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Abstract. In this paper, a complex-valued measure of bi-product path space
induced by quantum walk is presented. In particular, we consider three types of
conditional return paths in a power set of the bi-product path space (1) Λ × Λ,
(2) Λ × Λ′ and (3) Λ′ × Λ′, where Λ is the set of all 2n-length (n ∈ N) return
paths and Λ′(⊆ Λ) is the set of all 2n-length return paths going through nx
(x ∈ [−1, 1]) at time n. We obtain asymptotic behaviors of the complex-valued
measures for the situations (1)-(3) which imply two kinds of weak convergence
theorems (Theorems 1 and 2). One of them suggests a weak limit of weak values.

1. Introduction

Let the set of all the n-truncated paths be Ωn = {−1, 1}n. Denote the coin

space HC spanned by choice of direction at each time step, that is, e−1 = T [1, 0]

and e1 = T [0, 1]. Let quantum coin on HC be

U =

[
a b

c d

]
∈ U(2)

with abcd 6= 0, where U(2) is the set of two-dimensional unitary matrices. Define

weight of passage as W : Ωn → M2(C) such that for ξ = (ξn, . . . , ξ1) ∈ Ωn,

W (ξ) = Pξn · · ·Pξ1 (1.1)

with Pj = ΠjU , where Πj is projection onto ej, that is,

P−1 =

[
a b

0 0

]
and P1 =

[
0 0

c d

]
.

Here M2(C) is the set of all the complex-valued 2× 2 matrices. In this paper,

we consider bi-product n-truncated path space Ω2
n = Ωn × Ωn. The algebra of
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subsets of Ω2
n is denoted by Fn = 2Ω2

n . For fixed φ ∈ HC with ||φ|| = 1 called

initial coin state, we define ϕffi,n : Fn → C by for any A ∈ Fn,

ϕffi,n(A) =

〈
φ,

∑
(ξ,η)∈A

W (ξ)† · W (η)φ

〉
. (1.2)

If A = ∅, then ϕffi,n(A) ≡ 0 for the convenience. We should remark that the map

ϕφ,n expresses C-valued measure on Fn in the following sense: for every φ ∈ HC

with ||φ|| = 1,

Property of ϕφ,n

(i) For A ∈ Fn, ϕffi,n(A) ∈ C. Furthermore, ϕφ,n(Ω2
n) = 1,

(ii) For any A1, . . . , Am ∈ Fn with Ai ∩ Aj = ∅ (i 6= j),

ϕffi,n

(
m⋃

i=1

Ai

)
=

m∑
i=1

ϕffi,n(A).

In particular, for ξ, η ∈ Ωn,

(D)ξ,η ≡ ϕffi,n({(ξ, η)})

is called the decoherence matrix starting from the initial coin state φ which has

been studied by [1, 2, 3]. Moreover for any A0 ∈ 2Ωn , νn(A0) ≡ ϕφ,n(A0 × A0)

is called q-measure on 2Ωn [1, 2].

Let Ω2 = Ω2
n × {−1, 1}2 × {−1, 1}2 × · · · = ({−1, 1}2)N. A subset A ⊂ Ω2

is a cylinder set if and only if there exist n ∈ {1, 2, . . . } and B ∈ Fn such that

A = B×{−1, 1}2×{−1, 1}2×· · · . Denote C(Ω2) as the collection of all cylinder

sets. From the unitarity of U = P1 + P−1, we see that for A ∈ Fn,

ϕffi,n+1(A × {−1, 1}2)

=

〈
φ,

∑
(ξ,η)∈A

{(P1 + P−1)W (ξ)}† · {(P1 + P−1)W (η)}φ

〉
= ϕffi,n(A).

Thus if A ∈ Fn, then

ϕffi,n+m(A × {−1, 1}2m) = ϕffi,n(A), (1.3)

for any m ≥ 1. Define ϕffi : C(Ω2) → C such that for any A ∈ C(Ω2) expressed

by A = B × {−1, 1}2 × {−1, 1}2 × · · · with B ∈ Fn,

ϕffi(A) = ϕffi,n(B).
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Equation (1.3) implies that if B = B1×{−1, 1}2(n−m) with B1 ∈ Fm and m ≤ n,

then ϕffi(A) = ϕffi,n(B) = ϕffi,m(B1). So ϕffi is well defined. Moreover, we easily

find that ϕffi satisfies both properties (i) and (ii).

