SOME REMARKS ON ORBIT EQUIVALENCE OF TOPOLOGICAL MARKOV SHIFTS AND CUNTZ-KRIEGER ALGEBRAS

By
Kengo Matsumoto

(Received July 5, 2011; Revised March 12, 2012)

Abstract

Let A, B be square irredusible matrices with entries in $\{0,1\}$. Assume that the sizes of A, B are both less than or equal to three. We will then show that the one-sided topological Markov shifts $\left(X_{A}, \sigma_{A}\right)$ and $\left(X_{B}, \sigma_{B}\right)$ for A and B are continuously orbit equivalent if and only if the Cuntz-Krieger algebras \mathcal{O}_{A} and \mathcal{O}_{B} are isomorphic. The if part (and hence the only if part) is characterized by certain matrix relations between A and B.

1. Introduction

Measure theoretic studies of orbit equivalence of ergodic transformations have been initiated by H. Dye ([9], [10]). W. Krieger [17] has proved that two ergodic non-singular transformations are orbit equivalent if and only if the associated von Neumann crossed produtcs are isomorphic (cf.[5]). In topological setting, Giordano-Putnam-Skau [13], [14] (cf.[15],[24], etc.) have proved that two Cantor minimal systems are strongly orbit equivalent if and only if the associated C^{*} crossed products are isomorphic. J. Tomiyama [26] (cf. [4], [27]) has studied a relationship between orbit equivalence and C^{*}-crossed products for topological free homeomorphisms on compact Hausdorff spaces. The class of one-sided topological Markov shifts is an important class of topological dynamical systems on Cantor sets with continuous surjections that are not homeomorphisms. The associated C^{*}-algebras to the topological Markov shifts are known to be the Cuntz-Krieger algebras. In a recent paper [21], the author has shown that the one-sided topological Markov shifts $\left(X_{A}, \sigma_{A}\right)$ and $\left(X_{B}, \sigma_{B}\right)$ for irreducible matrices A and B with entries in $\{0,1\}$ are continuously orbit equivalent if and only if there exists an isomorphism between the Cuntz-Krieger algebras \mathcal{O}_{A} and \mathcal{O}_{B} preserving their commutative C^{*}-subalgebras $C\left(X_{A}\right)$ and $C\left(X_{B}\right)$.

From the view point of the above Giordano-Putnam-Skau's works, we would

[^0]expect that the isomorphism class of the C^{*}-algebras completely determines an orbit equivalence class of the underlying topological dynamical systems. CuntzKrieger algebras have been classified in terms of the underlying matrices and also in terms of its K-theory data by Enomoto-Fujii-Watatani [11] if the sizes of the matrices are three (for a general case, see Rørdam's work [25]). In this short note, by using the Enomoto-Fujii-Watatani's result, we will show the following theorem.

THEOREM 1.1. Let A, B be irreducible matrices with entries in $\{0,1\}$ satisfying condition (I). Suppose that the sizes of A, B are both less than or equal to three. Then the one-sided topological Markov shifts $\left(X_{A}, \sigma_{A}\right)$ and $\left(X_{B}, \sigma_{B}\right)$ are continuously orbit equivalent if and only if the Cuntz-Krieger algebras \mathcal{O}_{A} and \mathcal{O}_{B} are isomorphic.

Therefore the algebraic types of the Cuntz-Krieger algebras for irreducible matrices with entries in $\{0,1\}$, whose sizes are less than or equal to three, are completely classified by the continuous orbit equivalence classes of the underlying topological Markov shifts. We may also present a relationship between the associated directed graphs G_{A} and G_{B} to the matrices A and B under the condition that \mathcal{O}_{A} and \mathcal{O}_{B} are isomorphic.

2. Preliminaries

Let $A=[A(i, j)]_{i, j=1}^{N}$ be an $N \times N$ matrix with entries in $\{0,1\}$, where $1<N \in \mathbb{N}$. Throughout the paper, we assume that A has both no zero columns and no zero rows. We denote by X_{A} the shift space

$$
X_{A}=\left\{\left(x_{n}\right)_{n \in \mathbb{N}} \in\{1, \ldots, N\}^{\mathbb{N}} \mid A\left(x_{n}, x_{n+1}\right)=1 \text { for all } n \in \mathbb{N}\right\}
$$

of the right one-sided topological Markov shift for A. It is a compact Hausdorff space in natural product topology. The shift transformation σ_{A} on X_{A} defined by $\sigma_{A}\left(\left(x_{n}\right)_{n \in \mathbb{N}}\right)=\left(x_{n+1}\right)_{n \in \mathbb{N}}$ is a continuous surjective map on X_{A}. The topological dynamical system $\left(X_{A}, \sigma_{A}\right)$ is called the (right one-sided) topological Markov shift for A. We henceforth assume that A satisfies condition (I) in the sense of Cuntz-Krieger [8]. The condition (I) for A is equivalent to the condition that X_{A} is homeomorphic to a Cantor discontinuum.

A word $\mu=\mu_{1} \cdots \mu_{k}$ for $\mu_{i} \in\{1, \ldots, N\}$ is said to be admissible for X_{A} if μ appears in somewhere in some element x in X_{A}. The length of μ is k and denoted by $|\mu|$. We denote by $B_{k}\left(X_{A}\right)$ the set of all admissible words of length $k \in \mathbb{N}$. For $k=0$ we denote by $B_{0}\left(X_{A}\right)$ the empty word \emptyset. We set $B_{*}\left(X_{A}\right)=\cup_{k=0}^{\infty} B_{k}\left(X_{A}\right)$ the set of admissible words of X_{A}.

