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Abstract. For smooth implicit ordinary differential equations, existence and
uniqueness for solutions with initial condition do not hold in general. In this
paper, we give a necessary and sufficient condition for existence of an immersive
n-parameter family of geometric solutions, so-called a complete solution on the
equation hypersurface in the smooth category. Moreover, we give a sufficient
condition for existence of an immersive (n — 1)-parameter family of geometric
solutions on the contact singular set.

1. Introduction

For a smooth explicit ordinary differential equation

d'y
dz™

)= 1 (), Loy @) 0

it is well-known that there exists a unique smooth local solution with an initial
condition for (1), where f is a smooth function (for instance, see [1, 2, 4]).
It follows that there exists an n-parameter family of smooth solutions at least
locally.

On the other hand, for a smooth implicit ordinary differential equation
(briefly, an implicit ODE)

F('r?yapla"'apn)zoa (2)

existence for a local solution with initial condition does not hold in general, where
F'is a smooth function of the independent variable z, the function y and its i-th
derivatives p; = d'y/dx',i=1,...,n.

A natural question is what conditions guarantee existence and uniqueness of
a local solution and a family of solutions around a point for (2). In this paper we

shall discuss a qualitative theory for implicit ODEs and establish basic notions.
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It is natural to consider (2) as being defined on a subset in the space of n-jets
of smooth functions of one variable, F' : O — R where O is an open subset in
J"(R,R). Throughout this paper, we assume that 0 is a regular value of F. It
follows that the set F~1(0) is a hypersurface in J"(R,R). We call F'~1(0) the
equation hypersurface. Let (x,y,p1,...,pn) be a local coordinate on J"(R,R)
and £ C TJ"(R,R) be the canonical contact system on J"(R,R) described by
the vanishing of the 1-forms

(651 = dy - pldma
ay = dp; — padz,
an, = dpn—l - pndx

We now define the notion of solutions. A smooth solution (or, a classical solu-
tion) of F' = 0 passing through a point 2, is a smooth function germ y = f(z) at
a point to such that (¢, f(to), f'(to), ..., f™(ty)) = 20 and F(z, f(z), f'(z),...,
f™@(z)) = 0, where f@(x) = (d'f/dx?)(z). In other words, there exists a
smooth function germ f : (R,%y) — R such that the image of the n-jet ex-
tension, "1 : (R,t) — (J*(R,R), 20); 5" F(x) = (&, £(2), F'(2), ..., [P (), is
contained in the equation hypersurface. It is easy to see that the map 7" f is an
immersion germ with (5" f)*a; =0 fori=1,... n.

More generally, a geometric solution of F' = 0 passing through a point zj is an
integral immersion germ 7 : (R, ¢y) — (J"(R,R), z) such that the image of 7 is
contained in the equation hypersurface, namely, v # 0, v*a; = 0fori=1,...,n
and F'(y(t)) = 0 for each t € (R, ).

By the definitions, a smooth solution is also a geometric solution. Conversely,
it is easy to see that if v(t) = (x(t),y(t),p1(t),...,pu(t)) is a geometric solution
of =0 and 2/(ty) # 0, then we can reparametrize y(t) as a smooth solution.

The following notions are basic in this paper (cf. [3, 15, 17]). By the definition
of parametrized version for smoothness of the solutions (i.e., smooth solutions), a
smooth complete solution on F~1(0) at zy is defined to be an n-parameter family
of smooth function germs y = f(¢t,¢) = f(t,c1,...,¢,) such that

0 a"
F (t,f(t, c),a—‘:(t,c),..., 815’]:@’ c)) =0

and the map germ j7'f : (R x R", (¢, ¢p)) — (F~1(0), 29) defined by

iiee = (tree e Gleo)

is an immersion. It follows that the equation hypersurface is foliated by an
n-parameter family of smooth solutions.
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On the other hand, we consider the corresponding definition of parametrized
version for geometric solutions. Let T': (R x R", (ty,co)) — (F1(0), 2z9) be an
n-parameter family of geometric solutions, i.e., I'(-, ¢) is a geometric solution of
F =0 for each ¢ € (R", ¢).

