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Abstract. In this paper, a complex-valued measure of bi-product path space
induced by quantum walk is presented. In particular, we consider three types of
conditional return paths in a power set of the bi-product path space (1) A x A,
(2) A x A" and (3) A’ x A/, where A is the set of all 2n-length (n € N) return
paths and A’(C A) is the set of all 2n-length return paths going through nx
(x € [-1,1]) at time n. We obtain asymptotic behaviors of the complex-valued
measures for the situations (1)-(3) which imply two kinds of weak convergence
theorems (Theorems 1 and 2). One of them suggests a weak limit of weak values.

1. Introduction

Let the set of all the n-truncated paths be Q,, = {—1,1}". Denote the coin
space H¢ spanned by choice of direction at each time step, that is, e_; = T[1, 0]
and e; = T[0,1]. Let quantum coin on H¢ be

U= {‘Z Z} e U(2)

with abed # 0, where U(2) is the set of two-dimensional unitary matrices. Define
weight of passage as W : ©,, — M5(C) such that for £ = (&,,...,&1) € Qy,

W) =P, - P (1.1)
with P; = II;U, where II; is projection onto e;, that is,
a b 0 0
P_1—|:O O:| and P1—|:C d:|

Here Ms(C) is the set of all the complex-valued 2 x 2 matrices. In this paper,
we consider bi-product n-truncated path space Q2 = Q,, x €,,. The algebra of

2010 Mathematics Subject Classification: 81Q99
Key words and phrases: quantum walk, bi-product path space, quantum measure




2 N. KONNO AND E. SEGAWA

subsets of Q2 is denoted by F,, = 2%. For fixed ¢ € He with ||¢|| =1 called
initial coin state, we define ¢4, : F,, — C by for any A € F,,

90¢,n(f4)=<¢>, > W(é)T'W(n)¢>- (1.2)

(EmeA

If A =10, then pg,(A) =0 for the convenience. We should remark that the map
04 expresses C-valued measure on F, in the following sense: for every ¢ € He
with [[@|] =1,

Property of ¢,

(i) For A € F,, ppn(A) € C. Furthermore, S%,n(Qi) =1,
(ii) For any A,,..., A, € F, with A; N A; =0 (i # j),

o (Ua) = S eunit
i=1 i=1
In particular, for &, 1 € €,

(D) = Pon({(&:n)})

is called the decoherence matrix starting from the initial coin state ¢ which has
been studied by [1, 2, 3]. Moreover for any Ay € 2%, 1,,(Ag) = ppn(Ao X Ag)
is called g-measure on 2 [1, 2].

Let 9% = Q2 x {—1,1}> x {-1,1}2 x -+ = ({—1,1}*)N. A subset A C ?
is a cylinder set if and only if there exist n € {1,2,...} and B € F, such that
A=Bx{-1,1}2x{-1,1}*> x - --. Denote C(£2?) as the collection of all cylinder
sets. From the unitarity of U = P; + P_, we see that for A € F,,,

§0¢,n+1(14 x {1, 1}2)

= <¢, Y AP+ POWEN - {(P + P-)W ()} ¢> = Pepn(A).

(&meA

Thus if A € F,, then

Pparm(A X {=1,1}") = p4.n(A), (1.3)

for any m > 1. Define pg4 : C(2?) — C such that for any A € C(Q?) expressed
by A= B x {-1,1}> x {-1,1}?> x --- with B € F,,

Pg(A) = Ppn(B).



WEAK CONVERGENCE OF A WEAK VALUE 3

Equation (1.3) implies that if B = By x {—1,1}2("™) with B, € F,, and m < n,
then u(A) = @pn(B) = @pm(B1). So ¢y is well defined. Moreover, we easily
find that ¢, satisfies both properties (i) and (ii).

