex. The figure depicts the dynamics of G- and A-
type QWs with π = πff starting from the canonical base |2, 1〉, that is, in

G-type QW, |2, 1〉 S7→ |1, 2〉 C7→ a1|1, 2〉+d1|1, 3〉+g1|1, 4〉, on the other hand,
in A-type QW, |2, 1〉 C7→ a2|2, 1〉 + c2|2, 4〉 S7→ a2|1, 2〉 + c2|4, 2〉.

evolution G-type QW and A-type QW, respectively. The matrix representations

of UG and UA are as follows: for any (i, j), (l,m) ∈ D(G),

〈l,m|U (G)|i, j〉 = 1{l∈N(i)}δj,l〈e(j)
m |Hj|e(j)

fπ(i,j)〉, (2.13)

〈l,m|U (A)|i, j〉 = 1{l∈N(i)}δm,fπ(i,l)〈e(i)
l |Hi|e(i)

j 〉. (2.14)

The dynamics of quantum walk is explained as follows. See also Fig. 2. Let us

consider the canonical base |i, j〉 be acted by U = SC. In the coin flip stage C,

the coin flip operator changes the terminal vertex j to l with the complex valued

weight (Hi)j,l. Thus in this stage, we obtain a superposition around the vertex

i. In the next stage, that is, the shift S, the initial vertex i is changed to its

terminal vertex l, and the terminal vertex l is changed to π(j, l). This is the A

type quantum walk. In G-type quantum walk, the order of shift and coin is just

exchanged.

REMARK 3. The matrix valued weight W(u,v) associated with moving from u
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to a neighbor v in Definition 1 is as follows:

W(u,v) =

{
Hv|e(v)

fπ(u,v)〉〈e
(u)
v | : G-type,

|e(v)
fπ(u,v)〉〈e

(u)
v |Hu : A-type.

(2.15)

A-type and G-type QWs are in dual relation with respect to the “1/2” time

gap:

LEMMA 1. For any n ≥ 0, we have

U (G)n = S†
πU (A)nSπ. (2.16)

Because of the unitarity of the time evolution of quantum walks, U (J)−1
is

also unitary. What is the U (J)−1
? The following theorem is related to a part of

its answer.

LEMMA 2. U (J)−1
is also a time evolution of a quantum walk (J ∈ {A,G})

on the same graph G(V,E) if and only if the shift operator of U (J) is the flip

flop. More concretely, denote U
(J)
πff [Hj : j ∈ V ] as the time evolution of type J

(J ∈ {A, G}) quantum walk with local quantum coins {Hj}|V |
j=1 and the flip flop

shift. Then we have

U (J)
πff

[Hj : j ∈ V ]
−1

= U (¬J)
πff

[H−1
j : j ∈ V ]. (2.17)

where ¬J = A (J = G), = G (J = A).

In particular, if we choose local coins as self adjoint operators Hj = H†
j such

as the Grover coin Hj = (2/dj)Jdj
− Idj

(j ∈ V ),(
U (J)

πff

)−1

= U (¬J)
πff

.

where Jm is the m-dimensional matrix whose elements are all one, and Im is the

identity operator.

Proof. Remark that

(U (G))−1 = (CSπ)−1 = S−1
π C−1. (2.18)

Note that C−1 =
∑|V |

j=1 ⊕H−1
j is also a coin flip operator. In the following, we

concentrate on a necessary and sufficient condition for π so that S−1
π is also a

shift operator. For a partition π ∈ ΠG with π :
−→
LG 7→ C1 ⊕ · · · ⊕ Cr, we define

π∗ as
−→
LG 7→ C−1

1 ⊕ · · · ⊕ C−1
r . (2.19)
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Here for an essential cycle Ck ⊂
−→
LG, (v1, v2) → (v2, v3) → · · · → (vm, v1), we

define C−1 as (vm, v1) → (vm−1, vm) → · · · → (v1, v2). Define gπ∗ :
⋃r

j=1 V (C−1
j )

→ V (G) such that (
(j, i), (i, gπ∗(j, i))

)
∈

r⋃
j=1

A(C−1
j ).

