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Abstract. Let A,B be square irredusible matrices with entries in {0, 1}. As-
sume that the sizes of A,B are both less than or equal to three. We will then
show that the one-sided topological Markov shifts (XA, σA) and (XB , σB) for A
and B are continuously orbit equivalent if and only if the Cuntz-Krieger alge-
bras OA and OB are isomorphic. The if part (and hence the only if part) is
characterized by certain matrix relations between A and B.

1. Introduction

Measure theoretic studies of orbit equivalence of ergodic transformations have

been initiated by H. Dye ([9], [10]). W. Krieger [17] has proved that two ergodic

non-singular transformations are orbit equivalent if and only if the associated

von Neumann crossed produtcs are isomorphic (cf.[5]). In topological setting,

Giordano-Putnam-Skau [13], [14] (cf.[15],[24], etc.) have proved that two Cantor

minimal systems are strongly orbit equivalent if and only if the associated C∗-

crossed products are isomorphic. J. Tomiyama [26] (cf. [4], [27] ) has studied

a relationship between orbit equivalence and C∗-crossed products for topologi-

cal free homeomorphisms on compact Hausdorff spaces. The class of one-sided

topological Markov shifts is an important class of topological dynamical systems

on Cantor sets with continuous surjections that are not homeomorphisms. The

associated C∗-algebras to the topological Markov shifts are known to be the

Cuntz-Krieger algebras. In a recent paper [21], the author has shown that the

one-sided topological Markov shifts (XA, σA) and (XB, σB) for irreducible matri-

ces A and B with entries in {0, 1} are continuously orbit equivalent if and only

if there exists an isomorphism between the Cuntz-Krieger algebras OA and OB

preserving their commutative C∗-subalgebras C(XA) and C(XB).

From the view point of the above Giordano-Putnam-Skau’s works, we would
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expect that the isomorphism class of the C∗-algebras completely determines an

orbit equivalence class of the underlying topological dynamical systems. Cuntz-

Krieger algebras have been classified in terms of the underlying matrices and

also in terms of its K-theory data by Enomoto-Fujii-Watatani [11] if the sizes of

the matrices are three (for a general case, see Rørdam’s work [25]). In this short

note, by using the Enomoto-Fujii-Watatani’s result, we will show the following

theorem.

THEOREM 1.1. Let A,B be irreducible matrices with entries in {0, 1} satisfy-

ing condition (I). Suppose that the sizes of A,B are both less than or equal to

three. Then the one-sided topological Markov shifts (XA, σA) and (XB, σB) are

continuously orbit equivalent if and only if the Cuntz-Krieger algebras OA and

OB are isomorphic.

Therefore the algebraic types of the Cuntz-Krieger algebras for irreducible

matrices with entries in {0, 1}, whose sizes are less than or equal to three, are

completely classified by the continuous orbit equivalence classes of the underlying

topological Markov shifts. We may also present a relationship between the asso-

ciated directed graphs GA and GB to the matrices A and B under the condition

that OA and OB are isomorphic.

2. Preliminaries

Let A = [A(i, j)]Ni,j=1 be an N × N matrix with entries in {0, 1}, where

1 < N ∈ N. Throughout the paper, we assume that A has both no zero columns

and no zero rows. We denote by XA the shift space

XA = {(xn)n∈N ∈ {1, . . . , N}N | A(xn, xn+1) = 1 for all n ∈ N}

of the right one-sided topological Markov shift for A. It is a compact Hausdorff

space in natural product topology. The shift transformation σA on XA defined by

σA((xn)n∈N) = (xn+1)n∈N is a continuous surjective map on XA. The topological

dynamical system (XA, σA) is called the (right one-sided) topological Markov

shift for A. We henceforth assume that A satisfies condition (I) in the sense of

Cuntz-Krieger [8]. The condition (I) for A is equivalent to the condition that XA

is homeomorphic to a Cantor discontinuum.