We call T' a complete solution on F~1(0) at z if T is an immersion germ,
namely,

rank (8x/8t Oy/0t Opy /Ot - apn/8t> (to,c0) =n+ 1,
Ox/dc 0dy/O0c Op1/dc --- Op,/0c
where I'(t, ¢) = (z(t, ¢), y(t,¢), p1(t, ), ..., pa(t,c)). It follows that the equation
hypersurface is foliated by an n-parameter family of geometric solutions.

We say that an equation F' = 0 is smooth completely integrable (respectively,
completely integrable) at zy if there exists a smooth complete solution (respec-
tively, a complete solution) on F'~1(0) at 2.

In the study of implicit ODEs from the view point of singularity theory, there
are a lot of researches. For example, generic singularities and properties were
given in [5, 6, 8, 16, 14] for the case of first order, in [12, 13] for the case of second
order and in [7] for the case of any order etc. This paper is focused on the theory
of completely integrable implicit ODEs.

In §2, we give a necessary and sufficient condition for existence of a smooth
complete solution and a complete solution on the equation hypersurface at a
point. We show that F' = 0 is completely integrable at z; if and only if ' =0
is either of Clairaut type or of reduced type at zy in theorem 2.2. This result
guarantees existence for a geometric solution in proposition 3.1. In §3, we give
a sufficient condition for existence and uniqueness of a geometric solution with
initial condition. In §4, we give a sufficient condition for existence of (n — 1)-
parameter family of geometric solutions of F' = 0.

All map germs and manifolds considered here are differential of class C*.
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2. Existence and uniqueness for complete solutions

In this section, we consider existence and uniqueness conditions for a complete
solution and a smooth complete solution on equation hypersurfaces. We denote
amap F, +p1Fy + p2Fy, + -+ poFy, , by Fx. Here F, (respectively, F,, F},.)
is the partial derivative of F' with respect to x (respectively, with respect to v,
pi). We refer to the following lemma. See in case of first order in [9, 16], and of
second order in [3, Lemma 3.1].
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LEMMA 2.1. Let F = 0 be an implicit ODE at zy. F = 0 is completely in-
tegrable at zy if and only if there exist function germs a, 3 : (F~1(0), 20) — R,
which do not vanish simultaneously, such that

o Fx|p-10) + 8 Fp,|p-100) = 0.
Proof. Suppose that F' = 0 is completely integrable at zy and let
[ (R xR (t, €0)) — (F7(0), 20)

be a complete solution on F~1(0) at zy. Then differentiating I' with respect to
t yields a vector field Z : (F~1(0), 29) — TF~1(0) given by Z(['(t,c)) = ['y(t, c).
Since Z(z) lies in the contact plane &, for each z € (F~1(0), z), it has the form
Z = (a,p1a, . .., pya, B) for some function germs o, 3 : (F~1(0), 29) — R which
do not vanish simultaneously. Besides Z(z) also lies in T, F~(0). It follows that
the identity

a- FX|F—1(0) + - Fpn|F_1(O) =0

holds. Reversing the argument yields the converse. O

We say that an equation F' = 0 is of (n-th order) Clairaut type (for short,
type C') at zg if there exists a function germ ay : (F~1(0), 29) — R such that

Fx|p—10) = a1 - Fp,|r-1(0),

and of reduced type (for short, type R) at zo if there exists a function germ
By (F71(0), z9) — R such that

Fy.lr-10) = 51 Fx|p-1(0)-

We give a necessary and sufficient condition for existence of a smooth com-
plete solution and a complete solution on equation hypersurfaces.

THEOREM 2.2. Let F'=0 be an implicit ODE at 2.

(1) F =0 is smooth completely integrable at zy if and only if F' = 0 is of type
C at z.

(2) F' =0 is completely integrable at zy if and only if F =0 is either of type
C, or of type R at z.

