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Abstract. A Stone-type decomposition U = U1 +U2 of the renewal measure U
is established via Banach-algebraic approach. Banach algebras of measures are
used with given functional L describing a certain asymptotic property of their
elements. The values of L at U1 and U2 are given in terms of the value of L at
the probability distribution generating the renewal measure U .

If ν and κ are two nonnegative measures defined on the σ-algebra B of all

Borel subsets of the real line R, then the measure

ν ∗ κ(A) :=

∫∫
{x+y∈A}

ν(dx) κ(dy) =

∫
R

ν(A − y) κ(dy), A ∈ B,

is called the convolution of ν and κ; here A − y := {x ∈ R : x + y ∈ A}.
Let F be a probability distribution on R with positive mean µ =

∫
R xF (dx),

and let U =
∑∞

n=0 F n∗ be the corresponding renewal measure; here F 1∗ := F ,

F (n+1)∗ := F ∗ F n∗, n ≥ 1, and F 0∗ := δ0, the atomic measure of unit mass

at the origin. Suppose that, for some m ≥ 1, Fm∗ has a nonzero absolutely

continuous component. Stone [14] showed that then there exists a decomposition

U = U1 + U2, where U2 is a finite measure and U1 is absolutely continuous with

bounded continuous density h(x) such that

lim
x→∞

h(x) =
1

µ
, lim

x→−∞
h(x) = 0. (1)

A similar decomposition U = U1 + U2 was established in [13] via Banach-

algebraic techniques which allowed us to extract rather detailed supplementary

information about the asymptotic properties of the summands U1 and U2 depend-

ing on the corresponding properties of the underlying distribution F . Notice that

in [14] and [13] the measures U1 and U2 were constructed differently. Nevertheless,

in both cases the measure U1 was absolutely continuous with bounded continuous

density h(x) satisfying the relations (1).
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In the present paper, we develop further the approach used in [13] by employ-

ing this time Banach algebras of measures with a functional L which character-

izes a certain asymptotic property of their elements. For instance, L may char-

acterize the asymptotic behaviour of the tails ν((x,∞)) or that of ν((x, x+h]), or

the asymptotics of the densities f(x) of measures ν as x → ∞ (see [10], [7], [9]).

We evaluate L at the summands of the decomposition U = U1 + U2 depending

on the value of L at the underlying distribution F and give exact convergence

rates in (1).

DEFINITION 1. A function ϕ(x), x ∈ R, is called submultiplicative if ϕ(x) is a

finite, positive, Borel-measurable function with the following properties:

ϕ(0) = 1, ϕ(x + y) ≤ ϕ(x)ϕ(y) for all x, y ∈ R.

It is well known [5, Section 7.6] that

−∞ < r1 := lim
x→−∞

log ϕ(x)

x
= sup

x<0

log ϕ(x)

x

≤ inf
x>0

log ϕ(x)

x
= lim

x→∞

log ϕ(x)

x
=: r2 < ∞. (2)

Let S(ϕ) be the collection of all complex-valued measures κ such that ‖κ‖ϕ :=∫
R ϕ(x) |κ|(dx) < ∞; here |κ| stands for the total variation of κ. The collection

S(ϕ) is a Banach algebra with norm ‖ · ‖ϕ by the usual operations of addition

and scalar multiplication of measures, the product of two elements ν and κ of

S(ϕ) is defined as their convolution ν ∗ κ [5, Section 4.16]. The unit element

of S(ϕ) is the measure δ0. Define the Laplace transform of a measure κ as

κ̂(s) :=
∫

R exp(sx) κ(dx). Then relation (2) implies that the Laplace transform

of any κ ∈ S(ϕ) converges absolutely with respect to |κ| for all s in the strip

Π(r1, r2) := {s ∈ C : r1 ≤ <s ≤ r2}. Put S(r1, r2) := S(ϕ) where ϕ(x) =

max(er1x, er2x), r1 ≤ 0 ≤ r2.

