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Abstract. In smooth surgery theory, it is worthwhile to find relations holding
among universal characteristic classes of surgery, because those relations give us
information on the possible values of surgery obstructions. We present and prove
a new series of relations between smooth Kervaire classes.

1. Main Result

Let Mn be a smooth closed manifold. In the surgery theory of differentiable

manifolds, a normal map with the target manifold M is represented by a map

f : M → G/O, where G/O is the fiber of the stable J-map BJ : BSO → BSG.

There exist cohomology classes K2i−2 ∈ H2i−2(G/O; Z/2) with the property that

the Kervaire obstruction c(f) is equal to

〈V (M)2
∑
i≥2

f∗K2i−2, [M ]2〉,

where V (M) is the total Wu class of M and [M ]2 is the mod 2 homology funda-

mental class of M . The cohomology classes K2i−2 are called the smooth Kervaire

classes.

In [3] we proved a series of relations

Sq2r

Sq2s

Sq2t

K2r−2 + Sq2s

Sq2t

K2r+1−2 = 0,

where r, s and t satisfy r > s > t ≥ 0. The purpose of this paper is to prove

another series of relations:

MAIN THEOREM. Among the smooth Kervaire classes, the following relation

holds:

Sq2r+1

Sq2r

Sq2s

K2r−2 + (Sq2r+1

Sq2s

+ Sq2s+1+2s

Sq2r+1−2s+1

)K2r+1−2 = 0,

where r and s are integers satisfying r > s > 0.
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2. Preliminaries

All the binomial coefficients in this paper are considered mod 2. In the

proof of our main theorem, we shall encounter many binomial coefficients. The

following is the most fundamental criterion for determining the modulo 2 value

of the binomial coefficient ([8, I.2.6.LEMMA]).

LEMMA 2.1. Let

a =
∑
i≥0

ai 2i, b =
∑
i≥0

bi 2i

be 2-adic expansions of non-negative integers a and b, where ai and bi’s are 0 or

1. Then the binomial coefficient
(

a
b

)
is zero if and only if there exists an i such

that ai = 0 and bi = 1.

For a, b not satisfying a ≥ b ≥ 0, we read the binomial coefficient
(

a
b

)
as zero

by convention. By using Lemma 2.1 we have the following lemmas (see [3]) :

LEMMA 2.2. ([3, Lemma 2.6]) Let a ≥ 0. The binomial coefficient
(
2a−1+i

2i

)
is

nonzero if and only if i = 2a − 2k where 0 ≤ k ≤ a.

LEMMA 2.3. ([3, Lemma 2.10]) Let a ≥ b ≥ 0. The binomial coefficient(
2a−2b+i

2i

)
is nonzero if and only if i = (2a − 2k) + (2b − 2l) or i = 2a − 2b

where b + 1 ≤ k ≤ a and 0 ≤ l ≤ b.

LEMMA 2.4. ([3, Lemma 2.11]) Let a ≥ b ≥ 0. The binomial coefficient(
2a+2b−1+i

2i

)
is nonzero if and only if i = (2a − 2k) + (2b − 2l), i = 2a + (2b − 2l)

or i = 2a − 2b where b + 1 ≤ k ≤ a and 0 ≤ l ≤ b.

LEMMA 2.5. ([3, Lemma 2.13]) Let a > b ≥ 0. The binomial coefficient(
2a−2b−1+i

2i

)
is nonzero if and only if i = (2a − 2k)+ (2b − 2l) or i = (2a − 2m)+2b

where b + 1 ≤ k ≤ a, 0 ≤ l ≤ b and b + 2 ≤ m ≤ a.

LEMMA 2.6. ([3, Lemma 2.16]) Let a > b > c ≥ 0. The binomial coefficient(
2a+2b−2c−1+i

2i

)
is nonzero if and only if i = (2a − 2k) + (2b − 2l) + (2c − 2m),

i = 2a + (2b − 2l) + (2c − 2m), i = 2a − 2b + (2c − 2m), i = 2a − 2b + 2c,

i = (2a − 2k) + (2b − 2q) + 2c or i = 2a + (2b − 2q) + 2c where b + 1 ≤ k ≤ a,

c + 1 ≤ l ≤ b, 0 ≤ m ≤ c and c + 2 ≤ q ≤ b.

In addition to the above lemmas, we need the following two lemmas to prove

the main theorem.

LEMMA 2.7. Let a > b > c ≥ 0. The binomial coefficient
(
2a−2b+2c+i

2i+1

)
is
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nonzero if and only if i = (2a − 2k) + (2b − 2l) + 2c − 1 or i = 2a − 2b + 2c − 1

where b + 1 ≤ k ≤ a and c + 1 ≤ l ≤ b.

