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Abstract. In this article, we shall prove that any two hexangulations on the
sphere with the same number of vertices can be transformed into each other by
three kinds of transformations specifically defined.

1. Introduction

An n-angulation G is a 2-connected simple graph on a closed surface such

that each face of G is bounded by a cycle of length n, where n ≥ 3 is an in-

teger. In an n-angulation, let P = x1y1y2 · · · yl−2yl−1xk be a path of length l

(1 ≤ l ≤ bn
2
c, l + k = n + 1), which is shared by two faces F1 and F2, where

the boundaries of F1 and F2, denoted ∂F1 and ∂F2, are supposed to be ∂F1 =

x1x2x3 · · · xk−2xk−1xkyl−1yl−2 · · · y2y1 and ∂F2 = x1x2k−2x2k−3 · · ·
xk+2xk+1xkyl−1yl−2 · · · y2y1, respectively. See Figure 1, replacing a path P with

a path P ′ = x2y1y2 · · · yl−2yl−1xk+1 is called a diagonal transformation. So, for

n-angulations, there are bn
2
c kinds of diagonal transformations, depending on

the length l of the path P . When this transformation breaks the simpleness or

2-connectedness of graphs, we don’t apply it. Two n-angulations are said to be

equivalent if they can be transformed into each other by diagonal transformations,

up to homeomorphism.

There are many results on diagonal transformations in graphs on closed sur-

faces. For triangulations on closed surfaces, the following theorem was proved.

By the definition of diagonal transformations, flipping an edge is a unique diag-

onal transformation for triangulations, and it is called a diagonal flip. Related

topics are in [1, 3].

THEOREM 1. (S. Negami [7]) For any closed surface F 2, there exists a posi-

tive integer N(F 2) such that any two triangulations G1 and G2 with |V (G1)| =

|V (G2)| ≥ N(F 2) are equivalent to each other, up to homeomorphism.
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Figure 1 Diagonal transformations in n-angulations

For quadrangulations on the sphere, the following theorem was proved. Note

that any quadrangulation on the sphere is bipartite. By the definition of diagonal

transformations, sliding an edge and rotating a path of length 2 are two kinds of

diagonal transformations in quadrangulations, and they are called a diagonal slide

and a diagonal rotation, respectively. Related topics are in [4, 6], in which diago-

nal transformations in non-bipartite quadrangulations on non-spherical surfaces

are also considered. Though those transformations clearly preserve the bipar-

titeness of graphs, any two non-bipartite quadrangulations are not necessarily

equivalent to each other even if they have the same and sufficiently large number

of vertices. The equivalence can be descibed by a notion called a “cycle parity”,

where the detailed argument can be found in [6].

THEOREM 2. (A. Nakamoto [5]) For any closed surface F 2, there exists a pos-

itive integer M(F 2) such that any two bipartite quadrangulations G1 and G2 with

|V (G1)| = |V (G2)| ≥ M(F 2) are equivalent to each other, up to homeomorphism.

For quintangulations which are 5-angulations in our terminology, the following

theorem was proved. Diagonal transformations in quintangulations are the same

as those for quadrangulations.

THEOREM 3. (J. Kanno et al. [2]) Any two quintangulations on the sphere

with the same number of vertices are equivalent to each other, up to homeomor-

phism.

In this paper, we would like to consider 6-angulations which are called hexan-

gulations. We always consider a fixed vertex 2-coloring which assigns black and

white to the vertices of hexangulations since hexangulations on the sphere are

always bipartite.

By the definition of diagonal transformations, diagonal transformations in

hexangulations are Transformations A,B and C which are shown in Figures 2,
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3 and 4, respectively. The shaded regions mean a part of a hexangulation other

than two neighboring faces.

Our main theorem can be described as follow.

THEOREM 4. Any two hexangulations on the sphere with the same number of

vertices are equivalent to each other, up to homeomorphism.
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Figure 2 Transformation A
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Figure 4 Transformation C

2. Necessity of the transformations

In this section, we shall show that each of Transformations A,B and C is

necessary in Theorem 4. That is, if we omit any one of the three transformations,

then we can find a hexangulation which cannot be transformed into any other

hexangulation only by the remaining two transformations.
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PROPOSITION 5. For any two of Transformations A,B and C, there are

hexangulations which cannot be transformed by them.

