# SOME RESULTS ON LP-SASAKIAN MANIFOLDS WITH A COEFFICIENT $\alpha$ 

By<br>Krishnendu De and Uday Chand De

(Received February 11, 2012)


#### Abstract

The object of the present paper is to study an LP-Sasakian manifold with a coefficient $\alpha$ and several interesting results are obtained on that manifold. Also locally $\phi$-symmetric and $\phi$-conformally flat LP-Sasakian manifolds with a coefficient $\alpha$ have been studied. Also it is proved that a 3 -dimensional LP-Sasakian manifold with a constant coefficient $\alpha$ satisfies cyclic parallel Ricci tensor if and only if it is locally $\phi$-symmetric.Finally we give some examples of 3 -dimensional LP-Sasakian manifolds with a coefficient $\alpha$.


## 1. Introduction

In 1989, Matsumoto [10] introduced the notion of LP-Sasakian manifolds. Then Mihai and Rosca [12] introduced the same notion independently and they obtained several results in this manifold. LP-Sasakian manifolds have been studied by several authors ([1], [5], [11]). In a recent paper De, Shaikh and Sengupta [4] introduced the notion of LP-Sasakian manifolds with a coefficient $\alpha$ which generalizes the notion of LP-Sasakian manifolds. Lorentzian para-Sasakian manifold with a coefficient $\alpha$ have been studied by De et al ([2], [3]). Recently, T.Ikawa and his coauthors ([7], [8]) studied Sasakian manifolds with Lorentzian metric and obtained several results in this manifold. Motivated by the above studies we like to generalize LP-Sasakian manifold which is called an LP-Sasakian manifold with a coefficient $\alpha$. In [2] it is shown that if a Lorentzian manifold admits a unit torse-forming vector field, then the manifold becomes an LP-Sasakian manifold with a coefficient $\alpha$ where $\alpha$ is a non-zero smooth function.

The paper is organized as follows.
In section 2, some preliminary results are recalled. After preliminaries in section 3 , we prove that the Ricci operator $Q$ commutes with $\phi$. Then we study locally $\phi$-symmetric LP-Sasakian Manifold with a coefficient $\alpha$. In the next section, we study $\phi$-conformally flat LP-Sasakian manifold with a coefficient $\alpha$. In section 6, it is proved that a 3-dimensional LP-Sasakian manifold with a constant coefficient

[^0]$\alpha$ satisfies cyclic parallel Ricci tensor if and only if it is locally $\phi$-symmetric. Finally we construct some examples of 3-dimensional LP-Sasakian manifolds with a coefficient $\alpha$.

## 2. Preliminaries

Let $M^{n}$ be an $n$-dimensional differentiable manifold endowed with a $(1,1)$ tensor field $\phi$, a contravariant vector field $\xi$, a covariant vector field $\eta$ and a Lorentzian metric $g$ of type $(0,2)$ such that for each point $p \varepsilon M$, the tensor $g_{p}: T_{p} M \times T_{p} M \rightarrow \mathbb{R}$ inner product of signature $(-,+,+, \ldots .,+)$, where $T_{p} M$ denotes the tangent vector space of $M$ at p and $\mathbb{R}$ is the real number space which satisfies

$$
\begin{gather*}
\phi^{2}(X)=X+\eta(X) \xi, \eta(\xi)=-1  \tag{2.1}\\
g(X, \xi)=\eta(X), g(\phi X, \phi Y)=g(X, Y)+\eta(X) \eta(Y) \tag{2.2}
\end{gather*}
$$

for all vector fields $X, Y$. Then such a structure $(\phi, \xi, \eta, g)$ is termed as Lorentzian almost paracontact structure and the manifold $M^{n}$ with the structure $(\phi, \xi, \eta, g)$ is called Lorentzian almost paracontact manifold [10]. In the Lorentzian almost paracontact manifold $M^{n}$, the following relations hold [10]:

$$
\begin{align*}
& \phi \xi=0, \eta(\phi X)=0,  \tag{2.3}\\
& \Omega(X, Y)=\Omega(Y, X), \tag{2.4}
\end{align*}
$$

where $\Omega(X, Y)=g(X, \phi Y)$.
In the Lorentzian almost paracontact manifold $M^{n}$, if the relations

$$
\begin{align*}
\left(\nabla_{Z} \Omega\right)(X, Y)= & \alpha[(g(X, Z)+\eta(X) \eta(Z)) \eta(Y) \\
& +(g(Y, Z)+\eta(Y) \eta(Z)) \eta(X)] \tag{2.5}
\end{align*}
$$

$$
\begin{equation*}
\Omega(X, Y)=\frac{1}{\alpha}\left(\nabla_{X} \eta\right)(Y), \tag{2.6}
\end{equation*}
$$

hold where $\nabla$ denotes the operator of covariant differentiation with respect to the Lorentzian metric $g$, and $\alpha$ is a non-zero scalar function then $M^{n}$ is called an LP-Sasakian manifold with a coefficient $\alpha$ [4]. An LP-Sasakian manifold with
a coefficient 1 is an LP-Sasakian manifold [10].

If a vector field $V$ satisfies the equation of the following form:

$$
\nabla_{X} V=\beta X+T(X) V
$$

where $\beta$ is a non-zero scalar function and $T$ is a covariant vector field, then $V$ is called a torse-forming vector field [15].

