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Summary. In this paper, we show the asymptotic normality of (1/T ) log(XT /X0)
where the sequence {Xt} is defined as a solution of some stochastic difference
equation based on weakly dependent random variables. As a result we obtain
the asymptotic Black-Scholes formula.

1. Known results

Let {ξj} be a strictly stationary stochastic process satisfying the strong mix-

ing condition

α(t) = sup
A∈M0

−∞,B∈M∞
t

|P (AB) − P (A)P (B)| → 0 (t → ∞).

LEMMA A. Let {ξi} be a strong mixing sequence of zero mean random variables

with coefficient α(n). If

∃δ > 0 : sup
i≥1

E|ξi|2+δ < ∞,

then

|cov(ξi, ξj)| ≤ c‖ξi‖2+δ‖ξj‖2+δα
δ

2+δ (|j − i|)

where c > 0 is some positive constant and

‖ξ‖p = {E|ξ|p}
1
p (p > 0).

Next, for the sequence {ξi} with mean θ, put

σ2(ξ) = E(ξ0 − θ)2 + 2
∞∑
i=1

E(ξ0 − θ)(ξi − θ)
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if exists. It is known that the series in the above definition of σ2(ξ) is absolutely

convergent if (1) (below) holds.

THEOREM A. Let {ξi} be a strictly stationary strong mixing sequence of zero

mean random variables with coefficient α(n). Suppose there exists a δ > 0 such

that ‖ξ1‖2+δ < ∞ and

∞∑
n=1

α
δ

2+δ (n) < ∞.(1)

If σ(ξ) > 0, then the weak invariance principle holds, that is, for any T > 0{
1√

nσ(ξ)

[nt]∑
i=1

ξi : 0 ≤ t ≤ T

}
D→ {W (t) : 0 ≤ t ≤ T},(2)

as n → ∞ where W (·) denotes a standard Wiener process and ”→D” means

weak convergence in D[0, T ].

Furthermore, if the condition on α(n) is strengthened as

∃ ε > 0 :
∞∑
i=1

α(1+ε)(1+(2/δ))(n) < ∞,(3)

then, the strong invariance theorem holds, that is, for all t sufficiently large

∃0 ≤ λ <
1

2
: |

∑
1≤i≤n≤t

ξi − σ(ξ)W (t)| = O(t
1
2
−λ) a.s.(4)

Next, we consider the following self-normalizer introduced in Yoshihara (2009):

For n > 1 let r and k be integer-valued functions of n such that

r = r(n) = o(n
1
4
−γ) and k = k(n) =

[
n

r

]
(5)

where 0 < γ < 1/8 and define the self-normalizer by

C2
n =

k∑
j=1

( r∑
i=1

(
ξ(j−1)r+i − n−1

n∑
l=1

ξl

))2

.

It is easy to see that if ‖ξ1‖2+δ < ∞ (δ > 0), then

lim
n→∞

1

n
C2

n = σ2(ξ) a.s.

(See, Yoshihara (2009).) Furthermore, let

Zn =
1

Cn

n∑
l=1

(ξl − θ).

The following is Remark to Theorem 6 in Yoshihara (2009).
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THEOREM B. Let {ξi} be a strictly stationary strong mixing sequence of mean

θ random variables with mixing coefficient α(n). Suppose there exists a 0 < δ ≤ 1

such that ‖ξ1‖2+δ < ∞ and

∞∑
i=1

α
δ

16+δ (i) < ∞.(6)

hold. If σ(ξ) > 0, then

{Zn(t) = Z[nt]; 0 ≤ t ≤ 1} D→ {W (t) : 0 ≤ t ≤ 1}.(7)

In the sequel, we write ”Zn is AN(µn, σ2
n)” if

Zn − µn

σn

D→ N(0, 1).(8)

holds.

2. Time series

Firstly, we consider the sequence {Xk; k ≥ 1} satisfying the stochastic differ-

ence equation

∆Xk = (ν + σξk−1)Xk−1 (k ≥ 1)(9)

where ∆Xk = Xk − Xk−1, X0 6= 0 and {ξk : k ≥ 1} is a strictly stationary

stochastic sequence and ν and σ > 0 are some absolute constants.

