ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF BLACK-SCHOLES TYPE EQUATIONS BASED ON WEAKLY DEPENDENT RANDOM VARIABLES

By

Ken-ichi Yoshihara

(Received April 21, 2011; Revised November 14, 2011)

Summary. In this paper, we show the asymptotic normality of $(1/T) \log(X_T/X_0)$ where the sequence $\{X_t\}$ is defined as a solution of some stochastic difference equation based on weakly dependent random variables. As a result we obtain the asymptotic Black-Scholes formula.

1. Known results

Let $\{\xi_j\}$ be a strictly stationary stochastic process satisfying the strong mixing condition

$$\alpha(t) = \sup_{A \in \mathcal{M}^0_{-\infty}, B \in \mathcal{M}^\infty_t} |P(AB) - P(A)P(B)| \to 0 \quad (t \to \infty).$$

LEMMA A. Let $\{\xi_i\}$ be a strong mixing sequence of zero mean random variables with coefficient $\alpha(n)$. If

$$\exists \delta > 0: \quad \sup_{i \ge 1} E |\xi_i|^{2+\delta} < \infty,$$

then

$$|\operatorname{cov}(\xi_i,\xi_j)| \le c \|\xi_i\|_{2+\delta} \|\xi_j\|_{2+\delta} \alpha^{\frac{\delta}{2+\delta}}(|j-i|)$$

where c > 0 is some positive constant and

$$\|\xi\|_p = \{E|\xi|^p\}^{\frac{1}{p}} \quad (p > 0).$$

Next, for the sequence $\{\xi_i\}$ with mean θ , put

$$\sigma^{2}(\xi) = E(\xi_{0} - \theta)^{2} + 2\sum_{i=1}^{\infty} E(\xi_{0} - \theta)(\xi_{i} - \theta)$$

²⁰¹⁰ Mathematics Subject Classification: 60H10

Key words and phrases: stochastic difference equation, strong mixing, strong approximation, Black-Scholes formula

K. YOSHIHARA

if exists. It is known that the series in the above definition of $\sigma^2(\xi)$ is absolutely convergent if (1) (below) holds.

THEOREM A. Let $\{\xi_i\}$ be a strictly stationary strong mixing sequence of zero mean random variables with coefficient $\alpha(n)$. Suppose there exists a $\delta > 0$ such that $\|\xi_1\|_{2+\delta} < \infty$ and

(1)
$$\sum_{n=1}^{\infty} \alpha^{\frac{\delta}{2+\delta}}(n) < \infty$$

If $\sigma(\xi) > 0$, then the weak invariance principle holds, that is, for any T > 0

(2)
$$\left\{\frac{1}{\sqrt{n\sigma(\xi)}}\sum_{i=1}^{[nt]}\xi_i: 0 \le t \le T\right\} \xrightarrow{D} \{W(t): 0 \le t \le T\},$$

as $n \to \infty$ where $W(\cdot)$ denotes a standard Wiener process and " \to^D " means weak convergence in D[0,T].

Furthermore, if the condition on $\alpha(n)$ is strengthened as

(3)
$$\exists \epsilon > 0: \quad \sum_{i=1}^{\infty} \alpha^{(1+\epsilon)(1+(2/\delta))}(n) < \infty.$$

then, the strong invariance theorem holds, that is, for all t sufficiently large

(4)
$$\exists 0 \le \lambda < \frac{1}{2}: |\sum_{1 \le i \le n \le t} \xi_i - \sigma(\xi) W(t)| = O(t^{\frac{1}{2} - \lambda}) \quad a.s.$$

Next, we consider the following self-normalizer introduced in Yoshihara (2009): For n > 1 let r and k be integer-valued functions of n such that

(5)
$$r = r(n) = o(n^{\frac{1}{4}-\gamma}) \text{ and } k = k(n) = \left[\frac{n}{r}\right]$$

where $0 < \gamma < 1/8$ and define the self-normalizer by

$$C_n^2 = \sum_{j=1}^k \left(\sum_{i=1}^r \left(\xi_{(j-1)r+i} - n^{-1} \sum_{l=1}^n \xi_l \right) \right)^2.$$

It is easy to see that if $\|\xi_1\|_{2+\delta} < \infty$ ($\delta > 0$), then

$$\lim_{n \to \infty} \frac{1}{n} C_n^2 = \sigma^2(\xi) \quad a.s$$

(See, Yoshihara (2009).) Furthermore, let

$$Z_n = \frac{1}{C_n} \sum_{l=1}^n (\xi_l - \theta).$$

The following is Remark to Theorem 6 in Yoshihara (2009).