Proof. We use induction on c. When c = 0,
(
2a−2b+1+i

2i+1

)
is zero if i is odd. Hence

without loss of generality, we may assume i = 2j. By Lemma 2.3,
(
2a−2b+1+2j

4j+1

)
=(

2a−1−2b−1+j
2j

)
is nonzero if and only if

j =

{
(2a−1 − 2α) + (2b−1 − 2β)

2a−1 − 2b−1

where b ≤ α ≤ a − 1 and 0 ≤ β ≤ b − 1. That is

i =

{
(2a − 2α+1) + (2b − 2β+1)

2a − 2b

where b + 1 ≤ α + 1 ≤ a and 1 ≤ β + 1 ≤ b.

When c ≥ 1, it is enough to consider the case i = 2j+1. Then on the inductive

assumption, we see that
(
2a−2b+2c+i

2i+1

)
=

(
2a−2b+2c+2j+1

4j+3

)
=

(
2a−1−2b−1+2c−1+j

2j+1

)
is

nonzero if and only if

j =

{
(2a−1 − 2α) + (2b−1 − 2β) + (2c−1 − 1)

2a−1 − 2b−1 + 2c−1 − 1

where b ≤ α ≤ a − 1 and c ≤ β ≤ b − 1. That is

i =

{
(2a − 2α+1) + (2b − 2β+1) + 2c − 1

2a − 2b + 2c − 1

where b + 1 ≤ α + 1 ≤ a and c + 1 ≤ β + 1 ≤ b.

LEMMA 2.8. Let a > b > c ≥ 0. The binomial coefficient
(
2a−2b+2c−1+i

2i

)
is

nonzero if and only if i = (2a − 2k) + (2b − 2l) + (2c − 2m), i = (2a − 2k) + 2b − 2c

or i = 2a − 2b + 2c − 2m where b + 1 ≤ k ≤ a, c + 1 ≤ l ≤ b and 0 ≤ m ≤ c.

Proof. We use induction on c. When c = 0, by Lemma 2.3,
(
2a−2b+i

2i

)
is nonzero

if and only if

i =

{
(2a − 2k) + (2b − 2l)

2a − 2b

where b + 1 ≤ k ≤ a and 0 ≤ l ≤ b.
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When c ≥ 1 and i = 2j, on the inductive assumption we see that(
2a−2b+2c−1+i

2i

)
=

(
2a−2b+2c−1+2j

4j

)
=

(
2a−1−2b−1+2c−1−1+j

2j

)
is nonzero if and only if

j =


(2a−1 − 2α) + (2b−1 − 2β) + (2c−1 − 2γ)

2a−1 − 2α + 2b−1 − 2c−1

2a−1 − 2b−1 + (2c−1 − 2γ)

where b ≤ α ≤ a − 1, c ≤ β ≤ b − 1 and 0 ≤ γ ≤ c − 1. That is

i =


(2a − 2α+1) + (2b − 2β+1) + 2c − 2γ+1

2a − 2α+1 + 2b − 2c

2a − 2b + 2c − 2γ+1

where b + 1 ≤ α + 1 ≤ a, c + 1 ≤ β + 1 ≤ b and 1 ≤ γ + 1 ≤ c.

When c ≥ 1 and i = 2j + 1, by Lemma 2.7,
(
2a−2b+2c−1+i

2i

)
=

(
2a−2b+2c+2j

4j+2

)
=(

2a−1−2b−1+2c−1+j
2j+1

)
is nonzero if and only if

j =

{
(2a−1 − 2α) + (2b−1 − 2β) + 2c−1 − 1

2a−1 − 2b−1 + 2c−1 − 1

where b ≤ α ≤ a − 1 and c ≤ β ≤ b − 1. That is

i = 2j + 1 =

{
(2a − 2α+1) + (2b − 2β+1) + 2c − 1

2a − 2b + 2c − 1

where b + 1 ≤ α + 1 ≤ a and c + 1 ≤ β + 1 ≤ b.

Before we proceed to the details, we collect here notations and known facts

which will be used in the proofs. We note that in this paper all homologies and

cohomologies are in coefficients mod 2 and will be omitted from the notation.

The mod 2 homology and cohomology groups of the classifying space of

surgery G/O were studied by Milgram ([6]) and others ([1], [4]). For a brief

survey, see [5, chapter 6]. We do not know any explicit description of generators

of the cohomology group H∗(G/O). However, as to its dual H∗(G/O), we know

that it is a polynomial algebra and its generators are given as follows, using the

Dyer-Lashof operations on G/O.

Let I = (i1, i2, · · · , in) be a finite sequence of non-negative integers. We

shall write QI for the composite of mod 2 Dyer-Lashof homology operations

Qi1Qi2 · · ·Qin . We say that I or QI is allowable if ij ≤ 2ij+1 holds for all j,

1 ≤ j ≤ n − 1. Define its length `(I) = n and its excess e(I) by

e(I) =
n−1∑
j=1

(ij − 2ij+1) + in = i1 − i2 − · · · − in.
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The Pontrjagin ring of SG is known as follows ([6, Theorem C], [1, Chapter 6],

[4, Theorem 4.10]).

