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Abstract. For smooth implicit ordinary differential equations, existence and
uniqueness for solutions with initial condition do not hold in general. In this
paper, we give a necessary and sufficient condition for existence of an immersive
n-parameter family of geometric solutions, so-called a complete solution on the
equation hypersurface in the smooth category. Moreover, we give a sufficient
condition for existence of an immersive (n − 1)-parameter family of geometric
solutions on the contact singular set.

1. Introduction

For a smooth explicit ordinary differential equation

dny

dxn
(x) = f

(
x, y(x),

dy

dx
(x), · · · ,

dn−1y

dxn−1
(x)

)
, (1)

it is well-known that there exists a unique smooth local solution with an initial

condition for (1), where f is a smooth function (for instance, see [1, 2, 4]).

It follows that there exists an n-parameter family of smooth solutions at least

locally.

On the other hand, for a smooth implicit ordinary differential equation

(briefly, an implicit ODE)

F (x, y, p1, . . . , pn) = 0, (2)

existence for a local solution with initial condition does not hold in general, where

F is a smooth function of the independent variable x, the function y and its i-th

derivatives pi = diy/dxi, i = 1, . . . , n.

A natural question is what conditions guarantee existence and uniqueness of

a local solution and a family of solutions around a point for (2). In this paper we

shall discuss a qualitative theory for implicit ODEs and establish basic notions.
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It is natural to consider (2) as being defined on a subset in the space of n-jets

of smooth functions of one variable, F : O → R where O is an open subset in

Jn(R, R). Throughout this paper, we assume that 0 is a regular value of F . It

follows that the set F−1(0) is a hypersurface in Jn(R, R). We call F−1(0) the

equation hypersurface. Let (x, y, p1, . . . , pn) be a local coordinate on Jn(R, R)

and ξ ⊂ TJn(R, R) be the canonical contact system on Jn(R, R) described by

the vanishing of the 1-forms
α1 = dy − p1dx,

α2 = dp1 − p2dx,
...

αn = dpn−1 − pndx.

We now define the notion of solutions. A smooth solution (or, a classical solu-

tion) of F = 0 passing through a point z0 is a smooth function germ y = f(x) at

a point t0 such that (t0, f(t0), f
′(t0), . . . , f

(n)(t0)) = z0 and F (x, f(x), f ′(x), . . . ,

f (n)(x)) = 0, where f (i)(x) = (dif/dxi)(x). In other words, there exists a

smooth function germ f : (R, t0) → R such that the image of the n-jet ex-

tension, jnf : (R, t0) → (Jn(R, R), z0); jnf(x) = (x, f(x), f ′(x), . . . , f (n)(x)), is

contained in the equation hypersurface. It is easy to see that the map jnf is an

immersion germ with (jnf)∗αi = 0 for i = 1, . . . , n.

More generally, a geometric solution of F = 0 passing through a point z0 is an

integral immersion germ γ : (R, t0) → (Jn(R, R), z0) such that the image of γ is

contained in the equation hypersurface, namely, γ′ 6= 0, γ∗αi = 0 for i = 1, . . . , n

and F (γ(t)) = 0 for each t ∈ (R, t0).

By the definitions, a smooth solution is also a geometric solution. Conversely,

it is easy to see that if γ(t) = (x(t), y(t), p1(t), . . . , pn(t)) is a geometric solution

of F = 0 and x′(t0) 6= 0, then we can reparametrize γ(t) as a smooth solution.

The following notions are basic in this paper (cf. [3, 15, 17]). By the definition

of parametrized version for smoothness of the solutions (i.e., smooth solutions), a

smooth complete solution on F−1(0) at z0 is defined to be an n-parameter family

of smooth function germs y = f(t, c) = f(t, c1, . . . , cn) such that

F

(
t, f(t, c),

∂f

∂t
(t, c), . . . ,

∂nf

∂tn
(t, c)

)
= 0

and the map germ jn
1 f : (R × Rn, (t0, c0)) → (F−1(0), z0) defined by

jn
1 f(t, c) =

(
t, f(t, c),

∂f

∂t
(t, c), . . . ,

∂nf

∂tn
(t, c)

)
is an immersion. It follows that the equation hypersurface is foliated by an

n-parameter family of smooth solutions.
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On the other hand, we consider the corresponding definition of parametrized

version for geometric solutions. Let Γ : (R × Rn, (t0, c0)) → (F−1(0), z0) be an

n-parameter family of geometric solutions, i.e., Γ(·, c) is a geometric solution of

F = 0 for each c ∈ (Rn, c0).