In the Lorentzian manifold $M^{n}$, if we assume that $\xi$ is a unit torse-forming vector field, then we have the equation:

$$
\begin{equation*}
\left(\nabla_{X} \eta\right)(Y)=\alpha[g(X, Y)+\eta(X) \eta(Y)] \tag{2.7}
\end{equation*}
$$

where $\alpha$ is a non-zero scalar function. Especially, if $\eta$ satisfies

$$
\begin{equation*}
\left(\nabla_{X} \eta\right)(Y)=\epsilon[g(X, Y)+\eta(X) \eta(Y)], \quad \epsilon^{2}=1 \tag{2.8}
\end{equation*}
$$

then $M^{n}$ is called an LSP-Sasakian manifold[10]. In particular, if $\alpha$ satisfies (2.7) and the equation of the following form:

$$
\begin{equation*}
\nabla_{X} \alpha=d \alpha(X)=\sigma \eta(X) \tag{2.9}
\end{equation*}
$$

where $\sigma$ is a smooth function and $\eta$ is the 1 - form, then $\xi$ is called a concircular vector field.

Let us consider an LP-Sasakian manifold $M^{n}(\phi, \xi, \eta, g)$ with a coefficient $\alpha$. Then we have the following relations [4]:

$$
\begin{equation*}
S(X, \xi)=(n-1)\left(\alpha^{2}-\sigma\right) \eta(X) \tag{2.11}
\end{equation*}
$$

$$
\begin{equation*}
\eta(R(X, Y) Z)=\left(\alpha^{2}-\sigma\right)[g(Y, Z) \eta(X)-g(X, Z) \eta(Y)] \tag{2.10}
\end{equation*}
$$

$$
\begin{equation*}
R(X, Y) \xi=\left(\alpha^{2}-\sigma\right)[\eta(Y) X-\eta(X) Y], \tag{2.12}
\end{equation*}
$$

$$
\begin{equation*}
\left(\nabla_{X} \phi\right)(Y)=\alpha[g(X, Y) \xi+2 \eta(X) \eta(Y) \xi+\eta(Y) X] \tag{2.13}
\end{equation*}
$$

for all vector fields $X, Y, Z$, where $R, S$ denote respectively the curvature tensor and the Ricci tensor of the manifold.

Now we state the following result which will be needed in the later section.

LEMMA 2.1. ([4]) In a Lorentzian almost paracontact manifold $M^{n}(\phi, \xi, \eta, g)$ with its structure $(\phi, \xi, \eta, g)$ satisfying $\Omega(X, Y)=\frac{1}{\alpha}\left(\nabla_{X} \eta\right)(Y)$, where $\alpha$ is a nonzero scalar, the vector field $\xi$ is torse-forming if and only if $\psi^{2}=(n-1)^{2}$ holds good.

## 3. Fundamental results of LP-Sasakian manifold with a coefficient $\alpha$

 In this section we begin with the following:THEOREM 3.1. Let $\left(M^{n}, g\right)$ be an LP-Sasakian manifold with a coefficient $\alpha$. Then the Ricci operator $Q$ commutes with $\phi$.

Proof. We assume that $X, Y, Z$ are (local) vector fields such that $(\nabla X)_{P}=$ $(\nabla Y)_{P}=(\nabla Z)_{P}=0$, for a fixed point $P$ of $M^{n}$.

By the Ricci identity for $\phi$, that is,

$$
\begin{align*}
R(X, Y) \phi Z-\phi R(X, Y) Z= & \left(\nabla_{X} \nabla_{Y} \phi\right) Z \\
& -\left(\nabla_{Y} \nabla_{X} \phi\right) Z-\left(\nabla_{[X, Y]} \phi\right) Z, \tag{3.1}
\end{align*}
$$

we have at the point $P$

$$
\begin{align*}
R(X, Y) \phi Z-\phi R(X, Y) Z= & \nabla_{X}\left(\nabla_{Y} \phi\right) Z \\
& -\nabla_{Y}\left(\nabla_{X} \phi\right) Z . \tag{3.2}
\end{align*}
$$

Using (2.13),it follows that

$$
\begin{align*}
\nabla_{Y}\left(\nabla_{X} \phi\right) Z= & \sigma \eta(Y)[(g(X, Z)+\eta(X) \eta(Z)) \xi \\
& +(X+\eta(X) \xi) \eta(Z)]+\alpha^{2}[2 g(X, Y) \eta(Z) \xi \\
& +6 \eta(X) \eta(Y) \eta(Z) \xi+2 g(Y, Z) \eta(X) \xi \\
& +X g(Y, Z)+X \eta(Y) \eta(Z)+Y g(X, Z) \\
& +g(X, Z) \eta(Y) \xi+2 Y \eta(X) \eta(Z)] \tag{3.3}
\end{align*}
$$

Using (3.3), from (3.2) we have

$$
\begin{align*}
R(X, Y) \phi Z-\phi R(X, Y) Z= & \left(\alpha^{2}-\sigma\right)[g(X, Z) \eta(Y)-g(Y, Z) \eta(X)] \xi \\
& +\left(\alpha^{2}-\sigma\right) \eta(Z)[X \eta(Y)-Y \eta(X)] . \tag{3.4}
\end{align*}
$$

Replacing $X, Y$ by $\phi X, \phi Y$ respectively in (3.4) and taking the inner product on both sides by $\phi W$ we get

$$
\begin{equation*}
g(R(\phi X, \phi Y) \phi Z, \phi W)=g(\phi R(\phi X, \phi Y) Z, \phi W) . \tag{3.5}
\end{equation*}
$$

Now

$$
\begin{aligned}
g(\phi R(\phi X, \phi Y) Z, \phi W)= & g(R(\phi X, \phi Y) Z, W) \\
= & g(R(Z, W) \phi X, \phi Y) \\
= & g(\phi R(Z, W) X, \phi Y)+\left(\alpha^{2}-\sigma\right)[g(Z, X) g(W, \phi Y) \\
& -g(W, X) g(Z, \phi Y)]+\left(\alpha^{2}-\sigma\right) \\
& {[g(Z, \phi Y) \eta(X) \eta(W)-g(W, \phi Y) \eta(X) \eta(Z)] }
\end{aligned}
$$