A word µ = µ1 · · ·µk for µi ∈ {1, . . . , N} is said to be admissible for XA if µ

appears in somewhere in some element x in XA. The length of µ is k and denoted

by |µ|. We denote by Bk(XA) the set of all admissible words of length k ∈ N. For

k = 0 we denote by B0(XA) the empty word ∅. We set B∗(XA) = ∪∞
k=0Bk(XA)

the set of admissible words of XA.
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The Cuntz-Krieger algebra OA for the matrix A has been defined in [8] as

the universal C∗-algebra generated by N partial isometries S1, . . . , SN subject to

the relations:

N∑
j=1

SjS
∗
j = 1, S∗

i Si =
N∑

j=1

A(i, j)SjS
∗
j , i = 1, . . . , N. (2. 1)

The algebra OA is the unique C∗-algebra subject to the above relations un-

der the condition (I) for A. For a word µ = µ1 · · ·µk with µi ∈ {1, . . . , N},
we denote Sµ1 · · ·Sµk

by Sµ. Then Sµ 6= 0 if and only if µ ∈ B∗(XA). Let

C∗(SµS
∗
µ; µ ∈ B∗(XA)) be the C∗-subalgebra of OA generated by the projections

of the form SµS
∗
µ, µ ∈ B∗(XA), which we will denote by DA. It is isomorphic

to the commutative C∗-algebra C(XA) of all complex valued continuous func-

tions on XA through the correspondence SµS
∗
µ ∈ DA ←→ χµ ∈ C(XA) where χµ

denotes the characteristic function on XA for the cylinder set Uµ = {(xn)n∈N ∈
XA | x1 = µ1, . . . , xk = µk} for µ = µ1 · · ·µk ∈ Bk(XA). We identify C(XA) with

the subalgebra DA of OA. Then it is well-known that the algebra DA is maximal

abelian in OA ([8, Remark 2.18], cf.[19, Proposition 3.3]).

For x = (xn)n∈N ∈ XA, the orbit orbσA
(x) of x under σA is defined by

orbσA
(x) = ∪∞

k=0 ∪∞
l=0 σ−k

A (σl
A(x)) ⊂ XA.

Let (XA, σA) and (XB, σB) be topological Markov shifts. If there exists a

homeomorphism h : XA → XB such that h(orbσA
(x)) = orbσB

(h(x)) for x ∈ XA,

then (XA, σA) and (XB, σB) are said to be topologically orbit equivalent. In

this case, we have h(σA(x)) ∈ orbσB
(h(x)) for x ∈ XA, so that h(σA(x)) be-

longs to ∪∞
k=0 ∪∞

l=0 σ−k
B σl

B(h(x)). Hence there exist k1, l1 : XA → Z+ such that

σ
k1(x)
B (h(σA(x))) = σ

l1(x)
B (h(x)). Similarly there exist k2, l2 : XB → Z+ such that

σ
k2(y)
A (h−1(σB(y)))

= σ
l2(y)
A (h−1(y)). If we may take k1, l1 : XA −→ Z+ and k2, l2 : XB −→ Z+ as

continuous functions, the topological Markov shifts (XA, σA) and (XB, σB) are

said to be continuously orbit equivalent. In [21], the following has been proved

PROPOSITION 2.1. ([21, Theorem 5.7]) Let A,B be irreducible matrices with

entries in {0, 1} satisfying condition (I). There exists an isomorphism Ψ : OA →
OB such that Ψ(DA) = DB if and only if (XA, σA) and (XB, σB) are continuously

orbit equivalent.

3. Primitive equivalence

In [11], a notion called primitive equivalence in square matrices with entries

in {0, 1} has been introduced. The equivalence relation completely classifies the
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isomorphism classes of the Cuntz-Krieger algebras defined by 3 × 3 matrices

with entries in {0, 1}. By using the result [11, Theorem 4.1], we will show

that the continuous orbit equivalence classes of the one-sided topological Markov

shifts (XA, σA) are completely classified by the isomorphism classes of the Cuntz-

Krieger algebras OA if the sizes of the matrices are three.

