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Abstract. Let A, B be square irredusible matrices with entries in {0,1}. As-
sume that the sizes of A, B are both less than or equal to three. We will then
show that the one-sided topological Markov shifts (X 4,04) and (Xp,0p) for A
and B are continuously orbit equivalent if and only if the Cuntz-Krieger alge-
bras O4 and Op are isomorphic. The if part (and hence the only if part) is
characterized by certain matrix relations between A and B.

1. Introduction

Measure theoretic studies of orbit equivalence of ergodic transformations have
been initiated by H. Dye ([9], [10]). W. Krieger [17] has proved that two ergodic
non-singular transformations are orbit equivalent if and only if the associated
von Neumann crossed produtcs are isomorphic (cf.[5]). In topological setting,
Giordano-Putnam-Skau [13], [14] (cf.[15],[24], etc.) have proved that two Cantor
minimal systems are strongly orbit equivalent if and only if the associated C*-
crossed products are isomorphic. J. Tomiyama [26] (cf. [4], [27] ) has studied
a relationship between orbit equivalence and C*-crossed products for topologi-
cal free homeomorphisms on compact Hausdorff spaces. The class of one-sided
topological Markov shifts is an important class of topological dynamical systems
on Cantor sets with continuous surjections that are not homeomorphisms. The
associated C*-algebras to the topological Markov shifts are known to be the
Cuntz-Krieger algebras. In a recent paper [21], the author has shown that the
one-sided topological Markov shifts (X4, 04) and (Xp,op) for irreducible matri-
ces A and B with entries in {0, 1} are continuously orbit equivalent if and only
if there exists an isomorphism between the Cuntz-Krieger algebras O, and Op
preserving their commutative C*-subalgebras C'(X4) and C(Xp).

From the view point of the above Giordano-Putnam-Skau’s works, we would

2010 Mathematics Subject Classification: Primary 46L55; Secondary 46135, 37B10
Key words and phrases: Topological Markov shifts, orbit equivalence, Cuntz-Krieger alge-
bras



42 K. MATSUMOTO

expect that the isomorphism class of the C*-algebras completely determines an
orbit equivalence class of the underlying topological dynamical systems. Cuntz-
Krieger algebras have been classified in terms of the underlying matrices and
also in terms of its K-theory data by Enomoto-Fujii-Watatani [11] if the sizes of
the matrices are three (for a general case, see Rgrdam’s work [25]). In this short
note, by using the Enomoto-Fujii-Watatani’s result, we will show the following
theorem.

THEOREM 1.1. Let A, B be irreducible matrices with entries in {0, 1} satisfy-
ing condition (I). Suppose that the sizes of A, B are both less than or equal to
three. Then the one-sided topological Markov shifts (Xa,04) and (Xp,0p) are
continuously orbit equivalent if and only if the Cuntz-Krieger algebras O, and
Op are isomorphic.

Therefore the algebraic types of the Cuntz-Krieger algebras for irreducible
matrices with entries in {0, 1}, whose sizes are less than or equal to three, are
completely classified by the continuous orbit equivalence classes of the underlying
topological Markov shifts. We may also present a relationship between the asso-
ciated directed graphs G4 and G'p to the matrices A and B under the condition
that O4 and Op are isomorphic.

2. Preliminaries

Let A = [A(i,7)]);—; be an N x N matrix with entries in {0,1}, where
1 < N € N. Throughout the paper, we assume that A has both no zero columns
and no zero rows. We denote by X4 the shift space

XA = {('rn>n€N S {17 ) N}N | A(xn7xn+1> =1forallne N}

of the right one-sided topological Markov shift for A. It is a compact Hausdorff
space in natural product topology. The shift transformation o4 on X 4 defined by
0A((Zn)nen) = (Tni1)nen is a continuous surjective map on X 4. The topological
dynamical system (X4,04) is called the (right one-sided) topological Markov
shift for A. We henceforth assume that A satisfies condition (I) in the sense of
Cuntz-Krieger [8]. The condition (I) for A is equivalent to the condition that X4
is homeomorphic to a Cantor discontinuum.