Therefore from (3.4) we have

$$
\begin{align*}
g(R(\phi X, \phi Y) \phi Z, \phi W)= & g(R(X, Y) Z, W)+\left(\alpha^{2}-\sigma\right) \\
& {[\eta(X) \eta(Z) g(W, Y)-\eta(W) \eta(X) g(Y, Z)] } \\
& +\left(\alpha^{2}-\sigma\right)[X \eta(Z)-g(X, Z) \xi] \eta(Y) \tag{3.6}
\end{align*}
$$

From (3.6) it follows that

$$
\begin{align*}
\phi R(\phi X, \phi Y) \phi Z= & R(X, Y) Z+\left(\alpha^{2}-\sigma\right) \\
& \eta(X)[\eta(Z) Y-g(Y, Z) \xi]+\left(\alpha^{2}-\sigma\right) \\
& {[X \eta(Z)-g(X, Z) \xi] \eta(Y) } \tag{3.7}
\end{align*}
$$

We now consider the following two cases:
Case (i): If $n=2 m+1$, let $\left\{e_{i}, \phi e_{i}, \xi\right\}, i=1,2, \ldots ., m$ be an orthonormal frame at any point of the manifold. Then putting $Y=Z=e_{i}$ in (3.7) and taking summation over $i$ and using $\eta\left(e_{i}\right)=0$, we get

$$
\begin{equation*}
\sum_{i=1}^{m} \epsilon_{i} \phi R\left(\phi X, \phi e_{i}\right) \phi e_{i}=\sum_{i=1}^{m} \epsilon_{i} R\left(X, e_{i}\right) e_{i}-m\left(\alpha^{2}-\sigma\right) \eta(X) \xi, \tag{3.8}
\end{equation*}
$$

where $\epsilon_{i}=g\left(e_{i}, e_{i}\right)$.
Again setting $Y=Z=\phi e_{i}$ in (3.7)and taking summation over $i$ and using $\eta \cdot \phi=0$, we get

$$
\begin{equation*}
\sum_{i=1}^{m} \epsilon_{i} \phi R\left(\phi X, e_{i}\right) e_{i}=\sum_{i=1}^{m} \epsilon_{i} R\left(X, \phi e_{i}\right) \phi e_{i}-m\left(\alpha^{2}-\sigma\right) \eta(X) \xi \tag{3.9}
\end{equation*}
$$

Adding (3.8) and (3.9) and using the definition of the Ricci tensor, we obtain

$$
\phi(Q \phi X-R(\phi X, \xi) \xi)=Q X-R(X, \xi) \xi-2 m\left(\alpha^{2}-\sigma\right) \eta(X) \xi
$$

Using (2.12) and $\phi \xi=0$ in the above relation, we have

$$
\phi Q \phi X=Q X-2 m\left(\alpha^{2}-\sigma\right) \eta(X) \xi
$$

Operating both sides by $\phi$ and using (2.1),symmetry of $Q$ and $\phi \xi=0$ we get $\phi Q=Q \phi$.

Case (ii): If $n=2 m+2$, let $\left\{e_{i}, \phi e_{i}, \xi\right\}, i=1,2, \ldots . ., m+1$ be an orthonormal frame at any point of the manifold. Then putting $Y=Z=e_{i}$ in (3.7) and taking summation over $i$ and using $\eta\left(e_{i}\right)=0$, we get

$$
\begin{equation*}
\sum_{i=1}^{m+1} \epsilon_{i} \phi R\left(\phi X, \phi e_{i}\right) \phi e_{i}=\sum_{i=1}^{m+1} \epsilon_{i} R\left(X, e_{i}\right) e_{i}-(m+1)\left(\alpha^{2}-\sigma\right) \eta(X) \xi, \tag{3.10}
\end{equation*}
$$

where $\epsilon_{i}=g\left(e_{i}, e_{i}\right)$.
Again setting $Y=Z=\phi e_{i}$ in (3.7) and taking summation over $i$ and using $\eta \cdot \phi=0$, we get

$$
\begin{equation*}
\sum_{i=1}^{m+1} \epsilon_{i} \phi R\left(\phi X, e_{i}\right) e_{i}=\sum_{i=1}^{m+1} \epsilon_{i} R\left(X, \phi e_{i}\right) \phi e_{i}-(m+1)\left(\alpha^{2}-\sigma\right) \eta(X) \xi . \tag{3.11}
\end{equation*}
$$

Adding (3.10) and (3.11) and then proceeding similarly as in Case (i) we can easily obtain $\phi Q=Q \phi$. This proves the theorem.

PROPOSITION 3.1. In an LP-Sasakian manifold with a coefficient $\alpha$ the relation

$$
\begin{equation*}
S(\phi X, \phi Y)=(n-1)\left(\alpha^{2}-\sigma\right) g(X, Y)+S(X, Y) \tag{3.12}
\end{equation*}
$$

holds.
Proof. We have $S(X, Y)=g(Q X, Y)$.
Then

$$
\begin{aligned}
S(\phi X, \phi Y) & =g(Q \phi X, \phi Y) \\
& =g(\phi Q X, \phi Y), \text { since } Q \phi=\phi Q \\
& =g(Q X, Y)+\eta(Q X) \eta(Y) \\
& =S(X, Y)+S(X, \xi) \eta(Y) .
\end{aligned}
$$

Using (2.11) we get from above

$$
S(\phi X, \phi Y)=S(X, Y)+(n-1)\left(\alpha^{2}-\sigma\right) g(X, Y)
$$

DEFINITION 3.1. The Ricci tensor $S$ of an LP-Sasakian manifold with a coefficient $\alpha$ is said to be $\eta$-parallel if it satisfies

$$
\begin{equation*}
\left(\nabla_{X} S\right)(\phi Y, \phi Z)=0, \tag{3.13}
\end{equation*}
$$

for all vector fields $X, Y$ and $Z$.
This notion was introduced in the context of Sasakian manifolds by M. Kon [9].