THEOREM B. Let $\{\xi_i\}$ be a strictly stationary strong mixing sequence of mean θ random variables with mixing coefficient $\alpha(n)$. Suppose there exists a $0 < \delta \leq 1$ such that $\|\xi_1\|_{2+\delta} < \infty$ and

(6)
$$\sum_{i=1}^{\infty} \alpha^{\frac{\delta}{16+\delta}}(i) < \infty.$$

hold. If $\sigma(\xi) > 0$, then

(7)
$$\{Z_n(t) = Z_{[nt]}; 0 \le t \le 1\} \xrightarrow{D} \{W(t) : 0 \le t \le 1\}.$$

In the sequel, we write " Z_n is $AN(\mu_n, \sigma_n^2)$ " if

(8)
$$\frac{Z_n - \mu_n}{\sigma_n} \xrightarrow{D} N(0, 1)$$

holds.

2. Time series

Firstly, we consider the sequence $\{X_k; k \ge 1\}$ satisfying the stochastic difference equation

(9)
$$\Delta X_k = (\nu + \sigma \xi_{k-1}) X_{k-1} \quad (k \ge 1)$$

where $\Delta X_k = X_k - X_{k-1}$, $X_0 \neq 0$ and $\{\xi_k : k \geq 1\}$ is a strictly stationary stochastic sequence and ν and $\sigma > 0$ are some absolute constants.

We prove the following theorem.

THEOREM 1. Let $\{X_k; k \ge 1\}$ be a solution of the stochastic difference equation (9) with $\nu = 0$ and $\sigma = 1$. Let $\{\xi_k\}$ be a strictly stationary sequence of strong mixing random variables with mixing coefficient $\alpha(n)$ satisfying the following conditions: (i)

(10)
$$\xi_1 > -1 \quad a.s.;$$

(ii) for some $\delta > 0$ (1) and

(11)
$$E|\log(1+\xi_k)|^{2+\delta} < \infty,$$

hold. Then,

(12)
$$\frac{1}{n}\log\frac{X_n}{X_0} \text{ is } AN\left(\mu, \frac{\rho^2}{n}\right)$$

where

$$\mu = E \log(\xi_1 + 1),$$

$$\rho^2 = \operatorname{Var}(\log(\xi_1 + 1)) + 2 \sum_{k=2}^{\infty} E(\log(\xi_1 + 1) - \mu)(\log(\xi_k + 1) - \mu) > 0.$$

If, instead of (1), the mixing coefficient satisfies (3), then

(13)
$$X_n = X_0 \exp\{\sqrt{n\mu} + \rho W(n) + o(n^{-\lambda})\} \quad a.s.$$

where $W(\cdot)$ denotes a standard Wiener process and $0 < \lambda < 1/2$.

Proof. We note that

$$\frac{X_k}{X_{k-1}} = \xi_k + 1 \quad (k \ge 1).$$

Hence, we can write as

$$\log \frac{X_n}{X_0} = \sum_{k=1}^n \log \frac{X_k}{X_{k-1}} = \sum_{k=1}^n \log(\xi_k + 1).$$

Since $\{(\log(\xi_k + 1) - \mu)\}$ is a strictly stationary strong mixing sequence of mean zero random variables and satisfies (1) and $\rho > 0$, (12) follows from (2). On the other hand, (13) follows from (4). \Box

The following corollary is easily obtained by the proof of Theorem 1.

COROLLARY. Let $\{X_k; k \ge 1\}$ be a solution of the difference equation (9). Let $\{\xi_k\}$ be a strictly stationary sequence of strong mixing random variables with mixing coefficient $\alpha(n)$ satisfying the following conditions: (i)

(14)
$$\nu + \sigma \xi_1 > -1 \quad a.s.;$$

(ii) for some $\delta > 0$ (1) and

(15)
$$E|\log(1+\nu+\sigma\xi_k)|^{2+\delta} < \infty$$

hold. Then,

(16)
$$\frac{1}{n}\log\frac{X_n}{X_0} \text{ is } AN\left(\tilde{\mu}, \frac{\tilde{\rho}^2}{n}\right),$$

where

$$\tilde{\mu} = E \log(\nu + \sigma \xi_1 + 1),$$

4

$$\tilde{\rho}^{2} = \operatorname{Var}(\nu + \sigma\xi_{1} + 1) + 2\sum_{k=2}^{\infty} E(\log(\nu + \sigma\xi_{1} + 1) - \tilde{\mu})(\log(\nu + \sigma\xi_{k} + 1) - \tilde{\mu}) > 0.$$

In addition, if $\{\xi_k\}$ satisfies (3), then for some $\lambda > 0$,

(17)
$$X_n = X_0 \exp\{\sqrt{n}\tilde{\mu} + \sigma\tilde{\rho}W(n) + o(n^{-\lambda})\} \quad a.s.$$

Usually, ρ^2 is not known. Hence, in practice, it is preferable to use the self-normalizer in Theorem 1 without using ρ^2 . The following theorem gives a method.