A word p= pq - -+ py for p; € {1,..., N} is said to be admissible for X, if p
appears in somewhere in some element x in X 4. The length of i is £ and denoted
by |p|. We denote by By (Xa) the set of all admissible words of length k& € N. For
k = 0 we denote by By(X4) the empty word 0. We set B.(Xa) = U Br(Xa)
the set of admissible words of X 4.
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The Cuntz-Krieger algebra O4 for the matrix A has been defined in [8] as
the universal C*-algebra generated by N partial isometries S, ..., Sy subject to
the relations:

N N
d SiSr=1, SiSi=> A(i,j)S;S;, i=1,...,N. (2.1)
j=1 j=1

The algebra O4 is the unique C*-algebra subject to the above relations un-
der the condition (I) for A. For a word p = py---py with p; € {1,..., N},
we denote S, ---S,, by S,. Then S, # 0 if and only if 4 € B,(X4). Let
C*(S,Sy; 1 € Bi(Xa)) be the C*-subalgebra of O 4 generated by the projections
of the form S,S;, € B.(X4), which we will denote by 4. It is isomorphic
to the commutative C*-algebra C'(X4) of all complex valued continuous func-
tions on X4 through the correspondence S,,S7; € D4 «— x,, € C(Xa) where x,
denotes the characteristic function on X4 for the cylinder set U, = {(@y)nen €
XA | Ty = M1y, T = ,U,k} for = 1 g < Bk(XA) We identify C(XA) with
the subalgebra © 4 of O4. Then it is well-known that the algebra ® 4 is maximal
abelian in O4 ([8, Remark 2.18], cf.[19, Proposition 3.3]).
For o = (z,)nen € X4, the orbit orb,,(x) of x under o4 is defined by
0rby, (x) = Uil UiZg 01" (04(2)) € Xa.

Let (Xa,04) and (Xp,0p) be topological Markov shifts. If there exists a
homeomorphism A : X4 — Xp such that h(orb,,(z)) = orb,,(h(z)) for z € X4y,
then (X4,04) and (Xp,0p) are said to be topologically orbit equivalent. In
this case, we have h(oa(x)) € orb,,(h(z)) for x € X4, so that h(oa(z)) be-
longs to U2, U, o5 ol (h(x)). Hence there exist ki, I : X4 — Z, such that
oD (h(o4(x))) = A" (h(x)). Similarly there exist ks, Iy : X — Z, such that
oY (h (o (y)))
= alj(y)(h_l(y)). If we may take ky, I} : X4 — Z, and ky, ly : Xp — Z, as
continuous functions, the topological Markov shifts (X4, 04) and (Xp,0p) are
said to be continuously orbit equivalent. In [21], the following has been proved

PROPOSITION 2.1. ([21, Theorem 5.7]) Let A, B be irreducible matrices with
entries in {0, 1} satisfying condition (I). There ezists an isomorphism ¥V : O —
Op such that V(D 4) = Dp if and only if (Xa,04) and (Xp,0p) are continuously
orbit equivalent.

3. Primitive equivalence

In [11], a notion called primitive equivalence in square matrices with entries
in {0, 1} has been introduced. The equivalence relation completely classifies the
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isomorphism classes of the Cuntz-Krieger algebras defined by 3 x 3 matrices
with entries in {0,1}. By using the result [11, Theorem 4.1], we will show
that the continuous orbit equivalence classes of the one-sided topological Markov
shifts (X4, 04) are completely classified by the isomorphism classes of the Cuntz-
Krieger algebras O 4 if the sizes of the matrices are three.

Let A = [A(4,5)]);=; be an N x N matrix with entries in {0,1}. Following
[11], for s = 1,..., N let A; be the i-th row vector [A(i,j)]}L; of A and E; the
row vector of size N whose i-th entry is one, other entries are zeros. Suppose
that

A, = Eyqy + -+ Bk + Am(l) + -+ Am(s) (3.1)
for some k(1),...,k(r),m(1),...,m(s) which are mutually different and satisfy

p & {m(1),...,m(s)}. Then the N x N matrix B = [B(i, j)]Y;_, is defined by
setting for 4,7 =1,..., N

Ali,j) fori+#p,
B(i,j) =41 for i =pand j € {k(1),...,k(r),m(1),...,m(s)}, (3.2)

0 else.

We say that B is primitively transfered from A ([11]). Two N x N matrices C
and D with entries in {0, 1} are said to be primitively equivalent to each other
if there exists a finite sequence of N x N matrices M, ..., M, with entries in
{0,1} such that M; = C, M,, = D and M; is primitively transfered from M,
or M;,, is primitively transfered from M;. Enomoto-Fujii-Watatani have proved
that for two 3 x 3 matrices A, B with entries in {0, 1}, A is primitively equivalent
to B if and only if O, is isomorphic to Op ([11, Theorem 4.1]).