We prove the following theorem.

THEOREM 1. Let {Xk; k ≥ 1} be a solution of the stochastic difference equation

(9) with ν = 0 and σ = 1. Let {ξk} be a strictly stationary sequence of strong

mixing random variables with mixing coefficient α(n) satisfying the following

conditions: (i)

ξ1 > −1 a.s.;(10)

(ii) for some δ > 0 (1) and

E| log(1 + ξk)|2+δ < ∞,(11)

hold. Then,

1

n
log

Xn

X0

is AN

(
µ,

ρ2

n

)
(12)
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where

µ = E log(ξ1 + 1),

ρ2 = Var(log(ξ1 + 1)) + 2
∞∑

k=2

E(log(ξ1 + 1) − µ)(log(ξk + 1) − µ) > 0.

If, instead of (1), the mixing coefficient satisfies (3), then

Xn = X0 exp{
√

nµ + ρW (n) + o(n−λ)} a.s.(13)

where W (·) denotes a standard Wiener process and 0 < λ < 1/2.

Proof. We note that

Xk

Xk−1

= ξk + 1 (k ≥ 1).

Hence, we can write as

log
Xn

X0

=
n∑

k=1

log
Xk

Xk−1

=
n∑

k=1

log(ξk + 1).

Since {(log(ξk + 1) − µ} is a strictly stationary strong mixing sequence of mean

zero random variables and satisfies (1) and ρ > 0, (12) follows from (2). On the

other hand, (13) follows from (4).

The following corollary is easily obtained by the proof of Theorem 1.

COROLLARY. Let {Xk; k ≥ 1} be a solution of the difference equation (9).

Let {ξk} be a strictly stationary sequence of strong mixing random variables with

mixing coefficient α(n) satisfying the following conditions: (i)

ν + σξ1 > −1 a.s.;(14)

(ii) for some δ > 0 (1) and

E| log(1 + ν + σξk)|2+δ < ∞(15)

hold. Then,

1

n
log

Xn

X0

is AN

(
µ̃,

ρ̃2

n

)
,(16)

where

µ̃ = E log(ν + σξ1 + 1),
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ρ̃2 = Var(ν + σξ1 + 1)

+2
∞∑

k=2

E(log(ν + σξ1 + 1) − µ̃)(log(ν + σξk + 1) − µ̃) > 0.

In addition, if {ξk} satisfies (3), then for some λ > 0,

Xn = X0 exp{
√

nµ̃ + σρ̃W (n) + o(n−λ)} a.s.(17)

Usually, ρ2 is not known. Hence, in practice, it is preferable to use the

self-normalizer in Theorem 1 without using ρ2. The following theorem gives a

method.

THEOREM 2. Let {Xk} be the sequence defined in Theorem 1. Put r = [n(1/4)−γ]

and k = [n/k], where 0 < γ < 1/8. Let

ηi = log(ξi + 1) and η̄n =
1

n

n∑
i=1

ηi.(18)

Define the self-normalizers by

C2
n =

k∑
j=1

( r∑
i=1

(ηi − η̄n)

)2

.

If (5), (6) and (11) hold and ρ > 0, then,

1

Cn

(
log

Xn

X0

− nν

)
D→ N(0, 1).(19)

Proof. The conclusion follows from Theorem B.

3. Stochastic Difference Equations

In this section, we assume that {X(t) : [0,∞)} be a time-continuous stochas-

tic process. Let m be an arbitrary positive integer. Let tk = k/m (k ≥ 0) and

put

∆X(tk) = X(tk) − X(tk−1), (k ≥ 1).

We consider the difference equation where for all m

∆X(tk) = X(tk−1)

∫ tk

tk−1

(ν + σξs)ds,
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which may be rewritten as

X(tk)

X(tk−1)
= 1 +

∫ tk

tk−1

(ν + σξs)ds.(20)

Here, {ξt} is some strictly stationary stochatic process and ν and σ > 0 are some

absolute positive constants.