THEOREM 2. Let $\{X_k\}$ be the sequence defined in Theorem 1. Put $r = [n^{(1/4)-\gamma}]$ and k = [n/k], where $0 < \gamma < 1/8$. Let

(18)
$$\eta_i = \log(\xi_i + 1) \text{ and } \bar{\eta}_n = \frac{1}{n} \sum_{i=1}^n \eta_i.$$

Define the self-normalizers by

$$C_n^2 = \sum_{j=1}^k \left(\sum_{i=1}^r (\eta_i - \bar{\eta}_n)\right)^2.$$

If (5), (6) and (11) hold and $\rho > 0$, then,

(19)
$$\frac{1}{C_n} \left(\log \frac{X_n}{X_0} - n\nu \right) \xrightarrow{D} N(0, 1).$$

Proof. The conclusion follows from Theorem B. \Box

3. Stochastic Difference Equations

In this section, we assume that $\{X(t) : [0, \infty)\}$ be a time-continuous stochastic process. Let *m* be an arbitrary positive integer. Let $t_k = k/m$ $(k \ge 0)$ and put

$$\Delta X(t_k) = X(t_k) - X(t_{k-1}), \quad (k \ge 1).$$

We consider the difference equation where for all m

$$\Delta X(t_k) = X(t_{k-1}) \int_{t_{k-1}}^{t_k} (\nu + \sigma \xi_s) ds,$$

which may be rewritten as

(20)
$$\frac{X(t_k)}{X(t_{k-1})} = 1 + \int_{t_{k-1}}^{t_k} (\nu + \sigma \xi_s) ds$$

Here, $\{\xi_t\}$ is some strictly stationary stochatic process and ν and $\sigma > 0$ are some absolute positive constants.

In the sequel, c, with or without subscript, denotes an absolute constant.

We prove the following theorem.

THEOREM 3. Suppose the process $\{\xi_t\}$ is strictly stationary with $E\xi_s = 0$ and satisfies the strong mixing condition with mixing coefficient $\alpha(t)$. Furthermore, suppose that for some $\delta > 0$

$$E|\xi_s|^{4+2\delta} < \infty$$

and

(21)
$$\int_0^\infty \alpha^{\frac{2\delta}{2+\delta}}(t)dt < \infty.$$

Then, for the process defined by (20)

(22)
$$X(T) = X(0) \exp\{T\nu + \sigma\rho W(T)\} \quad a.s$$

holds for all T > 0 where

$$\rho^2 = \lim_{T \to \infty} \frac{1}{T} \int_0^T \int_0^T \operatorname{cov}(\xi_s, \xi_{s'}) ds ds' > 0.$$

Remark. As for the definition of the time-continuous stationary mixing process $\{\xi_t\}$, see Ibragimov and Linnik (1971, p.362).

To prove Theorem 3 we need the following simple lemma.

LEMMA 1. Let $t_k = km^{-1}$. Suppose $\{\xi_s\}$ is a stationary process such that $E|\xi_s|^p < \infty$ for $p \ge 2$. Then, for any $k \ge 1$

(23)
$$E \left| \int_{t_{k-1}}^{t_k} (\nu + \sigma \xi_s) ds \right|^p = E \left| \int_0^{t_1} (\nu + \sigma \xi_s) ds \right|^p = O\left(\frac{1}{m^p}\right).$$

Proof. By the Jensen inequality we have

$$E \left| \int_{0}^{t_{1}} (\nu + \sigma\xi_{s}) ds \right|^{p}$$

= $t_{1}^{p} E \left(\frac{1}{t_{1}} \int_{0}^{t_{1}} |\nu + \sigma\xi_{s}| ds \right)^{p} \le t_{1}^{p} E \left(\frac{1}{t_{1}} \int_{0}^{t_{1}} |\nu + \sigma\xi_{s}|^{p} ds \right)$
= $t_{1}^{p} \left(\frac{1}{t_{1}} \int_{0}^{t_{1}} E |\nu + \sigma\xi_{s}|^{p} ds \right) \le ct_{1}^{p} = c\frac{1}{m^{p}}.$

(24)
$$\left|\int_{t_{k-1}}^{t_k} (\nu + \sigma \xi_s) ds\right| \le m^{-\frac{1}{2}} \quad a.s.$$

In fact, since by Lemma 1 (with p = 3) and the Markov inequality, we have

$$\sum_{m=1}^{\infty} P\left(\left| \int_{t_{k-1}}^{t_k} (\nu + \sigma \xi_s) ds \right| > m^{-\frac{1}{2}} \right)$$

$$\leq \sum_{m=1}^{\infty} m^{\frac{3}{2}} E \left| \int_{t_{k-1}}^{t_k} (\nu + \sigma \xi_s) ds \right|^3 \leq \sum_{m=1}^{\infty} m^{\frac{3}{2}} cm^{-3} = c \sum_{m=1}^{\infty} m^{-\frac{3}{2}} < \infty.$$

and, via the Borel-Cantelli Lemma, (24) is obtained.

Accordingly, for all m sufficiently large and all k we can define

$$U_{m,k} = \log\left(1 + \int_{t_{k-1}}^{t_k} (\nu + \sigma\xi_s) ds\right) \quad (k \ge 1).$$

We note that for each m fixed $\{U_{m,k} : k \ge 1\}$ is a strictly stationary strong mixing sequence with mixing coefficient $\alpha(n)$.