Then it is hold that for (i, j) ∈
⋃r

j=1 V (Cj),

S−1
π |i, j〉 = |gπ∗(j, i), i〉. (2.20)

Therefore S−1
π is a shift operator if and only if gπ∗(j, i) = j, that is, π is the flip

flop.

LEMMA 3. For any π, π′ ∈ ΠG, for each vertex j ∈ V (G), there exists a permu-

tation P(j)
π,π′ on the canonical basis of Hj, {|e(j)

k 〉 : k ∈ N(j)}, such that

U
(G)
π′ [Hj : j ∈ V (G)] = U (G)

π [H̃j : j ∈ V (G)], (2.21)

where H̃j = HjP(j)
π,π′.

Proof. Note that for any j ∈ V (G), and π, π′ ∈ ΠG,

N(j) = {fπ(i, j); i ∈ N(j)} = {fπ′(i, j); i ∈ N(j)}.
Then we can define a permutation on N(j) such that σ

(j)
π,π′ : fπ(i, j) 7→ fπ′(i, j).

Denote P(j)
π,π′ as the matrix representation of σ

(j)
π,π′ on Hj, such that

P(j)
π,π′ =

∑
i∈N(j)

|e(j)
fπ′ (i,j)

〉〈e(j)
fπ(i,j)| ∼=

∑
i∈N(j)

|j, fπ′(i, j)〉〈j, fπ(i, j)|. (2.22)

The permutation operator P(j)
π,π′ locally changes a partition π ∈ ΠG to another

partition π′ ∈ ΠG at vertex j.

Combining Eq. (2.22) with Sπ =
∑

(i,j) |j, fπ(i, j)〉〈i, j| implies∑
j∈V (G)

⊕P(j)
π,π′Sπ = Sπ′ .

So we have

U
(G)
π′ [Hj : j ∈ V (G)] = CSπ′ =

∑
j∈V (G)

⊕Hj ·
∑

i∈V (G)

⊕P(i)
π,π′Sπ (2.23)

=

 ∑
j∈V (G)

⊕HjP(j)
π,π′

 · Sπ (2.24)

= U (G)
π [H̃j : j ∈ V (G)], (2.25)

where H̃j = HjP(j)
π,π′ . It completes the proof.
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THEOREM 2. Every G-type QW can be expressed by an A-type QW with flip

flop shift πff in the following meaning: for every π ∈ ΠG, and a sequence of local

quantum coins {Hj}|V |
j=1,

U (G)
π [Hj : j ∈ V (G)] = U (A)

πff

†
[H̃†

j : j ∈ V (G)], (2.26)

where H̃j = HjP(j)
πff ,π.

Proof. Combining Lemma 2 with 3, we arrive at

U (G)
π [Hj : j ∈ V (G)] = U (G)

πff
[H̃j : j ∈ V (G)] = U (A)

πff

†
[H̃†

j : j ∈ V (G)]. (2.27)

COROLLARY 3. For every π ∈ ΠG, Ambainis type QW with π and a sequence

local quantum coins {Hj}|V |
j=1, can be also expressed by an Ambainis type QW with

the flip flop shift πff as follows:

U (A)
π [Hj : j ∈ V (G)] = SπU (A)

πff

†
[H̃†

j : j ∈ V (G)]S†
π, (2.28)

where H̃j = HjP(j)
πff ,π.

Proof. Lemmas 1 and 3 and Theorem 2 imply that

U (A)
π [Hj : j ∈ V (G)] = SπU (G)

π [Hj : j ∈ V (G)]S†
π (2.29)

= SπU (G)
πff

[H̃j : j ∈ V (G)]S†
π (2.30)

= SπU (A)
πff

†
[H̃†

j : j ∈ V (G)]S†
π, (2.31)

which completes the proof.

For matrices M,M ′, if there exists a permutation matrix P such that M ′ =

P †MP , we call M is isomorphic to M ′.