Let ν be a finite complex-valued measure. Denote by Tν the σ-finite measure

with the density v(x; ν) := ν((x,∞)) for x ≥ 0 and v(x; ν) := −ν((−∞, x]) for

x < 0. If
∫

R |x| |ν|(dx) < ∞, then Tν is a finite measure whose Laplace transform

is given by (Tν)∧(s) = [ν̂(s)− ν̂(0)]/s, <s = 0, the value (Tν)∧(0) being defined

by continuity as
∫

R x ν(dx).

The absolutely continuous part of any distribution F with respect to Lebesgue

measure will be denoted by Fc, and its singular component by Fs, i.e., Fs :=

F − Fc; thus, here by the singular component of F we mean the sum of its

ordinary singular component and its discrete component.

Let A be a Banach algebra of measures such that (i) A ⊂ S(r1, r2) and (ii)

each homomorphism A 7→ C is the restriction to A of some homomorphism
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S(r1, r2) 7→ C. Property (ii) can be restated as follows: Each maximal ideal

M of A is of the form M1 ∩ A , where M1 is a maximal ideal of S(r1, r2). It

follows from the general theory of Banach algebras that if ν ∈ A is invertible in

S(r1, r2), then ν−1 ∈ A .

In what follows, F will denote a probability distribution with finite mean

µ > 0 such that F ∈ S(r1, r2), r1 ≤ 0 ≤ r2; (Fm∗)∧s (ri) < 1, i = 1, 2, for some

integer m ≥ 1; and F̂ (s) 6= 1 for all s ∈ Π(r1, r2) \ {0}.
Let AL be a Banach algebra having properties (i) and (ii) and let there exist

a continuous linear functional L : AL → C such that L (δ0) = 0 and

L (κ ∗ θ) = L (κ)θ̂(r2) + κ̂(r2)L (θ) (3)

for all κ, θ ∈ AL . Moreover, if κ, Tκ ∈ AL , then L (κ) = r2L (Tκ). Concrete

examples of such algebras AL may be found in [7], [9], [10] and others. Let L

be the restriction of Lebesgue measure to [0,∞).

THEOREM 1. Let AL be a Banach algebra with the stated properties. Suppose

F , TF ∈ AL . Then the renewal measure U =
∑∞

n=0 F n∗ admits a Stone-type

decomposition U = U1 + U2, where U2 ∈ AL and the measure U1 = L/µ − rTU2

for some r > r2 is absolutely continuous with bounded continuous density h(x).

Moreover,

L (U2) =


r2L (F )

(r2 − r)[1 − F̂ (r2)]2
if r2 > 0,

−L (TF )

rµ2
if r2 = 0.

(4)

If, in addition, T 2F ∈ AL , then U1 − L/µ ∈ AL and

L

(
U1 −

L

µ

)
=


rL (F )

(r − r2)[1 − F̂ (r2)]2
if r2 > 0,

L (T 2F )

µ2
if r2 = 0.

(5)

Proof. The existence of such decomposition U = U1 + U2 follows from Theo-

rem 3.1 in [13] for a Banach algebra of type A and, in particular, for AL . It

remains to evaluate the functional L at U2 and U1 −L/µ. We have U2 = V −1 ∈
AL , where V := δ0 − F + rTF ∈ AL for some r > r2 and

V̂ (s) :=
(s − r)[1 − F̂ (s)]

s
, s ∈ Π(r1, r2),

the value V̂ (0) being defined by continuity as rµ (see the proof of Theorem 3.1

in [13]). Notice that Û2(s) = 1/V̂ (s). Since V ∗ V −1 = δ0, we have

L (V ∗ V −1) = L (V )(V −1)∧(r2) + V̂ (r2)L (V −1) = L (δ0) = 0.
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If r2 > 0, then

L (U2) = L (V −1) = − L (V )

[V̂ (r2)]2

= − [−L (F ) + rL (TF )]r2
2

(r2 − r)2[1 − F̂ (r2)]2
= − [−r2L (TF ) + rL (TF )]r2

2

(r2 − r)2[1 − F̂ (r2)]2

=
L (TF )r2

2

(r2 − r)[1 − F̂ (r2)]2
=

L (F )r2

(r2 − r)[1 − F̂ (r2)]2
.