Now, we consider

(25)
$$\log \frac{X(T)}{X(0)} = \sum_{k=1}^{[mT]} \log \frac{X(t_k)}{X(t_{k-1})} + \log \frac{X(T)}{X([mT]m^{-1})}$$
$$= \sum_{k=1}^{[mT]} EU_{m,k} + \sum_{k=1}^{[mT]} (U_{m,k} - EU_{m,k}) + \log \frac{X(T)}{X([mT]m^{-1})}$$

Firstly, we note that the last term in the above equation is negligible, which means

(26)
$$\log \frac{X(T)}{X([mT]m^{-1})} = O(m^{-\frac{1}{2}}) \quad a.s.$$

Since $\{\nu + \sigma \xi_s\}$ is strictly stationary, using the elementary inequality $\log(1 + x) < x \ (x > 0)$ and Lemma 1 (with p = 3), we have

$$E \left| \log \frac{X(T)}{X([mT]m^{-1})} \right|^3 = E \left| \log \left(1 + \int_{[mT]/m}^T (\nu + \sigma \xi_s) ds \right) \right|^3$$
$$\leq E \left| \log \left(1 + \int_{[mT]/m}^{([mT]+1)/m} |\nu + \sigma \xi_s| ds \right) \right|^3$$

$$= E \left| \log \left(1 + \int_0^{t_1} |\nu + \sigma \xi_s| ds \right) \right|^3$$
$$\leq E \left| \int_0^{t_1} |\nu + \sigma \xi_s| ds \right|^3 \leq \frac{c}{m^3},$$

Thus, by the Borel-Cantelli lemma we have (26).

Next, by the Taylor theorem we may write $U_{\boldsymbol{m},\boldsymbol{k}}$ as

$$U_{m,k} = \log\left(1 + \int_{t_{k-1}}^{t_k} (\nu + \sigma\xi_s) ds\right) = \int_{t_{k-1}}^{t_k} (\nu + \sigma\xi_s) ds + R_{m,k,2},$$

where $R_{m,k,2}$ denotes the residual, that is,

$$R_{m,k,2} = -\frac{1}{2} \left(1 + \theta_k(\omega) \int_{t_{k-1}}^{t_k} (\nu + \sigma\xi_s) ds \right)^{-2} \left(\int_{t_{k-1}}^{t_k} (\nu + \sigma\xi_s) ds \right)^2$$

where $\theta_k(\omega)$ is a random variable such that $|\theta_k(\omega)| \leq 1$. We note that by (24)

$$|R_{m,k,2}| \le \frac{1}{2} \left(1 - 2^{-1}\right)^{-2} \left(\int_{t_{k-1}}^{t_k} (\nu + \sigma\xi_s) ds\right)^2 = 2 \left(\int_{t_{k-1}}^{t_k} (\nu + \sigma\xi_s) ds\right)^2 \quad a.s.$$

for all m sufficiently large. Thus, by the stationarity of $\{\xi_t\}$ and Lemma 1

(27)
$$E|R_{m,k,2}| \le 2E \left| \int_{t_{k-1}}^{t_k} (\nu + \sigma\xi_s) ds \right|^2 = 2E \left| \int_0^{t_1} (\nu + \sigma\xi_s) ds \right|^2 \le c \frac{1}{m^2},$$

and

(28)
$$E|R_{m,k,2}|^{2+\delta} \le cE \left| \int_{t_{k-1}}^{t_k} (\nu + \sigma\xi_s) ds \right|^{4+2\delta}$$
$$= cE \left| \int_0^{t_1} (\nu + \sigma\xi_s) ds \right|^{4+2\delta} \le c \frac{1}{m^{4+2\delta}}.$$

Thus, noting that $E\xi_s = 0$, and using (27) we have

$$\sum_{k=1}^{[mT]} EU_{m,k} = \sum_{k=1}^{[mT]} E \log \left(1 + \int_{t_{k-1}}^{t_k} (\nu + \sigma \xi_s) ds \right)$$
$$= \sum_{k=1}^{[mT]} E \left(\int_{t_{k-1}}^{t_k} (\nu + \sigma \xi_s) ds + R_{m,k,2} \right)$$

$$= \sum_{k=1}^{[mT]} \left\{ E \int_{t_{k-1}}^{t_k} (\nu + \sigma \xi_s) ds + O(m^{-2}) \right\}$$
$$= \nu \sum_{k=1}^{[mT]} \int_{t_{k-1}}^{t_k} ds + O(m^{-1}T) = \nu T + O(m^{-1}T).$$