We call Γ a complete solution on F−1(0) at z0 if Γ is an immersion germ,

namely,

rank

(
∂x/∂t ∂y/∂t ∂p1/∂t · · · ∂pn/∂t

∂x/∂c ∂y/∂c ∂p1/∂c · · · ∂pn/∂c

)
(t0, c0) = n + 1,

where Γ(t, c) = (x(t, c), y(t, c), p1(t, c), . . . , pn(t, c)). It follows that the equation

hypersurface is foliated by an n-parameter family of geometric solutions.

We say that an equation F = 0 is smooth completely integrable (respectively,

completely integrable) at z0 if there exists a smooth complete solution (respec-

tively, a complete solution) on F−1(0) at z0.

In the study of implicit ODEs from the view point of singularity theory, there

are a lot of researches. For example, generic singularities and properties were

given in [5, 6, 8, 16, 14] for the case of first order, in [12, 13] for the case of second

order and in [7] for the case of any order etc. This paper is focused on the theory

of completely integrable implicit ODEs.

In §2, we give a necessary and sufficient condition for existence of a smooth

complete solution and a complete solution on the equation hypersurface at a

point. We show that F = 0 is completely integrable at z0 if and only if F = 0

is either of Clairaut type or of reduced type at z0 in theorem 2.2. This result

guarantees existence for a geometric solution in proposition 3.1. In §3, we give

a sufficient condition for existence and uniqueness of a geometric solution with

initial condition. In §4, we give a sufficient condition for existence of (n − 1)-

parameter family of geometric solutions of F = 0.

All map germs and manifolds considered here are differential of class C∞.
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2. Existence and uniqueness for complete solutions

In this section, we consider existence and uniqueness conditions for a complete

solution and a smooth complete solution on equation hypersurfaces. We denote

a map Fx + p1Fy + p2Fp1 + · · · + pnFpn−1 by FX . Here Fx (respectively, Fy, Fpi
)

is the partial derivative of F with respect to x (respectively, with respect to y,

pi). We refer to the following lemma. See in case of first order in [9, 16], and of

second order in [3, Lemma 3.1].
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LEMMA 2.1. Let F = 0 be an implicit ODE at z0. F = 0 is completely in-

tegrable at z0 if and only if there exist function germs α, β : (F−1(0), z0) → R,

which do not vanish simultaneously, such that

α · FX |F−1(0) + β · Fpn|F−1(0) ≡ 0.

Proof. Suppose that F = 0 is completely integrable at z0 and let

Γ : (R × Rn, (t0, c0)) → (F−1(0), z0)

be a complete solution on F−1(0) at z0. Then differentiating Γ with respect to

t yields a vector field Z : (F−1(0), z0) → TF−1(0) given by Z(Γ(t, c)) = Γt(t, c).

Since Z(z) lies in the contact plane ξz for each z ∈ (F−1(0), z0), it has the form

Z = (α, p1α, . . . , pnα, β) for some function germs α, β : (F−1(0), z0) → R which

do not vanish simultaneously. Besides Z(z) also lies in TzF
−1(0). It follows that

the identity

α · FX |F−1(0) + β · Fpn|F−1(0) ≡ 0

holds. Reversing the argument yields the converse.

We say that an equation F = 0 is of (n-th order) Clairaut type (for short,

type C) at z0 if there exists a function germ α1 : (F−1(0), z0) → R such that

FX |F−1(0) = α1 · Fpn|F−1(0),

and of reduced type (for short, type R) at z0 if there exists a function germ

β1 : (F−1(0), z0) → R such that

Fpn|F−1(0) = β1 · FX |F−1(0).

We give a necessary and sufficient condition for existence of a smooth com-

plete solution and a complete solution on equation hypersurfaces.