In the sequel, c, with or without subscript, denotes an absolute constant.

We prove the following theorem.

THEOREM 3. Suppose the process {ξt} is strictly stationary with Eξs = 0 and

satisfies the strong mixing condition with mixing coefficient α(t). Furthermore,

suppose that for some δ > 0

E|ξs|4+2δ < ∞
and ∫ ∞

0

α
2δ

2+δ (t)dt < ∞.(21)

Then, for the process defined by (20)

X(T ) = X(0) exp{Tν + σρW (T )} a.s.(22)

holds for all T > 0 where

ρ2 = lim
T→∞

1

T

∫ T

0

∫ T

0

cov(ξs, ξs′)dsds′ > 0.

Remark. As for the definition of the time-continuous stationary mixing process

{ξt}, see Ibragimov and Linnik (1971, p.362).

To prove Theorem 3 we need the following simple lemma.

LEMMA 1. Let tk = km−1. Suppose {ξs} is a stationary process such that

E|ξs|p < ∞ for p ≥ 2. Then, for any k ≥ 1

E

∣∣∣∣ ∫ tk

tk−1

(ν + σξs)ds

∣∣∣∣p = E

∣∣∣∣ ∫ t1

0

(ν + σξs)ds

∣∣∣∣p = O

(
1

mp

)
.(23)

Proof. By the Jensen inequality we have

E

∣∣∣∣ ∫ t1

0

(ν + σξs)ds

∣∣∣∣p
= tp1E

(
1

t1

∫ t1

0

|ν + σξs|ds

)p

≤ tp1E

(
1

t1

∫ t1

0

|ν + σξs|pds

)
= tp1

(
1

t1

∫ t1

0

E|ν + σξs|pds

)
≤ ctp1 = c

1

mp
.



ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF BLACK-SCHOLES TYPE EQUATIONS 7

Proof of Theorem 3. We note firstly that for all m sufficiently large and any

k ≥ 1 ∣∣∣∣ ∫ tk

tk−1

(ν + σξs)ds

∣∣∣∣ ≤ m− 1
2 a.s.(24)

In fact, since by Lemma 1 (with p = 3) and the Markov inequality, we have

∞∑
m=1

P

(∣∣∣∣ ∫ tk

tk−1

(ν + σξs)ds

∣∣∣∣ > m− 1
2

)
≤

∞∑
m=1

m
3
2 E

∣∣∣∣ ∫ tk

tk−1

(ν + σξs)ds

∣∣∣∣3 ≤ ∞∑
m=1

m
3
2 cm−3 = c

∞∑
m=1

m− 3
2 < ∞.

and, via the Borel-Cantelli Lemma, (24) is obtained.

Accordingly, for all m sufficiently large and all k we can define

Um,k = log

(
1 +

∫ tk

tk−1

(ν + σξs)ds

)
(k ≥ 1).

We note that for each m fixed {Um,k : k ≥ 1} is a strictly stationary strong

mixing sequence with mixing coefficient α(n).

Now, we consider

log
X(T )

X(0)
=

[mT ]∑
k=1

log
X(tk)

X(tk−1)
+ log

X(T )

X([mT ]m−1)
(25)

=

[mT ]∑
k=1

EUm,k +

[mT ]∑
k=1

(Um,k − EUm,k) + log
X(T )

X([mT ]m−1)

Firstly, we note that the last term in the above equation is negligible, which

means

log
X(T )

X([mT ]m−1)
= O

(
m− 1

2

)
a.s.(26)

Since {ν +σξs} is strictly stationary, using the elementary inequality log(1+

x) < x (x > 0) and Lemma 1 (with p = 3), we have

E

∣∣∣∣ log
X(T )

X([mT ]m−1)

∣∣∣∣3 = E

∣∣∣∣ log

(
1 +

∫ T

[mT ]/m

(ν + σξs)ds

)∣∣∣∣3
≤ E

∣∣∣∣ log

(
1 +

∫ ([mT ]+1)/m

[mT ]/m

|ν + σξs|ds

)∣∣∣∣3
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= E

∣∣∣∣ log

(
1 +

∫ t1

0

|ν + σξs|ds

)∣∣∣∣3
≤ E

∣∣∣∣ ∫ t1

0

|ν + σξs|ds

∣∣∣∣3 ≤ c

m3
,

Thus, by the Borel-Cantelli lemma we have (26).