COROLLARY 4. (Severini [13]) Every time evolution of coined QW is a

weighted adjacency matrix of
−→
LG or isomorphic to its transposed one.

Proof. The adjacency matrix of
−→
LG is

〈l,m|M(
−→
LG)|i, j〉 = δj,l. (2.32)

Comparing the Eq. (2.32) with Eq. (2.13), obviously, G-type QW is a weighted

adjacency matrix of
−→
LG. Putting Jm be m-dimensional all one matrix, we have

for every π ∈ ΠG,

M(
−→
LG) =

(∑
j∈V

⊕Jdj

)
Sπ.
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Therefore, for every π ∈ ΠG, by the statement of proof for Theorem 2,

M(
−→
LG)† =

{(∑
j∈V

⊕Jdj

)
Sπ

}†

=

{(∑
j∈V

⊕(Jdj
P(j)

π,πff
)

)
Sπff

}†

(2.33)

=

{(∑
j∈V

⊕Jdj

)
Sπff

}†

(2.34)

= Sπff

(∑
j∈V

⊕Jdj

)
, (2.35)

which implies that A-type QW with flip flop partition is a transposed weighted

adjacency matrix of
−→
LG. Moreover from Corollary 3, obviously, we see that A-

type QW with partition π ∈ ΠG is isomorphic to a transposed weighted adjacency

matrix of the line digraph of G with respect to the permutation matrix S†
π. So

we obtain the desired conclusion.

For a fixed coin operator C, then once we get an information on the A-type

QW with flip flop shift, we can immediately interpret it to any other correspond-

ing coined quantum walk because of Eq. (2.26) in Theorem 2 and Eq. (2.28) in

Corollary 3. Thus from now on, we treat only A-type QWs with flip flop shift.

Note that all A-type QWs with flip flop shift on graph G are determined by only

the choice of local quantum coins Hj’s (j ∈ V (G)). In the following, we will

show two special choices of the local quantum coins called “Szegedy walk” and

“quantum graph walk”.

3. Szegedy walk

In this section we briefly review on the Szegedy walk. The original walk

introduced by Szegedy himself is the double steps of the Szegedy walk treated

here. The Szegedy walk comes from a probability transition matrix (P )u,v∈V (G)

on graph G. Put (P )u,v = pu,v which is the probability that a particle on vertex

u jumps to the neighbor v at each time step with
∑

v∈N(u) pu,v = 1, 0 ≤ pu,v ≤ 1.

DEFINITION 5. (Szegedy walk) We call Szegedy walk to the A-type QW with

flip flop shift U
(P)
πff [Hj; j ∈ V ], where the dj-dimensional unitary local quantum

coin at vertex j is for any l,m ∈ N(j),

〈e(j)
m |Hj|e(j)

l 〉 = 2
√

pj,lpj,m − δlm. (3.36)

Put A : `2(V ) → `2(D) such that for a canonical base |j〉 (j ∈ V ), A|j〉 =∑
l∈N(j)

√
pj,l|j.l〉. In particular, we choose P so that pi,j = 1/di for all i ∈ V ,
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the Szegedy walk becomes the Grover walk which is intensively investigated in

the view point of quantum information. Let the symmetric matrix J ∈ M|V |(C2)

be (J)ij =
√

pijpji. In the Grover walk case, J = P . Then we can obtain the

eigensystem of U (P ) by using the eigensystem of J as follows. In this paper, we

refine the original theorem by Szegedy [20]. (We can see for a detailed proof in

[24] for example.)

THEOREM 5. Let ν = cos θν with sgn(sin θν) = sgn(ν). Then we have

spec(U (P ))

=


{eiθν ; ν ∈ spec(J)} ∪ {e−iθν ; ν ∈ spec(J) \ {±1}} ; |E| = |V | − 1,

{eiθν ; ν ∈ spec(J)} ∪ {e−iθν ; ν ∈ spec(J)} ; |E| = |V |,

{eiθν ; ν ∈ spec(J)} ∪ {e−iθν ; ν ∈ spec(J)} ∪ {
|E|−|V |︷︸︸︷

1 ,

|E|−|V |︷︸︸︷
−1 }; otherwise.