Let A, B be N x N matrices with entries in {0, 1}. Assume that B is primi-
tively transfered from A. Suppose that A, satisfies (3.1) and B is obtained from
(3.2). We further assume that p = 1. Let S1,..., Sy be the generating partial
isometries of 04 satisfying the relations (2.1). We put

T, = S; for ¢ # 1.

In the proof of [11, Theorem 3.7], it was shown that the partial isometries
Ty, ..., Tx generate O, and satisfy the relations

N N
> 1,1y =1, T;Ti=)Y B(i,j)T;T;, i=1,...,N
j=1 j=1

so that O4 = Op. We may regard ® g as a C*-subalgebra of O, generated by
the projections T, Ty, 1 € B.(Xp).
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LEMMA 3.1. Keep the above notations. We have

(i) T,T; € D4 for p € B(Xp) implies T,T,T;T € Da,i=1,...,N.
(i) S, € Dp for v e B.(Xa) implies S;S,S;SF € ®p,i=1,...,N.

Proof. (i) Suppose that T,T; € D . It suffices to show that TyT,T; T} € D 4.
As k(1),...,k(r),m(1),...,m(s) are mutually different, one has Sy@;) Sy, 1T =
Sk(i)S}:(i)S{ and S;(n)Tf = Sy Om(n)S1 - Since T), T € D 4, it then follows that

m(n)

T, T T} = ZSlTT Sk Sk )T*+ZSl T o) Sy T

i=1

= Z S1T,.T;: Skiiy iy St + Z S155 o Ty T Sy St
i=1 n=1

so that TlT#T:Tl* € Dy.
(ii) Suppose that S,S* € Dp. It suffices to show that 515,557 € Dp. As
in the proof of [11, Theorem 3.7], one sees that

St =Ti(ThyTiay + -+ + T Ty + Tiny + -+ + Tings))- (3.3)
We note that T, Ti(;) = 0 for ¢ 7é Jand T3 . Ty = S:H(H)Sm(n) forn=1,...,s.
As TVT7 = 5157, one has Ty = Sk(s) S for 1=1,...,7r so that

T;(i)S:n(n)S = Sk(i)Sk (i) Sm(n)Sm(n) =0

because of (3.1). As m(n) # 1, we have Ty}, Tn

(@) m(n)Tm(n) = 0 for 1 =
1,....,r, n=1,...,s so that

m(n) 1
by (3.3). It follows that
TriySuS,51 = SuS, Trio Ty ST = 505, Tty Ty TY
and
TonnySuSy ST = Ton(n) SuSy Ty Trn(nyST = Trn(nySuSy Ty I -

Hence we have

$15,8;87 =Y TiTu Ty SuSuSt + Y Ti Ty S0 S5 S
i=1 n=1

= ZTlsVS:Tk(i)T;(i)Tf + ZTl n)SuSy L TT

so that S15,5;57 € ®p. O



46 K. MATSUMOTO
As 5;85 =TT for j =1,..., N, we have the following lemma.
LEMMA 3.2. C*(S,S;;v € B.(Xa)) = C(T,.T;; p € B.(Xp)).
Therefore we have

PROPOSITION 3.3. Let A, B be irreducible matrices with entries in {0, 1} sat-
isfying condition (I). Suppose that A is primitively equivalent to B. Then there
exists an isomorphism V : Oy — Op such that ¥(D4) = Dp.

By Proposition 2.1 we obtain

THEOREM 3.4. Let A, B be irreducible 3 x 3 matrices with entries in {0,1}
satisfying condition (I). Then the following are equivalent:

(i) Oy is isomorphic to Op.
(i1) (Xa,04) and (Xp,o0p) are continuously orbit equivalent.
(i) A is primitively equivalent to B.

Proof. The implications (i) <= (iii) come from [11, Theorem 4.1].

The implication (ii) = (i) comes from Proposition 2.1.

The implication (iii) == (ii) comes from Proposition 3.3 with Proposition
2.1. 0

4. Out-splitting and out-amalgamation

Primitive equivalence preserves the size of matrices. We need a weaker equiv-
alence relation than primitive equivalence in the matrices to describe continuous
orbit equivalence classes in the associated one-sided topological Markov shifts.