Next, by the Taylor theorem we may write Um,k as

Um,k = log

(
1 +

∫ tk

tk−1

(ν + σξs)ds

)
=

∫ tk

tk−1

(ν + σξs)ds + Rm,k,2,

where Rm,k,2 denotes the residual, that is,

Rm,k,2 = −1

2

(
1 + θk(ω)

∫ tk

tk−1

(ν + σξs)ds

)−2(∫ tk

tk−1

(ν + σξs)ds

)2

where θk(ω) is a random variable such that |θk(ω)| ≤ 1. We note that by (24)

|Rm,k,2| ≤
1

2

(
1 − 2−1

)−2
(∫ tk

tk−1

(ν + σξs)ds

)2

= 2

(∫ tk

tk−1

(ν + σξs)ds

)2

a.s.

for all m sufficiently large. Thus, by the stationarity of {ξt} and Lemma 1

E|Rm,k,2| ≤ 2E

∣∣∣∣ ∫ tk

tk−1

(ν + σξs)ds

∣∣∣∣2(27)

= 2E

∣∣∣∣ ∫ t1

0

(ν + σξs)ds

∣∣∣∣2 ≤ c
1

m2
,

and

E|Rm,k,2|2+δ ≤ cE

∣∣∣∣ ∫ tk

tk−1

(ν + σξs)ds

∣∣∣∣4+2δ

(28)

= cE

∣∣∣∣ ∫ t1

0

(ν + σξs)ds

∣∣∣∣4+2δ

≤ c
1

m4+2δ
.

Thus, noting that Eξs = 0, and using (27) we have

[mT ]∑
k=1

EUm,k =

[mT ]∑
k=1

E log

(
1 +

∫ tk

tk−1

(ν + σξs)ds

)

=

[mT ]∑
k=1

E

(∫ tk

tk−1

(ν + σξs)ds + Rm,k,2

)
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=

[mT ]∑
k=1

{
E

∫ tk

tk−1

(ν + σξs)ds + O(m−2)

}

= ν

[mT ]∑
k=1

∫ tk

tk−1

ds + O(m−1T ) = νT + O(m−1T ).

Now, put

Vm,j,k = cov(Um,j, Um,k) (j, k ≥ 1)

and evaluate Vm,j,k in the case j < k − 2. We write Vm,j,k as

Vm,j,k = cov

(
log

(
1 +

∫ tj

tj−1

(ν + σξs)ds

)
, log

(
1 +

∫ tk

tk−1

(ν + σξs′)ds′
))

= cov

(∫ tj

tj−1

(ν + σξs)ds + Rm,j,2,

∫ tk

tk−1

(ν + σξs′)ds′ + Rm,k,2

)
= cov

(∫ tj

tj−1

(ν + σξs)ds,

∫ tk

tk−1

(ν + σξs′)ds′
)

+cov

(∫ tj

tj−1

(ν + σξs)ds,Rm,k,2

)
+ cov

(
Rm,j,2,

∫ tk

tk−1

(ν + σξs′)ds′
)

+cov(Rm,j,2, Rm,k,2)

= D1,j,k + D2,j,k + D3,j,k + D4,j,k (say).

Since for any j

E

∫ tj

tj−1

(ν + σξs)ds =

∫ tj

tj−1

νds,

we have

D1,j,k = cov

(∫ tj

tj−1

(ν + σξs)ds,

∫ tk

tk−1

(ν + σξs′)ds′
)

= σ2

∫ tj

tj−1

∫ tk

tk−1

cov(ξs, ξs′)dsds′.