(3.37)

Let pν the eigenvector of eigenvalue ν for J . The eigenvectors for

eiθν with ν ∈ spec(J) and e−iθν with ν ∈ spec(J) \ {
m(1)︷︸︸︷
1 ,

m(−1)︷︸︸︷
−1 }

are expressed by

(I − eiθνS)Apν and (I − e−iθνS)Apν , (3.38)

respectively, where m(±1) are the multiplicities of eigenvalues ±1 of J .

4. Quantum graph walk

4.1 Quantum graphs

This formulation of the quantum graph is according to Smilansky and his

group [18]. In the quantum graph, a metric graph of G(V,E), whose each edge

e ∈ E(G) is assigned a length Le ∈ [0,∞), is given. Let us denote the vertex set

V (G) which has an order such that V = {1, 2, . . . , |V |}. To describe position on

edge e = {i, j} of the metric graph G(V,E), we define x ∈ [0, Le] by the distance

from min{i, j}.
At each edge {i, j} ∈ E(G), the quantum graph gives the wave function

Ψ{i,j}(x) in the location of x ∈ [0, L{i,j}] determined by the following Schrödinger

equation: (
−i

d

dx
+ A{i,j}

)2

Ψ{i,j}(x) = k2Ψ{i,j}(x). (4.39)
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Moreover the wave function is imposed the following two boundary conditions:

(1) Continuity

For every i ∈ V (G), there exists a φi ∈ C, such that

Ψ{i,j}(0) = φi for any j ∈ N(i) with j > i, (4.40)

Ψ{i,k}(L{i,k}) = φi for any k ∈ N(i) with k < i. (4.41)

where N(i) = {j ∈ V (G) : {i, j} ∈ E(G)}.
(2) Current conservation For λi ≥ 0,∑

j:j<i

(
− d

dx
− iA{i,j}

)
Ψ{i,j}(x)

∣∣∣∣
x=Li,j

+
∑
j:j>i

(
− d

dx
+ iA{i,j}

)
Ψ{i,j}(x)

∣∣∣∣
x=0

= λiφi. (4.42)

When λi = 0, then the condition 2 is called Neumann boundary condition, while

λi = ∞, Dirichlet boundary condition. Define the following wave function on

D(G):

Ψ(i,j)(x) =

{
Ψ{i,j}(x) : i < j,

Ψ{i,j}(L{i,j} − x) : i > j
. (4.43)

Let A(i,j) = sgn(j − i)A{i,j}. Then we obtain the following lemma which is

equivalent to the original Schrödinger equation (4.39) with the two boundary

conditions (1) and (2), however it is useful for our discussion:

LEMMA 4. The Schrödinger equations (4.39) with the boundary conditions (1)

and (2) are hold for all {i, j} ∈ E simultaneously, if and only if the following

Schrödinger equations (4.44) with the boundary conditions (I) - (III) are hold for

all (i, j) ∈ D(G). (
−i

d

dx
+ A(i,j)

)2

Ψ(i,j)(x) = k2Ψ(i,j)(x). (4.44)

(I) Ψ(i,j)(x) = Ψ(j,i)(L{i,j} − x),

(II) Ψ(i,j)(0) = φi for all j ∈ N(i).

(III)
∑

j∈N(i)

(
−id/dx + A(i,j)

)
Ψ(i,j)(x)

∣∣
x=0

= −iλiφi for all i ∈ V (G).