Let A = [A(i, j)]Ni,j=1 be an N × N matrix with entries in {0, 1}. Following

[11], for i = 1, . . . , N let Ai be the i-th row vector [A(i, j)]Nj=1 of A and Ei the

row vector of size N whose i-th entry is one, other entries are zeros. Suppose

that

Ap = Ek(1) + · · · + Ek(r) + Am(1) + · · · + Am(s) (3. 1)

for some k(1), . . . , k(r),m(1), . . . ,m(s) which are mutually different and satisfy

p 6∈ {m(1), . . . ,m(s)}. Then the N × N matrix B = [B(i, j)]Ni,j=1 is defined by

setting for i, j = 1, . . . , N

B(i, j) =


A(i, j) for i 6= p,

1 for i = p and j ∈ {k(1), . . . , k(r),m(1), . . . ,m(s)},
0 else.

(3. 2)

We say that B is primitively transfered from A ([11]). Two N × N matrices C

and D with entries in {0, 1} are said to be primitively equivalent to each other

if there exists a finite sequence of N × N matrices M1, . . . ,Mn with entries in

{0, 1} such that M1 = C,Mn = D and Mi is primitively transfered from Mi+1,

or Mi+1 is primitively transfered from Mi. Enomoto-Fujii-Watatani have proved

that for two 3×3 matrices A,B with entries in {0, 1}, A is primitively equivalent

to B if and only if OA is isomorphic to OB ([11, Theorem 4.1]).

Let A,B be N × N matrices with entries in {0, 1}. Assume that B is primi-

tively transfered from A. Suppose that Ap satisfies (3. 1) and B is obtained from

(3. 2). We further assume that p = 1. Let S1, . . . , SN be the generating partial

isometries of OA satisfying the relations (2.1). We put

T1 = S1(Sk(1)S
∗
k(1) + · · · + Sk(r)S

∗
k(r) + S∗

m(1) + · · · + S∗
m(s)),

Ti = Si for i 6= 1.

In the proof of [11, Theorem 3.7], it was shown that the partial isometries

T1, . . . , TN generate OA and satisfy the relations

N∑
j=1

TjT
∗
j = 1, T ∗

i Ti =
N∑

j=1

B(i, j)TjT
∗
j , i = 1, . . . , N

so that OA = OB. We may regard DB as a C∗-subalgebra of OA generated by

the projections TµT
∗
µ , µ ∈ B∗(XB).
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LEMMA 3.1. Keep the above notations. We have

(i) TµT
∗
µ ∈ DA for µ ∈ B∗(XB) implies TiTµT

∗
µT ∗

i ∈ DA, i = 1, . . . , N .

(ii) SνS
∗
ν ∈ DB for ν ∈ B∗(XA) implies SiSνS

∗
νS

∗
i ∈ DB, i = 1, . . . , N .

Proof. (i) Suppose that TµT
∗
µ ∈ DA. It suffices to show that T1TµT

∗
µT ∗

1 ∈ DA.

As k(1), . . . , k(r),m(1), . . . ,m(s) are mutually different, one has Sk(i)S
∗
k(i)T

∗
1 =

Sk(i)S
∗
k(i)S

∗
1 and S∗

m(n)T
∗
1 = S∗

m(n)Sm(n)S
∗
1 . Since TµT

∗
µ ∈ DA, it then follows that

T1TµT
∗
µT ∗

1 =
r∑

i=1

S1TµT
∗
µSk(i)S

∗
k(i)T

∗
1 +

s∑
n=1

S1S
∗
m(n)TµT

∗
µSm(n)S

∗
m(n)T

∗
1

=
r∑

i=1

S1TµT
∗
µSk(i)S

∗
k(i)S

∗
1 +

s∑
n=1

S1S
∗
m(n)TµT

∗
µSm(n)S

∗
1

so that T1TµT
∗
µT ∗

1 ∈ DA.