Proof. (1) The proof follows from a direct analogy of the proof for Theorem 2.2
in [10] or Theorem 3.1 in [15], so that we omit it.
(2) The result is a consequence of lemma 2.1. O

The uniqueness of the complete solution is the following.
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PROPOSITION 2.3. Let Ty : (R x R”, (t1,¢1)) — (F71(0),2) and Ty : (R X
R", (t2,¢2)) — (F71(0), z9) be complete solutions on F~(0) at zy. Then there
exists a diffeomorphism germ ® : (R x R™ (t3,¢2)) — (R x R™, (t1,¢1)) of the
form ®(t,¢c) = (p1(t, ¢), p2(€)) such that 'y o ® =Ty,

Proof. Suppose that the assertion does not hold. Since the complete solution is
an immersive n-parameter family of curves in F~1(0), then there exists a point
21 € (F71(0), 29) such that T'y(-,¢;) and T'5(+, c3) are transversal near the point
z1. Then we can construct a map germ I': (R x R",0) — (F~1(0), 2;) such that

(at least) I'(¢,-, -, c3,...,¢,) is an immersion germ,

Oy B ox Opn-1 B ox

L 1,0) = pltse) gt e = palt g () ()
and

dy ox Opn_1 ox

8_02( ) p1<t C)a 2(t>c)7"'7 802 (t ) pn(t 0)802(t7c)7 (4)

where I'(t, ¢) = (x(t,¢),y(t, c),pi1(t,c),...,pu(t, c)). If we calculate second order
partial derivatives of the last equality for (3) with respect to ¢, and for (4) with
respect to c¢;, we get
0*Pn_1 dp. Oz 0%z *pn_1 Op, Oz 0%z
= and =

Desder ey e P Bes0er P Dertey,  Oey 0oy P Dericy

Therefore we obtain the equality (Op,/0cs) - (0x/0c1) = (Opn/0cy) - (0x/Dcs).
This contradicts the fact that I'(¢, -, -, c3,. .., ¢,) is an immersion germ. O

3. Existence and uniqueness for geometric solutions

In this section, we give an existence and uniqueness condition for a geometric
solution with initial condition.

Let F' = 0 be an implicit ODE at zy. Consider a point z € F~1(0) such that
the contact plane &, intersects T, F~1(0) transversally. Then it is easy to see that
a complete solution exists at z by integrating the line field £ N TEF~1(0) (see,
lemma 2.1). We call points where transversality fails contact singular points and
denote the set of such points by 3.(F). We call £.(F') the contact singular set.
It is easy to check that the contact singular set is given by

Ye(F)={z€ F10)] Fx(2) =0,F, () =0}

We say that a geometric solution v : (R,tg) — (F~(0),z) is a singular
solution of F' = ( passing through z, if for any representative 7 : I — F~1(0) of
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7 and any open subinterval (a,b) C I at tg, 7|(a,) is never contained in a leaf of a
complete solution (cf. [3, 7,9, 11]). If a completely integrable implicit ODE has
a singular solution passing through zy, then uniqueness for geometric solutions
does not hold.

PROPOSITION 3.1. Let F' =0 be an implicit ODE at zy. If zo & L.(F), then
there exists a unique geometric solution passing through zg.

If 2o & X.(F), either F'x # 0 or F,, # 0 at z,. The latter case, the con-
sequence of proposition 3.1 follows from the classical results for existence and
uniqueness of a smooth solution of smooth explicit equations. Thus in order to
prove proposition 3.1, it is enough to show the former case. Here we give a proof
by an elementary argument like as explicit ODEs. This method is useful to prove
a result in [18].

LEMMA 3.2. Let F' = 0 be an implicit ODE at zy. If Fx(z9) # 0, then there
erists a unique geometric solution passing through z.

Proof. Tt follows from Fx(z) # 0 that F' = 0 is of reduced type at z;. By theo-
rem 2.2, there exists a complete solution on F'~*(0) at 29 and hence there exists
a geometric solution passing through z;. We may assume that Fx = 1 on the
equation hypersurface, if necessary, we consider F//Fx = 0 as F' = 0. Moreover
if v: (R, tg) — (F7Y0),20);v(t) = (z(¢),y(t),pi(t),...,pa(t)) is a geometric so-
lution passing through zp, then p/ (to) # 0. Hence we can reparametrize v(t) as
(x(t>v y(t),p1<t), ce 7pn71(t)7 t)‘ Let V(t) = (I(t)v y(t),p1<t), s 7pn71<t)7 t) and
F(t) = (Z(t),y(t),pi(t),...,pn-1(t),t) be geometric solutions passing through
20, that is, v(tg) = 7(tg) = zo. It is enough to show that ~(t) = 7(t) for
to <t < ty+ e, where € is a small positive real number. Differentiate the equal-
ity F(y(t) = F(x(t),y(t),p1(t), ... ,pa-1(t),t) = 0 with respect to ¢, then we get
2'(t) = —F,, (7(t)). By integrating this equality,