4.2 Quantum graph walk

We should note that the quantum graph is determined by sequence of edge

length L = {L{i,j}; {i, j} ∈ E}, and boundary conditions at each vertex

λ = {λj; j ∈ V } and the vector potential with respect to magnetic flux A =

{A{i,j}; {i, j} ∈ E}.
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DEFINITION 6. (Quantum graph walk) We call quantum graph walk with pa-

rameters of quantum graph (L, λ,A) to the A-type QW with flip flop shift

U (L,–,A)(k) ≡ U (A)
πff

[Hj(k); j ∈ V (G)],

where

〈e(j)
m |Hj(k)|e(j)

l 〉 =

(
2

dj + iλj/k
− δl,m

)
eiL{j,m}(k−A(j,m)). (4.45)

REMARK 4. An equivalent expression for Hj(k) is

Hj(k) = Dj(k)

(
2

dj + iλj/k
Jdj

− Idj

)
.

where Dj(k) is a diagonal matrix such that
∑

m∈N(j) eiL{j,m}(k−A(j,m))|e(j)
m 〉〈e(j)

m |,
and Jdj

is the all 1 matrix, Idj
is the identity matrix on Hj.

REMARK 5. In the limit of L ↓ 0 with the Neumann boundary condition, the

Grover walk appears again. Comparing both expressions for the local quantum

coins for the Szegedy walk (Eq. (3.36)) and quantum graph walk (Eq. (4.45)),

the common class of both walks is only the Grover walk.

A general solution for Eq. (4.44) can be directly solved by using two param-

eters a(i,j), b(i,j) ∈ C,

Ψ(i,j)(x) =
(
a(i,j)e

−ikx + b(i,j)e
ikx

)
e−iA(i,j)x. (4.46)

LEMMA 5. It is hold that

b(i,j) = a(j,i)e
−iL{i,j}(k−A(i,j)). (4.47)

Proof. Substituting Eq. (4.46) into the condition (I), it is hold that for any

(i, j) ∈ D(G) and x ∈ [0, L{i,j}],

a(i,j)e
−ikx + b(i,j)e

ikx

=
{
a(j,i)e

−iL{i,j}(k−A(i,j))
}

eikx +
{
b(j,i)e

iL{i,j}(k+A(i,j))
}

e−ikx. (4.48)

Thus comparing the coefficients of e−ikx and eikx of LHS with ones of RHS in the

identity (4.48) with respect to x ∈ [0, Lij], we obtain

a(i,j) = b(j,i)e
iL{i,j}(k+A(i,j)), (4.49)

b(i,j) = a(j,i)e
−iL{i,j}(k−A(i,j)). (4.50)

Remarking that A(j,i) = −A(i,j), then Eq. (4.49) is equivalent to Eq. (4.48), we

complete the proof.
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By substituting Eq. (4.47) into Eq. (4.46), we obtain for each (i, j) ∈ D,

Ψ(i,j)(x) = a(i,j)e
−i(k+A(i,j))x + a(j,i)e

−i(k+A(j,i))(L{i,j}−x). (4.51)

Therefore |D|-parameter {af ; f ∈ D} gives the solution for the Schrödinger equa-

tions. We put a∗(k) as the array a(i,j)’s, that is, a∗(k) =
∑

(i,j)∈D a(i,j)|i, j〉. On

the other hand, for x = (x(i,j); (i, j) ∈ D with 0 ≤ xij ≤ L{i,j}), and k ∈ R, let

the array of eigenfunctions Ψ(i,j)(x(i,j))’s be Ψ∗(k, x) ≡
∑

i,j∈D Ψ(i,j)(xi,j)|i, j〉.
Then Eq. (4.51) implies that

Ψ∗(k, x) = {D1(k, x) + D2(k, x)S}a∗(k), (4.52)

where Dj(k, x) (j ∈ {1, 2}) are diagonal matrix defined by for f, f ′ ∈ D(G),

(D1)f,f ′ = δf,f ′e−i(k+Af )xf ,

(D2)f,f ′ = δf,f ′e−i(k−Af )(Lf−xf ).

Now we will investigate a necessary and sufficient condition of a∗(k) for getting

non-trivial solution of quantum graph Ψ∗(k, x) ( 6= 0). One of its answers is our

main result in Theorem 1. The following theorem is a collection of equivalent

statements including Theorem 1.