Now we will connect the above statements to the quantum walk on Z origi-

nated by S. Gudder (1988) [4]. For j ∈ Z, and n ∈ N, define T
(j)
n ∈ C(Ω2) as

T
(j)
n = {(ξ, η) ∈ Ω2 : ξ1 + · · · + ξn = η1 + · · · + ηn = j}, where Ω = {−1, 1}N.

Indeed, we can check that ϕffi(T
(j)
n ) ≥ 0, and

∑
j∈Z ϕffi(T

(j)
n ) = 1. The property

(i) implies that

ϕffi

(
Ω2

n \
n⋃

j=−n

T (j)
n

)
= 0.

Anyway, under the subalgebla 2
Sn

j=−n T
(j)
n ⊂ 2Ω2

n , the quantum walk at time n is

denoted by a random variable X
(ffi)
n :

⋃n
j=−n T

(j)
n → {−n,−(n− 1), . . . , n− 1, n}.

Here X
(ffi)
n (ξ, η) = ξ1 + · · · + ξn = η1 + · · · + ηn has the following distribution:

P (X(ffi)
n = j) ≡ P

({
(ξ, η) ∈

n⋃
j=−n

T (j)
n : X(ffi)

n (ξ, η) = j

})
= ϕffi(T (j)

n ).

This is an equivalent expression for the definition of the usual quantum walk on

Z which has been intensively studied by many researchers. Now using ϕffi, we

can measure various kinds of cylinder sets including T
(j)
n corresponding to the

usual quantum walk. In the next section, we choose three kinds of n-truncated

cylinder sets in C(Ω2) by using our measure ϕffi and find their asymptotics for

large n.

By the way, it is possible to extend our C-valued measure ϕn,φ to ϕ̃
(i,j)
φ,n (i, j ∈

{±1}) as follows: ϕ̃
(i,j)
φ,n : Fn → C such that for A ∈ Fn,

ϕ̃
(i,j)
φ,n (A) =

∑
(ξ,η)∈A

〈W (ξ)φ, ei〉〈ej, W (η)φ〉.

It is hold that

ϕφ,n = ϕ̃
(1,1)
φ,n + ϕ̃

(−1,−1)
φ,n .

In particular, when we take A ∈
⋃n

k=−n T
(k)
n , then ϕ

(i,j)
φ,n (A) becomes the

argument proposed by [5]. The author [5] gives the weak convergence theorem

of ϕ̃
(i,j)
φ,n , that is,

∑
k:k<nx ϕ̃

(i,j)
φ,n (Tn(k)) in the limit of n, for i 6= j which is called

interference term in his paper. So considering ϕ̃
(i,j)
φ,n can be one of the

candidates of the interesting future’s problem.
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2. Results

For x, y ∈ R, define the set of all paths which go through the positions nx

and ny at time n and 2n, respectively as follows:

Θ
(n)
x|y =

{
(ξ1, ξ2, . . . ) ∈ Ω :

ξ1 + · · · + ξn

n
= x,

ξ1 + · · · + ξ2n

n
= y

}
.

Now for simplicity, we concentrate on y = 0, and the following three cases with

respect to the pair of Θ
(n)
x × Θ

(n)
y ∈ C(Ω2), where Θ

(n)
x ≡ Θ

(n)
x|0 :

(1) A
(n)
1 ≡

⋃
x∈R

⋃
y∈R Θ

(n)
x × Θ

(n)
y case

(2) A
(n)
2 (y) ≡

⋃
x∈R Θ

(n)
x × Θ

(n)
y with fixed y ∈ R case

(3) A
(n)
3 (y) ≡ Θ

(n)
y × Θ

(n)
y case

Note that A
(n)
1 ⊇ A

(n)
2 (y) ⊇ A

(n)
3 (y). To explain the situations of A

(n)
j ’s, we

prepare two quantum walkers, walker 1 and walker 2, who produce the weight of

path W . The measurement value is obtained by inner product of their weight of

paths with an initial coin state (see Eq. (1.2)). Both walkers in A
(n)
1 give weight

of all the paths returning back to the origin at time 2n. Walkers 1 and 2 in

A
(n)
3 (y) produce weight of every return path with length 2n restricted to passing

the position ny at time n. In A
(n)
2 (y), despite of A

(n)
1 and A

(n)
3 (y), the classes of

return paths for two walkers are different: walker 1 is in the situation (1) while

walker 2 is in the situation (3).

The following theorem gives asymptotics of measurement value for each sit-

uation (1)-(3) by using ϕffi,n. Define

Dκ = eiκΠ−1 + Π1 with κ = arg(a) + arg(c) − det(U). (2.4)

We use notation an ∼ bn as limn→∞ an/bn = 1.