Proof. Firstly we construct a hexangulation which needs Transformation C. See

Figure 5, which shows a standard form of hexangulations on the sphere. Clearly,

this admits only Transformation C, since each of Transformations A and B yields

a vertex of degree one.

Figure 5 The standard form

Secondly we construct a hexangulation which needs Transformation A. Fig-

ure 6 shows a hexangulation obtained from a spherical quadrangulation by adding

a path of length 4 whose three middle vertices are of degree 2 into each face as

a diagonal. It is easy to see that neither of Transformations B and C can be

applied to it.

Figure 6 A hexangulation obtained from a spherical quadrangulation

Finally we construct a hexangulation which needs Transformation B. Figure

7 shows a hexangulation obtained from a spherical triangulation by subdividing

each edge with exactly one vertex. We can see that only Transformation B can

be applied to it.

Therefore we have been able to show that we cannot omit any one of the

three diagonal transformations from Theorem 4.
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Figure 7 A hexangulation obtained from a spherical triangulation

3. Lemmas

Before we prove our main theorem, we show the following lemmas. Let xy

be an edge in a hexangulation, and we suppose that xy can be flipped by Trans-

formation A to join two vertices a and b. In this case, we denote xy → ab. For

Transformation B (resp., C) applied to a path xvy (resp., xvuy), we similarly

denote xvy → avb (resp., xvuy → avub).

LEMMA 6. Let G be a hexangulation on the sphere and let x ∈ V (G) with

deg(x) ≥ 3.

(1) Let e = xy be an edge with deg(y) ≥ 3. Then e can be flipped by Transfor-

mation A to reduce the degree of x.

(2) Let P = xyz be a path of length 2 with deg(y) = 2 and deg(z) ≥ 3. Then P

can be flipped by Transformation B to reduce the degree of x.

(3) Let P = xyzw be a path of length 3 with deg(y) = deg(z) = 2 and deg(w) ≥
3. Then P can be flipped by Transformation C to reduce the degree of x.

Proof. (1) We apply Transformation A. If xy is shared by two faces xabcdy

and xpqrsy, there are two choices to move xy, that is, xy → as or xy → pd

(see Figure 2). By the planality, one of those two transformations is possible

without loss the simpleness and 2-connectedness of graphs. That is, if xy → as

is impossible, then G has an edge as. In this case, the 4-cycle axys separates p

and d in the interior and exterior. Hence we have xy → pd.

(2) We apply Transformation B. If xyz is shared by two faces xabczy and

xpqrzy, there are two choices to move xyz, that is, xyz → ayr or xyz → pyc

(see Figure 3). If both are impossible, we have both a = r and c = p. Similarly

to (1), it is impossible since a 6= c by the 2-connectedness of graphs.

(3) Transformation C is always possible without breaking the simpleness and

2-connectedness of graphs (see Figure 4).

We define Transformation D as shown in Figure 8, and let us consider whether
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any two hexangulations with the same number of vertices can be transformed

into each other by Transformations A,B,C and D. By the following lemma, this

proves Theorem 4.
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Figure 8 Transformation D

LEMMA 7. Let G be a hexangulation on the sphere and let x ∈ V (G) with

deg(x) ≥ 3. Let P = xyzwv be a path of length 4 with deg(y) = deg(z) =

deg(w) = 2 and deg(v) ≥ 3. Then P can be flipped by Transformation D to

reduce the degree of x. Moreover, Transformation D can be derived from Trans-

formations A,B and C.

Proof. It is easy to see that Transformation D is always possible without break-

ing the simpleness and 2-connectedness of graphs.

We consider whether Transformation D can be obtained by a sequence of

Transformations A,B and C. Suppose that the union of two faces sharing a path

xyzwv of length four is bounded by a 4-cycle xavp as shown in Figure 8. We

consider a face neighboring to the quadrilateral region Γ bounded by the 4-cycle

xavp. By the planarity, we can always find a face f such that the common edges

of f and Γ induce a connected graph. Moreover, we can see that the number

of such common edges is at most two by the simpleness and 2-connectedness of

graphs, and hence we have the following.

CASE 1. There is a face f sharing exactly one edge with Γ.