THEOREM 6. The following three statements are equivalent:

(1) In the quantum graph with parameters (L,λ, A), the Schrödinger equation

(4.44) with the boundary conditions (I) - (III) has a non-trivial solution

{Ψ(i,j)(x)}(i,j)∈D(G).

(2) a∗(k) is an eigenvector of the quantum graph walk U (L,–,A)(k) with eigen-

value 1.

(3) It is hold that

det(I|V | − T|V | + D|V |)

|E|∏
j=1

(1 − e2ikLej ) = 0, (4.53)

where for i, j ∈ V (G),

(
T|V |

)
i,j

=
e−iL{i,j}(k+A(i,j))(1 + e−iρj(k))/

√
didj

1 − e2ikL{i,j}
1{(i,j)∈D(G)}(i, j), (4.54)

(
D|V |

)
i,j

=
∑

l∈N(i)

e2ikL{i,l}(1 + e−iρi(k))/di

1 − e2ikL{i,l}
1{i=j}(i, j). (4.55)

Here eiρj(k) = {1 + iλj/(kdj)}/{1 − iλj/(kdj)}.
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Proof. At first we give the following lemma.

LEMMA 6. The boundary conditions (I)-(III) are hold for all (i, j) ∈ D(G),

⇔ a(i,j) =
∑

l∈N(i)

(
2

di − iλi/k
− δlj

)
e−iL{i,l}(k−A(i,l))a(l,i) (4.56)

Proof. We assume that the boundary conditions (II) and (III) are hold. From

condition (II), substituting x = 0 into Eq. (4.46),

Ψ(i,j)(0) = a(i,j) + b(i,j) = φi, j ∈ N(i). (4.57)

Taking a summation of Eq. (4.57) over all the neighbors of i,∑
j∈N(i)

(
a(i,j) + b(i,j)

)
= diφi. (4.58)

From Eq. (4.46),

d

dx
Ψ(i,j)(x)

∣∣∣∣
x=0

= −i(k + A(i,j))a(i,j) + i(k − A(i,j))b(i,j),

Inserting it into condition (III), we obtain

−ik
∑

j∈N(i)

(a(i,j) − b(i,j)) = λiφi. (4.59)

Combining Eq. (4.58) with Eq. (4.59),

φi = − ik

λi

∑
j∈N(i)

(a(i,j) − b(i,j)) =
1

di

∑
j∈N(i)

(a(i,j) + b(i,j)),

which implies that ∑
j∈N(i)

a(i,j) = eiρi(k)
∑

j∈N(i)

b(i,j). (4.60)

By using Eqs. (4.57) (4.58) and (4.60),

a(i,j) = φi − b(i,j) =
1

di

∑
l∈N(i)

(
a(i,l) + b(i,l)

)
− b(i,j),

=
∑

l∈N(i)

(
2

di − iλi/k
− δl,j

)
b(i,l). (4.61)

Conversely, under the assumption that Eq. (4.61) is hold, we can easily check

that the conditions (II) and (III) are satisfied. Then inserting Lemma 5 into

Eq. (4.61), we complete the proof.
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Next, we will give a proof that (1) iff (2). By using a matrix representation

of the quantum coin at vertex i in Eq. (4.45), RHS of Eq. (4.56) is rewritten by∑
l∈N(i)

〈e(i)
j |H†

i (k)|e(i)
l 〉a(l,i),

which implies that a∗(k) = C†(k)Sπff
a∗(k) with C(k) =

∑
j∈V (G) ⊕Hj(k). Note

that from Lemma 2 the time reverse of the quantum graph walk is the following

G-type quantum walk (
U (L,–,A)

)−1
= U (G)

πff
[H†

j (k); j ∈ V ]. (4.62)

Thus a∗(k) is the eigenvector of eigenvalue 1 for both U
(G)
πff [H†

j (k); k ∈ V ] and

U (L,–,A) ≡ U
(A)
πff [Hj(k); j ∈ V ]. Finally, we show that (2) iff (3). To do so, we

give the following lemma: When we take αjl = 1/
√

dj (l ∈ N(j)) and t = 1 in

the following lemma, then we obtain the statement of (3)