THEOREM. [Madsen-Milgram]

H∗(SG) = E{Qi[1] ∗ [−1] | i ≥ 1} ⊗ P{QiQi[1] ∗ [−3] | i ≥ 1}
⊗ P{QI [1] ∗ [1 − 2n] | I : allowable, `(I) = n ≥ 2, e(I) ≥ 1, in ≥ 1}.

Here the Dyer-Lashof operations Qi are based on the infinite loop structure

of Ω∞S∞ and H∗(SG) is considered as a subalgebra of H∗(Ω
∞S∞).

The natural map SG −→ G/O in the sequence of fibrations

SO −→ SG −→ G/O −→ BSO −→ BSG

allows us to identify H∗(G/O) with the subalgebra of H∗(SG) :

H∗(G/O) = P{QiQi[1] ∗ [−3] | i ≥ 1}
⊗ P{QI [1] ∗ [1 − 2n] | I : allowable, `(I) = n ≥ 2, e(I) ≥ 1, in ≥ 1}.

As to the homology operations, we have the Adem relation

QaQb =
∑

i

(
i − b − 1

2i − a

)
Qa+b−iQi for a > 2b

and the Nishida relation ([7, Main Theorem])

Sqa
∗Q

b =
∑

i

(
b − a

a − 2i

)
Qb−a+iSqi

∗,

where Sqi
∗ denotes the dual of the Steenrod squaring operation Sqi.

In what follows, given a sequence I = (i1, i2, · · · , in) (not necessarily allow-

able), we shall also write u(i1, i2, · · · , in) to represent the element QI [1] ∗ [1− 2n]

either in H∗(SG) or in H∗(G/O).

As to the characterization of the smooth Kervaire classes, we have the follow-

ing theorem which is a slight generalization of [1, Corollary 3.6] and [2, Proposi-

tion 2.8].

LEMMA 2.9. For I = (i1, i2, · · · , in), the Kronecker pairing

〈K2q+1−2, u(i1, i2, · · · , in)〉

is nonzero if and only if n = 2, i1 + i2 = 2q+1 − 2 and i2 = 2m − 1 for some m,

0 < m ≤ q.
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Proof. Let I = (i1, i2, · · · , in) with in > 0 and consider uI = u(i1, i2, · · · , in).

When I is allowable, we know that the pairing 〈K2q+1−2, uI〉 is nonzero if and

only if n = 2 and i1 = i2 = 2q − 1, by [1], [4] or [2, Proposition 2.8]. Suppose

that I is not allowable. Then we can use the Adem relation and express uI as a

sum of allowable terms uJ . Since the Adem relation preserves the length of the

indices, 〈K2q+1−2, uI〉 is zero if `(I) 6= 2. Let I = (i1, i2) be non-allowable. In

this case, by the Adem relation we have

u(i1, i2) =
∑

j

(
j − i2 − 1

2j − i1

)
u(2q+1 − 2 − j, j).

The pairing 〈K2q+1−2, u(i1, i2)〉 is nonzero if and only if the binomial coefficient(
j−i2−1
2j−i1

)
is nonzero for j = 2q − 1. Then we have

(
j−i2−1
2j−i1

)
=

(
2q−i2−2

i2

)
=(

2q−i2−2
2q−2i2−2

)
=

(
2q−1−1+(2q−1−i2−1)

2(2q−1−i2−1)

)
. By Lemma 2.2, this is nonzero if and only if

2q−1 − i2 − 1 = 2q−1 − 2m for some m ≤ q − 1, i.e. i2 = 2m − 1. This completes

the proof.

The elements of the form u(2q+1 − 2m − 1, 2m − 1) ∈ H∗(G/O) that appeared

in the above proof will be referred to as Kervaire duals in the subsequent part of

this paper.

3. Proof of the Main Theorem

The relation claimed in the main theorem

Sq2r+1

Sq2r

Sq2s

K2r−2 + (Sq2r+1

Sq2s

+ Sq2s+1+2s

Sq2r+1−2s+1

)K2r+1−2 = 0

is equivalent to the statement that

(3.1) 〈Sq2r+1

Sq2r

Sq2s

K2r−2, u〉

+ 〈Sq2r+1

Sq2s

K2r+1−2, u〉

+ 〈Sq2s+1+2s

Sq2r+1−2s+1

K2r+1−2, u〉 = 0

is true for all u ∈ H∗(G/O). An element x ∈ H∗(G/O) is primitive, by definition,

if it satisfies µ∗(x) = x⊗1+1⊗x, where µ : G/O×G/O → G/O is the H-space

multiplication. The Kronecker pairing of a primitive class with a decomposable

homology class always vanishes. It is known that the Kervaire classes K2i+1−2

are primitive ([1, Theorem 3.3]). Since the Kervaire classes K2i+1−2 are primitive