The Cuntz-Krieger algebra \mathcal{O}_{A} for the matrix A has been defined in [8] as the universal C^{*}-algebra generated by N partial isometries S_{1}, \ldots, S_{N} subject to the relations:

$$
\begin{equation*}
\sum_{j=1}^{N} S_{j} S_{j}^{*}=1, \quad S_{i}^{*} S_{i}=\sum_{j=1}^{N} A(i, j) S_{j} S_{j}^{*}, \quad i=1, \ldots, N \tag{2.1}
\end{equation*}
$$

The algebra \mathcal{O}_{A} is the unique C^{*}-algebra subject to the above relations under the condition (I) for A. For a word $\mu=\mu_{1} \cdots \mu_{k}$ with $\mu_{i} \in\{1, \ldots, N\}$, we denote $S_{\mu_{1}} \cdots S_{\mu_{k}}$ by S_{μ}. Then $S_{\mu} \neq 0$ if and only if $\mu \in B_{*}\left(X_{A}\right)$. Let $C^{*}\left(S_{\mu} S_{\mu}^{*} ; \mu \in B_{*}\left(X_{A}\right)\right)$ be the C^{*}-subalgebra of \mathcal{O}_{A} generated by the projections of the form $S_{\mu} S_{\mu}^{*}, \mu \in B_{*}\left(X_{A}\right)$, which we will denote by \mathfrak{D}_{A}. It is isomorphic to the commutative C^{*}-algebra $C\left(X_{A}\right)$ of all complex valued continuous functions on X_{A} through the correspondence $S_{\mu} S_{\mu}^{*} \in \mathfrak{D}_{A} \longleftrightarrow \chi_{\mu} \in C\left(X_{A}\right)$ where χ_{μ} denotes the characteristic function on X_{A} for the cylinder set $U_{\mu}=\left\{\left(x_{n}\right)_{n \in \mathbb{N}} \in\right.$ $\left.X_{A} \mid x_{1}=\mu_{1}, \ldots, x_{k}=\mu_{k}\right\}$ for $\mu=\mu_{1} \cdots \mu_{k} \in B_{k}\left(X_{A}\right)$. We identify $C\left(X_{A}\right)$ with the subalgebra \mathfrak{D}_{A} of \mathcal{O}_{A}. Then it is well-known that the algebra \mathfrak{D}_{A} is maximal abelian in \mathcal{O}_{A} ([8, Remark 2.18], cf.[19, Proposition 3.3]).

For $x=\left(x_{n}\right)_{n \in \mathbb{N}} \in X_{A}$, the orbit $\operatorname{orb}_{\sigma_{A}}(x)$ of x under σ_{A} is defined by

$$
\operatorname{orb}_{\sigma_{A}}(x)=\cup_{k=0}^{\infty} \cup_{l=0}^{\infty} \sigma_{A}^{-k}\left(\sigma_{A}^{l}(x)\right) \subset X_{A}
$$

Let $\left(X_{A}, \sigma_{A}\right)$ and $\left(X_{B}, \sigma_{B}\right)$ be topological Markov shifts. If there exists a homeomorphism $h: X_{A} \rightarrow X_{B}$ such that $h\left(\operatorname{orb}_{\sigma_{A}}(x)\right)=\operatorname{orb}_{\sigma_{B}}(h(x))$ for $x \in X_{A}$, then $\left(X_{A}, \sigma_{A}\right)$ and $\left(X_{B}, \sigma_{B}\right)$ are said to be topologically orbit equivalent. In this case, we have $h\left(\sigma_{A}(x)\right) \in \operatorname{orb}_{\sigma_{B}}(h(x))$ for $x \in X_{A}$, so that $h\left(\sigma_{A}(x)\right)$ belongs to $\cup_{k=0}^{\infty} \cup_{l=0}^{\infty} \sigma_{B}^{-k} \sigma_{B}^{l}(h(x))$. Hence there exist $k_{1}, l_{1}: X_{A} \rightarrow \mathbb{Z}_{+}$such that $\sigma_{B}^{k_{1}(x)}\left(h\left(\sigma_{A}(x)\right)\right)=\sigma_{B}^{l_{1}(x)}(h(x))$. Similarly there exist $k_{2}, l_{2}: X_{B} \rightarrow \mathbb{Z}_{+}$such that $\sigma_{A}^{k_{2}(y)}\left(h^{-1}\left(\sigma_{B}(y)\right)\right)$
$=\sigma_{A}^{l_{2}(y)}\left(h^{-1}(y)\right)$. If we may take $k_{1}, l_{1}: X_{A} \longrightarrow \mathbb{Z}_{+}$and $k_{2}, l_{2}: X_{B} \longrightarrow \mathbb{Z}_{+}$as continuous functions, the topological Markov shifts $\left(X_{A}, \sigma_{A}\right)$ and $\left(X_{B}, \sigma_{B}\right)$ are said to be continuously orbit equivalent. In [21], the following has been proved

Proposition 2.1. ([21, Theorem 5.7]) Let A, B be irreducible matrices with entries in $\{0,1\}$ satisfying condition (I). There exists an isomorphism $\Psi: \mathcal{O}_{A} \rightarrow$ \mathcal{O}_{B} such that $\Psi\left(\mathfrak{D}_{A}\right)=\mathfrak{D}_{B}$ if and only if $\left(X_{A}, \sigma_{A}\right)$ and $\left(X_{B}, \sigma_{B}\right)$ are continuously orbit equivalent.

3. Primitive equivalence

In [11], a notion called primitive equivalence in square matrices with entries in $\{0,1\}$ has been introduced. The equivalence relation completely classifies the
isomorphism classes of the Cuntz-Krieger algebras defined by 3×3 matrices with entries in $\{0,1\}$. By using the result [11, Theorem 4.1], we will show that the continuous orbit equivalence classes of the one-sided topological Markov shifts (X_{A}, σ_{A}) are completely classified by the isomorphism classes of the CuntzKrieger algebras \mathcal{O}_{A} if the sizes of the matrices are three.