THEOREM 2.2. Let F = 0 be an implicit ODE at z0.

(1) F = 0 is smooth completely integrable at z0 if and only if F = 0 is of type

C at z0.

(2) F = 0 is completely integrable at z0 if and only if F = 0 is either of type

C, or of type R at z0.

Proof. (1) The proof follows from a direct analogy of the proof for Theorem 2.2

in [10] or Theorem 3.1 in [15], so that we omit it.

(2) The result is a consequence of lemma 2.1.

The uniqueness of the complete solution is the following.
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PROPOSITION 2.3. Let Γ1 : (R × Rn, (t1, c1)) → (F−1(0), z0) and Γ2 : (R ×
Rn, (t2, c2)) → (F−1(0), z0) be complete solutions on F−1(0) at z0. Then there

exists a diffeomorphism germ Φ : (R × Rn, (t2, c2)) → (R × Rn, (t1, c1)) of the

form Φ(t, c) = (φ1(t, c), φ2(c)) such that Γ1 ◦ Φ = Γ2.

Proof. Suppose that the assertion does not hold. Since the complete solution is

an immersive n-parameter family of curves in F−1(0), then there exists a point

z1 ∈ (F−1(0), z0) such that Γ1(·, c1) and Γ2(·, c2) are transversal near the point

z1. Then we can construct a map germ Γ : (R × Rn, 0) → (F−1(0), z1) such that

(at least) Γ(t, ·, ·, c3, . . . , cn) is an immersion germ,

∂y

∂c1

(t, c) = p1(t, c)
∂x

∂c1

(t, c), . . . ,
∂pn−1

∂c1

(t, c) = pn(t, c)
∂x

∂c1

(t, c) (3)

and

∂y

∂c2

(t, c) = p1(t, c)
∂x

∂c2

(t, c), . . . ,
∂pn−1

∂c2

(t, c) = pn(t, c)
∂x

∂c2

(t, c), (4)

where Γ(t, c) = (x(t, c), y(t, c), p1(t, c), . . . , pn(t, c)). If we calculate second order

partial derivatives of the last equality for (3) with respect to c2 and for (4) with

respect to c1, we get

∂2pn−1

∂c2∂c1

=
∂pn

∂c2

· ∂x

∂c1

+ pn · ∂2x

∂c2∂c1

and
∂2pn−1

∂c1∂c2

=
∂pn

∂c1

· ∂x

∂c2

+ pn · ∂2x

∂c1∂c2

.

Therefore we obtain the equality (∂pn/∂c2) · (∂x/∂c1) = (∂pn/∂c1) · (∂x/∂c2).

This contradicts the fact that Γ(t, ·, ·, c3, . . . , cn) is an immersion germ.

3. Existence and uniqueness for geometric solutions

In this section, we give an existence and uniqueness condition for a geometric

solution with initial condition.

Let F = 0 be an implicit ODE at z0. Consider a point z ∈ F−1(0) such that

the contact plane ξz intersects TzF
−1(0) transversally. Then it is easy to see that

a complete solution exists at z by integrating the line field ξ ∩ TF−1(0) (see,

lemma 2.1). We call points where transversality fails contact singular points and

denote the set of such points by Σc(F ). We call Σc(F ) the contact singular set.

It is easy to check that the contact singular set is given by

Σc(F ) = {z ∈ F−1(0)| FX(z) = 0, Fpn(z) = 0}.

We say that a geometric solution γ : (R, t0) → (F−1(0), z0) is a singular

solution of F = 0 passing through z0 if for any representative γ̃ : I → F−1(0) of
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γ and any open subinterval (a, b) ⊂ I at t0, γ̃|(a,b) is never contained in a leaf of a

complete solution (cf. [3, 7, 9, 11]). If a completely integrable implicit ODE has

a singular solution passing through z0, then uniqueness for geometric solutions

does not hold.

PROPOSITION 3.1. Let F = 0 be an implicit ODE at z0. If z0 6∈ Σc(F ), then

there exists a unique geometric solution passing through z0.

