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Summary. In this paper, we show the asymptotic normality of (1/7) log(Xr/Xo)
where the sequence {X;} is defined as a solution of some stochastic difference

equation based on weakly dependent random variables. As a result we obtain
the asymptotic Black-Scholes formula.

1. Known results
Let {&;} be a strictly stationary stochastic process satisfying the strong mix-
ing condition

a(t)=  sup  |[P(AB) = P(A)P(B)| =0 (t— o).
AeMO _ BEMS®

LEMMA A. Let{{} be a strong mizing sequence of zero mean random variables
with coefficient a(n). If

36>0: supEl&]*T < oo,
i>1

then

lcov (£, )] < elléillarsllé;llarsa (1f — i)

where ¢ > 0 is some positive constant and

1€ll, = {EIEP}» (p>0).
Next, for the sequence {&;} with mean 6, put

o*(&) = B(&o — 0" +2 ) E(6— 0)(& — 0)
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if exists. It is known that the series in the above definition of 02(£) is absolutely
convergent if (1) (below) holds.

THEOREM A. Let {&} be a strictly stationary strong mizing sequence of zero
mean random variables with coefficient a(n). Suppose there exists a § > 0 such
that ||&1]|24s < 00 and

(1) Z =5 (n

If (&) > 0, then the weak invariance principle holds, that is, for any T > 0

]
2) {fi Zgz 0<t<T} D AW 0 <t < T},

as n — oo where W(-) denotes a standard Wiener process and "—P” means
weak convergence in D[0,T].
Furthermore, if the condition on a(n) is strengthened as

(3) Je>0: Z a+90+C) () < o0

then, the strong invariance theorem holds, that is, for all t sufficiently large

(@) 30 < A< % Y G- @WH =0 as.

1<i<n<t

Next, we consider the following self-normalizer introduced in Yoshihara (2009):
For n > 1 let r and k be integer-valued functions of n such that

(5) r=r(n)= o(niﬂ) and k = k(n) = {21
,
where 0 < v < 1/8 and define the self-normalizer by
k
C Z (Z (6(] Dr+i — n- Z&)) .
7=1
It is easy to see that if ||&;]|24s < 00 (6 > 0), then
1
lim nC’2 =) a.s.

(See, Yoshihara (2009).) Furthermore, let

1 n
Zn=—=) (& -
Cn;l

The following is Remark to Theorem 6 in Yoshihara (2009).
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THEOREM B. Let {&;} be a strictly stationary strong mizing sequence of mean
0 random variables with mizing coefficient a(n). Suppose there exists a0 < § < 1
such that ||&;]|24s < 00 and

(6) Zalﬁéﬁ(z) < 0.
=1
hold. If o(§) > 0, then
(7) {Za(t) = Zpy; 0 <t <1} B {W(t): 0<t <1}

In the sequel, we write " Z,, is AN (un,02)” if

(8) Zn=tn DN 1),

On

holds.

2. Time series

Firstly, we consider the sequence {Xj; k > 1} satisfying the stochastic differ-
ence equation

(9) AXy = (V4 0&1)Xp1 (B2>1)

where AXy = Xy — Xj_1, Xo # 0 and {& : k > 1} is a strictly stationary
stochastic sequence and v and ¢ > 0 are some absolute constants.

We prove the following theorem.

THEOREM 1. Let {Xy; k > 1} be a solution of the stochastic difference equation
(9) with v = 0 and 0 = 1. Let {&} be a strictly stationary sequence of strong
mizing random variables with mizing coefficient o(n) satisfying the following
conditions: (1)

(10) & >—-1 as;
(i1) for some § >0 (1) and
(11) Elog(1+&)|*** < o0,

hold. Then,

1 X 2
(12) - log Yn is AN (u, '0—>

0 n
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where
n = Elog(él + 1)7

p* = Var(log(& + 1)) + 2~ E(log(& + 1) — ) (log(& + 1) — 1) > 0.

If, instead of (1), the mizing coefficient satisfies (3), then
(13) X, = Xoexp{v/np+ pW(n) +o(n™")} a.s.
where W (-) denotes a standard Wiener process and 0 < X\ < 1/2.

Proof. We note that

Xk
Xp—1

=&+1 (B>1).