LEMMA 1. Denote the Konno function fK(x; r) (0 < r < 1) [10, 11] by

fK(x; r) =

√
1 − r2

π(1 − x2)
√

r2 − x2
1{|x|<r}(x),

where 1A(x) is the indicator function, that is, 1A(x) = 1, (x ∈ A), = 0, (x /∈ A).

Let the initial coin state be φ0, and φκ ≡ Dκφ0. Then we have for large n,

(1) Case (1)

ϕffi0
(A

(n)
1 ) ∼ fK(0; |a|)

n
=

|c|
π|a|n

. (2.5)
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(2) Case (2)

∑
j:j≤ny

ϕffi0

(
A

(n)
2 (j/n)

)
∼ 1{y>0}(y)

fK(0; |a|)
n

= 1{y>0}(y)
|c|

π|a|n
. (2.6)

(3) Case (3)∑
j≤ny

ϕffi0

(
A

(n)
3 (j/n)

)
∼ |c|2

|a|2n

∫ y

−∞
(1 + 〈φκ, C0φκ〉x)

1{|x|<|a|}(x)

π2(1 − x2)2
dx, (2.7)

where

C0 =

[
1 −|c|/|a|

−|c|/|a| −1

]
.

Now we present a distribution function with respect to q-measure [1, 2]. To

do so, put

Fn,ffi0
(x|y) ≡

∑
j≤nx ϕffi0

(
Θ

(n)
(j/n)|y × Θ

(n)
(j/n)|y

)
∑

j≤n ϕffi0

(
Θ

(n)
(j/n)|y × Θ

(n)
(j/n)|y

) .

We can easily check that for fixed y, Fn,ffi0
(x|y) becomes a distribution function,

that is,

(a) limx→∞ Fn,ffi0
(x|y) = 1, limx→−∞ Fn,ffi0

(x|y) = 0,

(b) for any x ≤ y, 0 ≤ Fn,ffi0
(x|z) ≤ Fn,ffi0

(y|z) ≤ 1.

The function Fn,ffi0
(x|y) corresponds to a normalized q-measure [1, 2] restricted

to the event
⋃

x Θ
(n)
x|y. Part (3) in Lemma 1 leads the following theorem for y = 0

case:

THEOREM 1. Assume that the initial coin state is φ0 = T [α, β]. We consider

the sequence {Fn,ffi0
(x|0)}n≥0. Let Yn be a random variable whose distribution

function is Fn,ffi0
(x|0), that is, P (Yn ≤ x) = Fn,ffi0

(x|0). Then we have

Yn ⇒ Z, (n → ∞) (2.8)

where Z has the following density:

νffi0(x|0)

=
|c|2

|a| + |c|2 log
√

1+|a|
1−|a|

[
1 −

{
(|α|2 − |β|2) +

aαbβ + aαbβ

|a|2

}
x

]
1{|x|<|a|}(x)

π2(1 − x2)2

Here “⇒” means the weak convergence.
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Next, define W
(n)
x =

⋃
y Θ

(n)
y|x and

Ĝn,ffi0
(y|x) =

∑
j≤ny ϕffi0

(
W

(n)
x × Θ

(n)
(j/n)|x

)
∑

j≤n ϕffi0

(
W

(n)
x × Θ

(n)
(j/n)|x

) .

The value Ĝn,ffi0
(y|x) satisfies the above condition (a), but the condition (b) is

not ensured, that is,

lim
y→∞

Ĝn,ffi0
(y|x) = 1, and lim

y→−∞
Ĝn,ffi0

(y|x) = 0,

while Ĝn,ffi0
(y|x) ∈ C for |y| < ∞ in general. From Parts (1) and (2) in Theorem

1, we obtain an asymptotic behavior of the value Ĝn,ffi0
(x|0) which is deeply

related to the weak value [7, 8] as follows.

Before we show the result, here we briefly give the definition of the weak

value. We can see more detailed explanations and its interesting related works

in [9] and its references. Let H be a Hilbert space and U(t2, t1) be an evolution

from time t1 to t2 on H. For an observable A and normalized states φi, φf ∈ H,

the weak value φf
〈A〉wφi

is defined by

φf
〈A〉wφi

=
〈φf , U(tf , t)AU(t, ti)φi〉

〈φf , U(tf , ti)φi〉
. (2.9)

Here φi and φf are called pre-selected state and post-selected state, respectively.