£(t) = w(to) - / Fy (()dt.

to
Since y(t) is a geometric solution, namely, y/(t) = pi(t)2'(t), pi(t) = piy1(t)2'(t)
(t=1,...,n—2)and p|,_,(t) = t2'(t), we have

t

y(t) = y(to) + / tpl(t)w’(t)dt, pi(t) = pito) + / pia()a'(t)dt

to to

(i=1,...,n—2) and

Pn-1(t) = pa-1(to) + /t ta' (t)dt.

to
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It follows that

mw—ﬂwzlk—&xwm+f@ﬁ@»w, (5)

(7)
(i=1,..., n — 2) and
Par(t) = Paa(t) = /t F() — (1)) dt
=[u4wwwwwwmw (8)

Since F'is a smooth mapping, there exists some number K such that
| = F. (7(1) + Fp, (Y1) < Ky(t) = 5(1)| < Ka(t),
where tg <t <ty + ¢ and
at) = lz(t) = Z@)| + [y(t) — g + [pa() = Pr(@)] + -+ + [Pa-1(t) = Do (B)].
Moreover, since v and 7' are smooth mappings, we put

a;= max {p@} G=1....n—1), ap=|to+¢|, b= max {|[F@)]}.

to<t<to+e to<t<to+e

Denote an integration repeated i-times fti (- (fti a(t)dt) - )dt by (ﬁi)ia(t)(dt)i.
It follows from (5), (6), (7) and (8) that

at) < (L +ai+-+a)K /t: a(t)dt + (as + -+ + an)bK (/;)2 a(t)(dt)? +

(a4 Fa)b K (/t:)la(t)(dt)i +ab" K (/t:)noz(t)(dt)”.
9)
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Moreover we put

L=max{l+a;+ - +an (ag+ - +an)b,--,a,b" '}, M= max {a(t)}.

to<t<to+e

By (9), we have
M<LKMY St —t0)" < LKEMY € (10)
=1 =1

We now consider a function f(z) = Y1 (1/i)z* — 1/LK. If x = 0, then f(x)
is negative, and if x is sufficient large, then f(z) is positive. By the mean value
theorem, there exists a positive real number ¢,, such that f(z) <0on 0 < z < t,.
If we take a small real number € > 0 which satisfies 0 < ¢ < t,,, then f(¢)M >0
by (10). It follows M = 0 and concludes that y(t) = (t) for ty <t <ty +«.
This completes the proof of lemma 3.2. O

By proposition 3.1, a geometric solution v : (R, #y) — (F~1(0), z) is a singu-
lar solution only if it is contained in X.(F).

REMARK 3.3. For first order ODEs, the converse of proposition 3.1 also hold
(cf. [9, 16]). However, higher order cases, the converse does not hold, see in
17, 18].

4. Complete solutions on the contact singular sets

We consider the cases for zy € ¥.(F). It is easy to show the following result
(cf. [17]).

PROPOSITION 4.1. Let F' =0 be an implicit ODE at zy € X.(F).

(1) Suppose that 0 is a reqular value of F,,|p-10). Then, F' =0 is of type C
at zo if and only if ¥.(F') is an n-dimensional manifold around z.

(2) Suppose that 0 is a regular value of Fx|p-1(). Then, F' =0 is of type R
at zo if and only if L.(F) is an n-dimensional manifold around z.

Now suppose that F' = 0 is completely integrable at zo and X.(F) is an n-
dimensional manifold around zy. By proposition 4.1, the condition that X.(F) is
an n-dimensional manifold around z; is generic for completely integrable ODEs.

We call a map germ

®: (R xR (tg, by)) — (Be(F), 20)

a complete solution on X.(F) at zy if ® is an immersion germ and ®(-,b) is
a geometric solution for each b € (R"™! by). Moreover, we call & a complete
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singular solution on X.(F) at zo if ®(-,b) is a singular solution for each b €
(R™1, by).