Hence, we can write as

X, w X, -
log X = Zlog X Zlog(fk +1).
k=1 k=1

Since {(log(&, + 1) — u} is a strictly stationary strong mixing sequence of mean
zero random variables and satisfies (1) and p > 0, (12) follows from (2). On the
other hand, (13) follows from (4). O

The following corollary is easily obtained by the proof of Theorem 1.

COROLLARY. Let {Xy;k > 1} be a solution of the difference equation (9).
Let {&} be a strictly stationary sequence of strong mixing random variables with
mizing coefficient a(n) satisfying the following conditions: (i)

(14) v+o& > -1 as;

(i1) for some § >0 (1) and

(15) E|log(1 4 v+ 0&)]*™ < 00
hold. Then,
1 X, _ P
16 —log — is AN —
where

ji = Elog(v+ o6& + 1),
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p° = Var(v+o& +1)

+2 " E(log(v + o0& + 1) — fi)(log(v + 0§ + 1) — ji) > 0.
k=2

In addition, if {£x} satisfies (3), then for some X > 0,

(17) X, = Xoexp{v/nji + cpW(n) +o(n™")} a.s.

Usually, p?

self-normalizer in Theorem 1 without using p?. The following theorem gives a
method.

is not known. Hence, in practice, it is preferable to use the

THEOREM 2. Let {X}.} be the sequence defined in Theorem 1. Putr = [n(1/9=7]
and k = [n/k|, where 0 <~y < 1/8. Let

AN
(18) n; =log(&+1) and 7, = - Zm.
i=1

Define the self-normalizers by
k r 2
ci=Y(Stm-m)-
j=1 Ni=1
If (5), (6) and (11) hold and p > 0, then,

1 X

n D
(19) C—n(logy0 —m/) — N(0,1).

Proof. The conclusion follows from Theorem B. O

3. Stochastic Difference Equations

In this section, we assume that { X (¢) : [0,00)} be a time-continuous stochas-
tic process. Let m be an arbitrary positive integer. Let t, = k/m (k > 0) and
put

AX(ty) = X(t) — X(teor), (k> 1).

We consider the difference equation where for all m

A1) = X(tsr) [ (406

tp—1
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which may be rewritten as

b [ et

th—1

Here, {&;} is some strictly stationary stochatic process and v and ¢ > 0 are some
absolute positive constants.
In the sequel, ¢, with or without subscript, denotes an absolute constant.

We prove the following theorem.

THEOREM 3. Suppose the process {&} is strictly stationary with E¢; = 0 and
satisfies the strong mixing condition with mizing coefficient a(t). Furthermore,
suppose that for some § > 0

E|£s|4+25 < 00

and

(21) /OO a%(t)dt < 00.

0

Then, for the process defined by (20)
(22) X(T)=X(0)exp{Tv +opW(T)} a.s.
holds for all T' > 0 where

Thm —/ / cov(&s, Ey)dsds’ > 0.

Remark. As for the definition of the time-continuous stationary mixing process
{&}, see Ibragimov and Linnik (1971, p.362).

To prove Theorem 3 we need the following simple lemma.

LEMMA 1. Let t;, = km™'. Suppose {&} is a stationary process such that
E|&|P < oo for p> 2. Then, for any k > 1
b 1
0 (_)
mpP

@ Bl [ e <8 [0+ g

Proof. By the Jensen inequality we have

t1 P
Bl [+ otas
0
1 t1 p 1 t1
:t’fE(—/ \l/+afs]ds) §t71’E(—/ ]1/+0§S|pds)
tl 0 tl 0

1 [h 1
Y p — _
_tl(t /0 Elv + o&| ds> < ctf = O

1

=L
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Proof of Theorem 3. We note firstly that for all m sufficiently large and any
kE>1
< m*% a.s.

(24) / "t ot)ds

tk—1

In fact, since by Lemma 1 (with p = 3) and the Markov inequality, we have

ip( /tk (v + 0&)ds >m—%)

tk—1

m=1
> 3 b 3 > 3 > 3

< Z m2FE / (v +0&s)ds| < Z m2em™> = CZ m-2 < 0o.
m=1 th—1 m=1 m=1

and, via the Borel-Cantelli Lemma, (24) is obtained.
Accordingly, for all m sufficiently large and all k£ we can define

Ui = log(l + /tk (v + 0§S)d3> (k>1).