Let $A=[A(i, j)]_{i, j=1}^{N}$ be an $N \times N$ matrix with entries in $\{0,1\}$. Following [11], for $i=1, \ldots, N$ let A_{i} be the i-th row vector $[A(i, j)]_{j=1}^{N}$ of A and E_{i} the row vector of size N whose i-th entry is one, other entries are zeros. Suppose that

$$
\begin{equation*}
A_{p}=E_{k(1)}+\cdots+E_{k(r)}+A_{m(1)}+\cdots+A_{m(s)} \tag{3.1}
\end{equation*}
$$

for some $k(1), \ldots, k(r), m(1), \ldots, m(s)$ which are mutually different and satisfy $p \notin\{m(1), \ldots, m(s)\}$. Then the $N \times N$ matrix $B=[B(i, j)]_{i, j=1}^{N}$ is defined by setting for $i, j=1, \ldots, N$

$$
B(i, j)= \begin{cases}A(i, j) & \text { for } i \neq p \tag{3.2}\\ 1 & \text { for } i=p \text { and } j \in\{k(1), \ldots, k(r), m(1), \ldots, m(s)\} \\ 0 & \text { else }\end{cases}
$$

We say that B is primitively transfered from $A([11])$. Two $N \times N$ matrices C and D with entries in $\{0,1\}$ are said to be primitively equivalent to each other if there exists a finite sequence of $N \times N$ matrices M_{1}, \ldots, M_{n} with entries in $\{0,1\}$ such that $M_{1}=C, M_{n}=D$ and M_{i} is primitively transfered from M_{i+1}, or M_{i+1} is primitively transfered from M_{i}. Enomoto-Fujii-Watatani have proved that for two 3×3 matrices A, B with entries in $\{0,1\}, A$ is primitively equivalent to B if and only if \mathcal{O}_{A} is isomorphic to \mathcal{O}_{B} ($[11$, Theorem 4.1]).

Let A, B be $N \times N$ matrices with entries in $\{0,1\}$. Assume that B is primitively transfered from A. Suppose that A_{p} satisfies (3.1) and B is obtained from (3.2). We further assume that $p=1$. Let S_{1}, \ldots, S_{N} be the generating partial isometries of \mathcal{O}_{A} satisfying the relations (2.1). We put

$$
\begin{aligned}
& T_{1}=S_{1}\left(S_{k(1)} S_{k(1)}^{*}+\cdots+S_{k(r)} S_{k(r)}^{*}+S_{m(1)}^{*}+\cdots+S_{m(s)}^{*}\right), \\
& T_{i}=S_{i} \quad \text { for } i \neq 1 .
\end{aligned}
$$

In the proof of [11, Theorem 3.7], it was shown that the partial isometries T_{1}, \ldots, T_{N} generate \mathcal{O}_{A} and satisfy the relations

$$
\sum_{j=1}^{N} T_{j} T_{j}^{*}=1, \quad T_{i}^{*} T_{i}=\sum_{j=1}^{N} B(i, j) T_{j} T_{j}^{*}, \quad i=1, \ldots, N
$$

so that $\mathcal{O}_{A}=\mathcal{O}_{B}$. We may regard \mathfrak{D}_{B} as a C^{*}-subalgebra of \mathcal{O}_{A} generated by the projections $T_{\mu} T_{\mu}^{*}, \mu \in B_{*}\left(X_{B}\right)$.

Lemma 3.1. Keep the above notations. We have
(i) $T_{\mu} T_{\mu}^{*} \in \mathfrak{D}_{A}$ for $\mu \in B_{*}\left(X_{B}\right)$ implies $T_{i} T_{\mu} T_{\mu}^{*} T_{i}^{*} \in \mathfrak{D}_{A}, i=1, \ldots, N$.
(ii) $S_{\nu} S_{\nu}^{*} \in \mathfrak{D}_{B}$ for $\nu \in B_{*}\left(X_{A}\right)$ implies $S_{i} S_{\nu} S_{\nu}^{*} S_{i}^{*} \in \mathfrak{D}_{B}, i=1, \ldots, N$.

Proof. (i) Suppose that $T_{\mu} T_{\mu}^{*} \in \mathfrak{D}_{A}$. It suffices to show that $T_{1} T_{\mu} T_{\mu}^{*} T_{1}^{*} \in \mathfrak{D}_{A}$. As $k(1), \ldots, k(r), m(1), \ldots, m(s)$ are mutually different, one has $S_{k(i)} S_{k(i)}^{*} T_{1}^{*}=$ $S_{k(i)} S_{k(i)}^{*} S_{1}^{*}$ and $S_{m(n)}^{*} T_{1}^{*}=S_{m(n)}^{*} S_{m(n)} S_{1}^{*}$. Since $T_{\mu} T_{\mu}^{*} \in \mathfrak{D}_{A}$, it then follows that

$$
\begin{aligned}
T_{1} T_{\mu} T_{\mu}^{*} T_{1}^{*} & =\sum_{i=1}^{r} S_{1} T_{\mu} T_{\mu}^{*} S_{k(i)} S_{k(i)}^{*} T_{1}^{*}+\sum_{n=1}^{s} S_{1} S_{m(n)}^{*} T_{\mu} T_{\mu}^{*} S_{m(n)} S_{m(n)}^{*} T_{1}^{*} \\
& =\sum_{i=1}^{r} S_{1} T_{\mu} T_{\mu}^{*} S_{k(i)} S_{k(i)}^{*} S_{1}^{*}+\sum_{n=1}^{s} S_{1} S_{m(n)}^{*} T_{\mu} T_{\mu}^{*} S_{m(n)} S_{1}^{*}
\end{aligned}
$$

so that $T_{1} T_{\mu} T_{\mu}^{*} T_{1}^{*} \in \mathfrak{D}_{A}$.
(ii) Suppose that $S_{\nu} S_{\nu}^{*} \in \mathfrak{D}_{B}$. It suffices to show that $S_{1} S_{\nu} S_{\nu}^{*} S_{1}^{*} \in \mathfrak{D}_{B}$. As in the proof of [11, Theorem 3.7], one sees that

$$
\begin{equation*}
S_{1}=T_{1}\left(T_{k(1)} T_{k(1)}^{*}+\cdots+T_{k(r)} T_{k(r)}^{*}+T_{m(1)}+\cdots+T_{m(s)}\right) \tag{3.3}
\end{equation*}
$$