If r2 = 0, then

L (U2) = −L (V )

(rµ)2
= −rL (TF )

(rµ)2
= −L (TF )

rµ2
.

Now let also T 2F ∈ AL . The measure U1 was defined as U1 := L/µ −
rTU2 (see the proof of Theorem 3.1 in [13]). Hence U1 − L/µ = −rTU2. The

hypothesis T 2F ∈ AL implies that T 2F is a finite measure, hence the integrals∫
R |x| |TF |(dx) and

∫
R x2 F (dx) are finite. Put ϕ(x) := 1 + |x|, x ∈ R. Then

S(ϕ) is a Banach algebra of type A with r1 = r2 = 0 and V ∈ S(ϕ), whence

U2 = V −1 ∈ S(ϕ), i.e.
∫

R |x| |U2|(dx) < ∞ (see the proof of Theorem 3.1 in [13]).

It follows that TU2 is a finite measure. We have

(TU2)
∧(s) =

Û2(s) − Û2(0)

s
= − V̂ (s) − V̂ (0)

s
· 1

V̂ (s)V̂ (0)

= −Û2(s)(TV )∧(s)

V̂ (0)
=

Û2(s)[(TF )∧(s) − r(T 2F )∧(s)]

rµ
.

Thus,

U1 −
L

µ
= U2 ∗

rT 2F − TF

µ
. (6)

If r2 > 0, then

L

(
U1 −

L

µ

)
= −rL (TU2) = −rL (U2)

r2

=
rL (F )

(r − r2)[1 − F̂ (r2)]2
.

If r2 = 0, then, taking into account L (TF ) = 0 · L (T 2F ), we have L (U2) = 0,

and, by (3) and (6),

L

(
U1 −

L

µ

)
= Û2(0)

rL (T 2F ) − L (TF )

µ
=

rL (T 2F )

V̂ (0)µ
=

L (T 2F )

µ2
.
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COROLLARY 2. Suppose F , TF , T 2F ∈ AL . Then

L

(
U − L

µ

)
=


L (F )

[1 − F̂ (r2)]2
if r2 > 0,

L (T 2F )

µ2
if r2 = 0.

Proof. We have L (U − L/µ) = L (U2) + L (U1 − L/µ). If r2 > 0, then, by (4)

and (5),

L

(
U − L

µ

)
=

r2L (F )

(r2 − r)[1 − F̂ (r2)]2
+

rL (F )

(r − r2)[1 − F̂ (r2)]2
=

L (F )

[1 − F̂ (r2)]2
.

If r2 = 0, then L (U2) = 0 and L (U − L/µ) = L (U1 − L/µ).

REMARK 3. Let us dwell in more detail on the conditions (Fm∗)∧s (ri) < 1,

i = 1, 2, for some integer m ≥ 1. These inequalities, along with the conditions

F̂ (s) 6= 1 for all s ∈ Π(r1, r2) \ {0} and µ > 0, ensure the invertibility of the

element V in S(r1, r2) and hence in AL (see the proof of Theorem 3.1 in [13]

and [12, Lemma 2]). Let M be the space of maximal ideals of the Banach

algebra S(r1, r2). The following facts are well known from the theory of Banach

algebras. Each maximal ideal M ∈ M induces a homomorphism of the Banach

algebra S(r1, r2) onto the field of complex numbers C; moreover, M is the kernel

of this homomorphism. Denote by ν(M) the value of this homomorphism at

ν ∈ S(r1, r2). An element ν ∈ S(r1, r2) has an inverse if and only if ν does not

belong to any maximal ideal M ∈ M . In other words, ν is invertible if and only

if ν(M) 6= 0 for all M ∈ M . The space M is split into two sets: M1 is the set of

those maximal ideals which do not contain the collection L(r1, r2) of all absolutely