We note that for each m fixed {U,, : k > 1} is a strictly stationary strong
mixing sequence with mixing coefficient a(n).
Now, we consider

[mT]

X(T) X (te) X(T)
25 lo = log ———= +log ——+"—
(25)  log 5 ; X)) 8 X([mTm—Y)
[mT)] [mT)]
X(T)
Y EUni+ Y (Ung — EUpy) + log AT
k=1 k=1
Firstly, we note that the last term in the above equation is negligible, which
means
X(T) )
2 log ——F—— = T2 .S.
(26) og X (T O(m™2) as

Since {v + o€} is strictly stationary, using the elementary inequality log(1 +
z) <z (z >0)and Lemma 1 (with p = 3), we have

T
log <1 + / (v + 055)d5>
[(mT]/m
([mT)+1)/m
10g<1—|—/ |1/+J§S|ds)
[

mT]/m

3 3

Xm P,

1 X )

3
<k
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t1
1og(1 + |V+0£s|d8)
0

t1 3
SE’/ v+ 0&|ds
0

3
=F

_m3;

Thus, by the Borel-Cantelli lemma we have (26).
Next, by the Taylor theorem we may write Uy, ;, as

tE ty
Um,k = log (1 -+ / (l/ -+ O'é-s)dS) = / (V + O-é-s)ds + Rm,k,27

te—1 te—1

where R,, ;2 denotes the residual, that is,

th -2 th 2
Ryk2 = —% (1 + Ok(w)/ (v + aﬁs)ds> (/ (v + aés)ds)

where 0x(w) is a random variable such that |fx(w)| < 1. We note that by (24)

| R k2| < %(1 — 2’1)_2 </tk (v + 055)d5> = 2(/tk (v + afs)ds) a.s.

te—1 te—1

for all m sufficiently large. Thus, by the stationarity of {£} and Lemma 1

ti 2
(27) E|Rpa| < 2E‘ / (v + 08.)ds
th—1
t1 2 1
= QE‘ / (v +0&)ds| <c—;,
0 m
and
tr 4426
(28) E|Ry o>t < cE / (v + o&s)ds
tk—1
th 4426 1
=ck /0 (v +0&)ds < C—Tra

Thus, noting that £¢; = 0, and using (27) we have

[mT) [mT) th
Z EUp ) = Z Elog(l + / (v+ afs)ds)
k=1 k=1 te—1

[mT]
— Z E(

k=1

123
/ (V + Uﬁs)ds + Rm,k,Q)

tk—1
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[mT]

tr
[mT]

tr
=v Z / ds +O(m™'T) = vT + O(m™'T).
k—1 Yth—1
Now, put

Vingk = coV(Upjs Uni) (4,5 > 1)

and evaluate V,, 1 in the case j < k — 2. We write V,,, 1 as

tj 123
Vin,j e = COV (1og (1 + / (v+ afs)ds) , log(l + / (v + afsx)ds'))
tj—1 l—1

J

t; ty
= CcoV (/ (V + oﬁs)ds + Rm’j’g, / (V + 0'55/)d$’ + Rm,k,Z)
ti—1

j te—1

= cov (/tj (v + 0&)ds, /tk (v + stx)dgf)

J

tj tx
+cov (/ (v + 0&s)ds, Rm,;ﬁg) + cov (Rm,m, / (v + afs/)ds')
ti_q te—1

j —

_’_COV(Rm’j’Q, RkaVQ)
= Dl,j,k + Dg@k + D37]’,k + D47j7k (say).

t; t;
E/ (v + 0&)ds = / vds,
ti1 t

J— J-1

tj 12
Dy jp = cov (/ (v + 0&)ds, / (v + afsf)ds’)
tj—1

j—

tk—1
tj tr
=g’ / / cov(&,, &y )dsds’.
tji—1 Jitg—1

We note here that for j < k —1

Since for any j

we have

te—1"

tj
/ (v + 0&)ds € ./\/l?Oo and Ry, 2 € M

ti—1
Hence, by Lemma A, Lemma 1 and the fact that «(t) is monotone decreasing,
we have