Without loss of generality, we may suppose that f contains the edge pv.

Transformation D can be derived from Transformations A,B and C, as shown

in Figure 9. Since the intersection of f and Γ is only pv, all transformations in

Figure 9 preserve the simpleness and 2-connectedness of graphs.

CASE 2. There is a face f sharing exactly two edges with Γ.

Without loss of generality, we may suppose that f contains the path pva.

Transformation D can be derived from Transformations A,B and C, as shown
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Figure 9 Case 1

in Figure 10. Since f is bounded by a cycle, all transformations preserve the

simpleness and 2-connectedness of graphs.

Therefore, Transformation D can be derived from a sequence of Transforma-

tions A,B and C in all cases.

4. Proof of the theorem

In this section, we shall prove the following theorem. By Lemma 7, Theorem

4 is equivalent to Theorem 8.

THEOREM 8. Any two hexangulations on the sphere with the same number of

vertices can be transformed into each other by Transformations A,B,C and D,

up to homeomorphism.

Proof. Let G be a hexangulation on the sphere with an outer cycle NxySzw. By

induction on |V (G)|, we shall prove that G can be transformed into the standard

form (shown in Figure 5), by Transformations A, B, C and D, fixing the outer

6-cycle. If G is isomorphic to a 6-cycle, then G can be regarded as the standard

form, and hence we may suppose that |V (G)| > 6. For a face or a 2-cell region

f of G, let ∂f denote the boundary cycle of f .

STEP 1. We make deg(x) = deg(y) = 2.

First, applying Transformations A,B,C and D, we can make deg(x) = 2 by
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Lemmas 6 and 7. We may suppose that deg(y) 6= 2. Let F1 be the finite face

containing x, where ∂F1 is supposed to be yuhkNx. Since deg(y) 6= 2, we have

u 6= S. So we let F2 be a finite face sharing uy with F1, where ∂F2 = yuabcd

(see the left in Figure 11).

Now, if d 6= S, we can apply Transformations A,B,C and D to a path or

an edge which contains yd without increasing deg(x) by Lemmas 6 and 7. By

repeating this operation, we have d = S, that is, deg(y) = 3 (see the right in

Figure 11).
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Figure 11 Make deg(y) = 3

Let P be the path shared by ∂F1 and ∂F2, whose middle vertices are of

degree 2 and whose end vertices are y and a vertex of degree 3. We consider the

following four cases, according to the length of P .

CASE 1. P = yu.
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In the right hand of Figure 11, we consider whether Transformation A can be

applied to yu to join h and S. If this is applicable, then we are done. Otherwise, G

has an edge hS. In this case, yu can be switched to an edge ax by Transformation

A, since a 4-cycle Shuy separates a and x in the interior and exterior. Following

this, we can switch ax to an edge bN by Transformation A since a 6-cycle Shuaxy

separates b and N in its interior and exterior. Thus, we can make deg(x) =

deg(y) = 2.

CASE 2. P = yuv with deg(u) = 2.

See Figure 12, which is obtained from the configuration in the right hand of

Figure 11 by identifying a with h. Consider Transformation B to flip yuv to join

k and S. If this is applicable, then we are done. Otherwise, we have k = S. In

this case, we have b 6= x and c 6= N because a 4-cycle Svuy separates {b, c} and

{x,N} in the interior and exterior. Hence yuv can be switched to a path Nuc

by applying Transformation B twice. Thus, we can make deg(x) = deg(y) = 2.
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Figure 12 P = yuv
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Figure 13 P = yuvt

CASE 3. P = yuvt with deg(u) = deg(v) = 2.

See Figure 13, which is obtained from the configuration in Figure 12 by

identifying b with k. Consider Transformation C to flip yuvt to join S and N .

By Lemma 6, we can obtain deg(x) = deg(y) = 2.

CASE 4. P = yuvtN with deg(u) = deg(v) = deg(t) = 2.

See Figure 14, which is obtained from the configuration in Figure 13 by

identifying c with N . Consider Transformation A to flip an edge NS to make

deg(t) = 3. Then we apply Transformation C to yuvt to join N and S as in Case

3.
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Therefore we can make deg(x) = deg(y) = 2 in all cases.
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Figure 14 P = yuvtN
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Figure 15 deg(N) = 2

STEP 2. We make deg(N) ≥ 3 and deg(S) ≥ 3, keeping deg(x) = deg(y) = 2.