(ii) Suppose that SνS
∗
ν ∈ DB. It suffices to show that S1SνS

∗
νS

∗
1 ∈ DB. As

in the proof of [11, Theorem 3.7], one sees that

S1 = T1(Tk(1)T
∗
k(1) + · · · + Tk(r)T

∗
k(r) + Tm(1) + · · · + Tm(s)). (3. 3)

We note that T ∗
k(i)Tk(j) = 0 for i 6= j and T ∗

m(n)Tm(n) = S∗
m(n)Sm(n) for n = 1, . . . , s.

As T1T
∗
1 = S1S

∗
1 , one has Tk(i)T

∗
k(i) = Sk(i)S

∗
k(i) for i = 1, . . . , r so that

Tk(i)T
∗
k(i)S

∗
m(n)Sm(n) = Sk(i)S

∗
k(i)S

∗
m(n)Sm(n) = 0

because of (3. 1). As m(n) 6= 1, we have Tk(i)T
∗
k(i)T

∗
m(n)Tm(n) = 0 for i =

1, . . . , r, n = 1, . . . , s so that

Tk(i)T
∗
k(i)S

∗
1 = Tk(i)T

∗
k(i)T

∗
1 , T ∗

m(n)Tm(n)S
∗
1 = T ∗

m(n)T
∗
1

by (3. 3). It follows that

Tk(i)T
∗
k(i)SνS

∗
νS

∗
1 = SνS

∗
νTk(i)T

∗
k(i)S

∗
1 = SνS

∗
νTk(i)T

∗
k(i)T

∗
1

and

Tm(n)SνS
∗
νS

∗
1 = Tm(n)SνS

∗
νT

∗
m(n)Tm(n)S

∗
1 = Tm(n)SνS

∗
νT

∗
m(n)T

∗
1 .

Hence we have

S1SνS
∗
νS

∗
1 =

r∑
i=1

T1Tk(i)T
∗
k(i)SνS

∗
νS

∗
1 +

s∑
n=1

T1Tm(n)SνS
∗
νS

∗
1

=
r∑

i=1

T1SνS
∗
νTk(i)T

∗
k(i)T

∗
1 +

s∑
n=1

T1Tm(n)SνS
∗
νT

∗
m(n)T

∗
1

so that S1SνS
∗
νS

∗
1 ∈ DB.
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As SjS
∗
j = TjT

∗
j for j = 1, . . . , N , we have the following lemma.

LEMMA 3.2. C∗(SνS
∗
ν ; ν ∈ B∗(XA)) = C∗(TµT

∗
µ ; µ ∈ B∗(XB)).

Therefore we have

PROPOSITION 3.3. Let A,B be irreducible matrices with entries in {0, 1} sat-

isfying condition (I). Suppose that A is primitively equivalent to B. Then there

exists an isomorphism Ψ : OA → OB such that Ψ(DA) = DB.

By Proposition 2.1 we obtain

THEOREM 3.4. Let A,B be irreducible 3 × 3 matrices with entries in {0, 1}
satisfying condition (I). Then the following are equivalent:

(i) OA is isomorphic to OB.

(ii) (XA, σA) and (XB, σB) are continuously orbit equivalent.

(iii) A is primitively equivalent to B.

Proof. The implications (i) ⇐⇒ (iii) come from [11, Theorem 4.1].

The implication (ii) =⇒ (i) comes from Proposition 2.1.

The implication (iii) =⇒ (ii) comes from Proposition 3.3 with Proposition

2.1.

4. Out-splitting and out-amalgamation

Primitive equivalence preserves the size of matrices. We need a weaker equiv-

alence relation than primitive equivalence in the matrices to describe continuous

orbit equivalence classes in the associated one-sided topological Markov shifts.