continuous measures from S(r1, r2) and M2 = M \ M1. If M ∈ M1, then the

homomorphism S(r1, r2) → C induced by M is of the form ν(M) = ν̂(s0),

ν ∈ S(r1, r2), where s0 is some complex number such that r1 ≤ <s0 ≤ r2. In this

case, M = {µ ∈ S(r1, r2) : µ̂(s0) = 0} [5, Chapter IV, Section 4]. If M ∈ M2,

then ν(M) = 0 for all ν ∈ L(r1, r2). Due to the conditions (Fm∗)∧s (ri) < 1,

i = 1, 2, for m ≥ 1, V (M) = 1 − F (M) 6= 0 for all M ∈ M2 [12, Lemma

2]. For each M ∈ M1 different from M0 = {ν ∈ S(r1, r2) : ν̂(0) = 0}, we

have V (M) = (s − r)[1 − F̂ (s)]/s 6= 0, s ∈ Π(r1, r2) \ {0}, which is equivalent

to F (M) = F̂ (s) 6= 1. As far as the maximal ideal M0 is concerned, we have

V (M) = V̂ (0) = rµ 6= 0. Thus, if we replace the conditions (Fm∗)∧s (ri) < 1,

i = 1, 2, for m ≥ 1 and F̂ (s) 6= 1 for all s ∈ Π(r1, r2) \ {0} by the requirement

that F (M) 6= 1 for all M ∈ M \ {M0}, then the proof of Theorem 1 remains

valid, since in this case V is also invertible in S(r1, r2).
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REMARK 4. For the sake of definiteness, one can put in Theorem 1 r := 2r2 if

r2 > 0 and r := 1 if r2 = 0. However, comparing Theorem 1 with Corollary 2, we

see that the larger r is, the better the summand U1 “approximates” the renewal

measure U .

Let us apply Theorem 1 to some specific Banach algebras of measures of type

AL and obtain exact rates of convergence in relations (1).

DEFINITION 2. A probability distribution G concentrated on [0,∞) belongs

to the class S (γ), γ ≥ 0, if

(a) lim
x→∞

G((x + y,∞))

G((x,∞))
= e−γy for all y ∈ R,

(b) lim
x→∞

G ∗ G((x,∞))

G((x,∞))
= c ∈ (0,∞).

It follows that the constant c is equal to 2
∫ ∞
0

eγx G(dx) (see corresponding

discussions in [1, 2, 3, 4, 8, 6]).

Let γ be a fixed positive number. Fix also G ∈ S (γ). Put τ(x) := G((x,∞)),

x ≥ 0, and
Q(ν) := sup

x≥0

|ν|((x,∞))

τ(x)
.

Consider the following collection of complex-valued σ-finite measures [10]:

SL(τ) :=

{
ν ∈ S(γ′, γ) : Q(ν) < ∞, there exists lim

x→∞

ν((x,∞))

τ(x)
=: L(ν) ∈ C

}
.

The collection SL(τ) is a Banach algebra with a norm ‖ · ‖′, equivalent to the

norm ‖ν‖ + Q(ν). If ν, κ ∈ SL(τ), then

L(ν ∗ κ) = L(ν)κ̂(γ) + ν̂(γ)L(κ).

By Lemma 1 from [11], if γ > 0 and κ ∈ SL(τ), then Tκ ∈ SL(τ) and

L(Tκ) = L(κ)/γ, and if γ = 0 and Tκ ∈ SL(τ), then κ ∈ SL(τ) and L(κ) = 0.

Thus, the Banach algebra SL(τ) is an algebra of type AL with r1 = 0, r2 = γ

and L = L. Applying Theorem 1, we obtain the following assertions. Recall

that f(x) ∼ cg(x) as x → ∞ means that limx→∞ f(x)/g(x) = c.

COROLLARY 5. Let G ∈ S (γ), γ > 0, and τ(x) = G((x,∞)), x ≥ 0. Suppose

F ∈ SL(τ), (Fm∗)s(R) < 1 and (Fm∗)∧s (γ) < 1 for some integer m ≥ 1. Then

the renewal measure U =
∑∞

n=0 F n∗ admits a Stone-type decomposition U =

U1 + U2, where U2 ∈ SL(τ) and the measure U1 = L/µ − rTU2 for some r > γ

has a bounded continuous density h(x) and

L(U2) =
γL(F )

(γ − r)[1 − F̂ (γ)]2
. (7)
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Moreover,

h(x) − 1

µ
∼ γrL(F )

(r − γ)[1 − F̂ (γ)]2
τ(x) as x → ∞. (8)

If, in addition,
∫

R x2 F (dx) < ∞, then U1 − L/µ ∈ SL(τ); moreover,

L

(
U1 −

L

µ

)
=

rL(F )

(r − γ)[1 − F̂ (γ)]2
.