Differentiating (3.12) covariantly with respect to Z we get

$$
\begin{equation*}
\left(\nabla_{Z} S\right)(\phi X, \phi Y)=\left(\nabla_{Z} S\right)(X, Y)+(n-1)[2 \alpha d \alpha(Z)-d \sigma(Z)] g(X, Y) \tag{3.14}
\end{equation*}
$$

Hence we can state the following:
COROLLARY 3.1. In an LP-Sasakian manifold with a coefficient $\alpha, \eta$-parallelity of the Ricci tensor and the Ricci-symmetry are equivalent provided $\alpha, \sigma=$ constant.

## 4. Locally $\phi$-symmetric LP-Sasakian Manifold with a coefficient $\alpha$

DEFINITION 4.1. An LP-Sasakian manifold with a coefficient $\alpha\left(M^{n}, g\right)$ is said to be locally $\phi$-symmetric if

$$
\begin{equation*}
\phi^{2}\left(\left(\nabla_{W} R\right)(X, Y) Z\right)=0 \tag{4.1}
\end{equation*}
$$

for all vector fields W,X,Y,Z orthogonal to $\xi$. This notion was introduced for Sasakian manifolds by Takahashi [14].

Let us consider an LP-Sasakian manifold with a coefficient $\alpha\left(M^{n}, g\right)$ which is locally $\phi$-symmetric. Then by using (2.1)in (4.1) we have

$$
\begin{equation*}
\left(\nabla_{W} R\right)(X, Y) Z+\eta\left(\left(\nabla_{W} R\right)(X, Y) Z\right) \xi=0 \tag{4.2}
\end{equation*}
$$

for any $X, Y, Z, W$ orthogonal to $\xi$. It follows from (4.2) that

$$
\left(\nabla_{W} R\right)(X, Y) Z-g\left(\left(\nabla_{W} R\right)(X, Y) \xi, Z\right) \xi=0,
$$

which yields by virtue of (2.12) that

$$
\begin{equation*}
\left(\nabla_{W} R\right)(X, Y) Z=\alpha\left(\alpha^{2}-\sigma\right)[g(X, Z) g(W, Y)-g(W, X) g(Y, Z)] \xi \tag{4.3}
\end{equation*}
$$

for any $X, Y, Z, W$ orthogonal to $\xi$. Next, if the relation (4.3) holds, it follows by $\phi \xi=0$ that (4.1) holds and hence the manifold is locally $\phi$-symmetric. Thus we can state the following:

THEOREM 4.1. An LP-Sasakian manifold with a coefficient $\alpha$, $\left(M^{n}, g\right)$ is locally $\phi$-symmetric if and only if the relation (4.3) holds for all horizontal vector fields $X, Y, Z, W$ on $M$.

## 5. $\phi$-conformally flat LP-Sasakian Manifold with a coefficient $\alpha$

DEFINITION 5.1. An LP-Sasakian manifold with a coefficient $\alpha\left(M^{n}, g\right)(n>$ 3 ) is said to be $\phi$-conformally flat if it satisfies

$$
\begin{equation*}
\phi^{2}(C(\phi X, \phi Y) \phi Z)=0 \tag{5.1}
\end{equation*}
$$

for any vector field $X, Y, Z$ in $T_{p} M$ where $C$ is the Weyl conformal curvature tensor defined by

$$
\begin{aligned}
C(X, Y) Z= & R(X, Y) Z \\
& -\frac{1}{n-2}[g(Y, Z) Q X-g(X, Z) Q Y+S(Y, Z) X-S(X, Z) Y] \\
& +\frac{r}{(n-1)(n-2)}[g(Y, Z) X-g(X, Z) Y]
\end{aligned}
$$

The notion of $\phi$-conformally flat for K-contact manifolds was first introduced by G. Zhen [16]. In a recent paper [13] Chian Ozgur studied $\phi$-conformally flat Lorentzian Para-Sasakian Manifold.

DEFINITION 5.2. An LP-Sasakian manifold with a coefficient $\alpha$ is said to be an $\eta$-Einstein manifold if the Ricci tensor $S$ satisfies the condition

$$
S(X, Y)=a g(X, Y)+b \eta(X) \eta(Y)
$$

where $a, b$ are smooth functions.
First let (5.1) holds. Then we have

$$
g(C(\phi X, \phi Y) \phi Z, \phi W)=0 .
$$

Hence using the definition of conformal curvature tensor, the above relation implies that

$$
\begin{align*}
\widetilde{R}(\phi X, \phi Y, \phi Z, \phi W)= & \frac{1}{(n-2)}[S(\phi Y, \phi Z) g(\phi X, \phi W) \\
& -S(\phi X, \phi Z) g(\phi Y, \phi W)+g(\phi Y, \phi Z) S(\phi X, \phi W) \\
& -g(\phi X, \phi Z) S(\phi Y, \phi W)]-\frac{r}{(n-1)(n-2)} \\
& {[g(\phi Y, \phi Z) g(\phi X, \phi W)-g(\phi X, \phi Z) g(\phi Y, \phi W)], } \tag{5.2}
\end{align*}
$$

where $\widetilde{R}(\phi X, \phi Y, \phi Z, \phi W)=g(R(\phi X, \phi Y) \phi Z, \phi W)$.