Now, put

$$V_{m,j,k} = \operatorname{cov}(U_{m,j}, U_{m,k}) \quad (j,k \ge 1)$$

and evaluate $V_{m,j,k}$ in the case j < k - 2. We write $V_{m,j,k}$ as

$$\begin{aligned} V_{m,j,k} &= \operatorname{cov}\left(\log\left(1 + \int_{t_{j-1}}^{t_j} (\nu + \sigma\xi_s)ds\right), \log\left(1 + \int_{t_{k-1}}^{t_k} (\nu + \sigma\xi_{s'})ds'\right)\right) \\ &= \operatorname{cov}\left(\int_{t_{j-1}}^{t_j} (\nu + \sigma\xi_s)ds + R_{m,j,2}, \int_{t_{k-1}}^{t_k} (\nu + \sigma\xi_{s'})ds' + R_{m,k,2}\right) \\ &= \operatorname{cov}\left(\int_{t_{j-1}}^{t_j} (\nu + \sigma\xi_s)ds, \int_{t_{k-1}}^{t_k} (\nu + \sigma\xi_{s'})ds'\right) \\ &+ \operatorname{cov}\left(\int_{t_{j-1}}^{t_j} (\nu + \sigma\xi_s)ds, R_{m,k,2}\right) + \operatorname{cov}\left(R_{m,j,2}, \int_{t_{k-1}}^{t_k} (\nu + \sigma\xi_{s'})ds'\right) \\ &+ \operatorname{cov}(R_{m,j,2}, R_{m,k,2}) \\ &= D_{1,j,k} + D_{2,j,k} + D_{3,j,k} + D_{4,j,k} \quad (\text{say}). \end{aligned}$$

Since for any j

$$E\int_{t_{j-1}}^{t_j} (\nu + \sigma\xi_s) ds = \int_{t_{j-1}}^{t_j} \nu ds,$$

we have

$$D_{1,j,k} = \operatorname{cov}\left(\int_{t_{j-1}}^{t_j} (\nu + \sigma\xi_s) ds, \int_{t_{k-1}}^{t_k} (\nu + \sigma\xi_{s'}) ds'\right)$$
$$= \sigma^2 \int_{t_{j-1}}^{t_j} \int_{t_{k-1}}^{t_k} \operatorname{cov}(\xi_s, \xi_{s'}) ds ds'.$$

We note here that for j < k - 1

$$\int_{t_{j-1}}^{t_j} (\nu + \sigma \xi_s) ds \in \mathcal{M}_{-\infty}^{t_j} \quad \text{and} \quad R_{m,k,2} \in \mathcal{M}_{t_{k-1}}^{\infty}.$$

Hence, by Lemma A, Lemma 1 and the fact that $\alpha(t)$ is monotone decreasing, we have

$$|D_{2,j,k}| \le c_0 \left\| \int_{t_{j-1}}^{t_j} (\nu + \sigma \xi_s) ds \right\|_{2+\delta} \|R_{m,k,2}\|_{2+\delta} \alpha^{\frac{\delta}{2+\delta}} (t_{k-1} - t_j)$$

K. YOSHIHARA

$$\leq c_0 \left(\frac{1}{m^{2+\delta}}\right)^{2+\delta} \left(\frac{1}{m^{4+2\delta}}\right)^{\frac{1}{2+\delta}} \alpha^{\frac{\delta}{2+\delta}} (t_{k-1} - t_j) \\ \leq c_0 \frac{1}{m} \frac{1}{m^2} m \int_{t_{k-2}}^{t_{k-1}} \alpha^{\frac{\delta}{2+\delta}} (t - t_j) dt \leq c_0 \frac{1}{m^2} \int_{t_{k-2}}^{t_{k-1}} \alpha^{\frac{\delta}{2+\delta}} (t - t_j) dt.$$

Similarly, we have

$$|D_{3,j,k}| \le c_0 \frac{1}{m^2} \int_{t_{k-2}}^{t_{k-1}} \alpha^{\frac{\delta}{2+\delta}} (t-t_j) dt$$

and

$$|D_{4,j,k}| \le c_0 \frac{1}{m^2} \int_{t_{k-2}}^{t_{k-1}} \alpha^{\frac{\delta}{2+\delta}} (t-t_j) dt$$

Further, for k = j, j + 1, j + 2

$$V_{m,j,k} \leq \|U_{m,j}\|_2 \|U_{m,k}\|_2 = \|U_{m,1}\|_2^2$$

$$\leq E \left| \log \left(1 + \int_{t_{j-1}}^{t_j} |\nu + \sigma \xi_s| ds \right) \right|^2$$