From now on, we take the Hilbert space H as
⊕

x∈Z Hx, where Hx is the two-

dimensional Hilbert space spanned by left and right chiralities {eL, eR}. Let the

canonical basis of H be denoted by {δx⊗eL, δx⊗eR; x ∈ Z}. Put a permutation

operator S on H such that for δx ⊗ eJ (J ∈ {L,R}),

S(δx ⊗ eJ) =

{
δx+1 ⊗ eR, (J = R),

δx−1 ⊗ eL, (J = L).

Define E = SC be a unitary operator on H, where C =
∑

x ⊕U . (Recall that U

is the two-dimensional unitary operator.) We consider the iteration of E from

the initial state Φ0 = δ0 ⊗ φ with ||φ||2 = 1:

Φ0
E7→ Φ1

E7→ Φ2
E7→ · · · .

This is another equivalent expression for the quantum walk on Z with initial

state Φ0. Indeed, ∣∣∣∣ΠjE
nΦ0

∣∣∣∣2 = ϕffi(T (j)
n ),
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where Πj is the projection onto Hj.

In particular, when we take for t1, t2 ∈ N, Et2−t1 as U(t2, t1) and Πj as the

observable A, moreover Φ0 as the pre-selected state and Π0E
tf
Φ0 as the post-

selected state in Eq. (2.9) with ti = 0, t = n and tf = 2n, then we have in this

setting ∑
j≤ny

φf
〈A〉wφi

= Ĝn,ffi0
(y|0). (2.10)

This is a connection between our complex-valued measure and weak value. We

find that the weak value weakly converges to the delta measure as follows.

THEOREM 2. It is hold that for large n,

lim
n→∞

Ĝn,ffi0
(y|0) = 1{y>0}(y). (2.11)

The physical meaning of Theorem 2 remains as an interesting open

problem.

3. Proof of Lemma 1

Let Ξn(j) =
∑

ξ:ξn+···+ξ1=j W (ξ) be weight of all the n-truncated passages

arriving at j. Our proof is based on the stationary phase method:

LEMMA 2. Let f(x) denote an R-valued function on [a, b] satisfying that there

exists a unique c ∈ [a, b] such that f ′(c) = 0 with f ′′(c) 6= 0. Then for continuous

function g(x) on [a, b],

1

n

∑
j: an<j<bn

g(j/n)einf(j/n) ∼ eisgn(f ′′(c))π/4

√
2π

|f ′′(c)|n
g(c)einf(c) + o

(
1/
√

n
)
,

(3.12)

for large n, where sgn(y) = 1, (y > 0), = 0, (y = 0), = −1, (y < 0).

At first we give the following key lemma whose proof is described in Appendix

by using the stationary phase method:

LEMMA 3. Put R-valued functions k(x) and ψ(x) (x ∈ [−|a|, |a|]) as

eik(x) =
1

|a|

√
|a|2 − x2

1 − x2
+ i

|c|
|a|

x√
1 − x2

, (3.13)

eiψ(x) =

√
|a|2 − x2

1 − x2
+ i

|c|x2

√
1 − x2

. (3.14)
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For any j ∈ Z with j = nx (x ∈ [−1, 1]), we obtain

Ξn(j) =
1 + (−1)n+j

2
einδ/2

√
2fK(x; |a|)

n

×D†
κ

(
eiπ/4ein(ψ(x)−xk(x))Π(x) + e−iπ/4e−in(ψ(x)−xk(x))Π(x)

)
Dκ + o(1/

√
n),

(3.15)

where

Π(x) =

[
|a|(1 − x) |c|x + i

√
|a|2 − x2

|c|x − i
√
|a|2 − x2 |a|(1 + x)

]
.

Here for M ∈ M2(C),

(
M

)
i,j

= (M)i,j for any i, j ∈ {1, 2}.

Before the proof of Lemma 1, we can confirm a consistency of the statement

of the above lemma as follows. Recall that X
(ffi)
n is a random variable determined

by P (X
(ffi)
n = j) = ||Ξn(j)φ||2 with the initial coin state φ = [α, β] so called

usual quantum walk. Then Lemma 3 and the Riemann-Lebesgue lemma imply

the following corollary with respect to X
(ffi)
n :

COROLLARY 3.

lim
n→∞

P (X(ffi)
n /n ≤ x) =

∫ x

−∞

{
1 −

(
|α|2 − |β|2 +

2Re[aαbβ]

|a|2

)
x

}
fK(x; |a|)dx.