Now using (3.6) and (3.12) in (5.2) we have

$$
\begin{align*}
g(R(X, Y) Z, W)+ & \left(\alpha^{2}-\sigma\right)[\eta(X) \eta(Z) g(W, Y) \\
& -g(Y, Z) \eta(W) \eta(X)+g(X, W) \eta(Y) \eta(Z) \\
& -g(X, Z) \eta(Y) \eta(W)]=\frac{1}{(n-2)} \\
& {\left[\left[S(Y, Z)+(n-1)\left(\alpha^{2}-\sigma\right) g(Y, Z)\right]\right.} \\
& {[g(X, W)+\eta(X) \eta(W)] } \\
& -\left[S(X, Z)+(n-1)\left(\alpha^{2}-\sigma\right) g(X, Z)\right] \\
& {[g(Y, W)+\eta(Y) \eta(W)] } \\
& +\left[S(X, W)+(n-1)\left(\alpha^{2}-\sigma\right) g(X, W)\right] \\
& {[g(Y, Z)+\eta(Y) \eta(Z)] } \\
& -\left[S(Y, W)+(n-1)\left(\alpha^{2}-\sigma\right) g(Y, W)\right] \\
& {[g(X, Z)+\eta(X) \eta(Z)]] } \\
& -\frac{r}{(n-1)(n-2)}[[g(Y, Z)+\eta(Y) \eta(Z)] \\
& {[g(X, W)+\eta(X) \eta(W)] } \\
& -[g(X, Z)+\eta(X) \eta(Z)][g(Y, W)+\eta(Y) \eta(W)]] . \tag{5.3}
\end{align*}
$$

Taking an orthonormal frame field and contracting over $X$ and $W$ in (5.3), it follows that

$$
\begin{align*}
S(Y, Z)= & {\left[\frac{r}{(n-1)}-\left(\alpha^{2}-\sigma\right)\right] g(Y, Z) } \\
& +\left[\frac{r}{(n-1)}-n\left(\alpha^{2}-\sigma\right)\right] \eta(Y) \eta(Z) \tag{5.4}
\end{align*}
$$

It is known [4] that if an LP-Sasakian manifold with a coefficient $\alpha$ is $\eta$ Einstein, then the Ricci tensor $S$ is of the form

$$
\begin{align*}
S(Y, Z)= & {\left[\frac{r}{n-1}-\alpha^{2}-\frac{\psi \sigma}{n-1}\right] g(Y, Z) } \\
& +\left[\frac{r}{n-1}-n \alpha^{2}-\frac{n \psi \sigma}{n-1}\right] \eta(Y) \eta(Z) . \tag{5.5}
\end{align*}
$$

By virtue of (5.4) and (5.5) we get

$$
\begin{align*}
& {\left[\sigma+\frac{\psi \sigma}{n-1}\right] g(X, Z)} \\
& \quad+\left[n \sigma+\frac{n \psi \sigma}{n-1}\right] \eta(X) \eta(Z)=0 \tag{5.6}
\end{align*}
$$

Putting $Z=\xi$ in (5.6) we obtain

$$
\begin{equation*}
\eta(Y) \sigma[\psi+(n-1)]=0 \tag{5.7}
\end{equation*}
$$

which gives

$$
\begin{equation*}
\psi^{2}=(n-1)^{2} . \tag{5.8}
\end{equation*}
$$

Hence by Lemma 2.1 we conclude that $\xi$ is torse-forming. Thus we can state the following:

THEOREM 5.1. In a $\phi$-conformally flat LP-Sasakian manifold with a coefficient $\alpha$,the characteristic vector field $\xi$ is a torse-forming vector field.

## 6. 3-dimensional lp-sasakian manifold with a constant coefficient $\alpha$

Let us consider a 3-dimensional LP-Sasakian Manifold with a constant coefficient $\alpha$. In a 3 -dimensional Riemannian manifold we have

$$
\begin{align*}
R(X, Y) Z= & g(Y, Z) Q X-g(X, Z) Q Y+S(Y, Z) X-S(X, Z) Y \\
& -\frac{r}{2}[g(Y, Z) X-g(X, Z) Y] \tag{6.1}
\end{align*}
$$

where $Q$ is the Ricci operator, that is, $g(Q X, Y)=S(X, Y)$ and $r$ is the scalar curvature of the manifold.

Since $\alpha$ is constant and the dimension of the manifold is 3, equation (2.10) and (2.11) reduces to

$$
\begin{gather*}
\eta(R(X, Y) Z)=\alpha^{2}[g(Y, Z) \eta(X)-g(X, Z) \eta(Y)]  \tag{6.2}\\
S(X, \xi)=2 \alpha^{2} \eta(X) \tag{6.3}
\end{gather*}
$$

From (6.2) we get

$$
\begin{equation*}
R(X, Y) \xi=\alpha^{2}[\eta(Y) X-\eta(X) Y] . \tag{6.4}
\end{equation*}
$$

Putting $Z=\xi$ in (6.1) and using (6.4) we have

$$
\begin{equation*}
\eta(Y) Q X-\eta(X) Q Y=\left(\frac{r}{2}-\alpha^{2}\right)[\eta(Y) X-\eta(X) Y] . \tag{6.5}
\end{equation*}
$$

Putting $Y=\xi$ in (6.5) and using (2.1) and (6.3), we get

$$
\begin{equation*}
Q X=\frac{1}{2}\left[\left(r-2 \alpha^{2}\right) X+\left(r-6 \alpha^{2}\right) \eta(X) \xi\right], \tag{6.6}
\end{equation*}
$$

that is,

$$
\begin{equation*}
S(X, Y)=\frac{1}{2}\left[\left(r-2 \alpha^{2}\right) g(X, Y)+\left(r-6 \alpha^{2}\right) \eta(X) \eta(Y)\right] . \tag{6.7}
\end{equation*}
$$

Using (6.6) in (6.1), we get

$$
\begin{align*}
R(X, Y) Z= & \left(\frac{r-4 \alpha^{2}}{2}\right)[g(Y, Z) X-g(X, Z) Y]+\left(\frac{r-6 \alpha^{2}}{2}\right)[g(Y, Z) \eta(X) \xi \\
& -g(X, Z) \eta(Y) \xi+\eta(Y) \eta(Z) X-\eta(X) \eta(Z) Y] . \tag{6.8}
\end{align*}
$$

THEOREM 6.1. A 3-dimensional LP-Sasakian manifold with a constant coefficient $\alpha$ is locally $\phi$-symmetric if and only if the scalar curvature $r$ is constant.