$$\leq E \left(\int_0^{t_1} |\nu + \sigma \xi_s| ds \right)^2 \leq c_0 m^{-2}.$$

Combining these inequalities and using (21) we have

$$\begin{split} &\frac{1}{[mT]} \sum_{j=1}^{[mT]} \sum_{k=1}^{[mT]} V_{m,j,k} \\ &= \frac{1}{mT} \sum_{j=1}^{[mT]} (V_{m,j,j} + 2V_{m,j,j+1} + 2V_{m,j,j+2}) + \frac{1}{[mT]} \sum_{j=1}^{[mT]} \sum_{k=1}^{[mT]} D_{1,j,k} \\ &+ 2 \frac{1}{[mT]} \sum_{1 \le j < k-2 \le [mT]-2} (D_{2,j,k} + D_{3,j,k} + D_{4,j,k}) \\ &= O(m^{-2}) + \frac{\sigma^2}{[mT]} \int_0^{[mT]/m} \int_0^{[mT]/m} \operatorname{cov}(\xi_s, \xi_{s'}) ds ds' \\ &+ O(m^{-2}) \frac{1}{[mT]} \sum_{j=1}^{[mT]} \sum_{k=1}^{mT]} \int_{t_{k-2}}^{t_{k-1}} \alpha^{\frac{\delta}{2+\delta}} (t - t_j) dt \\ &= O(m^{-2}) + \frac{\sigma^2 T}{[mT]} \frac{1}{T} \int_0^{[mT]/m} \int_0^{[mT]/m} \operatorname{cov}(\xi_s, \xi_{s'}) ds ds' \\ &+ O(m^{-2}) \int_0^T \alpha^{\frac{\delta}{2+\delta}} (t) dt \end{split}$$

10

$$= \frac{\sigma^2}{m} \frac{1}{T} \int_0^T \int_0^T \cos(\xi_s, \xi_{s'}) ds ds' + O(m^{-2}).$$

Hence, via the definition of ρ^2 , we can define

$$\hat{\rho}_m^2 = \lim_{T \to \infty} \frac{1}{[mT]} \sum_{j=1}^{[mT]} \sum_{k=1}^{[mT]} V_{m,j,k} = \frac{\sigma^2}{m} (\rho^2 + O(m^{-2}))$$

for all m sufficiently large.

Since $\{U_{m,k} - EU_{m,k}\}$ is a stationary strong mixing sequence of zero mean random sequence, by Theorem A we have

$$\sum_{k=1}^{[mT]} \{ U_{m,k} - EU_{m,k} \}$$

= $\hat{\rho}_m (W(mT) + o((mT)^{\frac{1}{2}-\lambda}))$
= $\sqrt{\frac{\sigma^2}{m}} (\rho^2 + O(m^{-2})) (W(mT) + o((mT)^{\frac{1}{2}-\lambda}))$
= $\sqrt{\sigma^2 \rho^2 + O(m^{-2})} (W(T) + o(m^{-\lambda}T^{\frac{1}{2}-\lambda}))$ a.s.

for all *m* sufficiently large where λ is a number such that $0 < \lambda < \frac{1}{2}$.

Combining (25) with the above relations, we have

$$\log \frac{X(T)}{X(0)} = T\nu + \sqrt{\sigma^2(\rho^2 + O(m^{-2}))} (W(T) + o(m^{-\lambda}T^{\frac{1}{2}-\lambda})) + O(m^{-1}T) + O(m^{-2})$$

holds almost surely for all m sufficiently large.

Finally, letting $m \to \infty$, we have (22) and the proof is completed. \Box

Next, we consider the process $\{X(t_k)\}$ satisfying

(29)
$$\Delta X(t_k) = \left((t_k - t_{k-1})\nu + \sqrt{t_k - t_{k-1}}\sigma\zeta_k \right) X(t_{k-1}) \quad (1 \le k \le n),$$

for all *n* where $\{\zeta_i\}$ is a strictly stationary strong mixing sequence with $E\zeta_1 = 0$ and $E\zeta_1^2 = 1$, and $\sigma > 0$ is some absolute constant.

THEOREM 4. Suppose the process $\{\zeta_i\}$ is strictly stationary with $E\zeta_1 = 0$ and $E\zeta_1^2 = 1$, and satisfies the strong mixing condition with mixing coefficient $\alpha(n)$. Furthermore, suppose that for some $\delta > 0$

(30)
$$E|\zeta_1|^9 < \infty \text{ and } \sum_{n=1}^{\infty} \alpha^{\frac{2\delta}{2+\delta}}(n) < \infty.$$

11

Then, for the process satisfying (29)

(31)
$$X(T) = X(0) \exp\left\{T\left(\nu - \frac{\sigma^2}{2}\right) + \sigma\rho W(T)\right\} \quad a.s.$$

where

(32)
$$\rho^2 = \lim_{n \to \infty} \frac{1}{n} \left\{ n \operatorname{Var} \zeta_1 + 2 \sum_{1 \le i < j \le n} \operatorname{cov}(\zeta_i, \zeta_j) \right\} > 0.$$

Proof. Firstly, let $k \ge 1$ be arbitrary. We note that

$$E\left|\frac{T}{n}\nu + \sqrt{\frac{T}{n}}\sigma\zeta_{k}\right|^{9} \leq E\left|\frac{T}{n}\nu + \sqrt{\frac{T}{n}}\sigma\zeta_{1}\right|^{9}$$
$$\leq \left(\frac{T}{n}\right)^{\frac{9}{2}}E\left|\sqrt{\frac{T}{n}}\nu + \sigma\zeta_{1}\right|^{9} \leq c_{0}\left(\frac{T}{n}\right)^{\frac{9}{2}}.$$