We note here that for j < k − 1∫ tj

tj−1

(ν + σξs)ds ∈ Mtj
−∞ and Rm,k,2 ∈ M∞

tk−1
.

Hence, by Lemma A, Lemma 1 and the fact that α(t) is monotone decreasing,

we have

|D2,j,k| ≤ c0

∥∥∥∥∫ tj

tj−1

(ν + σξs)ds

∥∥∥∥
2+δ

‖Rm,k,2‖2+δα
δ

2+δ (tk−1 − tj)
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≤ c0

(
1

m2+δ

)2+δ(
1

m4+2δ

) 1
2+δ

α
δ

2+δ (tk−1 − tj)

≤ c0
1

m

1

m2
m

∫ tk−1

tk−2

α
δ

2+δ (t − tj)dt ≤ c0
1

m2

∫ tk−1

tk−2

α
δ

2+δ (t − tj)dt.

Similarly, we have

|D3,j,k| ≤ c0
1

m2

∫ tk−1

tk−2

α
δ

2+δ (t − tj)dt

and

|D4,j,k| ≤ c0
1

m2

∫ tk−1

tk−2

α
δ

2+δ (t − tj)dt

Further, for k = j, j + 1, j + 2

Vm,j,k ≤ ‖Um,j‖2‖Um,k‖2 = ‖Um,1‖2
2

≤ E

∣∣∣∣ log

(
1 +

∫ tj

tj−1

|ν + σξs|ds

)∣∣∣∣2
≤ E

(∫ t1

0

|ν + σξs|ds

)2

≤ c0m
−2.

Combining these inequalities and using (21) we have

1

[mT ]

[mT ]∑
j=1

[mT ]∑
k=1

Vm,j,k

=
1

mT

[mT ]∑
j=1

(Vm,j,j + 2Vm,j,j+1 + 2Vm,j,j+2) +
1

[mT ]

[mT ]∑
j=1

[mT ]∑
k=1

D1,j,k

+2
1

[mT ]

∑
1≤j<k−2≤[mT ]−2

(D2,j,k + D3,j,k + D4,j,k)

= O(m−2) +
σ2

[mT ]

∫ [mT ]/m

0

∫ [mT ]/m

0

cov(ξs, ξs′)dsds′

+O(m−2)
1

[mT ]

[mT ]∑
j=1

[mT ]∑
k=1

∫ tk−1

tk−2

α
δ

2+δ (t − tj)dt

= O(m−2) +
σ2T

[mT ]

1

T

∫ [mT ]/m

0

∫ [mT ]/m

0

cov(ξs, ξs′)dsds′

+O(m−2)

∫ T

0

α
δ

2+δ (t)dt
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=
σ2

m

1

T

∫ T

0

∫ T

0

cov(ξs, ξs′)dsds′ + O(m−2).

Hence, via the definition of ρ2, we can define

ρ̂2
m = lim

T→∞

1

[mT ]

[mT ]∑
j=1

[mT ]∑
k=1

Vm,j,k =
σ2

m
(ρ2 + O(m−2))

for all m sufficiently large.

Since {Um,k − EUm,k} is a stationary strong mixing sequence of zero mean

random sequence, by Theorem A we have

[mT ]∑
k=1

{Um,k − EUm,k}

= ρ̂m(W (mT ) + o
(
(mT )

1
2
−λ

)
=

√
σ2

m
(ρ2 + O(m−2))

(
W (mT ) + o

(
(mT )

1
2
−λ

))
=

√
σ2ρ2 + O(m−2)

(
W (T ) + o

(
m−λT

1
2
−λ

))
a.s.

for all m sufficiently large where λ is a number such that 0 < λ < 1
2
.

Combining (25) with the above relations, we have

log
X(T )

X(0)
= Tν +

√
σ2(ρ2 + O(m−2))

(
W (T ) + o

(
m−λT

1
2
−λ

))
+O(m−1T ) + O(m−2)

holds almost surely for all m sufficiently large.

Finally, letting m → ∞, we have (22) and the proof is completed.