We note that $T_{k(i)}^{*} T_{k(j)}=0$ for $i \neq j$ and $T_{m(n)}^{*} T_{m(n)}=S_{m(n)}^{*} S_{m(n)}$ for $n=1, \ldots, s$. As $T_{1} T_{1}^{*}=S_{1} S_{1}^{*}$, one has $T_{k(i)} T_{k(i)}^{*}=S_{k(i)} S_{k(i)}^{*}$ for $i=1, \ldots, r$ so that

$$
T_{k(i)} T_{k(i)}^{*} S_{m(n)}^{*} S_{m(n)}=S_{k(i)} S_{k(i)}^{*} S_{m(n)}^{*} S_{m(n)}=0
$$

because of (3.1). As $m(n) \neq 1$, we have $T_{k(i)} T_{k(i)}^{*} T_{m(n)}^{*} T_{m(n)}=0$ for $i=$ $1, \ldots, r, n=1, \ldots, s$ so that

$$
T_{k(i)} T_{k(i)}^{*} S_{1}^{*}=T_{k(i)} T_{k(i)}^{*} T_{1}^{*}, \quad T_{m(n)}^{*} T_{m(n)} S_{1}^{*}=T_{m(n)}^{*} T_{1}^{*}
$$

by (3.3). It follows that

$$
T_{k(i)} T_{k(i)}^{*} S_{\nu} S_{\nu}^{*} S_{1}^{*}=S_{\nu} S_{\nu}^{*} T_{k(i)} T_{k(i)}^{*} S_{1}^{*}=S_{\nu} S_{\nu}^{*} T_{k(i)} T_{k(i)}^{*} T_{1}^{*}
$$

and

$$
T_{m(n)} S_{\nu} S_{\nu}^{*} S_{1}^{*}=T_{m(n)} S_{\nu} S_{\nu}^{*} T_{m(n)}^{*} T_{m(n)} S_{1}^{*}=T_{m(n)} S_{\nu} S_{\nu}^{*} T_{m(n)}^{*} T_{1}^{*}
$$

Hence we have

$$
\begin{aligned}
S_{1} S_{\nu} S_{\nu}^{*} S_{1}^{*} & =\sum_{i=1}^{r} T_{1} T_{k(i)} T_{k(i)}^{*} S_{\nu} S_{\nu}^{*} S_{1}^{*}+\sum_{n=1}^{s} T_{1} T_{m(n)} S_{\nu} S_{\nu}^{*} S_{1}^{*} \\
& =\sum_{i=1}^{r} T_{1} S_{\nu} S_{\nu}^{*} T_{k(i)} T_{k(i)}^{*} T_{1}^{*}+\sum_{n=1}^{s} T_{1} T_{m(n)} S_{\nu} S_{\nu}^{*} T_{m(n)}^{*} T_{1}^{*}
\end{aligned}
$$

so that $S_{1} S_{\nu} S_{\nu}^{*} S_{1}^{*} \in \mathfrak{D}_{B}$.

As $S_{j} S_{j}^{*}=T_{j} T_{j}^{*}$ for $j=1, \ldots, N$, we have the following lemma.
LEMMA 3.2. $C^{*}\left(S_{\nu} S_{\nu}^{*} ; \nu \in B_{*}\left(X_{A}\right)\right)=C^{*}\left(T_{\mu} T_{\mu}^{*} ; \mu \in B_{*}\left(X_{B}\right)\right)$.
Therefore we have
Proposition 3.3. Let A, B be irreducible matrices with entries in $\{0,1\}$ satisfying condition (I). Suppose that A is primitively equivalent to B. Then there exists an isomorphism $\Psi: \mathcal{O}_{A} \rightarrow \mathcal{O}_{B}$ such that $\Psi\left(\mathfrak{D}_{A}\right)=\mathfrak{D}_{B}$.

By Proposition 2.1 we obtain
THEOREM 3.4. Let A, B be irreducible 3×3 matrices with entries in $\{0,1\}$ satisfying condition (I). Then the following are equivalent:
(i) \mathcal{O}_{A} is isomorphic to \mathcal{O}_{B}.
(ii) $\left(X_{A}, \sigma_{A}\right)$ and $\left(X_{B}, \sigma_{B}\right)$ are continuously orbit equivalent.
(iii) A is primitively equivalent to B.

Proof. The implications (i) \Longleftrightarrow (iii) come from [11, Theorem 4.1].
The implication (ii) \Longrightarrow (i) comes from Proposition 2.1.
The implication (iii) \Longrightarrow (ii) comes from Proposition 3.3 with Proposition 2.1.

4. Out-splitting and out-amalgamation

Primitive equivalence preserves the size of matrices. We need a weaker equivalence relation than primitive equivalence in the matrices to describe continuous orbit equivalence classes in the associated one-sided topological Markov shifts.