Proof. Differentiating (6.8) covariently with respect to $W$, we get

$$
\begin{aligned}
\left(\nabla_{W} R\right)(X, Y) Z= & \frac{d r(W)}{2}[g(Y, Z) X-g(X, Z) Y] \\
& -\frac{d r(W)}{2}[g(Y, Z) \eta(X) \xi-g(X, Z) \eta(Y) \xi \\
& +\eta(Y) \eta(Z) X-\eta(X) \eta(Z) Y] \\
& -\left(\frac{r-6 \alpha^{2}}{2}\right)\left[g(Y, Z)\left(\nabla_{W} \eta\right)(X) \xi-g(X, Z)\left(\nabla_{W} \eta\right)(Y) \xi\right. \\
& +g(Y, Z) \eta(X) \nabla_{W} \xi-g(X, Z) \eta(Y) \nabla_{W} \xi \\
& +\left(\nabla_{W} \eta\right)(Y) \eta(Z) X+\eta(Y)\left(\nabla_{W} \eta\right)(Z) X \\
& \left.-\left(\nabla_{W} \eta\right)(X) \eta(Z) Y-\eta(X)\left(\nabla_{W} \eta\right)(Z) Y\right] .
\end{aligned}
$$

Now taking $W, X, Y, Z$ are horizontal vector fields, that is, $W, X, Y, Z$ are orthogonal to $\xi$, then we get from the above

$$
\begin{equation*}
\phi^{2}\left(\nabla_{W} R\right)(X, Y) Z=-\frac{d r(W)}{2}[g(Y, Z) X-g(X, Z) Y] . \tag{6.10}
\end{equation*}
$$

Hence from the definition (4.1) the above Theorem follows.
THEOREM 6.2. A 3-dimensional LP-Sasakian manifold with a constant coefficient $\alpha$ satisfies cyclic parallel Ricci tensor if and only if $r=6 \alpha^{2}$.

Proof. A. Gray [6] introduced two classes of Riemannian manifold determined by covariant derivative of Ricci tensor. The class $A$ consisting of all Riemannian manifold whose Ricci tensor $S$ is a Codazzi tensor, i.e.,

$$
\left(\nabla_{X} S\right)(Y, Z)=\left(\nabla_{Y} S\right)(X, Z)
$$

The class $B$ consisting of all Riemannian manifolds whose Ricci tensor is cyclic parallel i.e.,

$$
\begin{equation*}
\left(\nabla_{X} S\right)(Y, Z)+\left(\nabla_{Y} S\right)(X, Z)+\left(\nabla_{Z} S\right)(X, Y)=0 \tag{6.11}
\end{equation*}
$$

A Riemannian manifold is said to satisfy cyclic parallel Ricci tensor if the Ricci tensor is non-zero and satisfies the condition (6.11). From (6.11) it follows that $r=$ constant .

Differentiating (6.7) covariantly, we have

$$
\begin{equation*}
\left(\nabla_{Z} S\right)(X, Y)=\frac{1}{2}\left(r-6 \alpha^{2}\right)\left\{\eta(Y)\left(\nabla_{Z} \eta\right) X+\eta(X)\left(\nabla_{Z} \eta\right) Y\right\} \tag{6.12}
\end{equation*}
$$

since $r=$ constant.

Applying (6.12) in (6.11) we have

$$
\begin{align*}
\frac{1}{2}\left(r-6 \alpha^{2}\right) & \left\{\eta(Y)\left(\nabla_{X} \eta\right) Z+\eta(Z)\left(\nabla_{X} \eta\right) Y\right. \\
+ & \eta(X)\left(\nabla_{Y} \eta\right) Z+\eta(Z)\left(\nabla_{Y} \eta\right) X \\
& \left.+\eta(X)\left(\nabla_{Z} \eta\right) Y+\eta(Y)\left(\nabla_{Z} \eta\right) X\right\}=0 \tag{6.13}
\end{align*}
$$

Taking a frame field we get from (6.13)

$$
\left(r-6 \alpha^{2}\right) 3 \alpha \eta(X)=0 .
$$

Here $\alpha \neq 0$, hence $r=6 \alpha^{2}$.

Conversely, if $r=6 \alpha^{2}$ then from (6.12) it follows that $\left(\nabla_{Z} S\right)(X, Y)=0$ and hence the manifold satisfies cyclic parallel Ricci tensor.This completes the proof.

## 7. Examples

EXAMPLE 7.1. We consider the 3 -dimensional manifold $M=\left\{(x, y, z) \varepsilon \mathbb{R}^{3}\right\}$, where ( $x, y, z$ ) are standard coordinate of $\mathbb{R}^{3}$.

The vector fields

$$
e_{1}=e^{-z}\left(\frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right), \quad e_{2}=e^{-z} \frac{\partial}{\partial y}, \quad e_{3}=e^{-2 z} \frac{\partial}{\partial z}
$$

are linearly independent at each point of $M$.