Let A = [A(i, j)]Ni,j=1 be an N ×N matrix with entries in {0, 1}. We consider

the associated directed graph GA = (VA, EA) with vertex set VA consisting of

N vertices labeled {1, . . . , N}. In this section, we use a technique from theory

of symbolic dynamical systems so that the notations I, J , etc. for vertices of a

graph will be used in stead of i, j, etc. following a common usage in symbolic

dynamical systems. A directed edge e ∈ EA is defined if A(I, J) = 1 as its

source vertex s(e) = I and its terminal vertex t(e) = J . For a vertex I ∈ VA,

denote by EI the set of edges in EA starting at I. For each I ∈ VA, partition

EI into disjoint sets E1
I , . . . , Em(I)

I with m(I) ≥ 1. Let P denote the resulting

partition of EA. Then as in [18, Definition 2.4.3], one may construct the state

split graph G
[P]
A = (VA[P] , EA[P]) formed from GA using P , where the vertex

set VA[P] consists of {I i | i = 1, . . . ,m(I), I ∈ VA}. For e ∈ E i
I with s(e) =
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I, t(e) = J , an edge ej ∈ EA[P] is defined as s(ej) = I i, t(ej) = J j for j =

1, . . . ,m(J). Denote by A[P] the adjacency matrix of the directed graph G
[P]
A .

We say that the matrix A[P] is an out-splitting matrix from A by using P .

Conversely A is called the out-amalgamation matrix from A[P] by using P . Then

A is obtained from A[P] by iteratively deleting multiple copies of repeated columns

and adding corresponding rows. We will show that OA = OA[P] and DA =

DA[P] as subalgebras of OA(= OA[P]). By [28], the one-sided topological Markov

shifts (XA, σA) and (XA[P] , σA[P]) are topologically conjugate so that they are

continuously orbit equivalent to each other. As a consequence, we know that

there exists an isomorphism from OA onto OA[P] preserving their subalgebras

DA and DA[P] by Proposition 2.1. We will here directly show the following

proposition without using both [28] and Proposition 2.1. Let SI , I ∈ VA be the

canonical generating partial isometries of OA satisfying the relations (2.1) for the

matrix A. The vertex set VA[P] of G
[P]
A is written as {I i | i = 1, . . . ,m(I), I ∈ VA}.

Put

TIi = SI

∑
J∈t(Ei

I)

SJS∗
J , I i ∈ VA[P]

where t(E i
I) denotes the set of teminal vertices {t(e) ∈ VA | e ∈ E i

I} of edges E i
I .

PROPOSITION 4.1. Keep the above notations. We have

(i) TIi , I i ∈ VA[P] are partial isometries satisfying the relations∑
Jj∈V

A[P]

TJjT ∗
Jj = 1, T ∗

IiTIi =
∑

Jj∈V
A[P]

A[P](I i, J j)TJjT ∗
Jj , I i ∈ VA[P] .

(ii) TIi , I i ∈ VA[P] generate OA.

(iii) C∗(SνS
∗
ν ; ν ∈ B∗(XA)) = C∗(TµT

∗
µ ; µ ∈ B∗(XA[P])).

Hence there exists an isomorphism between the C∗-algebras OA and OA[P] pre-

serving their subalgebras DA and DA[P].

Proof. (i) Since S∗
I SI commutes with SJS∗

J , I, J ∈ VA, the operator TIi is a partial

isometry. Put PJ = SJS∗
J , J ∈ VA. As

∑m(J)
j=1

∑
K∈t(Ej

J ) PK =
∑

K∈VA
A(J,K)PK =

S∗
JSJ , one has

m(J)∑
j=1

TJjT ∗
Jj = SJ(

m(J)∑
j=1

∑
K∈t(Ej

J )

PK)S∗
J = SJS∗

J .