Now we will connect the above statements to the quantum walk on Z origi-
nated by S. Gudder (1988) [4]. For j € Z, and n € N, define T € C(0?) as
T = {(€n) € Q&+ + & =1+ + 1, = j}, where Q = {1, 1}".
Indeed, we can check that gp¢(T( )) >0, and 3,y g0¢(T( )) = 1. The property

(i) implies that
P (Qi\ U Téj)) =
j=—n

Anyway, under the subalgebla oUj=-n T - 293, the quantum walk at time n is
denoted by a random variable X\? : U 7Y - {-n,—(n—1),...,n—1,n}.

j=-n

Here X% (f n) =&+ +& =m + -+ n, has the following distribution:

P(X¥) = j) = ({(&n) e |J 10 xPgn =j}> = pp(T).

j=—n

This is an equivalent expression for the definition of the usual quantum walk on
Z which has been intensively studied by many researchers. Now using ¢4, we
can measure various kinds of cylinder sets including 7
usual quantum walk. In the next section, we choose three kinds of n-truncated

cylinder sets in C(Q?) by using our measure ¢4 and find their asymptotics for

corresponding to the

large n.

By the way, it is p0881ble to extend our C-valued measure ¢, 4 to cp((b ) (1,5 €

{£1}) as follows: go : F, — C such that for A € F,,

6$,’Z)(A)= 3 (W (), &) (e, W(n)é)-

(EmeA

It is hold that

In particular, when we take A € (JI__ T, then go(” (A) becomes the
argument proposed by [5]. The author [5] gives the weak convergence theorem

of ¢ %sn , that is, >, 30( )(Tn(k)) in the limit of n, for ¢ # j which is called

interference term in his paper. So considering gp((ﬁ 7 can be one of the

candidates of the interesting future’s problem.



4 N. KONNO AND E. SEGAWA

2. Results

For z,y € R, define the set of all paths which go through the positions nz
and ny at time n and 2n, respectively as follows:

@g@:{(51752"--)€Q:§1+”'+£":x, £1+--~+£2n:y}‘

n n

Now for simplicity, we concentrate on y = 0, and the following three cases with
respect to the pair of O x O € €(0?), where O = 0™

[0

(1) Agn) = User UyER 0" x @zgn) case

(2) A8 (y) = U,cp O x ©5 with fixed y € R case

3) Al (y) = 6" x O case
Note that Ag") 2 Ag")(y) ) Aé")(y). To explain the situations of Ag-n)’s, we
prepare two quantum walkers, walker 1 and walker 2, who produce the weight of
path W. The measurement value is obtained by inner product of their weight of
paths with an initial coin state (see Eq. (1.2)). Both walkers in A{" give weight
of all the paths returning back to the origin at time 2n. Walkers 1 and 2 in
Ag”)(y) produce weight of every return path with length 2n restricted to passing
the position ny at time n. In AV (y), despite of A™ and A" (y), the classes of
return paths for two walkers are different: walker 1 is in the situation (1) while
walker 2 is in the situation (3).

The following theorem gives asymptotics of measurement value for each sit-

uation (1)-(3) by using ¢g,,. Define

D, = "Iy +II; with x = arg(a) + arg(c) — det(U). (2.4)
We use notation a,, ~ b, as lim, ., a, /b, = 1.
LEMMA 1. Denote the Konno function fr(z;r) (0 <r <1) [10, 11] by

Vv1—r2 1
7(1— 22)ViZ — a2

where 14(x) is the indicator function, that is, 14(z) =1, (r € A), =0, (x ¢ A).
Let the initial coin state be ¢y, and ¢, = Dyp,. Then we have for large n,

(1) Case (1)

fK(l“;?“) =

(),

oo (AT ~ fK(?; ) _ W:j‘n. (2.5)
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(2) Case (2)

Y Pa, (Aén)(j/n)> ~ 1“’”””@ = 100 (v) el (2.6)

< m|aln
Jij<ny

(3) Case (3)

> o (AT /) ~ |ac|22n /y (14 (s Copr)a) i< @) g 7y

_ 2)2
= m2(1 — x2?)

where

0= [—|c|1/|a| _‘i‘{‘aq '

Now we present a distribution function with respect to g-measure [1, 2]. To
do so, put

(n (n)
Z]Snx Py <@(j/n X @(J/n ‘y>

(n (n) ‘
ngn Py (@(j/n @(J/n \y)

We can easily check that for fixed y, F, 4 (z|y) becomes a distribution function,
that is,

Fn,¢0 (C(]|y) =

(a) limg_oo Frug, (2ly) = 1, lim, .o Fyy g, (2]y) = 0,
(b) for any » <y, 0 < F, ¢, (v|2) < F g, (y]2) <1

The function Fn¢ (x|y) corresponds to a normalized g-measure [1, 2] restricted

to the event |, @xly Part (3) in Lemma 1 leads the following theorem for y = 0
case:

THEOREM 1. Assume that the initial coin state is ¢, = T|a, 3]. We consider
the sequence {F, ¢, (2|0)}n>0. Let Y, be a random variable whose distribution
function is F, 4 (x|0), that is, P(Y, < x) = F, 4,(x|0). Then we have

Y, =2, (n— o0) (2.8)

where Z has the following density:

V¢0(1’|0)

2 b3 + aab 1{jj<apy (%
=i Lo - gy + S | M)
|a| + |c]?log 1+}“| lal T (1 — ?)