and the Steenrod squaring operations Sqj map primitive elements to primitive

elements, the relation (3.1) holds when u is a decomposable element of H∗(G/O).
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Hence we may only consider the case where u is a polynomial generator having

the form u = u(i1, i2, . . . , in) = Qi1Qi2 · · ·Qin [1]∗ [1−2n]. To prove (3.1) we have

to show that

〈K2r−2, Sq2s

∗ Sq2r

∗ Sq2r+1

∗ u(i1, i2, . . . , in)〉

+ 〈K2r+1−2, Sq2s

∗ Sq2r+1

∗ u(i1, i2, . . . , in)〉

+ 〈K2r+1−2, Sq2r+1−2s+1

∗ Sq2s+1+2s

∗ u(i1, i2, . . . , in)〉 = 0.

By Lemma 2.9 and the Nishida relation, each term vanishes unless n = 2 since

Sqj
∗ preserves the length of u. Therefore we may assume that u(i1, i2, . . . , in) =

u(a, b).

We put

T1 = 〈K2r−2, Sq2s

∗ Sq2r

∗ Sq2r+1

∗ u(a, b)〉,
T2 = 〈K2r+1−2, Sq2s

∗ Sq2r+1

∗ u(a, b)〉,
T3 = 〈K2r+1−2, Sq2r+1−2s+1

∗ Sq2s+1+2s

∗ u(a, b)〉.

To prove the main theorem we have to show that T1 + T2 + T3 = 0. In order to

achieve this, we look for a condition for each Ti, i = 1, 2, 3, to be nonzero.

Let r > s > 0. We have only to consider u(a, b), where a and b satisfy

a + b = 2r+2 + 2s − 2 and the allowability condition 0 < b ≤ a ≤ 2b.

First, we calculate T1. By repeated use of the Nishida relation, we have

Sq2s

∗ Sq2r

∗ Sq2r+1

∗ u(a, b) =
∑
i,j,k

ABCDEFu(c, d)

where

A =

(
a − 2r+1

2r+1 − 2i

)
=

(
2r+1 + 2s − 2 − b

2r+1 − 2i

)
,

B =

(
b − i

i

)
,

C =

(
a − 2r+1 − 2r + i

2r − 2j

)
,

D =

(
b − i − j

j

)
,

E =

(
a − 2r+1 − 2r − 2s + i + j

2s − 2k

)
,

F =

(
b − i − j − k

k

)
,

c = a − 2r+1 − 2r − 2s + i + j + k, d = b − i − j − k.
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We count the occurrences of Kervaire duals u(c, d), d = 2m − 1 (1 ≤ m ≤ r − 1).

Then we have

A =

(
2r+1 + 2s − 2m − 1 − (i + j + k)

2r+1 − 2i

)
,(3.2)

B =

(
2m − 1 + j + k

i

)
,(3.3)

C =

(
2r + 2s − 2m − 1 − (j + k)

2r − 2j

)
,

D =

(
2m − 1 + k

j

)
,

E =

(
2r − 2m − 1 − k

2s − 2k

)
,

F =

(
2m − 1

k

)
,

b = 2m − 1 + i + j + k, a = 2r+2 + 2s − 2 − b.(3.4)

From the allowability condition 3b ≥ a + b = 2r+2 + 2s − 2, we have 3(2m − 1 +

i + j + k) ≥ 2r+2 + 2s − 2, that is

(3.5) 3(i + j + k) + 2m+1 + 2m ≥ 2r+2 + 2s + 1.

LEMMA 3.1. The product BDF is zero if m ≤ r − 3.

Proof. Suppose that there exist i, j and k such that BDF is nonzero. Then we

have 0 ≤ k ≤ 2m−1, 0 ≤ j ≤ 2m−1+k ≤ 2(2m−1) and 0 ≤ i ≤ 2m−1+k+j ≤
4(2m − 1). Therefore from (3.5) and m ≤ r − 3, we have

3 · 2r ≥ 3 · 7(2m − 1) + 2m+1 + 2m ≥ 2r+2 + 2s + 22.

This is clearly a contradiction.

From this lemma, we have only to consider the case m = r − 2 or r − 1.

LEMMA 3.2. Let m = r − 1 or r − 2. Then CDEF is nonzero if and only if

s ≤ m, k = 2β, j = 2m or s ≤ m− 1, k = 0, j = 2m − (2s − 2β) where β satisfies

0 ≤ β ≤ s − 1.

Proof. Case m = r − 1: We have

E =

(
2r−1 − 1 − k

2s − 2k

)
=

(
2r−1 − 2s−1 − 1 + (2s−1 − k)

2(2s−1 − k)

)
.



RELATIONS OF SMOOTH KERVAIRE CLASSES 23

By Lemma 2.5, E is nonzero if and only if k = 2β where β satisfies 0 ≤ β ≤ s−1

or k = 0, s ≤ r − 2.