If &, intersects T,%.(F') transversally in T,F~'(0), then integrating the line
field £ N TYE.(F) yields a complete solution on X.(F). We call a point where
transversality does not hold a second order contact singular point and denote the
set of such points by X..(F) (or, X2 (F)) (cf. [3, 17]). Inductively, if 3..(F) is an
(n — 1)-dimensional manifold around zj, then we can define a complete solution
on Ye(F) at zo, a complete singular solution on ¥..(F) at zy and third order
contact singular set X...(F') (or, Xs(F)) etc. Therefore we have the following
sequence when Y. (F') are (n — i+ 1)-dimensional submanifolds, i = 1,...,n (cf.
[7]):

Y (F) C Bt (F) C - C B2 (F) C B (F) C FH0).

We say that F' = 0 is of type CC at z; if it is of type C' at 2y and there
exists a function germ o : (X.(F),29) — R such that (F),, )x = as - (F},,)p, on
Y.(F), is of type C'R at z if it is of type C' at zp and there exists a function germ
Byt (X(F), 20) — R such that (F,,),, = B2 - (Fp,)x on X.(F), is of type RC at
2o if it is of type R at zp and there exists a function germ ag : (3.(F),29) — R
such that (Fx)x = as - (Fx)p, on X.(F), and is of type RR at z if it is of
type R at zp and there exists a function germ 5 : (X.(F), z9) — R such that
(Fx)p, = B2+ (Fx)x on Xe(F).

Moreover, we can define F' = 0 is of type CCC, CCR, CRC, CRR etc.,
when Y (F) are submanifolds. We give a sufficient condition for existence of a
complete solution on the contact singular set.

THEOREM 4.2. Let F' =0 be an implicit ODE at zy € ¥.(F).

(1) Suppose that 0 is a regular value of F,, |p-10y and F' =0 is of type C' at
z9. There ezists a complete solution on X.(F) at zy if and only if F = 0 is either
of type C'C" or of type CR at zy. Moreover, if F' = 0 is of type CR at zy with
B2(20) = 0, then there exists a complete singular solution on X.(F') at z.

(2) Suppose that 0 is a reqular value of Fx|p-1) and F' =0 is of type R at
zo. There ezists a complete solution on X.(F) at zy if and only if F = 0 is either
of type RC or of type RR at zy. Moreover, if F = 0 is of type RC' at zy with
as(zo) = 0, then there exists a complete singular solution on L.(F) at 2.

Proof. (1) Suppose that @ : (R x R"',0) — (X.(F), 20), (t,b) — ®(,b) is a
complete solution on ¥.(F') at zy. By proposition 4.1, ¥..(F) is an n-dimensional
manifold around zp. Since F' = 0 is regular and zy € X.(F'), one of F}, F), (i =
1,...,n — 1) does not vanish at z.

Now assume that F,(z) # 0. By the implicit function theorem, there exists
a function f : U — R, where U is an open subset in R"*!, such that in a neigh-
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borhood of zg, (x,y,p1,-..,p,) € F71(0) if and only if —y+ f(z,p1,...,pn) = 0.
Thus, without loss of generality, we may assume that

F($7y7p17 s 7pn) =—y+ f(xapla cee apn)
Define a diffeomorphism ¢ : U — F~1(0) given by

¢($7p17 S 7pn) = <x7f(x7p17 s 7pn)7p17 s 7pn)

Differentiating ¢! o ® with respect to ¢ yields a vector field Y : ¢~ H(Z.(F)) —
To 1 (E(F)) given by Y(¢~' o ®(t,b)) = (¢! o ®)(t,b). By definitions of
a complete solution on Y.(F') and of the diffeomorphism ¢, Y has the form
(o, poc, . .., ppav, B) for some function germs «, 3 : (¢ 1(Zo(F)), 07 (2)) — R
which do not vanish simultaneously. Since F' = 0 is of type C, ¢~ (X.(F)) is
given by f,1(0). It follows that there exist function germs @, 3:(S(F),z) >R
which do not vanish simultaneously, such that the identity

&(Fpn)X—'—g(Fpn)pn =0

on X.(F) holds. Then F' = 0 is either of type CC or of type CR at z.