LEMMA 7. Let Ũ (A)(k) be a generalized quantum graph walk whose quantum

coin is denoted by

Hj(k) = Dj(k)
{
(1 + e−iρj(k))Πj − Idj

}
, (j ∈ V (G)),

where Πj is a projection onto a unit vector |αj〉 =
∑

l∈N(j) αjl|e(j)
l 〉 ∈ Hj with∑

l∈N(j) |αjl|2 = 1. Then we have

det
(
I2|E| − tŨ (A)(k)

)
= det

(
I|V | − tT|V |(t) + t2D|V |(t)

) ∏
{i,j}∈E

(1 − t2e−2ikL{i,j})

(4.63)

where (
T|V |(t)

)
i,j

=
eiL{i,j}(k+A(i,j))(1 + e−iρj(k))αjiαij

1 − t2e2ikL{i,j}
1{(i,j)∈D(G)}(i, j), (4.64)

(
D|V |(t)

)
i,j

=
∑

l∈N(i)

e2ikL{i,l}(1 + e−iρi(k))|αij|2

1 − t2e2ikL{i,l}
1{i=j}(i, j) (4.65)

REMARK 6. If we choose the unit vector |αj〉 on each Hj as |αj〉 =

1/
√

dj

∑
l∈N(j) |e

(j)
l 〉, then the walk becomes a quantum graph walk. On the

other hand, if we put the parameters λ = 0, L = 0, and αij ∈ [0, 1] for all

(i, j) ∈ D, then the walk becomes a Szegedy walk.

In the following, we prove Lemma 7. For a sequence (c(i,j))(i,j)∈D(G) and a

sequence (ci)i∈V (G), we denote DD[(c(i,j))(i,j)∈D(G)] and DV [(ci)i∈V (G)] as the fol-

lowing diagonal matrices on `2(D) and `2(V ), respectively;

DD[(c(i,j))(i,j)∈D(G)] =
∑

(i,j)∈D(G)

c(i,j)|i, j〉〈i, j|, DV [(ci)i∈V (G)] =
∑

i∈V (G)

ci|i〉〈i|.
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We will use the relation

SDD[(c(i,j))(i,j)∈D(G)] = DD[(c(j,i))(i,j)∈D(G)] (4.66)

Let A as a matrix representation of a map `2(V ) → `2(D) such that i 7→ |ai〉 for

every i ∈ V , that is, A =
∑

j∈V |aj〉〈j|. Put

B = S · D̃D · A · D̃V , (4.67)

where D̃D = DD

[
exp[iL{i,j}(k − A(i,j))] : (i, j) ∈ D

]
, and D̃V = DV [1 + e−iρj(k) :

j ∈ V ]. The coin operator on `2(D) is described by

C = D̃D

(
AD̃V A† − I|V |

)
. (4.68)

By using this,

det(I2|E| − tU (A)(k))

= det
(
I2|E| − tSD̃D(AD̃V A† − I|V |)

)
= det(I2|E| + tSD̃D) · det

(
I2|E| − t(I2|E| + tSD̃D)−1BA†

)
= det(I2|E| + tSD̃D) · det

(
I|V | − tA†(I2|E| + tSD̃D)−1B

)
. (4.69)

We should note that

I2|E| + tSD̃D
∼=

∑
{i,j}∈E

⊕
[

1 teiL{i,j}(k−A(j,i))

teiL{i,j}(k−A(i,j)) 1

]
(4.70)

Put ∆{i,j}(t) = 1 − t2e2ikL{i,j} . Then we have

det(I2|E| + tSDD) =
∏
{i,j}

∆{i,j}(t). (4.71)

(
I2|E| + tSD̃D

)−1

= D̃(1)
D

(
I − tD̃(2)

D S
)

, (4.72)

where

D̃(1)
D = D̃D[∆−1

{i,j}(t); (i, j) ∈ D], D̃(2)
D = D̃D[eiL{j,i}(k−A(j,i)); (i, j) ∈ D].