We have deg(x) = deg(y) = 2 since we did in Step 1. If we have deg(N) ≥ 3

and deg(S) ≥ 3, then we are done. If deg(N) = deg(S) = 2, then G must

be a 6-cycle, contrary to the assumption on |V (G)| > 6. Hence, by symmetry,

we may suppose deg(N) = 2 and deg(S) ≥ 3 (see Figure 15). Here we may

suppose deg(w) ≥ 4 or deg(S) ≥ 4 or deg(u) ≥ 3. (For otherwise, i.e., if

deg(w) = deg(S) = 3 and deg(u) = 2, then G would have a face whose boundary

is not a cycle, a contradiction.) Moreover, if deg(w) ≥ 4, then we can make

deg(w) = 3 as in Step 1 by Lemmas 6 and 7. Thus we may suppose deg(u) ≥ 3

or deg(S) ≥ 4.

First we assume deg(u) ≥ 3. We consider Transformation A to flip wu since

deg(w) = 3 and deg(u) ≥ 3. Let uwzabc be a face sharing the edge uw with the

face NxySuw. Then uw can be switched to make an edge Nc by Transformation

A, since a 4-cycle zwuS separates c and N in the interior and exterior. Hence

we can make deg(N) ≥ 3 and deg(S) ≥ 3.

Second we may suppose deg(u) = 2 and deg(S) ≥ 4. Let Suwzab be a

face sharing the path Suw with the face NxySuw. Since N 6= b, then we have

wuS → Nub by Transformation B.

Therefore, we can make deg(N) ≥ 3 and deg(S) ≥ 3.

STEP 3. Let G′ be the hexangulation obtained from G by removing the path

NxyS, and apply the procedures in Steps 1 and 2 to G′.

By the inductive hypothesis, we can transform G′ into a standard form, fixing

the boundary cycle of G′. Hence G can be transformed into the standard form

by Transformations A,B,C and D.
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Figure 16 Operation in Step 3 for getting G′ from G

5. Concluding Remarks

In this paper, we have proved that any two hexangulations G and G′ on the

sphere with the same number of vertices can be transformed into each other by

three kinds of transformations, Transformations A,B and C. Moreover, without

any one of the three transformations, we cannot always transform G and G′ as

described in Proposition 5.

Observe that every hexangulation on the sphere is bipartite, and that all of

Transformations A,B and C preserve the bipartiteness of hexangulations. More-

over, let (VB(G), VW (G)) be the bipartition of a given hexangulation G on the

sphere. Then Transformations A and C preserve a bipartition size (|VB(G)|,
|VW (G)|), but Transformation B changes the bipartition size, since Transforma-

tion B changes the color of a vertex of degree 2 included on the path of length

two which is switched by this transformation.

As a natural question, can any two hexangulations with the same bipartition

size be transformed into each other only by Transformations A and C? However,

as we saw in Proposition 5, there exists a hexangulation on the sphere which

cannot be transformed into any other hexangulation only by Transformations A

and C. Hence a further problem would be to define a set of transformations

preserving a bipartition size which guarantees that any two hexangulations with

the same bipartition size can be transformed into each other by them.

How about n-angulations on the sphere with n ≥ 7? For a fixed n, it is

not surprising to be able to prove that any two spherical n-angulations with the

same number of vertices can be transformed into each other by bn
2
c kinds of

transformations, but a proof should be a routine with a case-by-case argument.

We hope to find a good breakthrough to deal with n-angulations for all n ≥ 3.

Simultaneously, which implies all the earlier results for transformations in n-

angulations.

How about n-angulations on non-spherical surfaces with n ≥ 5. Such surfaces
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do not admit “Jordan Curve Theorem”, and hence the problems must be difficult.

The breakthrough for triangulations and quadrangulations to deal with those on

non-spherical surfaces are to find a relation with diagonal transformations and

some reductions of the graphs on surfaces. Such arguments seem to be needed

also for hexangulations.

For solutions for those problems, we would like to expect further researches

on diagonal transformations in hexangulations on surfaces.
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