6
| R 2|25+ (t—1 — t;)
246

|Ds k] < co

/t tjl(y 4 o€,)ds

J
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1 2+46 1 15 5
<co(mm) () o0

11 th—1 L )
SCO——2m/ 5(t—t dt<Co—/ t—t)dt
mm th_o

0'"

Similarly, we have

)

’D3]k| < CQ—/ 7‘5 t-%)dt
and
Dyl < co—/ QT (t — ) dt

Further, for k =7,5+ 1,5 + 2

Vinig < 1Unm.gll2|Un,illz = U112

t
10g<1+/ |V+0§S|ds>
ti—1

J

t1 2
< E(/ v+ J§s|ds) < com 2.
0

Combining these inequalities and using (21) we have

2

<E

[mT] [mT]

mT szm]k

=1 k=1
1 [mT] [mT] [mT)

= > Vo + Vi + 2Winga2) + Z S Dy

j=1 jlkl

1
+2—[mT] Z (Do + D3ji 4 Dyji)
1<j<k—2<[mT]—2

[mT]/m  pmT]/m
=0(m™?) + ] / / cov(&s, &y )dsds’
[mT] [mT] )
245 (t — t;)dt
+0(m~ mT ;;/ 745 5)

2T 1 [mT)/m [(mT]/m
=0(m™?) + / / cov(&s, &g )dsds’

+O(m™2) /OT aﬁ(t)dt
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0,2 1 T T
=—r / / cov(&y, Eg)dsds’ + O(m™2).
o Jo

Hence, via the definition of p?, we can define

] [m]

for all m sufficiently large.
Since {Uyr — EU, i} is a stationary strong mixing sequence of zero mean
random sequence, by Theorem A we have

[mT]
{Um,k - EUm,k}
k=1

= P (W (mT) + 0((mT)%_’\)

V5

= 022+ O(m=2)(W(T) + o(m™T27Y))  as.

2

(0% + O(m=2)) (W (mT) + o((mT)>7>))

for all m sufficiently large where A is a number such that 0 < A < %
Combining (25) with the above relations, we have
X(T)

log m =Tv+ \/02(,02 + O(m_Q))(W(T) + o(m_’\T%_)‘))

+O(m™'T) + O(m™?)

holds almost surely for all m sufficiently large.
Finally, letting m — oo, we have (22) and the proof is completed. O

Next, we consider the process { X (t;)} satisfying
(29) AX(tk) = ((tk — tk_l)V -+ tk — tk_laCk)X(tk_l) (1 S k S n),

for all n where {(;} is a strictly stationary strong mixing sequence with E¢; =0
and F(? =1, and o > 0 is some absolute constant.

THEOREM 4. Suppose the process {(;} is strictly stationary with E¢; = 0 and
E(? =1, and satisfies the strong mizing condition with mizing coefficient a(n).
Furthermore, suppose that for some § > 0

(30) E|G|° < 0o and Za%(n) < 0.

n=1
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Then, for the process satisfying (29)

(31) X(T) = X(0) exp{T(V — %2) + UpW(T)} a.s.

where

(32) p? = nh—>r£10 %{nVarCl + 21 Z COV(Q,C]’)} > 0.
<i<j<n

Proof. Firstly, let k > 1 be arbitrary. We note that
T [T |° T /T
—v+4—o| < E‘—V +1/—0(;
n n n n
9
T\? /T
n n

9
E

9 T 2
<o(2)
n

So, we have

T T PP
P( —v 4\ —0G| = n_%g)
n n
w |T L o (T2 o
<niE|l—v 44/ —0(| < conis (—) < cyT2n 16,
n n n

which, via the Borel-Cantelli lemma, implies that for all n sufficiently large

(33) '%y + \/gack

Thus, we can define

T T
log(1 + (ty — tp—1)v + /tx — tx—1(x) = log (1 + v +4/ 50@),

By the Taylor theorem we can write
T /T
log (1 + —v+ —UCk>
n n
T /T 1(T T \?
= (—V + —UCk) - = <—V + —UCk) + Ryks
n n 2\ n n

where R, 3 is the residual, that is,

-3 3
Rps= %(1 + 6(w) (%V + \/gag“k)) (%V + \/%0@)

3
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where 0 (w) is a random variable such that |0 (w)| < 1.
Now, we consider

log e Z; Z log(1 + (tx — ti—1)v + /i — te1Gr)
n 2
= { <ZV + \/fUCk) - 1(ZV + \/fUCk) + Rn,k,3}
n n 2\ n n
—Ty—i—Z\/»JQﬁ— (—I/+\/;0Ck> +ZRnk3

=Tv+1In1+ Inp+ I’n,37 (say).