Let $A=[A(i, j)]_{i, j=1}^{N}$ be an $N \times N$ matrix with entries in $\{0,1\}$. We consider the associated directed graph $G_{A}=\left(V_{A}, E_{A}\right)$ with vertex set V_{A} consisting of N vertices labeled $\{1, \ldots, N\}$. In this section, we use a technique from theory of symbolic dynamical systems so that the notations I, J, etc. for vertices of a graph will be used in stead of i, j, etc. following a common usage in symbolic dynamical systems. A directed edge $e \in E_{A}$ is defined if $A(I, J)=1$ as its source vertex $s(e)=I$ and its terminal vertex $t(e)=J$. For a vertex $I \in V_{A}$, denote by \mathcal{E}_{I} the set of edges in E_{A} starting at I. For each $I \in V_{A}$, partition \mathcal{E}_{I} into disjoint sets $\mathcal{E}_{I}^{1}, \ldots, \mathcal{E}_{I}^{m(I)}$ with $m(I) \geq 1$. Let \mathcal{P} denote the resulting partition of E_{A}. Then as in [18, Definition 2.4.3], one may construct the state split graph $G_{A}^{[\mathcal{P}]}=\left(V_{\left.A^{[\mathcal{P}]}\right]}, E_{A^{[\mathcal{P}]}}\right)$ formed from G_{A} using \mathcal{P}, where the vertex set $V_{A}{ }^{[\mathcal{P}]}$ consists of $\left\{I^{i} \mid i=1, \ldots, m(I), I \in V_{A}\right\}$. For $e \in \mathcal{E}_{I}^{i}$ with $s(e)=$
$I, t(e)=J$, an edge $e^{j} \in E_{A[\mathcal{P}]}$ is defined as $s\left(e^{j}\right)=I^{i}, t\left(e^{j}\right)=J^{j}$ for $j=$ $1, \ldots, m(J)$. Denote by $A^{[\mathcal{P}]}$ the adjacency matrix of the directed graph $G_{A}^{[\mathcal{P}]}$. We say that the matrix $A^{[\mathcal{P}]}$ is an out-splitting matrix from A by using \mathcal{P}. Conversely A is called the out-amalgamation matrix from $A^{[\mathcal{P}]}$ by using \mathcal{P}. Then A is obtained from $A^{[\mathcal{P}]}$ by iteratively deleting multiple copies of repeated columns and adding corresponding rows. We will show that $\mathcal{O}_{A}=\mathcal{O}_{A^{[\mathcal{P}]}}$ and $\mathfrak{D}_{A}=$ $\mathfrak{D}_{A^{[\mathcal{P}]}}$ as subalgebras of $\mathcal{O}_{A}\left(=\mathcal{O}_{A^{[\mathcal{P}]}}\right)$. By [28], the one-sided topological Markov shifts $\left(X_{A}, \sigma_{A}\right)$ and $\left(X_{A^{[\mathcal{P}]}}, \sigma_{\left.A^{[\mathcal{P}]}\right)}\right)$ are topologically conjugate so that they are continuously orbit equivalent to each other. As a consequence, we know that there exists an isomorphism from \mathcal{O}_{A} onto $\mathcal{O}_{A^{[\mathcal{P}]}}$ preserving their subalgebras \mathfrak{D}_{A} and $\mathfrak{D}_{A^{[\mathcal{P}]}}$ by Proposition 2.1. We will here directly show the following proposition without using both [28] and Proposition 2.1. Let $S_{I}, I \in V_{A}$ be the canonical generating partial isometries of \mathcal{O}_{A} satisfying the relations (2.1) for the matrix A. The vertex set $V_{A}^{[\mathcal{P}]}$ of $G_{A}^{[\mathcal{P}]}$ is written as $\left\{I^{i} \mid i=1, \ldots, m(I), I \in V_{A}\right\}$. Put

$$
T_{I^{i}}=S_{I} \sum_{J \in t\left(\mathcal{E}_{I}^{i}\right)} S_{J} S_{J}^{*}, \quad I^{i} \in V_{A^{[\mathcal{P}]}}
$$

where $t\left(\mathcal{E}_{I}^{i}\right)$ denotes the set of teminal vertices $\left\{t(e) \in V_{A} \mid e \in \mathcal{E}_{I}^{i}\right\}$ of edges \mathcal{E}_{I}^{i}.
Proposition 4.1. Keep the above notations. We have
(i) $T_{I^{i}}, I^{i} \in V_{A^{[\mathcal{P}]}}$ are partial isometries satisfying the relations

$$
\sum_{J j \in V_{A}[\mathcal{P}]} T_{J j} T_{J j}^{*}=1, \quad T_{I^{i}}^{*} T_{I^{i}}=\sum_{\left.J_{j} \in V_{A} \mid \mathcal{P}\right]} A^{[\mathcal{P}]}\left(I^{i}, J^{j}\right) T_{J j} T_{J j}^{*}, \quad I^{i} \in V_{A}^{[\mathcal{P}]} .
$$

(ii) $T_{I^{i}}, I^{i} \in V_{A^{[\mathcal{P}]}}$ generate \mathcal{O}_{A}.
(iii) $C^{*}\left(S_{\nu} S_{\nu}^{*} ; \nu \in B_{*}\left(X_{A}\right)\right)=C^{*}\left(T_{\mu} T_{\mu}^{*} ; \mu \in B_{*}\left(X_{A^{[\mathcal{P}]}}\right)\right)$.

Hence there exists an isomorphism between the C^{*}-algebras \mathcal{O}_{A} and $\mathcal{O}_{A^{[\mathcal{P}]}}$ preserving their subalgebras \mathfrak{D}_{A} and $\mathfrak{D}_{A^{[\mathcal{P}]}}$.