Let $g$ be the Lorentzian metric defined by

$$
\begin{gathered}
g\left(e_{1}, e_{3}\right)=g\left(e_{1}, e_{2}\right)=g\left(e_{2}, e_{3}\right)=0 \\
g\left(e_{1}, e_{1}\right)=g\left(e_{2}, e_{2}\right)=1 \\
g\left(e_{3}, e_{3}\right)=-1
\end{gathered}
$$

Let $\eta$ be the 1 -form defined by $\eta(Z)=g\left(Z, e_{3}\right)$ for any $Z \varepsilon \chi(M)$.
Let $\phi$ be the $(1,1)$ tensor field defined by

$$
\phi\left(e_{1}\right)=e_{1}, \quad \phi\left(e_{2}\right)=e_{2}, \quad \phi\left(e_{3}\right)=0 .
$$

Then using the linearity of $\phi$ and $g$, we have

$$
\begin{gathered}
\eta\left(e_{3}\right)=-1 \\
\phi^{2} Z=Z+\eta(Z) e_{3} \\
g(\phi Z, \phi W)=g(Z, W)+\eta(Z) \eta(W)
\end{gathered}
$$

for any $Z, W \varepsilon \chi(M)$.
Then for $e_{3}=\xi$, the structure $(\phi, \xi, \eta, g)$ defines a Lorentzian paracontact structure on $M$.

Let $\nabla$ be the Levi-Civita connection with respect to the Lorentzian metric $g$ and R be the curvature tensor of $g$. Then we have

$$
\left[e_{1}, e_{2}\right]=-e^{-z} e_{2} \quad,\left[e_{1}, e_{3}\right]=e^{-2 z} e_{1} \quad \text { and } \quad\left[e_{2}, e_{3}\right]=e^{-2 z} e_{2}
$$

Taking $e_{3}=\xi$ and using Koszul's formula for the Lorentzian metric g , we can easily calculate

$$
\begin{gather*}
\nabla_{e_{1}} e_{3}=e^{-2 z} e_{1}, \quad \nabla_{e_{1}} e_{2}=0, \quad \nabla_{e_{1}} e_{1}=e^{-2 z} e_{3}, \\
\nabla_{e_{2}} e_{3}=e^{-2 z} e_{2}, \quad \nabla_{e_{2}} e_{2}=e^{-2 z} e_{3}-e^{-z} e_{1}, \quad \nabla_{e_{2}} e_{1}=e^{-2 z} e_{2}, \\
\nabla_{e_{3}} e_{3}=0, \quad \nabla_{e_{3}} e_{2}=0, \quad \nabla_{e_{3}} e_{1}=0 \tag{7.1}
\end{gather*}
$$

From the above it can be easily seen that $M^{3}(\phi, \xi, \eta, g)$ is an LP-Sasakian manifold with $\alpha=e^{-2 z} \neq 0$.

EXAMPLE 7.2. We consider the 3 -dimensional manifold $M=\left\{(x, y, z) \varepsilon \mathbb{R}^{3}\right\}$, where $(x, y, z)$ are standard coordinate of $\mathbb{R}^{3}$.

The vector fields

$$
e_{1}=e^{z} \frac{\partial}{\partial y}, \quad e_{2}=e^{z}\left(\frac{\partial}{\partial x}+\frac{\partial}{\partial y}\right), \quad e_{3}=\frac{\partial}{\partial z}
$$

are linearly independent at each point of $M$.
Let $g$ be the Lorentzian metric defined by

$$
\begin{gathered}
g\left(e_{1}, e_{3}\right)=g\left(e_{1}, e_{2}\right)=g\left(e_{2}, e_{3}\right)=0, \\
g\left(e_{1}, e_{1}\right)=g\left(e_{2}, e_{2}\right)=1, \\
g\left(e_{3}, e_{3}\right)=-1 .
\end{gathered}
$$

Let $\eta$ be the 1 -form defined by $\eta(Z)=g\left(Z, e_{3}\right)$ for any $Z \varepsilon \chi(M)$.
Let $\phi$ be the $(1,1)$ tensor field defined by

$$
\phi\left(e_{1}\right)=e_{1}, \quad \phi\left(e_{2}\right)=e_{2}, \quad \phi\left(e_{3}\right)=0 .
$$

Then using the linearity of $\phi$ and $g$, we have

$$
\begin{gathered}
\eta\left(e_{3}\right)=-1, \\
\phi^{2} Z=Z+\eta(Z) e_{3} \\
g(\phi Z, \phi W)=g(Z, W)+\eta(Z) \eta(W),
\end{gathered}
$$

for any $Z, W \varepsilon \chi(M)$.
Then for $e_{3}=\xi$, the structure $(\phi, \xi, \eta, g)$ defines a Lorentzian paracontact structure on $M$.

Let $\nabla$ be the Levi-Civita connection with respect to the Lorentzian metric $g$ and R be the curvature tensor of $g$. Then we have

$$
\left[e_{1}, e_{2}\right]=0 \quad,\left[e_{1}, e_{3}\right]=-e_{1} \quad \text { and } \quad\left[e_{2}, e_{3}\right]=-e_{2}
$$

Taking $e_{3}=\xi$ and using Koszul's formula for the Lorentzian metric g, we can easily calculate

$$
\begin{array}{ccc}
\nabla_{e_{1}} e_{3}=-e_{1}, & \nabla_{e_{1}} e_{2}=0, & \nabla_{e_{1}} e_{1}=-e_{3}, \\
\nabla_{e_{2}} e_{3}=-e_{2}, & \nabla_{e_{2}} e_{2}=-e_{3}, & \nabla_{e_{2}} e_{1}=0, \\
\nabla_{e_{3}} e_{3}=0, & \nabla_{e_{3}} e_{2}=0, & \nabla_{e_{3}} e_{1}=0 \tag{7.2}
\end{array}
$$

From the above it can be easily seen that $M^{3}(\phi, \xi, \eta, g)$ is an LP-Sasakian manifold with a coefficient $\alpha$. Here $\alpha=-1$.