Since VA[P] = {J j | j = 1, . . . ,m(J), J ∈ VA}, one sees that

∑
Jj∈V

A[P]

TJjT ∗
Jj =

∑
J∈VA

m(J)∑
j=1

TJjT ∗
Jj =

∑
J∈VA

SJS∗
J = 1.



48 K. MATSUMOTO

By the inequality S∗
I SI ≥

∑
J∈t(Ei

I) PJ for i = 1, . . . ,m(I), one has

T ∗
IiTIi = (

∑
J∈t(Ei

I)

PJ)S∗
I SI(

∑
J∈t(Ei

I)

PJ) =
∑

J∈t(Ei
I)

PJ .

We note that A[P](I i, J j) = 1 if and only if J ∈ t(E i
I) for j = 1, . . . ,m(J). It

then follows that∑
Jj∈V

A[P]

A[P](I i, J j)TJjT ∗
Jj =

∑
J∈VA

m(J)∑
j=1

A[P](I i, J j)TJjT ∗
Jj

=
∑

J∈t(Ei
I)

m(J)∑
j=1

SJ(
∑

K∈t(Ej
J )

PK)S∗
J

=
∑

J∈t(Ei
I)

SJ(
∑

K∈VA

A(J,K)PK)S∗
J

=
∑

J∈t(Ei
I)

SJS∗
JSJS∗

J = T ∗
IiTIi .

(ii) For I ∈ VA, we have

SI = SIS
∗
I SI = SI(

m(I)∑
i=1

∑
J∈t(Ei

I)

PJ) =

m(I)∑
i=1

TIi

so that the algebra OA is generated by TIi , I i ∈ VA[P] .

(iii) The projection TIiT ∗
Ii = SI(

∑
J∈t(Ei

I) PJ)S∗
I belongs to DA. For I i1

1 , I i2
2 ,

. . . , I in
n it is straightforward to see that

T
I

i1
1

T
I

i2
2
· · ·TIin

n
T ∗

Iin
n
· · ·T ∗

I
i2
2

T ∗
I

i1
1

=

{
SI1SI2 · · ·SIn(

∑
J∈t(Ein

In
) PJ)S∗

In
· · ·S∗

I2
S∗

I1
if I2 ∈ t(E i1

I1
), . . . , In ∈ t(E in−1

In−1
),

0 otherwise.

On the other hand, as t(E j
I ) ∩ t(Ek

I ) = ∅ for j 6= k, we know

TIjT ∗
Ik = SI(

∑
J∈t(Ej

I )

∑
K∈t(Ek

I )

PJPK)S∗
I = 0

so that

SI1SI2 · · ·SInS∗
In
· · ·S∗

I2
S∗

I1
=

m(I1)∑
i1=1

m(I2)∑
i2=1

· · ·
m(In)∑
in=1

T
I

i1
1

T
I

i2
2
· · ·TIin

n
T ∗

Iin
n
· · ·T ∗

I
i2
2

T ∗
I

i1
1

.

Therefore we conclude that

C∗(SνS
∗
ν ; ν ∈ B∗(XA)) = C∗(TµT

∗
µ ; µ ∈ B∗(XA[P])).
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5. Primitively amalgamated equivalence

We introduce an equivalence relation called primitively amalgamated equiv-

alence (p.a. equivalence for short) in the set of square matrices with entries in

{0, 1}. For two square matrices A,B with entries in {0, 1}, A is said to be prim-

itively amalgamated equivalent to B if there exists a finite chain C0, C1, . . . , CK

of square matrices with entries in {0, 1} such that C0 = A,CK = B and Ci−1, Ci

satisfy one of the following three conditions for i = 1, . . . , K:

(a) Ci−1 is primitively equivalent to Ci,

(b) Ci−1 is an out-splitting matrix from Ci,

(c) Ci−1 is an out-amalgamation matrix from Ci.

We write this situation as A ∼
p.a.