Proof. (i) Since $S_{I}^{*} S_{I}$ commutes with $S_{J} S_{J}^{*}, I, J \in V_{A}$, the operator $T_{I^{i}}$ is a partial isometry. Put $P_{J}=S_{J} S_{J}^{*}, J \in V_{A}$. As $\sum_{j=1}^{m(J)} \sum_{K \in t\left(\mathcal{E}_{J}^{j}\right)} P_{K}=\sum_{K \in V_{A}} A(J, K) P_{K}=$ $S_{J}^{*} S_{J}$, one has

$$
\sum_{j=1}^{m(J)} T_{J j} T_{J j}^{*}=S_{J}\left(\sum_{j=1}^{m(J)} \sum_{K \in t\left(\mathcal{E}_{J}^{j}\right)} P_{K}\right) S_{J}^{*}=S_{J} S_{J}^{*}
$$

Since $V_{A}{ }^{[\mathcal{P}]}=\left\{J^{j} \mid j=1, \ldots, m(J), J \in V_{A}\right\}$, one sees that

$$
\sum_{J j \in V_{A}[\mathcal{P}]} T_{J j} T_{J j}^{*}=\sum_{J \in V_{A}} \sum_{j=1}^{m(J)} T_{J j} T_{J j}^{*}=\sum_{J \in V_{A}} S_{J} S_{J}^{*}=1 .
$$

By the inequality $S_{I}^{*} S_{I} \geq \sum_{J \in t\left(\mathcal{E}_{I}^{i}\right)} P_{J}$ for $i=1, \ldots, m(I)$, one has

$$
T_{I^{i}}^{*} T_{I^{i}}=\left(\sum_{J \in t\left(\mathcal{E}_{I}^{i}\right)} P_{J}\right) S_{I}^{*} S_{I}\left(\sum_{J \in t\left(\mathcal{E}_{I}^{i}\right)} P_{J}\right)=\sum_{J \in t\left(\mathcal{E}_{I}^{i}\right)} P_{J} .
$$

We note that $A^{[\mathcal{P}]}\left(I^{i}, J^{j}\right)=1$ if and only if $J \in t\left(\mathcal{E}_{I}^{i}\right)$ for $j=1, \ldots, m(J)$. It then follows that

$$
\begin{aligned}
\sum_{J j \in V_{A}[\mathcal{P}]} A^{[\mathcal{P}]}\left(I^{i}, J^{j}\right) T_{J j} T_{J j}^{*} & =\sum_{J \in V_{A}} \sum_{j=1}^{m(J)} A^{[\mathcal{P}]}\left(I^{i}, J^{j}\right) T_{J j} T_{J j}^{*} \\
& =\sum_{J \in t\left(\mathcal{E}_{I}^{i}\right)} \sum_{j=1}^{m(J)} S_{J}\left(\sum_{K \in t\left(\mathcal{E}_{J}^{j}\right)} P_{K}\right) S_{J}^{*} \\
& =\sum_{J \in t\left(\mathcal{E}_{I}^{i}\right)} S_{J}\left(\sum_{K \in V_{A}} A(J, K) P_{K}\right) S_{J}^{*} \\
& =\sum_{J \in t\left(\mathcal{E}_{I}^{i}\right)} S_{J} S_{J}^{*} S_{J} S_{J}^{*}=T_{I^{i}}^{*} T_{I^{i}} .
\end{aligned}
$$

(ii) For $I \in V_{A}$, we have

$$
S_{I}=S_{I} S_{I}^{*} S_{I}=S_{I}\left(\sum_{i=1}^{m(I)} \sum_{J \in t\left(\mathcal{E}_{I}^{i}\right)} P_{J}\right)=\sum_{i=1}^{m(I)} T_{I^{i}}
$$

so that the algebra \mathcal{O}_{A} is generated by $T_{I^{i}}, I^{i} \in V_{A^{[\mathcal{P}]}}$.
(iii) The projection $T_{I^{i}} T_{I^{i}}^{*}=S_{I}\left(\sum_{J \in t\left(\mathcal{E}_{I}^{i}\right)} P_{J}\right) S_{I}^{*}$ belongs to \mathfrak{D}_{A}. For $I_{1}^{i_{1}}, I_{2}^{i_{2}}$, $\ldots, I_{n}^{i_{n}}$ it is straightforward to see that

$$
\begin{aligned}
& T_{I_{1}^{i}} T_{I_{2}^{i}} \cdots T_{I_{n}^{i} i_{n}} T_{I_{n}^{i_{n}}}^{*} \cdots T_{I_{2}^{i_{2}}}^{*} T_{I_{1}^{i_{1}}}^{*} \\
= & \begin{cases}S_{I_{1}} S_{I_{2}} \cdots S_{I_{n}}\left(\sum_{J \in t\left(\mathcal{E}_{I_{n}}^{i_{n}}\right)} P_{J}\right) S_{I_{n}}^{*} \cdots S_{I_{2}}^{*} S_{I_{1}}^{*} & \text { if } I_{2} \in t\left(\mathcal{E}_{I_{1}}^{i_{1}}\right), \ldots, I_{n} \in t\left(\mathcal{E}_{I_{n-1}}^{i_{n-1}}\right), \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