Let A =[A(4,7)]Y._; be an N x N matrix with entries in {0,1}. We consider

ij=1
the associated directed graph G4 = (Va, E4) with vertex set V4 consisting of
N vertices labeled {1,..., N}. In this section, we use a technique from theory

of symbolic dynamical systems so that the notations I, J, etc. for vertices of a
graph will be used in stead of i, j, etc. following a common usage in symbolic
dynamical systems. A directed edge e € FEj4 is defined if A(I,J) = 1 as its
source vertex s(e) = I and its terminal vertex t(e) = J. For a vertex [ € Vy,
denote by &; the set of edges in F4 starting at I. For each I € Vj, partition
&r into disjoint sets €, ..., &MY with m(I) > 1. Let P denote the resulting
partition of F4. Then as in [18, Definition 2.4.3], one may construct the state
split graph G[Z‘D] = (Vyr1, Egrpy) formed from G4 using P, where the vertex
set Ve consists of {I* | i = 1,...,m(I), I € V4}. For e € & with s(e) =
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I,t(e) = J, an edge ¢/ € E,p is defined as s(e?) = I',t(e?) = J7 for j =
1,...,m(J). Denote by A the adjacency matrix of the directed graph G[Z:].
We say that the matrix A! is an out-splitting matrix from A by using P.
Conversely A is called the out-amalgamation matrix from A by using . Then
A is obtained from AP! by iteratively deleting multiple copies of repeated columns
and adding corresponding rows. We will show that O4 = Oy and D4 =
D 471 as subalgebras of O4(= O yr1). By [28], the one-sided topological Markov
shifts (Xa,04) and (X 4p1,04m1) are topologically conjugate so that they are
continuously orbit equivalent to each other. As a consequence, we know that
there exists an isomorphism from O4 onto O 47 preserving their subalgebras
D4 and D ,» by Proposition 2.1. We will here directly show the following
proposition without using both [28] and Proposition 2.1. Let S;, I € V), be the
canonical generating partial isometries of O 4 satisfying the relations (2.1) for the
matrix A. The vertex set V) of GEZ;] iswrittenas {I' | i=1,...,m(I), [ € V4}.
Put
Tp=S Y 5585, I'€Vym
Jet(E})

where t(€}) denotes the set of teminal vertices {t(e) € V4 | e € £¢} of edges EL.

PROPOSITION 4.1. Keep the above notations. We have
(i) Ty, I' € Ve are partial isometries satisfyz’ng the relations
Y TuTy =1, T;Tp = Y AP )T, I'€ Ve
J]EV P J]GV P
(ii) Ty, I' € Vyir generate Oy4.
(ili) C*(59,S);v € B.(X4)) =C*(T, Thipe B.(X 471))-
Hence there exists an isomorphism between the C*-algebras O and O 4y pre-
serving their subalgebras ® 4 and ® 4p.

Proof. (i) Since S7.S; commutes with S;S%, I, J € Vy, the operator Ty is a partial
isometry. Put P; = 5;5%,J € V4. As Zm(‘] ZKQ(SJ Prx = gev, A, K)Pg =
S35y, one has

m(J) m(J)

N TuTy =5, Y Px)S; =585
j=1

I=1 Ket(El)
Since Vyry ={J7 | j=1,...,m(J),J € V4}, one sees that

m(J)

Yo TuTi=3 Y TuTi=7) Si55=1

JjeVA[P] JeVy j=1 JeVy
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By the inequality S7S; > ZJet(S;') Py fori=1,...,m(I), one has
Jet(EL) Jet(EL) Jet(EL)

We note that AP/(I7,J7) = 1 if and only if J € t(&}) for j = 1,...,m(J). It
then follows that

m(J)
Z APNE )Ty T5 =) ZAP] (I*, J)T5, T
m(J)

- Y Y SY RS
Jet(&y) 7=1 Ket(&))

= > S A(JK)Px)S;
Jet(&d) KeVy

= > 8,859,8; =T;:Tp.
Jet(&d)

(ii) For I € V4, we have
m(I) m(I)
Sr=5158=8/(>_> Pj)= ZTP
i=1 Jet(el)

so that the algebra Q4 is generated by Tri, I' € V)
(ili) The projection TrTy; = S1(3_ ¢y (&) P;)S; belongs to ®4. For I}', 122,
R KA TS stralghtforward to see that

Tya Ty -+ Tpin T - T3 T

Izn' 7,2 Izl
| SnSn e S1,(C jeyeiny Pr)ST, - SEST, i L € HEL), . Ly e t(Er),
0 otherwise.