Next, we consider the process {X(tk)} satisfying

∆X(tk) =
(
(tk − tk−1)ν +

√
tk − tk−1σζk

)
X(tk−1) (1 ≤ k ≤ n),(29)

for all n where {ζi} is a strictly stationary strong mixing sequence with Eζ1 = 0

and Eζ2
1 = 1, and σ > 0 is some absolute constant.

THEOREM 4. Suppose the process {ζi} is strictly stationary with Eζ1 = 0 and

Eζ2
1 = 1, and satisfies the strong mixing condition with mixing coefficient α(n).

Furthermore, suppose that for some δ > 0

E|ζ1|9 < ∞ and
∞∑

n=1

α
2δ

2+δ (n) < ∞.(30)
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Then, for the process satisfying (29)

X(T ) = X(0) exp

{
T

(
ν − σ2

2

)
+ σρW (T )

}
a.s.(31)

where

ρ2 = lim
n→∞

1

n

{
nVarζ1 + 2

∑
1≤i<j≤n

cov(ζi, ζj)

}
> 0.(32)

Proof. Firstly, let k ≥ 1 be arbitrary. We note that

E

∣∣∣∣Tn ν +

√
T

n
σζk

∣∣∣∣9 ≤ E

∣∣∣∣Tn ν +

√
T

n
σζ1

∣∣∣∣9
≤

(
T

n

) 9
2

E

∣∣∣∣
√

T

n
ν + σζ1

∣∣∣∣9 ≤ c0

(
T

n

) 9
2

.

So, we have

P

(∣∣∣∣Tn ν +

√
T

n
σζk

∣∣∣∣3 ≥ n− 17
16

)
≤ n

51
16 E

∣∣∣∣Tn ν +

√
T

n
σζk

∣∣∣∣9 ≤ c0n
51
16

(
T

n

) 9
2

≤ c0T
9
2 n− 21

16 ,

which, via the Borel-Cantelli lemma, implies that for all n sufficiently large∣∣∣∣Tn ν +

√
T

n
σζk

∣∣∣∣3 ≤ n− 17
16 a.s.(33)

Thus, we can define

log(1 + (tk − tk−1)ν +
√

tk − tk−1ζk) = log

(
1 +

T

n
ν +

√
T

n
σζk

)
,

By the Taylor theorem we can write

log

(
1 +

T

n
ν +

√
T

n
σζk

)
=

(
T

n
ν +

√
T

n
σζk

)
− 1

2

(
T

n
ν +

√
T

n
σζk

)2

+ Rn,k,3

where Rn,k,3 is the residual, that is,

Rn,k,3 =
1

3

(
1 + θ(ω)

(
T

n
ν +

√
T

n
σζk

))−3(
T

n
ν +

√
T

n
σζk

)3
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where θk(ω) is a random variable such that |θk(ω)| ≤ 1.

Now, we consider

log
X(T )

X(0)
=

n∑
k=1

log(1 + (tk − tk−1)ν +
√

tk − tk−1ζk)

=
n∑

k=1

{(
T

n
ν +

√
T

n
σζk

)
− 1

2

(
T

n
ν +

√
T

n
σζk

)2

+ Rn,k,3

}

= Tν +
n∑

k=1

√
T

n
σζk +

1

2

n∑
k=1

(
T

n
ν +

√
T

n
σζk

)2

+
n∑

k=1

Rn,k,3

= Tν + In,1 + In,2 + In,3, (say).

Since {ζk} is stationary, by (33) we have

|Rn,k,3| ≤ c1

∣∣∣∣Tn ν +

√
T

n
σζ1

∣∣∣∣3 ≤ c1n
− 17

16 (k ≥ 1) a.s.

for all n sufficiently large. Hence, as n → ∞ we have

|In,3| = O
(
n− 1

16

)
a.s.(34)

Next, noting that Eζ1 = 0 and Eζ2
1 = 1 and using the strong law of large numbers

In,2 = −1

2

{ n∑
k=1

(
T

n
ν

)2

+ 2νσ

n∑
k=1

(
T

n

) 3
2

+
n∑

k=1

T

n
σ2ζ2

k

}
(35)

= O
(
T 2n−1

)
+ O

(
T

3
2 n− 1

2

)
− 1

2
Tσ2 a.s.

Finally, by Theorem A

I1,n =

√
T

n
σ

n∑
k=1

ζk =

√
T

n
σ{ρW (n) + O(n

1
2
−λ)}(36)

= σρW (T ) + O
(
T

1
2 n−λ

)
a.s.

for all n sufficiently large.