Subcase k = 2β where β satisfies 0 ≤ β ≤ s − 1: We have

C =

(
2r + 2s − 2r−1 − 1 − (j + 2β)

2(2r−1 − j)

)
,

D =

(
2r−1 + 2β − 1

j

)
.

It is easy to see that D is nonzero if and only if 0 ≤ j ≤ 2β − 1 or 2r−2 ≤ j ≤
2r−2 + 2β − 1. From the form of C we see that 2r + 2s − 2r−1 − 1 − (j + 2β) ≥
2r − 2j. But this inequality does not hold if 0 ≤ j ≤ 2β − 1. This shows that

j ≥ 2r−2 − (2s − 1) + 2β ≥ 2β. Therefore we have 2r−1 ≤ j ≤ 2r−2 + 2β − 1.

By applying Lemmas 2.5 and 2.6 to C in the cases s = r − 2 and s ≤ r − 3,

respectively, we see that C is nonzero if and only if j = 2r−2. This contradicts

s ≤ r − 1. Thus we have j = 2r−1 = 2m.

Subcase k = 0 and s ≤ r − 2: We have

C =

(
2r−1 + 2s − 1 − j

2r − 2j

)
=

(
2s − 1 + 2r−1 − j

2(2r−1 − j)

)
,

D =

(
2r−1 − 1

j

)
.

D is nonzero if and only if 0 ≤ j ≤ 2r−1 − 1. By Lemma 2.2, C is nonzero if and

only if j = 2r−1 − (2s − 2β) = 2m − (2s − 2β), 0 ≤ β ≤ s. Then β 6= s because

j ≤ 2r−1 − 1. This completes the proof in the case m = r − 1.

Case m = r − 2 and s = r − 1: We have

E =

(
2r−1 − 1 + (2s−1 − k)

2(2s−1 − k)

)
.

By Lemma 2.2, E is nonzero if and only if k = 2r−2 or k = 0. On the other hand

since F =
(
2r−2−1

k

)
6= 0, we have 0 ≤ k ≤ 2r−2 − 1. Therefore we have k = 0.

Then we have

C =

(
2r + 2r−1 − 2r−2 − 1 − j

2r − 2j

)
=

(
2r − 2r−2 − 1 + (2r−1 − j)

2(2r−1 − j)

)
,

D =

(
2r−2 − 1

j

)
.

D is nonzero if and only if 0 ≤ j ≤ 2r−2 − 1. By Lemma 2.5, C is nonzero if and

only if j = 0. But this is contradictory to the allowability condition. Thus we

have CDEF = 0 in the case that m = r − 2, s = r − 1 and k = j = 0. This

completes the proof in the case that m = r − 2 and s = r − 1.
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Case m = r − 2 and s ≤ r − 2: We have

E =

(
2r − 2r−2 − 1 − k

2s − 2k

)
=

(
2r−1 + 2r−2 − 2s−1 − 1 + (2s−1 − k)

2(2s−1 − k)

)
.

By Lemma 2.6, E is nonzero if and only if k = 2β where β satisfies 0 ≤ β ≤ s−1

or s ≤ r − 3, k = 0.

Subcase k = 2β where β satisfies 0 ≤ β ≤ s − 1: We have

C =

(
2r + 2s − 2r−2 − 1 − (j + 2β)

2(2r−1 − j)

)
=

(
2r−2 + 2s − 2β − 1 + (2r−1 − j)

2(2r−1 − j)

)
.

It is easy to see that D is nonzero if and only if 0 ≤ j ≤ 2β − 1 or j = 2r−2.

From the form of C we see that

2r + 2s − 2r−1 − 1 − (j + 2β) ≥ 2r − 2j.

But this inequality is impossible if 0 ≤ j ≤ 2β − 1. Because if j ≤ 2β − 1, then

inequalities 2r − 2r−1 − 2s + 1 + 2β ≤ j ≤ 2β − 1, i.e. 2r−1 + 2 ≤ j ≤ 2s, hold.

This contradicts s ≤ r − 2. Thus j = 2r−2 = 2m.

Subcase k = 0, s ≤ r − 3: We have

C =

(
2r + 2s − 2r−2 − 1 − j

2r − 2j

)
=

(
2r−2 + 2s − 1 + (2r−1 − j)

2(2r−1 − j)

)
,

D =

(
2r−2 − 1

j

)
.

So we have 0 ≤ j ≤ 2r−2 − 1. By Lemma 2.4, we can easily see that C is nonzero

if and only if j = 2r−2. This is impossible. This completes the proof in the case

that m = r − 2 and s ≤ r − 2. Thus the proof of this lemma is completed.

LEMMA 3.3. If m ≤ r − 2, then T1 = 0 holds.