This is consistent with results of [10, 11]. Now we give the proof of Lemma 1

in the following:

(1) Proof of Case (1). Put g(x) = ψ(x) − xk(x). We should remark that

Ln(x) ≡
∑

ξ∈Θ
(n)
x

W (ξ) = Ξn(−nx)Ξn(nx). Note that
∑n

j=−n Ln(j/n) =

Ξ2n(0). Lemma 3 reduces to

e−inδDκΞ2n(0)D†
κ ∼

√
fK(0; |a|)

n

{
ei π

4 e2ing(0)Π(0) + e−i π
4 e−2ing(0)Π(0)

}
.

(3.16)

By using the fact that for every x ∈ R,

Π2(x) = Π(x), Π(x)Π(−x) = 0, (3.17)

and Eq. (3.16), we obtain

ϕffi0
(A

(n)
1 ) =

n∑
i=−n

n∑
j=−n

〈Ln(i/n)φ0, Ln(j/n)φ0〉 (3.18)

= 〈Ξ2n(0)φ0, Ξ2n(0)φ0〉 (3.19)

∼ fK(0; |a|)
n

〈
φ0,

{
Π(0) + Π(0)

}
φ0

〉
=

fK(0; |a|)
n

. (3.20)
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Then we complete the proof of case (1). It is consistent with the result of

[12] which treats the Hadamard walk. ¤

(2) Proof of Case (2). Using Eq. (3.17), Lemma 3 implies that

DκΞn(−j)Ξn(j)D†
κe

−inδ ∼ i
1 + (−1)n+j

2
× 2fK(x; |a|)

n

×
{

e2ing(x)Π(−x)Π(x) − e−2ing(x)Π(−x)Π(x)
}

, (3.21)

By Eq. (3.16),

e−inδ
∑
j<ny

DκΞn(−j)Ξn(j)D†
κ ∼ 2i

n

∑
j<ny

fK(j/n; |a|)

×
{

e2ing(j/n)Π(−j/n)Π(j/n) − e−2ing(j/n)Π(−j/n)Π(j/n)

}
(3.22)

Now we consider the solution for g′(x) = ψ′(x)− k(x)− xk′(x) = 0. Equa-

tions (A.30)-(A.33) in Appendix imply that ψ(x) = θ(k(x)) and k(x) is the

unique solution for

h(k) = ∂θ(k)/∂k = x (3.23)

on k ∈ [−π/2, π/2], where cos θ(k) = |a| cos k with sin θ(k) ≥ 0. So we

have

∂ψ(x)

∂x
=

∂θ(k(x))

∂x
= xk′(x).

Then we obtain

g′(x) = −k(x). (3.24)

On the other hand, differentiating both sides of Eq. (3.23) with respect to

x implies

∂

∂x

(
∂θ(k)

∂k

)
=

∂k

∂x

(
∂2θ(k)

∂k2

)
= 1.

Then Eq. (3.24) gives

k′(x) =
1

∂2θ(k)/∂k2

∣∣∣∣
k=k(x)

= πfK(x; |a|). (3.25)

Thus, g′(x) = 0 if and only if k(x) = 0, which implies eik(x) = 1. There-

fore by definition of k(x) (see Eq. (3.13)), x = 0 is the unique solution

for g′(x) = 0. Moreover Eqs. (3.24) and (3.25) give g′′(x) = −k′(x) =
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−πfK(x; |a|), which implies g′′(0) = −πfK(0; |a|). So applying the station-

ary phase method described in Lemma 2 to Eq. (3.22), we obtain

e−inδ
∑
j<ny

DκΞn(−j)Ξn(j)D†
κ

∼ i1{y>0}(y)
(
e2inψ(0)e−iπ/4Π(0) − e−2inψ(0)eiπ/4Π(0)

) √
fK(0; |a|)

n
.

(3.26)

Combining Eq. (3.26) with Eq. (3.16), we arrive at

ϕffi0
(A

(n)
2 (y)) =

∑
j:j<ny

〈Ξ2n(0)φ0, Ξn(−j)Ξn(j)φ0〉 ∼ 1{y>0}(y)
fK(0; |a|)

n
.