If z0 6∈ Σc(F ), either FX 6= 0 or Fpn 6= 0 at z0. The latter case, the con-

sequence of proposition 3.1 follows from the classical results for existence and

uniqueness of a smooth solution of smooth explicit equations. Thus in order to

prove proposition 3.1, it is enough to show the former case. Here we give a proof

by an elementary argument like as explicit ODEs. This method is useful to prove

a result in [18].

LEMMA 3.2. Let F = 0 be an implicit ODE at z0. If FX(z0) 6= 0, then there

exists a unique geometric solution passing through z0.

Proof. It follows from FX(z0) 6= 0 that F = 0 is of reduced type at z0. By theo-

rem 2.2, there exists a complete solution on F−1(0) at z0 and hence there exists

a geometric solution passing through z0. We may assume that FX ≡ 1 on the

equation hypersurface, if necessary, we consider F/FX = 0 as F = 0. Moreover

if γ : (R, t0) → (F−1(0), z0); γ(t) = (x(t), y(t), p1(t), . . . , pn(t)) is a geometric so-

lution passing through z0, then p′n(t0) 6= 0. Hence we can reparametrize γ(t) as

(x(t), y(t), p1(t), . . . , pn−1(t), t). Let γ(t) = (x(t), y(t), p1(t), . . . , pn−1(t), t) and

γ̃(t) = (x̃(t), ỹ(t), p̃1(t), . . . , p̃n−1(t), t) be geometric solutions passing through

z0, that is, γ(t0) = γ̃(t0) = z0. It is enough to show that γ(t) = γ̃(t) for

t0 ≤ t ≤ t0 + ε, where ε is a small positive real number. Differentiate the equal-

ity F (γ(t)) = F (x(t), y(t), p1(t), . . . , pn−1(t), t) = 0 with respect to t, then we get

x′(t) = −Fpn(γ(t)). By integrating this equality,

x(t) = x(t0) −
∫ t

t0

Fpn(γ(t))dt.

Since γ(t) is a geometric solution, namely, y′(t) = p1(t)x
′(t), p′i(t) = pi+1(t)x

′(t)

(i = 1, . . . , n − 2) and p′n−1(t) = tx′(t), we have

y(t) = y(t0) +

∫ t

t0

p1(t)x
′(t)dt, pi(t) = pi(t0) +

∫ t

t0

pi+1(t)x
′(t)dt

(i = 1, . . . , n − 2) and

pn−1(t) = pn−1(t0) +

∫ t

t0

tx′(t)dt.
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It follows that

x(t) − x̃(t) =

∫ t

t0

(−Fpn(γ(t)) + Fpn(γ̃(t))) dt, (5)

y(t) − ỹ(t) =

∫ t

t0

(p1(t)x
′(t) − p̃1(t)x̃

′(t)) dt

=

∫ t

t0

p1(t) (x′(t) − x̃′(t)) dt +

∫ t

t0

x̃′(t) (p1(t) − p̃1(t)) dt (6)

pi(t) − p̃i(t) =

∫ t

t0

(pi+1(t)x
′(t) − p̃i+1(t)x̃

′(t)) dt

=

∫ t

t0

pi+1(t) (x′(t) − x̃′(t)) dt +

∫ t

t0

x̃′(t) (pi+1(t) − p̃i+1(t)) dt

(7)

(i = 1, . . . , n − 2) and

pn−1(t) − p̃n−1(t) =

∫ t

t0

t (x′(t) − x̃′(t)) dt.

=

∫ t

t0

t (−Fpn(γ(t)) + Fpn(γ̃(t))) dt. (8)

Since F is a smooth mapping, there exists some number K such that

| − Fpn(γ(t)) + Fpn(γ̃(t))| ≤ K|γ(t) − γ̃(t)| ≤ Kα(t),

where t0 ≤ t ≤ t0 + ε and

α(t) = |x(t) − x̃(t)| + |y(t) − ỹ(t)| + |p1(t) − p̃1(t)| + · · · + |pn−1(t) − p̃n−1(t)|.

Moreover, since γ and γ̃′ are smooth mappings, we put

ai = max
t0≤t≤t0+ε

{|pi(t)|} (i = 1, . . . , n − 1), an = |t0 + ε|, b = max
t0≤t≤t0+ε

{|x̃′(t)|}.