Here “=7 means the weak convergence.
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Next, define W™ = U, @y‘x and

(n)
Zjény Py (Wx X @(J/n ﬂf)
2j<n Poo (Wr X Oy \x>

én,d)o (y‘x> =

The value @n«bo (y|x) satisfies the above condition (a), but the condition (b) is
not ensured, that is,

lim @n,% (ylr) =1, and lim @n7¢0(y|x) =0,
y—00 y——00

while @n,% (y[z) € Cfor |y| < oo in general. From Parts (1) and (2) in Theorem
1, we obtain an asymptotic behavior of the value Gy ¢,(2|0) which is deeply
related to the weak value [7, 8] as follows.

Before we show the result, here we briefly give the definition of the weak
value. We can see more detailed explanations and its interesting related works
in [9] and its references. Let H be a Hilbert space and U(tq,¢1) be an evolution
from time ¢; to ¢; on H. For an observable A and normalized states ¢;, ¢, € H,
the weak value 4 (A)y is defined by

(¢, Ulty, ) AU (L, ti)bs)
(@p.Ultpt)es)

Here ¢; and ¢ are called pre-selected state and post-selected state, respectively.

From now on, we take the Hilbert space H as @, ., H., where H,, is the two-
dimensional Hilbert space spanned by left and right chiralities {e;, er}. Let the
canonical basis of H be denoted by {d,®er,d,Reg;x € Z}. Put a permutation
operator S on H such that for §, ® e; (J € {L, R}),

or(A)g: = (2.9)

5x+1 ® €ER, (‘] = R)7

S(6, ® ey) =
(5 &) {ax_le@eb (J=1).

Define E = SC be a unitary operator on H, where C' = )" @U. (Recall that U
is the two-dimensional unitary operator.) We consider the iteration of E from
the initial state ®q = 8y ® ¢ with ||¢||> = 1:

E E E
¢0|—>¢1H¢2l—>"'

This is another equivalent expression for the quantum walk on Z with initial
state ®,. Indeed,

([T @[ = s (T2,
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where II; is the projection onto H;.

In particular, when we take for ¢1,t; € N, E»™" as U(t,t1) and II; as the
observable A, moreover ®, as the pre-selected state and HDEtf ®, as the post-
selected state in Eq. (2.9) with ¢; = 0, ¢ = n and t; = 2n, then we have in this
setting

Y o, (A = Grg,(y]0). (2.10)
Jj<ny

This is a connection between our complex-valued measure and weak value. We
find that the weak value weakly converges to the delta measure as follows.

THEOREM 2. [t is hold that for large n,
lim G, (4]0) = 1g204(9). (2.11)

The physical meaning of Theorem 2 remains as an interesting open
problem.

3. Proof of Lemma 1

Let Z,(j) = X e, re,—; WI(E) be weight of all the n-truncated passages
arriving at 7. Our proof is based on the stationary phase method:

LEMMA 2. Let f(z) denote an R-valued function on |a,b] satisfying that there
exists a unique ¢ € |a, b] such that f'(c) = 0 with f"(c) # 0. Then for continuous
function g(z) on [a,b],

2

1 2
7 ()n?

S g(i/n)enTUIm  gients @)ns

j:an<j<bn

()™ + 0 (1/v)

(3.12)
for large n, where sgn(y) =1, (y >0), =0, (y=0), =—1, (y <0).