Proof. Suppose that T1 is nonzero. Then there exist i, j and k such that

ABCDEF is nonzero. But from Lemma 3.1, T1 is zero for m ≤ r − 3. So

we may assume that m = r − 2. From Lemma 3.2, it suffices to consider the

following two cases. First we consider the case k = 2β (0 ≤ β ≤ s− 1), j = 2r−2.

We have

B =

(
2r−1 + 2β − 1

i

)
,

A =

(
2r−1 + 2s − 2β − 1 − (2r − i)

2(2r − i)

)
.
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B is nonzero if and only if 0 ≤ i ≤ 2β − 1 or 2r−1 ≤ i ≤ 2r−1 + 2β − 1. By the

form of A, the following inequality holds:

(3.6) 2r−1 − 2s + 2β + 1 ≤ i.

If 0 ≤ i ≤ 2β − 1, then 2r−1 − 2s + 2β + 1 ≤ i ≤ 2β − 1, i.e. 2r−1 + 2 ≤ i ≤ 2s.

But this contradicts the condition s ≤ m = r − 2 of Lemma 3.1. Thus this case

does not occur. If 2r−1 ≤ i ≤ 2r−1 + 2β − 1, then from Lemma 2.6 and (3.6) we

see that there does not exist such an integer i.

Next we consider the second case k = 0, j = 2r−2 − (2s − 2β), s ≤ r − 3,

0 ≤ β ≤ s − 1. We have

B =

(
2r−1 − 2s + 2β − 1

i

)
,

A =

(
2r−1 + 2s+1 − 2β − 1 + (2r − i)

2(2r − i)

)
.

From the form of A, the following inequalities hold:

2r−1 − 2s+1 + 2β + 1 ≤ i and 0 ≤ i ≤ 2r.

If 0 ≤ i ≤ 2r−1, then the allowability condition (3.5) is not satisfied. Therefore

2r−1 + 1 ≤ i ≤ 2r. From the form of B in (3.3), we have the inequality i ≤
2r−1 − 2s + 2β − 1. Hence we have

2r−1 + 1 ≤ 2r−1 − 2s + 2β − 1,

i.e. 2s + 2 ≤ 2β. This contradicts 0 ≤ β ≤ s − 1. Therefore there does not exist

such an integer i. This proves that T1 = 0 if m = r − 2.

LEMMA 3.4. T1 is nonzero if and only if

(a, b) =

{
(2r+1 + 2s − 2β − 1, 2r+1 + 2β − 1)

(2r+1 + 2s+1 + 2s − 2β − 1, 2r+1 − 2s+1 + 2β − 1)

where β satisfies 0 ≤ β ≤ s − 1.

Proof. From Lemma 3.3, we may assume that m = r − 1. By Lemma 3.2, it is

enough to consider the following two cases. We consider the first case: k = 2β,

j = 2r−1 where β satisfies 0 ≤ β ≤ s − 1.

B =

(
2r + 2β − 1

i

)
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is nonzero if and only if 0 ≤ i ≤ 2β − 1 or 2r ≤ i ≤ 2r +2β − 1. If 0 ≤ i ≤ 2β − 1,

then from the allowability condition (3.5), we have

2r+2 + 2s + 1 − 2r − 2r−1 ≤ 3(i + j + k) ≤ 3(2s−1 − 1 + 2r−1 + 2s−1).

From this we have 2r + 4 ≤ 2s+1. But this is impossible because s + 1 ≤ r. Thus

we have 2r ≤ i ≤ 2r + 2β − 1. From the form of A in (3.2), we have i ≤ 2r, and

hence i = 2r. Thus b = 2r+1 + 2β − 1 and a = 2r+1 + 2s − 2β − 1.

We consider the second case: k = 0, j = 2r−1 − (2s − 2β), s ≤ r − 2 where β

satisfies 0 ≤ β ≤ s − 1.

B =

(
2r − 2s + 2β − 1

i

)
is nonzero if and only if i = 2s i1 + i2 where 0 ≤ i1 ≤ 2r−s and 0 ≤ i2 ≤ 2β − 1.

By Lemma 2.5,

A =

(
2s+1 − 2β − 1 + (2r − i)

2(2r − i)

)
is nonzero if and only if i = 2r − 2s. Thus we have b = 2r+1 − 2s+1 + 2β − 1 from

(3.4) and a = 2r+1 + 2s+1 + 2s − 2β − 1.

Next, we calculate T2. By repeated use of the Nishida relation, we have

Sq2s

∗ Sq2r+1

∗ u(a, b) =
∑
i,j

A′B′C ′D′u(c, d)

where

A′ =

(
2r+1 + 2s − 2 − b

2r+1 − 2i

)
,

B′ =

(
b − i

i

)
,

C ′ =

(
2r+1 − 2 − (b − i)

2s − 2j

)
,

D′ =

(
b − i − j

j

)
,

c = a − 2r+1 − 2s + i + j, d = b − i − j.