COROLLARY 6. Let G ∈ S (γ), γ = 0, and τ(x) = G((x,∞)), x ≥ 0. Suppose

TF ∈ SL(τ) and (Fm∗)s(R) < 1 for some integer m ≥ 1. Then the renewal

measure U =
∑∞

n=0 F n∗ admits a Stone-type decomposition U = U1 + U2, where

U2 ∈ SL(τ) and the measure U1 = L/µ − rTU2 for some r > γ has a bounded

continuous density h(x) and

L(U2) = −L(TF )

rµ2
. (9)

Moreover,

h(x) − 1

µ
∼ L(TF )

µ2
τ(x) as x → ∞. (10)

If, in addition, T 2F ∈ SL(τ), then U1 − L/µ ∈ SL(τ); moreover,

L

(
U1 −

L

µ

)
=

L(T 2F )

µ2
.

Proof of Corollaries 5 and 6. We need to prove only (8) and (10). We have

1

τ(x)

[
h(x) − 1

µ

]
= −r

U2((x,∞))

τ(x)
. (11)

Let γ > 0. Relation (8) follows from (7) and (11). Let γ = 0. Relation (10)

follows from (9) and (11).

REMARK 7. Let AK be a Banach algebra of measures ν having properties (i)

and (ii) and let there exist a continuous linear functional K : AK → C such

that K (δ0) = 0 and

K (κ ∗ θ) = K (κ)θ̂(r1) + κ̂(r1)K (θ)

for all κ, θ ∈ AK . If κ, Tκ ∈ AK , then K (κ) = r1K (Tκ).

Analogues of Theorem 1 and Corollary 2 are also valid for Banach algebras

of type AK . We only need to replace in their statements and proofs L by K ,

r2 by r1 and choose r < r1.
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By means of Banach algebras of type AL we investigate the asymptotic

behaviour of the summands U1 and U2 and that of the density h(x) of the measure

U1 at +∞, whereas applying Banach algebras of type AK yields the asymptotic

behaviour of U1, U2 and h(x) at −∞.

Relations (8) and (10) give exact rate of convergence in the first of the rela-

tions (1). In order to estimate the rate of convergence in h(x) → 0 as x → −∞,

it suffices to apply “symmetric” Banach algebras SK(τ) which are defined as

follows. For an arbitrary measure ν, put ν−(A) := ν(−A), A ∈ B(R), where

−A := {x ∈ R : −x ∈ A}. Consider the Banach algebra SK(τ) := {ν ∈
S(−γ, 0) : ν− ∈ SL(τ)}, where the norm of an element ν ∈ SK(τ) is set to be

equal to the norm of the corresponding element ν− ∈ SL(τ); moreover, we put

K(ν) := L(ν−). The Banach algebra SK(τ) is a Banach algebra of type AK with

r1 = −γ, r2 = 0, K = K. As pointed out earlier, an analogue of Theorem 1

is valid for the Banach algebras of type AK , whence corollaries for the algebra

AK = SK(τ) easily follow, similar to Corollaries 5 and 6. We restrict ourselves

to the asymptotic behaviour of the density h(x) of the measure U1 as x → −∞.

Recall that here r < −γ.

COROLLARY 8. Let G ∈ S (γ), γ ≥ 0, and τ(x) = G((x,∞)), x ≥ 0. If γ > 0,

F ∈ SK(τ), (Fm∗)s(R) < 1 and (Fm∗)∧s (−γ) < 1 for some integer m ≥ 1, then

h(x) ∼ γrK(F )

(r + γ)[1 − F̂ (−γ)]2
τ(−x) as x → −∞.

If γ = 0, TF ∈ SK(τ) and (Fm∗)s(R) < 1 for some integer m ≥ 1, then

h(x) ∼ K(TF )

µ2
τ(−x) as x → −∞.
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