Denote an integration repeated i-times
∫ t

t0

(
· · ·

(∫ t

t0
α(t)dt

)
· · ·

)
dt by

(∫ t

t0

)i
α(t)(dt)i.

It follows from (5), (6), (7) and (8) that

α(t) ≤ (1 + a1 + · · · + an)K

∫ t

t0

α(t)dt + (a2 + · · · + an)bK

(∫ t

t0

)2

α(t)(dt)2 +

· · · + (ai + · · · + an)bi−1K

(∫ t

t0

)i

α(t)(dt)i + · · · + anbn−1K

(∫ t

t0

)n

α(t)(dt)n.

(9)
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Moreover we put

L = max{1 + a1 + · · · + an, (a2 + · · · + an)b, · · · , anbn−1}, M = max
t0≤t≤t0+ε

{α(t)}.

By (9), we have

M ≤ LKM
n∑

i=1

1

i!
(t − t0)

i ≤ LKM
n∑

i=1

1

i!
εi (10)

We now consider a function f(x) =
∑n

i=1(1/i!)x
i − 1/LK. If x = 0, then f(x)

is negative, and if x is sufficient large, then f(x) is positive. By the mean value

theorem, there exists a positive real number tn such that f(x) < 0 on 0 < x < tn.

If we take a small real number ε > 0 which satisfies 0 < ε < tn, then f(ε)M ≥ 0

by (10). It follows M = 0 and concludes that γ(t) = γ̃(t) for t0 ≤ t ≤ t0 + ε.

This completes the proof of lemma 3.2.

By proposition 3.1, a geometric solution γ : (R, t0) → (F−1(0), z0) is a singu-

lar solution only if it is contained in Σc(F ).

REMARK 3.3. For first order ODEs, the converse of proposition 3.1 also hold

(cf. [9, 16]). However, higher order cases, the converse does not hold, see in

[17, 18].

4. Complete solutions on the contact singular sets

We consider the cases for z0 ∈ Σc(F ). It is easy to show the following result

(cf. [17]).

PROPOSITION 4.1. Let F = 0 be an implicit ODE at z0 ∈ Σc(F ).

(1) Suppose that 0 is a regular value of Fpn|F−1(0). Then, F = 0 is of type C

at z0 if and only if Σc(F ) is an n-dimensional manifold around z0.

(2) Suppose that 0 is a regular value of FX |F−1(0). Then, F = 0 is of type R

at z0 if and only if Σc(F ) is an n-dimensional manifold around z0.

Now suppose that F = 0 is completely integrable at z0 and Σc(F ) is an n-

dimensional manifold around z0. By proposition 4.1, the condition that Σc(F ) is

an n-dimensional manifold around z0 is generic for completely integrable ODEs.

We call a map germ

Φ : (R × Rn−1, (t0, b0)) → (Σc(F ), z0)

a complete solution on Σc(F ) at z0 if Φ is an immersion germ and Φ(·, b) is

a geometric solution for each b ∈ (Rn−1, b0). Moreover, we call Φ a complete
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singular solution on Σc(F ) at z0 if Φ(·, b) is a singular solution for each b ∈
(Rn−1, b0).

If ξz intersects TzΣc(F ) transversally in TzF
−1(0), then integrating the line

field ξ ∩ TΣc(F ) yields a complete solution on Σc(F ). We call a point where

transversality does not hold a second order contact singular point and denote the

set of such points by Σcc(F ) (or, Σc2(F )) (cf. [3, 17]). Inductively, if Σcc(F ) is an

(n − 1)-dimensional manifold around z0, then we can define a complete solution

on Σcc(F ) at z0, a complete singular solution on Σcc(F ) at z0 and third order

contact singular set Σccc(F ) (or, Σc3(F )) etc. Therefore we have the following

sequence when Σci(F ) are (n− i + 1)-dimensional submanifolds, i = 1, . . . , n (cf.

[7]):

Σcn(F ) ⊂ Σcn−1(F ) ⊂ · · · ⊂ Σc2(F ) ⊂ Σc(F ) ⊂ F−1(0).