Since {(;} is stationary, by (33) we have

T T
—v+[—0G
n n

for all n sufficiently large. Hence, as n — oo we have

3

|Roksl < <enm (k>1) as.

(34) I3l =0(n" 1) as.
Next, noting that £¢; = 0 and E¢? = 1 and using the strong law of large numbers

3
1[=(T \° TN KT .,
(35) Iy = _5{2(5”) + QVUZ(E) +) —o gk}
k=1 k=1 k=1
1 1
= O( T? *1) + O(T%nfﬁ) — §TU2 a.s.
Finally, by Theorem A

(36) L, = \/gaZCk = \/ga{pW( )+ O(nz ")}

=opW(T) + O(T%n_’\) a.s.
for all n sufficiently large.

Using (34)-(36) we have

log % =Tv+ {opW(T) + O(T%n_’\)}

—%{TO‘Q + O(TQn_%)} + O(n_%) a.s.

for all n suffiently large.
Hence, letting n — oo we have (31) and the proof is completed. O
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COROLLARY. {(;} is an i.i.d. sequence of random variables with E¢; = 0 and
EC =1. Then

2

(37) X(T) = X(0) eXp{T(V - %) + aW(T)} a.s.

Specifically, if {¢;} is an i.i.d. sequence of N(0,1)-random wvariables, then the
same coclusion holds.

Proof. Since E¢; = 0, Var; = 1 and cov((;, ;) = 0(i # j), we have p? = 1.
Hence, the desired conclusion follows from Theorem 4. [

Remark. The condition (30) is not best possible ones. We can relax those con-
ditions by the tedious calculations.

4. Applications

Now, we consider the option pricing. Let S be the price of a stock. We
assume that S is continuous and is generated by the formula

(38) S(t + dt) = S(t){1 + vdt + o,V dt},

with the initial condition S(0) = Sy, where o > 0 is some constant and {(;} is
a stricly stationary strong mixing stochastic process with £¢; = 0 and F(? = 1.
In the sequel, we always assume that {(;} satisfies the condition (30) and

1 n n
YN LR

Let f(S,t) be the price of the claim at time ¢ when the stock price is S.

To obtain the asymptotic Black-Scholes formula, we need the following lemma
which is known (see, for example, N.H. Chan and H.Y.Wong (2006)).

LEMMA B. Let S be a lognormally distributed random variables such that log S
is an N (v, p*)-variable and let K be a given constant. Then

(39) E{max(S — K,0)} = E(S)®(d;) — K®(d),

where ®(-) denotes the distribution function of a standard normal random vari-
able and

1 1 S 2
dy = ~(—log K +v+p*) = —10g<E<—) —l—p—>,
p p K

2
—log K 1 2
g, = 8K Hv _10g<E<£) _p_),
p P K 2
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Remark. Since

E(S) = exp (V + %2) ,

we can rewrite (39) as

2

E{max(S — K,0)} = exp (y + %) O(dy) — KD(dy).

Using the usual methods, from Theorem 4 and Lemma B we have the fol-
lowing theorems which are generalizations of the Black-Scholes option pricing
formulas.

THEOREM 5. Consider a Europian option with payoff F(S) and expiration
time T'. Suppose the continuous compounding interest rate r. Then, the cur-
rent Furopian option price is determined by

(40) f(5,0) = e TE{F(S(T)},

where E denotes the expectation under the risk-neutral probability that is derived
from the risk-neutral process defined by (38) with v = r.

THEOREM 6. Consider a Furopian call option with strike price K and expi-
ration time T. If the underlying stock pays no dividends during the time [0,T]
and if there is continuously compounded risk-free rate r, then the price of this
contract at time 0, f(S,0) = C(S,0), is given by

(41) C(5,0) = S®(dy) — Ke ™ ®(dy).

The proofs are omitted.

Acknowledgement. The author thanks anonymous refrees for their valu-
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