With the help of the above results it can be easily verified that

$$
\begin{gathered}
R\left(e_{1}, e_{2}\right) e_{3}=0, \quad R\left(e_{2}, e_{3}\right) e_{3}=-e_{2}, \quad R\left(e_{1}, e_{3}\right) e_{3}=-e_{1}, \\
R\left(e_{1}, e_{2}\right) e_{2}=e_{1}, \quad R\left(e_{2}, e_{3}\right) e_{2}=-e_{3}, \quad R\left(e_{1}, e_{3}\right) e_{2}=0, \\
R\left(e_{1}, e_{2}\right) e_{1}=-e_{2}, \quad R\left(e_{2}, e_{3}\right) e_{1}=0, \quad R\left(e_{1}, e_{3}\right) e_{1}=-e_{3} .
\end{gathered}
$$

From the above expressions of the curvature tensor we obtain

$$
\begin{aligned}
S\left(e_{1}, e_{1}\right) & =g\left(R\left(e_{1}, e_{2}\right) e_{2}, e_{1}\right)-g\left(R\left(e_{1}, e_{3}\right) e_{3}, e_{1}\right) \\
& =2
\end{aligned}
$$

Similarly we have

$$
S\left(e_{2}, e_{2}\right)=2
$$

and

$$
S\left(e_{3}, e_{3}\right)=-2 .
$$

Therefore,

$$
r=S\left(e_{1}, e_{1}\right)+S\left(e_{2}, e_{2}\right)-S\left(e_{3}, e_{3}\right)=6
$$

Hence the scalar curvature is constant. Thus the 3-dimensional LP-Sasakian manifold with a constant coefficient $\alpha$ is locally $\phi$-symmetric. Therefore Theorem 6.1 is verified.

Also from the expression of the Ricci tensor we find that the manifold under consideration satisfies cyclic parallel Ricci tensor. Since $r=6=6\left(\alpha^{2}\right)$ for $\alpha=-1$, therefore Theorem 6.2 holds.

## References

[ 1 ] Al-Aqeel, A., De, U. C. and Ghosh, G. C., On Lorentzian Para-Sasakian manifolds, KJSE, 31 (2004), 1-13.
[ 2 ] De, U. C. and Arslan, K., Certain curvature conditions on an LP-Sasakian manifold with a coefficient $\alpha$, Bull. Korean Math. Soc., 46 (2009), 401-408.
[ 3 ] De, U. C., Jun, J. B. and Shaikh, A. A., On conformally flat LP-Sasakian manifolds with a coefficient $\alpha$, Nihonkai Math. J., 13 (2002), 121-131.
[ 4 ] De, U. C., Shaikh, A. A. and Sengupta, A., On LP-sasakian manifolds with acoefficient a, Kyungpook Math. Jour., 42 (2002), 177-186.
[ 5 ] De, U. C. and Tripathi, M. M., Lorentzian almost paracontact manifolds and their submanifolds, Korean Society of Math. Education, Series B: Pure and Applied Maths, 8 (2001), 101-125.
[ 6 ] Gray, A., Einstein-like manifolds which are not Einstein, Geom. Dedicata, 7 (1978), 259-280.
[ 7 ] Ikawa, T. and Erdogan, M., Sasakian manifolds with Lorentzian metric, Kyungpook Math. J., 35 (1996), 517-526.
[ 8 ] Ikawa, T. and Jun, J. B., On sectional curvatures of a normal contact Lorentzian manifold, Korean J. Math. Sciences, 4 (1997), 27-33.
[ 9 ] Kon, M., Invariant submanifolds in Sasakian manifolds, Math. Ann., 219 (3) (1976), 277-290.
[ 10 ] Matsumoto, K., On Lorentzian paracontact manifolds, Bull. of Yamagata Univ., Nat. Sci., 12 (1989), 151-156.
[ 11 ] Matsumoto, K. and Mihai, I., On a certain transformation in a Lorentzian para-Sasakian manifold, Tensor N.S., 47 (1988), 189-197.
[ 12 ] Mihai, I. and Rosca, R., On Lorentzian P-Sasakian manifolds, Classical Analysis, World Sci. Publi., Singapore, (1992), 155-169.
[ 13 ] Ozgur, Cihan, $\phi$-conformally flat Lorentzian Para-Sasakian Manifolds. Radovi matematicki, 12 (2003), 99-106.
[ 14 ] Takahashi T., Sasakian $\phi$-symmetric spaces, Tohoku Math. J., 29 (1977), 91-113.
[ 15 ] Yano, K., On the torse-forming direction in Riemannian spaces, Proc. Imp. Acad. Tokyo, 20 (1944), 340-345.
[ 16 ] Zhen, G., On Conformal Symmetric K-contact manifolds, Chinese Quart. J. of Math., 7 (1992), 5-10.

Krishnendu De,
Konnagar High School(H.S.),
68 G.T. Road (West), Konnagar, Hooghly,
Pin.712235, West Bengal, India.
E-mail: krishnendu_de@yahoo.com
Uday Chand De,
Department of Pure Mathematics, Calcutta University,
35 Ballygunge Circular Road
Kol 700019, West Bengal, India.
E-mail: uc_de@yahoo.com


[^0]:    2010 Mathematics Subject Classification: 53c15, 53c25
    Key words and phrases: LP-Sasakian manifold with a coefficient $\alpha, \phi$-conformally flat manifold, locally $\phi$-symmetric manifold, $\eta$ - Einstein manifold, $\eta$ - parallel Ricci tensor