We say that F = 0 is of type CC at z0 if it is of type C at z0 and there

exists a function germ α2 : (Σc(F ), z0) → R such that (Fpn)X = α2 · (Fpn)pn on

Σc(F ), is of type CR at z0 if it is of type C at z0 and there exists a function germ

β2 : (Σc(F ), z0) → R such that (Fpn)pn = β2 · (Fpn)X on Σc(F ), is of type RC at

z0 if it is of type R at z0 and there exists a function germ α2 : (Σc(F ), z0) → R
such that (FX)X = α2 · (FX)pn on Σc(F ), and is of type RR at z0 if it is of

type R at z0 and there exists a function germ β2 : (Σc(F ), z0) → R such that

(FX)pn = β2 · (FX)X on Σc(F ).

Moreover, we can define F = 0 is of type CCC, CCR, CRC, CRR etc.,

when Σi
c(F ) are submanifolds. We give a sufficient condition for existence of a

complete solution on the contact singular set.

THEOREM 4.2. Let F = 0 be an implicit ODE at z0 ∈ Σc(F ).

(1) Suppose that 0 is a regular value of Fpn|F−1(0) and F = 0 is of type C at

z0. There exists a complete solution on Σc(F ) at z0 if and only if F = 0 is either

of type CC or of type CR at z0. Moreover, if F = 0 is of type CR at z0 with

β2(z0) = 0, then there exists a complete singular solution on Σc(F ) at z0.

(2) Suppose that 0 is a regular value of FX |F−1(0) and F = 0 is of type R at

z0. There exists a complete solution on Σc(F ) at z0 if and only if F = 0 is either

of type RC or of type RR at z0. Moreover, if F = 0 is of type RC at z0 with

α2(z0) = 0, then there exists a complete singular solution on Σc(F ) at z0.

Proof. (1) Suppose that Φ : (R × Rn−1, 0) → (Σc(F ), z0), (t, b) 7→ Φ(t, b) is a

complete solution on Σc(F ) at z0. By proposition 4.1, Σc(F ) is an n-dimensional

manifold around z0. Since F = 0 is regular and z0 ∈ Σc(F ), one of Fy, Fpi
(i =

1, . . . , n − 1) does not vanish at z0.

Now assume that Fy(z0) 6= 0. By the implicit function theorem, there exists

a function f : U → R, where U is an open subset in Rn+1, such that in a neigh-
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borhood of z0, (x, y, p1, . . . , pn) ∈ F−1(0) if and only if −y + f(x, p1, . . . , pn) = 0.

Thus, without loss of generality, we may assume that

F (x, y, p1, . . . , pn) = −y + f(x, p1, . . . , pn).

Define a diffeomorphism φ : U → F−1(0) given by

φ(x, p1, . . . , pn) = (x, f(x, p1, . . . , pn), p1, . . . , pn).

Differentiating φ−1 ◦ Φ with respect to t yields a vector field Y : φ−1(Σc(F )) →
Tφ−1(Σc(F )) given by Y (φ−1 ◦ Φ(t, b)) = (φ−1 ◦ Φ)t(t, b). By definitions of

a complete solution on Σc(F ) and of the diffeomorphism φ, Y has the form

(α, p2α, . . . , pnα, β) for some function germs α, β : (φ−1(Σc(F )), φ−1(z0)) → R
which do not vanish simultaneously. Since F = 0 is of type C, φ−1(Σc(F )) is

given by f−1
pn

(0). It follows that there exist function germs α̃, β̃ : (Σc(F ), z0) → R
which do not vanish simultaneously, such that the identity

α̃ · (Fpn)X + β̃ · (Fpn)pn ≡ 0

on Σc(F ) holds. Then F = 0 is either of type CC or of type CR at z0.

Assume that Fpi
(z0) 6= 0, where i = 1, . . . , n − 2, or n − 1. By the same

arguments as above, there exists a function fi : Ui → R, where Ui is an open

subset in Rn+1, such that in a neighborhood of z0, we may assume that

F (x, y, p1, . . . , pn) = −pi + fi(x, y, p1, . . . , p̂i, . . . , pn).