(3.27)

So we complete the proof. ¤

(3) Proof of Case (3). Remark that∑
j≤ny

ϕffi0
(A

(n)
3 (j/n)) =

∑
j≤ny

〈Ln(j/n)φ0, Ln(j/n)φ0〉. (3.28)

On the other hand, using the relations of Π(x) described by Eq. (3.17),

Eq. (3.21) gives

L†
n(x) · Ln(x) ∼ |c|2

n2|a|2
(I + C0x)

1{|x|<|a|}(x)

π2(1 − x2)2
(3.29)

which leads the desired conclusion of case (3). ¤
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Appendix

A. Proof of Lemma 3

We take the spatial Fourier transform of the weight of path Ξn(j) such that

Ξ̂n(k) =
∑
j∈Z

Ξn(j)eijk.

From the recurrence relation Ξn+1(j) = QΞn(j − 1) + PΞn(j + 1), we obtain

Ξ̂n(k) =
(
eikQ + e−ikP

)n
.

The eigenvalues and their corresponding normalized eigenvectors are expressed

by λm(k + τ) and vm(k + τ), (m ∈ {0, 1}), where

λm(k) = eiδ/2 · ei(−1)mθ(k), (A.30)

vm(k) =
1√

2{1 − |a| cos[(−1)mθ(k) − k]}
D†

κ

[
|c|

|a| − ei((−1)mθ(k)−k)

]
, (A.31)

where τ = δ/2 − arg(a) and Dκ is defined in Eq. (2.4). Here cos θ(k) = |a| cos k

with sin θ(k) ≥ 0 and δ = arg(det(U)). By the Fourier inversion theorem, we
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obtain for any γ ∈ R,

Ξn(j) =

∫ 2π+γ

γ

Ξ̂n(k)e−ijk dk

2π
,

= einδ/2
∑

m∈{0,1}

∫ 2π+γ+τ

γ+τ

ein((−1)mθ(k)−xk)vm(k)vm(k)†
dk

2π
, (A.32)

where x = j/n. We choose an arbitrary parameter γ as −τ − π/2. From now on

we apply the stationary phase method in Lemma 2 to Eq. (A.32). Put fm(k) =

(−1)mθ(k)−xk, (m ∈ {0, 1}) as R-valued function on [−π/2, 3π/2). The solution

for ∂fm(k)/∂k = 0 is given by

(−1)mh(k) = x, (A.33)

where h(k) = ∂θ(k)/∂k. In the following, we consider m = 0 case. The definition

of θ(k) gives

h(k) =
|a| sin k√

1 − |a|2 cos2 k
.

The solutions for h′(k) = 0 in [−π/2, 3π/2) are ±π/2. We denote h±(k) with

h(k) = h+(k) + h−(k) so that h′
+(k) > 0 and h′

−(k) ≤ 0, as the function on

K+ = [−π/2, π/2) and K− = [π/2, 3π/2), respectively. To apply the stationary

phase method, we divide the integral in Eq. (A.32) into the four parts as follows:

e−inδ/2DκΞn(j)D†
κ =

∑
m∈{0,1}

∑
ε∈{−,+}

∫
k∈Kε

ein((−1)mθ(k)−xk)vm(k)vm(k)†
dk

2π
.

(A.34)

An explicit expression for the solutions k±(x) for h±(k) = x, respectively, are

obtained as follows:

cos k±(x) = ± 1

|a|

√
|a|2 − x2

1 − x2
, (A.35)

sin k±(x) =
|c|
|a|

x√
1 − x2

. (A.36)

Thus we have∣∣∣∣ 1

∂2f0(k)/∂k2

∣∣∣∣
k=k±(x)

=

∣∣∣∣ 1

∂h(k)/∂k

∣∣∣∣
k=k±(x)

= πfK(x; |a|). (A.37)

Moreover some algebraic computations give

v0(k)v0(k)†|k=k+(x) = D†
κΠ(x)Dκ, v0(k)v0(k)†|k=k−(x) = D†

κΠ(x)Dκ,

v1(k)v1(k)†|k=k+(x) = D†
κΠ(−x)Dκ, v1(k)v1(k)†|k=k−(x) = D†

κΠ(−x)Dκ.

(A.38)
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For the solutions of Eq. (A.33) in m = 1 case, we replace the parameter x in the

result on m = 0 case given by the above discussion with −x. By putting ψ(x)

as ψ(x) = θ(k(x)) with k(x) ≡ k+(x), note that θ(k+(−x)) = ψ(x), θ(k−(x)) =

π − ψ(x), and k+(−x) = −k(x), k−(x) = −k(x) − π. Inserting these relations

and Eqs. (A.37) and (A.38) into the formula in Lemma 2 for each term (ε,m) ∈
{(+, 0), (+, 1), (−, 0), (−, 1)} in Eq. (A.34), we have the desired conclusion. ¤
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