On the other hand, as $t\left(\mathcal{E}_{I}^{j}\right) \cap t\left(\mathcal{E}_{I}^{k}\right)=\emptyset$ for $j \neq k$, we know

$$
T_{I j} T_{I^{k}}^{*}=S_{I}\left(\sum_{J \in t\left(\mathcal{E}_{I}^{j}\right)} \sum_{K \in t\left(\mathcal{E}_{I}^{k}\right)} P_{J} P_{K}\right) S_{I}^{*}=0
$$

so that

$$
S_{I_{1}} S_{I_{2}} \cdots S_{I_{n}} S_{I_{n}}^{*} \cdots S_{I_{2}}^{*} S_{I_{1}}^{*}=\sum_{i_{1}=1}^{m\left(I_{1}\right)} \sum_{i_{2}=1}^{m\left(I_{2}\right)} \cdots \sum_{i_{n}=1}^{m\left(I_{n}\right)} T_{I_{1}^{i_{1}}} T_{I_{2}^{i_{2}}} \cdots T_{I_{n}^{i n}} T_{I_{n}^{i n}}^{*} \cdots T_{I_{2}^{i_{2}}}^{*} T_{I_{1}^{i_{1}}}^{*} .
$$

Therefore we conclude that

$$
C^{*}\left(S_{\nu} S_{\nu}^{*} ; \nu \in B_{*}\left(X_{A}\right)\right)=C^{*}\left(T_{\mu} T_{\mu}^{*} ; \mu \in B_{*}\left(X_{A^{[\mathcal{P}]}}\right)\right) .
$$

5. Primitively amalgamated equivalence

We introduce an equivalence relation called primitively amalgamated equivalence (p.a. equivalence for short) in the set of square matrices with entries in $\{0,1\}$. For two square matrices A, B with entries in $\{0,1\}, A$ is said to be primitively amalgamated equivalent to B if there exists a finite chain $C_{0}, C_{1}, \ldots, C_{K}$ of square matrices with entries in $\{0,1\}$ such that $C_{0}=A, C_{K}=B$ and C_{i-1}, C_{i} satisfy one of the following three conditions for $i=1, \ldots, K$:
(a) C_{i-1} is primitively equivalent to C_{i},
(b) C_{i-1} is an out-splitting matrix from C_{i},
(c) C_{i-1} is an out-amalgamation matrix from C_{i}.

We write this situation as $A \underset{\text { p.a. }}{\sim} B$. It is not difficult to see that both the properties of irreducibility and condition (I) are preserved under primitively amalgamated equivalence. Then we have

THEOREM 5.1. Let A, B be irreducible square matrices with entries in $\{0,1\}$ satisfying condition (I). Consider the following three conditions:
(i) \mathcal{O}_{A} is isomorphic to \mathcal{O}_{B}.
(ii) $\left(X_{A}, \sigma_{A}\right)$ and $\left(X_{B}, \sigma_{B}\right)$ are continuously orbit equivalent.
(iii) $A \underset{\text { p.a. }}{\sim} B$.

Then we have

$$
(\mathrm{iii}) \Longrightarrow(\mathrm{ii}) \Longrightarrow(\mathrm{i})
$$

If in particular, the sizes of the matrices A and B are both less than or equal to three, we have

$$
(\mathrm{i}) \Longrightarrow(\mathrm{iii}),
$$

so that all the three conditions above are mutually equivalent.
Proof. The implication (iii) \Longrightarrow (ii) comes from Proposition 3.3 and Proposition 4.1 with Proposition 2.1. The implication (ii) \Longrightarrow (i) comes from Proposition 2.1. It suffices to show the implication (i) \Longrightarrow (iii) for the matrices A, B whose sizes are both less than or equal to three. Suppose that (i) holds. If A and B are both 3×3 matrices, (iii) holds by Theorem 3.4. If A and B are both 2×2 matrices, they are $\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$ or $\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$, because of its irreducibility with condition (I). Since the C^{*}-algebras $\mathcal{O}_{\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]}$ and $\mathcal{O}_{\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]}$ are both isomorphic to \mathcal{O}_{2}, and $\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$ is primitively equivalent to $\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$, the implication (i) \Longrightarrow (iii) holds in this case. We may finally assume that A is a 3×3 matrix and B is a
2×2 matrix. Since $\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right] \underset{\text { p.a. }}{\sim}\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$, we may assume that $B=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$. By the hypothesis that \mathcal{O}_{A} is isomorphic to \mathcal{O}_{B}, the 3×3 matrix A is one of the 13 matrices in the classification table [11, p.450], whose representative is \mathcal{O}_{2}. The 2×2 matrix B is an out-amalgamation matrix from $\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 1\end{array}\right]$, which is one of the 13 matrices. Since any two matrices of the 13 matrices are primitively equivalent to each other, we conclude $A \underset{\text { p.a. }}{\sim} B$. Therefore the implication (i) \Longrightarrow (iii) holds.

6. A counter example

We will finally present an example of a pair of matrices A and B one of whose sizes is 4 such that the implication (i) \Longrightarrow (iii) in Theorem 5.1 does not hold.

LEMMA 6.1. For a square matrix A with entries in $\{0,1\}$, $\operatorname{det}(1-A)$ is invariant under primitively amalgamated equivalence.

Proof. $\operatorname{det}(1-A)$ is invariant under primitive equivalence by [11, Theorem 8.4]. An out-amalgamation yields a topological conjugacy on the associated two-sided topological Markov shifts. Hence it gives rise to a flow equivalence between them so that $\operatorname{det}(1-A)$ is invariant under out-amalgamation by [1].

For an $N \times N$ square matrix $A=[A(i, j)]_{i, j=1}^{N}$ with entries in $\{0,1\}$, J. Cuntz in [7] has introduced an $(N+2) \times(N+2)$ matrix A_{-}defined by setting

$$
A_{-}=\left[\begin{array}{ccccc}
A(1,1) & \ldots & A(1, N) & & 0 \\
\vdots & & \vdots & & \\
A(N, 1) & \ldots & A(N, N) & 1 & \\
& & 1 & 1 & 1 \\
0 & & & 1 & 1
\end{array}\right]
$$

In [25], it has shown that the Cuntz algebra \mathcal{O}_{A} for the matrix $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$ is isomorphic to $\mathcal{O}_{A_{-}}$. Therefore we have

PROPOSITION 6.2. \mathcal{O}_{A} is isomorphic to $\mathcal{O}_{A_{-}}$, however A is not primitively amalgamated equivalent to A_{-}. Therefore if one of the sizes of the matrices A and B is greater than or equal to four, the implication (i) \Longrightarrow (iii) in Theorem 5.1 does not necessarily hold.