Here p̂i means removing the component pi. Define a diffeomorphism φi : Ui →
F−1(0) given by

φi(x, y, p1, . . . , p̂i, . . . , pn) = (x, y, p1, . . . , fi(x, y, p1, . . . , p̂i, . . . , pn), . . . , pn).

Differentiating φ−1
i ◦ Φ with respect to t yields a vector field Yi : φ−1

i (Σc(F )) →
Tφ−1

i (Σc(F )) given by the form Yi = (α, p1α, . . . , pi−1α, fiα, pi+2α, . . . , pnα, β)

for some function germs α, β : (φ−1(Σc(F )), φ−1(z0)) → R which do not vanish

simultaneously. Since F = 0 is of type C, φ−1(Σc(F )) is given by (fi)
−1
pn

(0).

It follows that there exist function germs α̃, β̃ : (Σc(F ), z0) → R which do not

vanish simultaneously, such that the identity

α̃ · (Fpn)X + β̃ · (Fpn)pn ≡ 0

on Σc(F ) holds. Then F = 0 is either of type CC or of type CR at z0. In either

case, reversing the argument yields the converse.

Finally, suppose that F = 0 is of type CR at z0 with β2(z0) = 0. By the

forms of the vector fields of Z in the proof of lemma 2.1, Y and Yi, each leaf
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of a complete solution on Σc(F ) at z0 is not contained in the leaf of a complete

solution on F−1(0) at z0. Hence the complete solution on Σc(F ) is a complete

singular solution on Σc(F ) at z0.

(2) The argument is similar to that in case (1).

REMARK 4.3. For the implicit second order ODEs, we can give existence con-

ditions for complete singular solution on the contact singular set in more detail

([18]).

THEOREM 4.4. Let F = 0 be an implicit ODE at z0 ∈ Σc(F ).

(1) Let 0 be a regular value of Fpn|F−1(0) and F = 0 is of type C at z0.

(i) Suppose that 0 is a regular value of (Fpn)pn|Σc(F ) and z0 ∈ Σcc(F ). Then,

F = 0 is of type CC at z0 if and only if Σcc(F ) is an (n−1)-dimensional manifold

around z0.

(ii) Suppose that 0 is a regular value of (Fpn)X |Σc(F ) and z0 ∈ Σcc(F ). Then,

F = 0 is of type CR at z0 if and only if Σcc(F ) is an (n−1)-dimensional manifold

around z0.

(2) Let 0 be a regular value of FX |F−1(0) and F = 0 is of type R at z0.

(i) Suppose that 0 is a regular value of (FX)pn|Σc(F ) and z0 ∈ Σcc(F ). Then,

F = 0 is of type RC at z0 if and only if Σcc(F ) is an (n−1)-dimensional manifold

around z0.

(ii) Suppose that 0 is a regular value of (FX)X |Σc(F ) and z0 ∈ Σcc(F ). Then,

F = 0 is of type RR at z0 if and only if Σcc(F ) is an (n−1)-dimensional manifold

around z0.

Proof. (1)(i) Since the contact singular set Σc(F ) is an n-dimensional manifold

and given by F−1(0) ∩ F−1
pn

(0), the second order singular set Σcc(F ) is given by

{z ∈ Σc(F ) | (Fpn)X = (Fpn)pn = 0}. It follows from the regularity condition

that F = 0 is of type CC at z0 if and only if Σcc(F ) is an (n − 1)-dimensional

manifold around z0.

The other cases can be proved by using the same arguments in case (1)(i).

By theorems 4.2 and 4.4, there exist immersive n and (n − 1)-parameter

families of geometric solutions of F = 0 if and only if Σc(F ) and Σcc(F ) are n

and (n − 1)-dimensional manifolds respectively under the regularity conditions.

REMARK 4.5. Generally we can observe that there exists a complete solution

on Σci(F ) at z0, namely, there exists an immersive (n − i)-parameter family of

geometric solutions of F = 0 if and only if z0 6∈ Σci+1(F ) or Σci+1(F ) is an

(n − i)-dimensional manifold around z0 under some regularity conditions.
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As a conclusion, it is possible that there exist not only an n-parameter family

of geometric solutions but also (n−i)-parameter (i = 1, . . . , n) family of geometric

solutions for implicit ODEs.
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