At first we give the following key lemma whose proof is described in Appendix
by using the stationary phase method:

LEMMA 3. Put R-valued functions k(x) and ¥ (x) (x € [—|al,|a]]) as

ik(z) _ 1 |a* — a? 4 ZM x
ol V. 1—22 = a| v1—2?
o(@) — la]* — 2% ‘0‘532

B 1—a2 Z\/l—xz'

(3.13)

(3.14)
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For any j € Z with j = nx (x € [—1,1]), we obtain

LD (2w a)

En(j) = 9 0
x D (6m/4€m(w(z>—zk(z))H(x) n e—z‘w/4e—m<w<a:>—a:k<x>>m> D, + o(1/v/n),
(3.15)
where

I(z) = [ lal(1 — ) |C|x—|—i\/m] |
elr —iv/laP =22 al(1+2)

Here for M € M,(C), <M) = (M);; for anyi,j € {1,2}.

i’j

Before the proof of Lemma 1, we can confirm a consistency of the statement
of the above lemma as follows. Recall that Xy(ld’) is a random variable determined
by P(X\? = j) = ||Z.(j)®|[?> with the initial coin state ¢ = [a, 5] so called
usual quantum walk. Then Lemma 3 and the Riemann-Lebesgue lemma imply

the following corollary with respect to X

COROLLARY 3.

i x@m<n = [ L= (o =+ 2 o fn s

This is consistent with results of [10, 11]. Now we give the proof of Lemma 1
in the following:
(1) Proof of Case (1). Put g( ) = Y(x) — xzk(x). We should remark that

L,(x) = Z&@(n) W(&) = Zu(—nz)=,(nx). Note that Y77 L,(j/n) =
Z9,(0). Lemma 3 reduces to

e~ D) 2,0 (0) D1 ~ ) L0 1aD {eTe2nOn1(0) 4 ¢ 29 OTI(0) |

® n

(3.16)
By using the fact that for every x € R,
I1%(x) = 1(x), T(x)lI(—z)=0, (3.17)
and Eq. (3.16), we obtain
P, (A Z Z n (/1) b0, Ln(j/0) ) (3.18)
i=—nj=—n
- <_'2n( )(pOaHQn( )¢0> (319)

fK(O |a]) <¢07{ (0) + TI(0 )}¢0> fe0i]al) (3.20)

n
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Then we complete the proof of case (1). It is consistent with the result of
[12] which treats the Hadamard walk. O

Proof of Case (2). Using Eq. (3.17), Lemma 3 implies that
L4 ()™ 2ficlasla)

2 n
X {eQing(m)H(—x)H(x) — e’zmg(x)l_[(—a;)l'[(m)} , (3.21)

DyEn(—j)En(j) Die™™ ~ i

By Eq. (3.16),

™ N D, E(~§)Za(j) D] ~ % > fxli/nslal)

j<ny j<ny

% {emng(j/n)ﬂ(—j/n)ﬂ(j/n) _ 6—2ing(j/n)H(_j/n)H(j/n)} (3.22)

Now we consider the solution for ¢'(x) = ¢/(z) — k(z) — zk/'(z) = 0. Equa-
tions (A.30)-(A.33) in Appendix imply that ¢ (z) = 0(k(z)) and k(z) is the
unique solution for

h(k) = 80(k)/0k = = (3.23)

on k € [—7n/2,7/2], where cosf(k) = |a|cosk with sinf(k) > 0. So we
have

du(x) _ 96(k(x))

o
Oz or 7k ().

Then we obtain
J(z) = —k(z). (3.24)
On the other hand, differentiating both sides of Eq. (3.23) with respect to

x implies
0 (00(k)\ _ Ok ?0(k)\ .
ox \ ok ) ox\ ok2 )
Then Eq. (3.24) gives

1

K= o or

= 7 fx(z;|al). (3.25)
k=k(x)
Thus, ¢'(z) = 0 if and only if k(x) = 0, which implies **@) = 1. There-
fore by definition of k(z) (see Eq. (3.13)), = 0 is the unique solution
for ¢'(x) = 0. Moreover Egs. (3.24) and (3.25) give ¢"(z) = —k'(z) =
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—n fx(z;]al), which implies ¢”(0) = —7 fx(0; |a|]). So applying the station-
ary phase method described in Lemma 2 to Eq. (3.22), we obtain