B. It is not difficult to see that both the prop-

erties of irreducibility and condition (I) are preserved under primitively amalga-

mated equivalence. Then we have

THEOREM 5.1. Let A,B be irreducible square matrices with entries in {0, 1}
satisfying condition (I). Consider the following three conditions:

(i) OA is isomorphic to OB.

(ii) (XA, σA) and (XB, σB) are continuously orbit equivalent.

(iii) A ∼
p.a.

B.

Then we have
(iii) =⇒ (ii) =⇒ (i).

If in particular, the sizes of the matrices A and B are both less than or equal to

three, we have
(i) =⇒ (iii),

so that all the three conditions above are mutually equivalent.

Proof. The implication (iii) =⇒ (ii) comes from Proposition 3.3 and Proposition

4.1 with Proposition 2.1. The implication (ii) =⇒ (i) comes from Proposition

2.1. It suffices to show the implication (i) =⇒ (iii) for the matrices A,B whose

sizes are both less than or equal to three. Suppose that (i) holds. If A and

B are both 3 × 3 matrices, (iii) holds by Theorem 3.4. If A and B are both

2 × 2 matrices, they are

[
1 1

1 1

]
or

[
1 1

1 0

]
, because of its irreducibility with

condition (I). Since the C∗-algebras O[ 1 1
1 1 ] and O[ 1 1

1 0 ] are both isomorphic to

O2, and

[
1 1

1 1

]
is primitively equivalent to

[
1 1

1 0

]
, the implication (i) =⇒ (iii)

holds in this case. We may finally assume that A is a 3 × 3 matrix and B is a
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2 × 2 matrix. Since

[
1 1

1 1

]
∼
p.a.

[
1 1

1 0

]
, we may assume that B =

[
1 1

1 1

]
. By

the hypothesis that OA is isomorphic to OB, the 3× 3 matrix A is one of the 13

matrices in the classification table [11, p.450], whose representative is O2. The

2× 2 matrix B is an out-amalgamation matrix from
[

0 1 0
1 1 1
1 0 1

]
, which is one of the

13 matrices. Since any two matrices of the 13 matrices are primitively equivalent

to each other, we conclude A ∼
p.a.

B. Therefore the implication (i) =⇒ (iii) holds.

6. A counter example

We will finally present an example of a pair of matrices A and B one of whose

sizes is 4 such that the implication (i) =⇒ (iii) in Theorem 5.1 does not hold.

LEMMA 6.1. For a square matrix A with entries in {0, 1}, det(1 − A) is in-

variant under primitively amalgamated equivalence.

Proof. det(1−A) is invariant under primitive equivalence by [11, Theorem 8.4].

An out-amalgamation yields a topological conjugacy on the associated two-sided

topological Markov shifts. Hence it gives rise to a flow equivalence between them

so that det(1 − A) is invariant under out-amalgamation by [1].

For an N ×N square matrix A = [A(i, j)]Ni,j=1 with entries in {0, 1}, J. Cuntz

in [7] has introduced an (N + 2) × (N + 2) matrix A− defined by setting

A− =


A(1, 1) . . . A(1, N) 0...

...

A(N, 1) . . . A(N,N) 1

1 1 1

0 1 1


In [25], it has shown that the Cuntz algebra OA for the matrix A =

[
1 1

1 1

]
is

isomorphic to OA− . Therefore we have

PROPOSITION 6.2. OA is isomorphic to OA−, however A is not primitively

amalgamated equivalent to A−. Therefore if one of the sizes of the matrices A

and B is greater than or equal to four, the implication (i) =⇒ (iii) in Theorem

5.1 does not necessarily hold.

Proof. As in [25], K0(OA) ∼= K0(OA−) ∼= 0 so that OA is isomorphic to OA− .
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Since det(1 − A) = −1 6= 1 = det(1 − A−), one sees that A is not primitively

amalgamated equivalent to A−.

A related result to Theorem 1.1 has been obtained in a recent paper [22].
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