So, we have

$$P\left(\left|\frac{T}{n}\nu + \sqrt{\frac{T}{n}}\sigma\zeta_{k}\right|^{3} \ge n^{-\frac{17}{16}}\right)$$

$$\le n^{\frac{51}{16}}E\left|\frac{T}{n}\nu + \sqrt{\frac{T}{n}}\sigma\zeta_{k}\right|^{9} \le c_{0}n^{\frac{51}{16}}\left(\frac{T}{n}\right)^{\frac{9}{2}} \le c_{0}T^{\frac{9}{2}}n^{-\frac{21}{16}},$$

which, via the Borel-Cantelli lemma, implies that for all n sufficiently large

(33)
$$\left|\frac{T}{n}\nu + \sqrt{\frac{T}{n}}\sigma\zeta_k\right|^3 \le n^{-\frac{17}{16}} \quad a.s.$$

Thus, we can define

$$\log(1 + (t_k - t_{k-1})\nu + \sqrt{t_k - t_{k-1}}\zeta_k) = \log\left(1 + \frac{T}{n}\nu + \sqrt{\frac{T}{n}}\sigma\zeta_k\right),$$

By the Taylor theorem we can write

$$\log\left(1 + \frac{T}{n}\nu + \sqrt{\frac{T}{n}}\sigma\zeta_k\right) = \left(\frac{T}{n}\nu + \sqrt{\frac{T}{n}}\sigma\zeta_k\right) - \frac{1}{2}\left(\frac{T}{n}\nu + \sqrt{\frac{T}{n}}\sigma\zeta_k\right)^2 + R_{n,k,3}$$

where $R_{n,k,3}$ is the residual, that is,

$$R_{n,k,3} = \frac{1}{3} \left(1 + \theta(\omega) \left(\frac{T}{n} \nu + \sqrt{\frac{T}{n}} \sigma \zeta_k \right) \right)^{-3} \left(\frac{T}{n} \nu + \sqrt{\frac{T}{n}} \sigma \zeta_k \right)^3$$

where $\theta_k(\omega)$ is a random variable such that $|\theta_k(\omega)| \leq 1$. Now, we consider

$$\log \frac{X(T)}{X(0)} = \sum_{k=1}^{n} \log(1 + (t_k - t_{k-1})\nu + \sqrt{t_k - t_{k-1}}\zeta_k))$$

= $\sum_{k=1}^{n} \left\{ \left(\frac{T}{n}\nu + \sqrt{\frac{T}{n}}\sigma\zeta_k\right) - \frac{1}{2}\left(\frac{T}{n}\nu + \sqrt{\frac{T}{n}}\sigma\zeta_k\right)^2 + R_{n,k,3} \right\}$
= $T\nu + \sum_{k=1}^{n} \sqrt{\frac{T}{n}}\sigma\zeta_k + \frac{1}{2}\sum_{k=1}^{n} \left(\frac{T}{n}\nu + \sqrt{\frac{T}{n}}\sigma\zeta_k\right)^2 + \sum_{k=1}^{n} R_{n,k,3}$
= $T\nu + I_{n,1} + I_{n,2} + I_{n,3}$, (say).

Since $\{\zeta_k\}$ is stationary, by (33) we have

$$|R_{n,k,3}| \le c_1 \left| \frac{T}{n} \nu + \sqrt{\frac{T}{n}} \sigma \zeta_1 \right|^3 \le c_1 n^{-\frac{17}{16}} \quad (k \ge 1) \quad a.s.$$

for all n sufficiently large. Hence, as $n \to \infty$ we have

(34)
$$|I_{n,3}| = O(n^{-\frac{1}{16}}) \quad a.s.$$

Next, noting that $E\zeta_1 = 0$ and $E\zeta_1^2 = 1$ and using the strong law of large numbers

(35)
$$I_{n,2} = -\frac{1}{2} \left\{ \sum_{k=1}^{n} \left(\frac{T}{n} \nu \right)^2 + 2\nu\sigma \sum_{k=1}^{n} \left(\frac{T}{n} \right)^{\frac{3}{2}} + \sum_{k=1}^{n} \frac{T}{n} \sigma^2 \zeta_k^2 \right\}$$
$$= O(T^2 n^{-1}) + O(T^{\frac{3}{2}} n^{-\frac{1}{2}}) - \frac{1}{2} T \sigma^2 \quad a.s.$$

Finally, by Theorem A

(36)
$$I_{1,n} = \sqrt{\frac{T}{n}} \sigma \sum_{k=1}^{n} \zeta_k = \sqrt{\frac{T}{n}} \sigma \{\rho W(n) + O(n^{\frac{1}{2}-\lambda})\}$$
$$= \sigma \rho W(T) + O\left(T^{\frac{1}{2}}n^{-\lambda}\right) \quad a.s.$$

for all n sufficiently large.

Using (34)-(36) we have

$$\log \frac{X(T)}{X(0)} = T\nu + \{\sigma\rho W(T) + O(T^{\frac{1}{2}}n^{-\lambda})\} - \frac{1}{2}\{T\sigma^{2} + O(T^{2}n^{-\frac{1}{2}})\} + O(n^{-\frac{1}{16}}) \quad a.s.$$

for all n sufficiently large.