Proof. As in [25], $K_{0}\left(\mathcal{O}_{A}\right) \cong K_{0}\left(\mathcal{O}_{A_{-}}\right) \cong 0$ so that \mathcal{O}_{A} is isomorphic to $\mathcal{O}_{A_{-}}$.

Since $\operatorname{det}(1-A)=-1 \neq 1=\operatorname{det}\left(1-A_{-}\right)$, one sees that A is not primitively amalgamated equivalent to A_{-}.

A related result to Theorem 1.1 has been obtained in a recent paper [22].
Acknowledgment: This work was supported by JSPS Grant-in-Aid for Scientific Reserch ((C), No 20540215, No 23540237).

References

[1] R. Bowen and J. Franks, Homology for zero-dimensional nonwandering sets, Ann. Math. 106 (1977), 73-92.
[2] M. Boyle, Topological orbit equivalence and factor maps in symbolic dynamics, Ph. D. Thesis, University of Washington, 1983.
[3] M. Boyle and D. Handelman, Orbit equivalence, flow equivalence and ordered cohomology, Israel J. Math., 95 (1996), 169-210.
[4] M. Boyle and J. Tomiyama, Bounded continuous orbit equivalence and C^{*}-algebras, J. Math. Soc. Japan, 50 (1998), 317-329.
[5] A. Connes and W. Krieger, Measure space automorphisms, the normalizers of their full groups, and approximate finiteness, J. Funct. Anal., 18 (1975), 318-327.
[6] J. Cuntz, Simple C^{*}-algebras generated by isometries, Comm. Math. Phys., 57 (1977), 173-185.
[7] J. Cuntz, The classification problem for the C^{*}-algebra \mathcal{O}_{A}, Geometric methods in operator algebras, Pitman Reserch Notes in Mathematics Series, 123 (1986), 145-151.
[8] J. Cuntz and W. Krieger, A class of C^{*}-algebras and topological Markov chains, Invent. Math. 56 (1980), 251-268.
[9] H. Dye, On groups of measure preserving transformations, American J. Math., 81 (1959), 119-159.
[10] H. Dye, On groups of measure preserving transformations II, American J. Math., 85 (1963), 551-576.
[11] M. Enomoto, M. Fujii and Y. Watatani, K_{0}-groups and classifications of Cuntz-Krieger algebras, Math. Japon., 26 (1981), 443-460.
[12] J. Franks, Flow equivalence of subshifts of finite type, Ergodic Theory Dynam. Systems, 4 (1984), 53-66.
[13] T. Giordano, I. F. Putnam and C. F. Skau, Topological orbit equivalence and C^{*}-crossed products, J. reine angew. Math., 469 (1995), 51-111.
[14] T. Giordano, I. F. Putnam and C. F. Skau, Full groups of Cantor minimal systems, Isr. J. Math., 111 (1999), 285-320.
[15] T. Giordano, H. Matui, I. F. Putnam and C. F. Skau, Orbit equivalemce for Cantor minimal \mathbb{Z}^{2}-systems, J. Amer. Math. Soc., 21 (2008), 863-892.
[16] B. P. Kitchens, Symbolic dynamics, Springer-Verlag, Berlin, Heidelberg and New York (1998).
[17] W. Krieger, On ergodic flows and isomorphisms of factors, Math. Ann., 223 (1976), 19-70.
[18] D. Lind and B. Marcus, An introduction to symbolic dynamics and coding, Cambridge University Press, Cambridge, (1995).
[19] K. Matsumoto, On automorphisms of C^{*}-algebras associated with subshifts, J. Operator Theory, 44 (2000), 91-112.
[20] K. Matsumoto, Orbit equivalence in C^{*}-algebras defined by actions of symbolic dynamical systems, Contemporary Math., 503 (2009), 121-140.
[21] K. Matsumoto, Orbit equivalence of topological Markov shifts and Cuntz-Krieger algebras, Pacific J. Math., 246 (2010), 199-225.
[22] K. Matsumoto, Classification of Cuntz-Krieger algebras by orbit equivalence of topological Markov shifts, to appear in Proc. Amer. Math. Soc..
[23] H. Matui, Homology and topological full groups of étale groupoids on totally disconnected spaces, Proc. Lond. Math. Soc., 104 (2012), 27-52.
[24] I. F. Putnam, The C^{*}-algebras associated with minimal homeomorphisms of the Cantor set, Pacific. J. Math., 136 (1989), 329-353.
[25] M. Rørdam, Classification of Cunzt-Krieger algebras, K-theory, 9 (1995), 31-58.
[26] J. Tomiyama, Topological full groups and structure of normalizers in transformation group C^{*}-algebras, Pacific. J. Math., 173 (1996), 571-583.
[27] J. Tomiyama, Representation of topological dynamical systems and C^{*}-algebras, Contemporary Math., 228 (1998), 351-364.
[28] R. F. Williams, Classification of subshifts of finite type, Ann. Math., 98 (1973), 120-153. erratum, Ann. Math., 99 (1974), 380-381.

Department of Mathematics, Joetsu University of Education, Joetsu, 943-8512, JAPAN
E-mail: kengo@juen.ac.jp

[^0]: 2010 Mathematics Subject Classification: Primary 46L55; Secondary 46L35, 37B10
 Key words and phrases: Topological Markov shifts, orbit equivalence, Cuntz-Krieger algebras