We count the occurrences of Kervaire duals u(c, d) with d = 2m −1 (1 ≤ m ≤ r).
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Then we have

A′ =

(
2r+1 − 2m + 2s − 1 − (i + j)

2r+1 − 2i

)
,

B′ =

(
2m − 1 + j

i

)
,

C ′ =

(
2r+1 − 2m − 1 − j

2s − 2j

)
,

D′ =

(
2m − 1

j

)
b = 2m − 1 + i + j, a = 2r+2 + 2s − 2 − b(3.7)

The allowability condition 2b ≥ a can be expressed as

(3.8) 3(2m − 1 + i + j) ≥ 2r+2 + 2s − 2.

LEMMA 3.5. If m ≤ r − 1, then T2 = 0 holds.

Proof. Suppose that A′B′C ′D′ is nonzero for some i, j. From the form of B′, we

have i ≤ 2m − 1 + j. Combining this with (3.8), we have

(3.9) 6(2m + j) ≥ 2r+2 + 2s + 4.

From the form of C ′, we may assume that j ≤ 2s−1. Suppose that m ≤ r − 1,

then from (3.9), we have 3(2r +2s) ≥ 2r+2 +2s +4. It follows that 2s+1 ≥ 2r +4.

But this is a contradiction because s ≤ r − 1. This completes the proof.

LEMMA 3.6. T2 is nonzero if and only if

(a, b) =

{
(2r+1 + 2s − 2β − 1, 2r+1 + 2β − 1)

(2r+1 + 2s+1 − 2β − 1, 2r+1 − 2s + 2β − 1)

where 0 ≤ β ≤ s − 1.

Proof. If T2 is nonzero, then from Lemma 3.5, we have m = r and there exist i,

j such that A′B′C ′D′ is nonzero. By Lemma 2.5,

C ′ =

(
2r − 1 − j

2s − 2j

)
=

(
2r − 2s−1 − 1 + (2s−1 − j)

2(2s−1 − j)

)
.

is nonzero if and only if j = 2β where 0 ≤ β ≤ s − 1 or j = 0.

Case j = 2β where 0 ≤ β ≤ s − 1: We have

A′ =

(
2r + 2s − 2β − 1 − i

2r+1 − 2i

)
=

(
2s − 2β − 1 + (2r − i)

2(2r − i)

)
,

B′ =

(
2r + 2β − 1

i

)
.
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B′ is nonzero if and only if 0 ≤ i ≤ 2β−1 or i = 2r. But if 0 ≤ i ≤ 2β−1 then we

have i ≤ 2s−1 − 1 and j ≤ 2s−1. This does not satisfy the allowability condition

(3.8). Hence i = 2r. Therefore by (3.7), we have b = 2r −1+ i+ j = 2r+1 +2β −1

and a = 2r+2 + 2s − 2 − b = 2r+1 + 2s − 2β − 1.

Case j = 0: We have B′ =
(
2r−1

i

)
and

A′ =

(
2r + 2s − 1 − i

2r+1 − 2i

)
=

(
2s − 1 + (2r − i)

2(2r − i)

)
.

B′ is nonzero if and only if 0 ≤ i ≤ 2r − 1. By Lemma 2.2, A′ is nonzero if and

only if i = 2r − (2s − 2β), (0 ≤ β ≤ s − 1). Then C ′ is nonzero. Hence b =

2r−1+i+j = 2r+1−2s+2β−1 and a = 2r+2+2s−2−b = 2r+1+2s+1−2β−1.

Finally, we deal with T3. By repeated use of the Nishida relation, we have

Sq2r+1−2s+1

∗ Sq2s+1+2s

∗ u(a, b) =
∑
i,j

A′′B′′C ′′D′′u(c, d)

where

A′′ =

(
a − 2s+1 − 2s

2s+1 + 2s − 2i

)
,

B′′ =

(
b − i

i

)
,

C ′′ =

(
a − 2r+1 − 2s + i

2r+1 − 2s+1 − 2j

)
,

D′′ =

(
b − i − j

j

)
,

c = a − 2r+1 − 2s + i + j, d = b − i − j.

We count the occurrences of u(c, d) with d = 2m − 1 (1 ≤ m ≤ r). Then we have

A′′ =

(
2r+2 − 2m − 2s+1 − 1 − (i + j)

2s+1 + 2s − 2i

)
,

B′′ =

(
2m − 1 + j

i

)
,

C ′′ =

(
2r+1 − 2m − 1 − j

2r+1 − 2s+1 − 2j

)
,

D′′ =

(
2m − 1

j

)
b = 2m − 1 + i + j, a = 2r+2 + 2s − 2 − b,(3.10)

and the allowability condition

(3.11) 3(2m − 1 + i + j) ≥ 2r+2 + 2s − 2.
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LEMMA 3.7. If m ≤ r − 1, then T3 = 0 holds.