Hence, letting $n \to \infty$ we have (31) and the proof is completed. \Box

K. YOSHIHARA

COROLLARY. $\{\zeta_i\}$ is an *i.i.d.* sequence of random variables with $E\zeta_1 = 0$ and $E\zeta_1^2 = 1$. Then

(37)
$$X(T) = X(0) \exp\left\{T\left(\nu - \frac{\sigma^2}{2}\right) + \sigma W(T)\right\} \quad a.s$$

Specifically, if $\{\zeta_i\}$ is an i.i.d. sequence of N(0,1)-random variables, then the same coclusion holds.

Proof. Since $E\zeta_i = 0$, $\operatorname{Var}\zeta_i = 1$ and $\operatorname{cov}(\zeta_i, \zeta_j) = 0$ $(i \neq j)$, we have $\rho^2 = 1$. Hence, the desired conclusion follows from Theorem 4. \Box

Remark. The condition (30) is not best possible ones. We can relax those conditions by the tedious calculations.

4. Applications

Now, we consider the option pricing. Let S be the price of a stock. We assume that S is continuous and is generated by the formula

(38)
$$S(t+dt) = S(t)\{1 + \nu dt + \sigma \zeta_t \sqrt{dt}\}$$

with the initial condition $S(0) = S_0$, where $\sigma > 0$ is some constant and $\{\zeta_t\}$ is a strictly stationary strong mixing stochastic process with $E\zeta_1 = 0$ and $E\zeta_1^2 = 1$. In the sequel, we always assume that $\{\zeta_i\}$ satisfies the condition (30) and

$$\rho^2 = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n \sum_{j=1}^n \operatorname{cov}(\zeta_i, \zeta_j) = 1.$$

Let f(S,t) be the price of the claim at time t when the stock price is S.

To obtain the asymptotic Black-Scholes formula, we need the following lemma which is known (see, for example, N.H. Chan and H.Y.Wong (2006)).

LEMMA B. Let S be a lognormally distributed random variables such that $\log S$ is an $N(\nu, \rho^2)$ -variable and let K be a given constant. Then

(39)
$$E\{\max(S-K,0)\} = E(S)\Phi(d_1) - K\Phi(d_2),$$

where $\Phi(\cdot)$ denotes the distribution function of a standard normal random variable and

$$d_1 = \frac{1}{\rho} \left(-\log K + \nu + \rho^2\right) = \frac{1}{\rho} \log\left(E\left(\frac{S}{K}\right) + \frac{\rho^2}{2}\right),$$
$$d_2 = \frac{-\log K + \nu}{\rho} = \frac{1}{\rho} \log\left(E\left(\frac{S}{K}\right) - \frac{\rho^2}{2}\right).$$

Remark. Since

$$E(S) = \exp\left(\nu + \frac{\rho^2}{2}\right),$$

we can rewrite (39) as

$$E\{\max(S-K,0)\} = \exp\left(\nu + \frac{\rho^2}{2}\right)\Phi(d_1) - K\Phi(d_2).$$

Using the usual methods, from Theorem 4 and Lemma B we have the following theorems which are generalizations of the Black-Scholes option pricing formulas.

THEOREM 5. Consider a Europian option with payoff F(S) and expiration time T. Suppose the continuous compounding interest rate r. Then, the current Europian option price is determined by

(40)
$$f(S,0) = e^{-rT} \hat{E} \{ F(S(T)) \},$$

where \dot{E} denotes the expectation under the risk-neutral probability that is derived from the risk-neutral process defined by (38) with $\nu = r$.

THEOREM 6. Consider a Europian call option with strike price K and expiration time T. If the underlying stock pays no dividends during the time [0,T] and if there is continuously compounded risk-free rate r, then the price of this contract at time 0, f(S,0) = C(S,0), is given by

(41)
$$C(S,0) = S\Phi(d_1) - Ke^{-rT}\Phi(d_2).$$

The proofs are omitted.

Acknowledgement. The author thanks anonymous refrees for their valuable comments.

References

- Hang, N. H. and Wong H. Y. (2006). Simulation Techniques in Financial Risk Management, Wiley-Interscience.
- [2] Ibragimov, I. A. and Linnik, Yu. V. (1971), Independent and stationary sequences of random variables. Wolter-Noordhoff Publishing, Groningen, The Neterlands.
- [3] Yoshihara, K. (1992). Weakly dependent stochastyic sequences and their applications. Vol. I. Summation theory for weakly dependent sequences. Sanseido, Tokyo.
- Yoshihara, K. (1997). Weakly dependent stochastyic sequences and their applications. Vol. VIII. Mixing stochastic differential equations. Sanseido, Tokyo.
- [5] Yoshihara, K. (2009). Self-normalized U-statistics defined by absolutely regular sequences. Yokohama Math. J. 55, 1–19.