We applied Eq. (4.66) to the expression of Eq. (4.72). By using these notations

we rewrite A†(I2|E| + tSD̃D)−1B in Eq. (4.69) by

A†(I2|E| + tSD̃D)−1B = A†D̃(1)
D B − tA†D̃(1)

D D̃(2)
D SB.
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We can express the first and the second terms as

A†D̃(1)
D B = A†D̃(1)

D SD̃DAD̃V

= A†D̃D

[(
eiL{i,j}(k−A(j,i))∆−1

{i,j}(t)
)

(i,j)∈D

]
SAD̃V

=
∑

(i,j)∈D

αij · eiL{i,j}(k−A(j,i))∆−1
{i,j}(t) · αji · (1 + e−iρj(k))|i〉〈j|

= T|V |(t). (4.73)

A†D̃(1)
D D̃(2)

D SB = A†D̃(1)
D D̃(2)

D S · SD̃DAD̃V

= A†D̃(1)
D D̃(2)

D D̃DAD̃V

= A†D̃D

[
e2ikL{i,j}/∆{i,j} : (i, j) ∈ D

]
AD̃V

=
∑
j∈V

 ∑
i∈N(j)

(1 + eiρj(k))|αij|2e2ikL{i,j}/∆{i,j}

 |j〉〈j|

= D|V |(t). (4.74)

Then we complete the proof of Theorem 6.

4.3 Necessary and sufficient conditions for quantum graph

Finally, we mention the relation between quantum walk and quantum evo-

lution map defined by [18, 19]. In this paper, we have defined the A-type QW,

U (L;–;A)(k) ≡ U
(A)
πff [Hj(k); j ∈ V ] with local quantum coins determined by the

parameters of corresponding quantum graph (L, λ, A) (see Eq. (4.45)), as quan-

tum graph walk. Recall that the statement of (2) in Theorem 6 is

U (L;–;A)a∗(k) = a∗(k) (4.75)

which is an equivalent expression for satisfying the corresponding quantum

graph. Since

U (A)
πff

[Hj(k); j ∈ V ] = Sπff
U (G)

πff
[Hj(k); j ∈ V ]Sπff

and S2
πff

= I,

Eq. (4.75) is reexpressed by

U (G)
πff

[Hj(k); j ∈ V ]b∗(k) = b∗(k), (4.76)

where b∗(k) = Sπff
a∗(k). Combining Lemma 2 with Eq. (4.76), we can give

equivalent statements to (1) in Theorem 6 as follows:
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PROPOSITION 1. The following statements are necessary and sufficient condi-

tions for satisfying quantum graph

U (A)
πff

[Hj(k); j ∈ V ]a∗(k) = a∗(k) ⇔ U (G)
πff

[Hj(k)†; j ∈ V ]a∗(k) = a∗(k)

⇔ U (A)
πff

[Hj(k)†; j ∈ V ]b∗(k) = b∗(k) ⇔ U (G)
πff

[Hj(k); j ∈ V ]b∗(k) = b∗(k).

The G-type QW, U
(G)
πff [Hj(k); j ∈ V ], is nothing but the “quantum evolution

map” in [18, 19]. More concretely, the quantum evolution map is denoted by

UB(k) ≡ U
(G)
πff [Hj(k); j ∈ V ] = T (k)S(k), where T (k) and S(k) are called bond

propagation matrix, and graph scattering matrix in their paper, respectively.

The correspondence between the Simlansky’s quantum evolution map and the

G-type QW as follows:

T (k) = C[σj; j ∈ V ]S, S(k) = D̃D (4.77)

where for l,m ∈ N(j),

〈e(j)
m |σj|e(j)

l 〉 =
2

dj + iλj/k
− δl,m,

and D̃D is defined in Eq. (4.67).

We will be able to see more detailed discussions around here and new insight

into quantum walks through the quantum graphs in our next papers [25, 26].
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