Using (34)-(36) we have

log
X(T )

X(0)
= Tν + {σρW (T ) + O

(
T

1
2 n−λ

)
}

−1

2
{Tσ2 + O

(
T 2n− 1

2

)
} + O

(
n− 1

16

)
a.s.

for all n suffiently large.

Hence, letting n → ∞ we have (31) and the proof is completed.
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COROLLARY. {ζi} is an i.i.d. sequence of random variables with Eζ1 = 0 and

Eζ2
1 = 1. Then

X(T ) = X(0) exp

{
T

(
ν − σ2

2

)
+ σW (T )

}
a.s.(37)

Specifically, if {ζi} is an i.i.d. sequence of N(0, 1)-random variables, then the

same coclusion holds.

Proof. Since Eζi = 0, Varζi = 1 and cov(ζi, ζj) = 0 (i 6= j), we have ρ2 = 1.

Hence, the desired conclusion follows from Theorem 4.

Remark. The condition (30) is not best possible ones. We can relax those con-

ditions by the tedious calculations.

4. Applications

Now, we consider the option pricing. Let S be the price of a stock. We

assume that S is continuous and is generated by the formula

S(t + dt) = S(t){1 + νdt + σζt

√
dt},(38)

with the initial condition S(0) = S0, where σ > 0 is some constant and {ζt} is

a stricly stationary strong mixing stochastic process with Eζ1 = 0 and Eζ2
1 = 1.

In the sequel, we always assume that {ζi} satisfies the condition (30) and

ρ2 = lim
n→∞

1

n

n∑
i=1

n∑
j=1

cov(ζi, ζj) = 1.

Let f(S, t) be the price of the claim at time t when the stock price is S.

To obtain the asymptotic Black-Scholes formula, we need the following lemma

which is known (see, for example, N.H. Chan and H.Y.Wong (2006)).

LEMMA B. Let S be a lognormally distributed random variables such that log S

is an N(ν, ρ2)-variable and let K be a given constant. Then

E{max(S − K, 0)} = E(S)Φ(d1) − KΦ(d2),(39)

where Φ(·) denotes the distribution function of a standard normal random vari-

able and

d1 =
1

ρ
(− log K + ν + ρ2) =

1

ρ
log

(
E

(
S

K

)
+

ρ2

2

)
,

d2 =
− log K + ν

ρ
=

1

ρ
log

(
E

(
S

K

)
− ρ2

2

)
.
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Remark. Since

E(S) = exp

(
ν +

ρ2

2

)
,

we can rewrite (39) as

E{max(S − K, 0)} = exp

(
ν +

ρ2

2

)
Φ(d1) − KΦ(d2).

Using the usual methods, from Theorem 4 and Lemma B we have the fol-

lowing theorems which are generalizations of the Black-Scholes option pricing

formulas.

THEOREM 5. Consider a Europian option with payoff F (S) and expiration

time T . Suppose the continuous compounding interest rate r. Then, the cur-

rent Europian option price is determined by

f(S, 0) = e−rT Ê{F (S(T )},(40)

where Ê denotes the expectation under the risk-neutral probability that is derived

from the risk-neutral process defined by (38) with ν = r.

THEOREM 6. Consider a Europian call option with strike price K and expi-

ration time T . If the underlying stock pays no dividends during the time [0, T ]

and if there is continuously compounded risk-free rate r, then the price of this

contract at time 0, f(S, 0) = C(S, 0), is given by

C(S, 0) = SΦ(d1) − Ke−rT Φ(d2).(41)

The proofs are omitted.
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