On the other hand, as t(&]) N t(EF) = 0 for j # k, we know
TrTh = Si( Z Z P;Pg)S; =0
Jet(&]) Ket(&f)
so that

SKSp, -+ 8,55 -+ St Sy = Z Z e Z Ty Tz Ty T T*QT;Zl.

i1=1 t2=1 in=1

Therefore we conclude that

C*(SySy;v € Bu(Xa)) = CHTT, p € Bo(Xam)).- O
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5. Primitively amalgamated equivalence

We introduce an equivalence relation called primitively amalgamated equiv-
alence (p.a. equivalence for short) in the set of square matrices with entries in
{0,1}. For two square matrices A, B with entries in {0, 1}, A is said to be prim-

itively amalgamated equivalent to B if there exists a finite chain Cy, Cy, ..., Ck
of square matrices with entries in {0, 1} such that Co = A,Cx = B and C;_4, C;
satisfy one of the following three conditions fori =1,..., K:

(a) C;_y is primitively equivalent to C;,
(b) C;-; is an out-splitting matrix from Cj,
(c) Cj_1 is an out-amalgamation matrix from C;.

We write this situation as A ~ B. It is not difficult to see that both the prop-
p.a.

erties of irreducibility and condition (I) are preserved under primitively amalga-
mated equivalence. Then we have

THEOREM 5.1. Let A, B be irreducible square matrices with entries in {0, 1}
satisfying condition (I). Consider the following three conditions:

(1) Oy is isomorphic to Op.
(ii) (Xa,04) and (Xp,o0p) are continuously orbit equivalent.
(iii) A ~ B.
p.a.
Then we have
(i) = (i) = (i).
If in particular, the sizes of the matrices A and B are both less than or equal to
three, we have
(i) = (iib),

so that all the three conditions above are mutually equivalent.

Proof. The implication (iii) == (ii) comes from Proposition 3.3 and Proposition
4.1 with Proposition 2.1. The implication (ii) = (i) comes from Proposition
2.1. It suffices to show the implication (i) = (iii) for the matrices A, B whose
sizes are both less than or equal to three. Suppose that (i) holds. If A and
B are both 3 x 3 matrices, (iii) holds by Theorem 3.4. If A and B are both
2 X 2 matrices, they are E ﬂ or E é] , because of its irreducibility with

condition (I). Since the C*-algebras OH 1] and OH 1] are both isomorphic to

1 1 1 1
Oy, and [ ) 1] is primitively equivalent to l ) 0] , the implication (i) = (iii)

holds in this case. We may finally assume that A is a 3 x 3 matrix and B is a
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: . 11 1 1 11
2 X 2 matrix. Since L 1] o~ L 0 1 1}.By

the hypothesis that 0,4 is isomorphic to Op, the 3 x 3 matrix A is one of the 13
matrices in the classification table [11, p.450], whose representative is O,. The

, we may assume that B = [

2 x 2 matrix B is an out-amalgamation matrix from [? é ﬂ , which is one of the

13 matrices. Since any two matrices of the 13 matrices are primitively equivalent
to each other, we conclude A ~ B. Therefore the implication (i) = (iii) holds.

p.a.
0

6. A counter example

We will finally present an example of a pair of matrices A and B one of whose
sizes is 4 such that the implication (i) = (iii) in Theorem 5.1 does not hold.

LEMMA 6.1. For a square matriz A with entries in {0,1}, det(1 — A) is in-
variant under primitively amalgamated equivalence.

Proof. det(1 — A) is invariant under primitive equivalence by [11, Theorem 8.4].
An out-amalgamation yields a topological conjugacy on the associated two-sided
topological Markov shifts. Hence it gives rise to a flow equivalence between them
so that det(1 — A) is invariant under out-amalgamation by [1]. O

For an N x N square matrix A = [A(7, j)];_, with entries in {0,1}, J. Cuntz
in [7] has introduced an (N + 2) x (N + 2) matrix A_ defined by setting

(AL ALN) ]
A= A(N,1) A(N,N)
1
0 :

1 1
In [25], it has shown that the Cuntz algebra O, for the matrix A = { ] 1] is

isomorphic to O4_. Therefore we have

PROPOSITION 6.2. O4 is isomorphic to O4_, however A is not primitively
amalgamated equivalent to A_. Therefore if one of the sizes of the matrices A
and B is greater than or equal to four, the implication (1) = (iii) in Theorem
5.1 does not necessarily hold.

Proof. As in [25], Ko(O4) = K¢(O4_) = 0 so that Oy is isomorphic to O4_.
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Since det(1 — A) = —1 # 1 = det(1 — A_), one sees that A is not primitively
amalgamated equivalent to A_. [J

A related result to Theorem 1.1 has been obtained in a recent paper [22].
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