Assume that F),(z9) # 0, where ¢ = 1,...,n — 2, or n — 1. By the same
arguments as above, there exists a function f; : U; — R, where U; is an open
subset in R™"*!, such that in a neighborhood of zy, we may assume that

F(xmyaplu s 7pn) = —Di + fi(x7y7p17 s 7]3i7 s 7pn)

Here p; means removing the component p;. Define a diffeomorphism ¢; : U; —
F~1(0) given by

qbi(xayapl?"')ﬁia--'?pn) = (xayvpla--'7fi($ay7p17'"7ﬁi7"'7pn)7"'7pn)'

Differentiating ¢; ' o ® with respect to t yields a vector field Y; : ¢; ' (S.(F)) —
To; (S.(F)) given by the form Y; = (a,pia, ..., pi1q, fio, Disac, . .., pac, B)
for some function germs «, 3 : (¢ (X.(F)), ¢ (20)) — R which do not vanish
simultaneously. Since F' = 0 is of type C, ¢~ (Xc(F)) is given by (fi),1(0).
It follows that there exist function germs @&, 3 : (S.(F), z0) — R which do not
vanish simultaneously, such that the identity

a'(Fpn)X‘i‘B'(Fpn)pn 0

on X.(F) holds. Then F' = 0 is either of type C'C or of type C'R at 2. In either
case, reversing the argument yields the converse.

Finally, suppose that F' = 0 is of type CR at zy with (2(z5) = 0. By the
forms of the vector fields of Z in the proof of lemma 2.1, Y and Y;, each leaf
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of a complete solution on X.(F) at z; is not contained in the leaf of a complete
solution on F~1(0) at zy. Hence the complete solution on ¥.(F) is a complete
singular solution on X.(F) at z.

(2) The argument is similar to that in case (1). O

REMARK 4.3. For the implicit second order ODEs, we can give existence con-
ditions for complete singular solution on the contact singular set in more detail

([18]).

THEOREM 4.4. Let F' =0 be an implicit ODE at zy € X.(F).
(1) Let 0 be a reqular value of F,,|p-10) and F' =0 is of type C' at z.

(i) Suppose that 0 is a reqular value of (Fp, )p,|s.(r) and 2o € Xee(F'). Then,
F =0is of type CC at 2o if and only if Xee(F) is an (n—1)-dimensional manifold
around z.

(i) Suppose that 0 is a regular value of (Fp,)x|s.r) and 2o € Xee(F). Then,
F =0 s of type CR at zy if and only if £..(F) is an (n—1)-dimensional manifold
around zy.
(2) Let 0 be a reqular value of Fx|p-1(0) and F = 0 is of type R at 2.

(2) Suppose that 0 is a regular value of (Fx)p,|s.(r) and zo € Xce(F). Then,
F =0 s of type RC at zy if and only if £..(F) is an (n—1)-dimensional manifold
around zg.

(1) Suppose that 0 is a regular value of (Fx)x|s.r) and zo € Xee(F). Then,
F =0 1s of type RR at zo if and only if Xoo(F') is an (n—1)-dimensional manifold
around zg.

Proof. (1)(i) Since the contact singular set ¥.(F') is an n-dimensional manifold

and given by F~'(0) N F,'(0), the second order singular set X .(F') is given by

{z € ZF) | (Fp)x = (Fp,)p, = 0}. It follows from the regularity condition

that F' = 0 is of type CC at z if and only if ¥..(F') is an (n — 1)-dimensional
manifold around zj.

The other cases can be proved by using the same arguments in case (1)(7).

O

By theorems 4.2 and 4.4, there exist immersive n and (n — 1)-parameter
families of geometric solutions of F' = 0 if and only if ¥.(F) and X..(F) are n
and (n — 1)-dimensional manifolds respectively under the regularity conditions.

REMARK 4.5. Generally we can observe that there exists a complete solution
on X.(F) at zp, namely, there exists an immersive (n — i)-parameter family of
geometric solutions of F' = 0 if and only if 2y € Y.+ (F) or Y1 (F) is an
(n — i)-dimensional manifold around zy under some regularity conditions.
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As a conclusion, it is possible that there exist not only an n-parameter family
of geometric solutions but also (n—i)-parameter (i = 1, ..., n) family of geometric

solutions for implicit ODEs.

[1]
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