™" " Dy (—1)Zn(4) D}

Jj<ny

~ ilgy03(y) (62”““) TATI(0) — eI )> Jx (0 ]al)
n

(3.26)
Combining Eq. (3.26) with Eq. (3.16), we arrive at
n —_ —_ N— /- O,
oAV W) = Y (Eon006,Zu(—3)Zuli)b0) ~ Loy (1) 1D
Jig<ny
(3.27)
So we complete the proof. O
Proof of Case (3). Remark that
Y 2o, (AL (/) = D (Lnli/n) o, Lali/n)do). (3.28)

Jj<ny Jj<ny

On the other hand, using the relations of II(x) described by Eq. (3.17),
Eq. (3.21) gives

: 1o (2
) L <} {|z|<lal} 9
( ) ’fl(x) n2|a|2( + Cox)ﬂ_g(l — l‘2)2 (3 9)
which leads the desired conclusion of case (3). O
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Appendix
A. Proof of Lemma 3

We take the spatial Fourier transform of the weight of path =,(j) such that

Za(k) = Ea(j)e ™.

=

From the recurrence relation Z,,1(j) = Q=,(j — 1) + PZ,(j + 1), we obtain

[1D

o) = (¢4Q + e P)".

The eigenvalues and their corresponding normalized eigenvectors are expressed
by Am(k +7) and v, (k + 7), (m € {0,1}), where

Am (k) = /2 . gi(=D™0(k) (A.30)

v = 1 ] ||
" A oo~y - lal —evrew-nf s (A3

where 7 = §/2 — arg(a) and D, is defined in Eq. (2.4). Here cos (k) = |a| cosk
with sinf(k) > 0 and 6 = arg(det(U)). By the Fourier inversion theorem, we
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obtain for any v € R,

274y
‘:n<]) :/
v

ind/2 T in((=1)™0(k)—xk) Tdk
—¢ > e O (k) (k)T =, (A.32)

2
me{0,1} Y+

e—wkﬂﬁ
o’

(1

n(K)

where x = j/n. We choose an arbitrary parameter v as —7 — 7/2. From now on
we apply the stationary phase method in Lemma 2 to Eq. (A.32). Put f,,(k) =
(—1)"0(k)—zk, (m € {0,1}) as R-valued function on [—7/2,37/2). The solution
for 0f,,(k)/0k = 0 is given by

(=1)"h(k) = x, (A.33)
where h(k) = 00(k)/0k. In the following, we consider m = 0 case. The definition
of 0(k) gives
h(k) = la| sin k '

V1 —a|?cos? k

The solutions for A'(k) = 0 in [—7/2,37/2) are £7/2. We denote hy (k) with
h(k) = hy(k) + h_(k) so that A/ (k) > 0 and A’ (k) < 0, as the function on
K, =[-7/2,7/2) and K_ = [1/2,371/2), respectively. To apply the stationary
phase method, we divide the integral in Eq. (A.32) into the four parts as follows:

—in, = (s n((—=1)™ —x dk
e ™PDE, ()DL = Y > / MV, (kYo (k) .
keK. ™
me{0,1} ee{—,+}
(A.34)

An explicit expression for the solutions ki(x) for hi(k) = x, respectively, are
obtained as follows:

1 /]a]?> =22
COS ki(ﬂf) = :i:m 1_—1:2, (A35)
_ le] =«
sinky(z) = W ise (A.36)
Thus we have
1 e fic(aa]) (A37)
02 fo(k)/OR? |\ ppwy | ONR) /O [y (o)

Moreover some algebraic computations give
’l)()(k?)’l)o(k?)T|k:k+(x) = DLH(ZL’)DH, ’Uo(k’)’vo(k’)”k:k_(x) = DLH(:L’)DK,

vl(k)vl(k)T|k:k+(x) = D:LH(—ZU)DR, vl(k)vl(k:)wk:k_(x) = DLH(—.T)DH
(A.38)
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For the solutions of Eq. (A.33) in m = 1 case, we replace the parameter z in the
result on m = 0 case given by the above discussion with —z. By putting ¢(z)
as Y(x) = 0(k(z)) with k(z) = ki (x), note that (k. (—x)) = ¥(x), 0(k_(x)) =
m —(x), and ki (—x) = —k(z), k_(z) = —k(x) — m. Inserting these relations
and Eqgs. (A.37) and (A.38) into the formula in Lemma 2 for each term (e, m) €
{(+,0),(+,1),(—,0),(—, 1)} in Eq. (A.34), we have the desired conclusion. [
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