Proof. Let m ≤ r− 1 and suppose that there exist i and j such that A′′B′′C ′′D′′

is nonzero.

Case m ≤ r − 2 : From the forms of B′′ and D′′, we have i ≤ 2m − 1 + j,

j ≤ 2m − 1. From (3.11), we have 3 · 2m+2 ≥ 2r+2 + 2s + 10, but this is false if

m ≤ r − 2.

Case m = r − 1 : D′′ is nonzero if and only if 0 ≤ j ≤ 2r−1 − 1. We have

C ′′ =

(
2r + 2r−1 − 1 − j

2r+1 − 2s+1 − 2j

)
=

(
2r−1 + 2s − 1 + (2r − 2s − j)

2(2r − 2s − j)

)
.

By Lemma 2.4 C ′′ is nonzero if and only if j = 2r−1−2s+1 +2β where 0 ≤ β ≤ s.

From the form A′′, we have 0 ≤ i ≤ 2s + 2s−1. Therefore if A′′B′′ is nonzero,

then i + j ≤ 2r−1 + 2s−1 and from the allowability condition (3.11), we have

3(2r−1 − 1 + 2r−1 + 2s−1) ≥ 2r+2 + 2s − 2. From this we have 2s−1 ≥ 2r + 1 and

this is a contradiction.

LEMMA 3.8. T3 is nonzero if and only if

(a, b) =

{
(2r+1 + 2s+1 − 2β − 1, 2r+1 − 2s + 2β − 1)

(2r+1 + 2s+1 + 2s − 2β − 1, 2r+1 − 2s+1 + 2β − 1)

where 0 ≤ β ≤ s − 1.

Proof. Suppose that A′′B′′C ′′D′′ is nonzero for some i, j. Then from Lemma

3.7, we have m = r. D′′ is nonzero if and only if 0 ≤ j ≤ 2r − 1. By Lemma 2.6,

C ′′ is nonzero if and only if j = 2r − 2s+1 + 2l (0 ≤ l ≤ s). From the form of A′′,

we see that 0 ≤ i ≤ 2s + 2s−1 . Therefore

B′′ =

(
2r+1 − 2s+1 + 2l − 1

i

)
is nonzero if and only if 0 ≤ i ≤ 2l − 1.

Case l = s: We have

A′′ =

(
2r+1 − 2s+1 − 2s−1 − 1 − (2s + 2s−1 − i)

2(2s + 2s−1 − i)

)

=

(
2s+1 − 2s−1 − 1 − (2s + 2s−1 − i)

2(2s + 2s−1 − i)

)
.

By Lemma 2.5, A′′ is nonzero if and only if i = 2β, 0 ≤ β ≤ s − 1.
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Case l = s − 1: We have

A′′ =

(
2r+1 − 2s+1 − 1 − (2s + 2s−1 − i)

2(2s + 2s−1 − i)

)
.

By Lemma 2.5, A′′ is nonzero if and only if i = 0.

Case l ≤ s − 2: We have

A′′ =

(
2r+1 − 2s − 2s−1 − 1 − 2l − (2s + 2s−1 − i)

2(2s + 2s−1 − i)

)

=

(
2s+1 + 2s−1 − 2l − 1 − (2s + 2s−1 − i)

2(2s + 2s−1 − i)

)
.

By Lemma 2.6, A′′ is nonzero if and only if i = 0.

Therefore, if l = s, then j = 2r−2s and i = 2β. So we have b = 2r+1−2s+2β−1

and a = 2r+1 + 2s+1 − 2β − 1. If l ≤ s− 1, then i = 0 and j = 2r − 2s+1 + 2β. So

we have b = 2r+1 − 2s+1 + 2β − 1 and a = 2r+1 + 2s+1 + 2s − 2β − 1.

Proof of Main Theorem . After a rather tedious examination, we conclude that

each Ti, i = 1, 2, 3, is nonzero exactly in the following cases where β is an integer

with 0 ≤ β ≤ s − 1:

For T1 by Lemma 3.4,

(a, b) = (2r+1 + 2s − 2β − 1, 2r+1 + 2β − 1)

(a, b) = (2r+1 + 2s+1 + 2s − 2β − 1, 2r+1 − 2s+1 + 2β − 1).

For T2 by Lemma 3.6,

(a, b) = (2r+1 + 2s − 2β − 1, 2r+1 + 2β − 1)

(a, b) = (2r+1 + 2s+1 − 2β − 1, 2r+1 − 2s + 2β − 1).

For T3 by Lemma 3.8,

(a, b) = (2r+1 + 2s+1 − 2β − 1, 2r+1 − 2s + 2β − 1)

(a, b) = (2r+1 + 2s+1 + 2s − 2β − 1, 2r+1 − 2s+1 + 2β − 1).

This result shows that for each allowable u(a, b), the sum T1 + T2 + T3 always

vanishes and this completes the proof of the main theorem.
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