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Abstract. The distinguishing chromatic number of a graph G is defined as the
minimum number d such that G admits a vertex coloring with d colors which
no automorphism of G other than the identity map preserves, and is denoted by
χD(G). We shall show that χD(G) ≤ χ(G) + 1 for any triangulation G on the
sphere unless it is isomorphic to either K2 +C2r for r ≥ 2 or the face subdivision
of the 3-cube Q3.

Introduction

Let G be a simple graph. An assignment c : V (G) → {1, 2, . . . , d} is called

a (proper) coloring of G if c(u) 6= c(v) for any two adjacent vertices u and v

in G. Furthermore, if no automorphism of G other than the identity map of G

preserves the colors given by a coloring c, we call c a (d-)distinguishing coloring

of G. If there exists a d-distinguishing coloring of G, then G is said to be d-

distinguishing colorable. We define the distinguishing chromatic number of G as

the minimum number d such that G is d-distinguishing colorable, and denote it

by χD(G). The chromatic number χ(G) of G is defined as the minimum number

k such that G is k-colorable, as usual.

The distinguishing chromatic number of a graph has been introduced in [4].

We may define a similar notion called the distinguishing number, replacing a

vertex coloring in the previous with a color assignment, which is not assumed to

be a proper coloring. This has a long history and there have been established

many results; [1, 3, 10] for example.

A graph G is said to be faithfully embedded on a closed surface if G is

embedded on the surface so that if any automorphism of G extends an auto-

homeomorphism of the surface. This notion has been introduced in [7]. A 3-

connected graph G embedded on a closed surface is said to be polyhedral if any

two distinct faces meet each other in at most one vertex or one edge. Negami
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and Sakurai [8] have shown that χD(G) is enough close to χ(G) for a polyhedral

graph G faithfully embedded on a closed surface:

THEOREM 1. (Negami and Sakurai [8]) Let G be a polyhedral graph on a closed

surface. If G is faithfully embedded on the surface, then χD(G) ≤ max{6, χ(G)+

2}.

It is well-known that every 3-connected planar graph has a unique dual,

proved by Whitney [11], and this implies that it can be faithfully embedded on the

sphere. Since it is 4-colorable by Four Color Theorem [2, 9], Theorem 1 implies

that every 3-connected planar graph is 6-distinguishing colorable. However, this

fact has been improved with two exceptions K2,2,2 and K2 + C6, as follows:

THEOREM 2. (Fijavž, Negami and Sano [5]) Every 3-connected planar graph

G is 5-distinguishing colorable unless G is isomorphic to K2,2,2 or K2 + C6.

A triangulation on a closed surface is a polyhedral graph embedded on the

surface that every face is bounded by a cycle of length 3. For example, the double

wheel K2 + Cn can be embedded on the sphere as a triangulation so that the

cycle Cn of length n lies along the equator and the two vertices corresponding to

“K2” are placed at the north and south poles and are joined to all vertices along

the equator.

In this paper, we shall establish a more accurate theorem on the relation-

ship between the distinguishing chromatic number and the chromatic number of

triangulations on the sphere:

THEOREM 3. Let G be a triangulation on the sphere. Then χD(G) ≤ χ(G)+1

unless G is isomorphic to either K2 + C2r for r ≥ 2 or the face subdivision of

Q3.

Let S(Q3) denote the face subdivision of the 3-cube Q3, that is, one obtained

from the cube by adding one vertex to each of its faces so that it is adjacent

to the four vertices lying on the face boundary. Note that K2,2,2 is isomorphic

to K2 + C4. It is not so difficult to see the following for the exceptions in the

theorem:

• χD(G) = χ(G) + 2 = 5 if G is isomorphic to either K2 + C2r for r ≥ 4, or

S(Q3).

• χD(G) = χ(G) + 3 = 6 if G is isomorphic to K2,2,2 or K2 + C6.

In the next section, we shall prepare some technical lemmas on the distin-

guishing chromatic number of triangulations faithfully embedded on closed sur-
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face. Section 2 is devoted to a proof of Theorem 3. Finally, we shall discuss the

distinguishing chromatic number of the exceptions in the theorem in Section 3.

1. Lemmas

In this section, we shall present some lemmas on triangulations on general

closed surfaces.

Let G be a triangulation on a closed surface F 2. Then each vertex v of G is

surrounded by a cycle consisting of all of its neighbors. This cycle is called the

link of v in G and is denoted by lk(v). A vertex u (or a face uvw) of G is said to

be fixed by an automorphism σ ∈ Aut(G) if u = σ(u) (or if u = σ(u), v = σ(v)

and w = σ(w)).

We shall use the following lemma implicitly to discuss the distinguishability

of triangulations faithfully embedded on closed surfaces:

LEMMA 4. Let G be a triangulation faithfully embedded on a closed surface and

σ ∈ Aut(G) an automorphism of G.

(i) If σ fixes a face of G, then σ fixes all vertices of G.

(ii) If σ fixes a vertex of G and all vertices lying along its link, then σ fixes all

vertices of G.

Proof. (i) Suppose that σ ∈ Aut(G) fixes a face A of G. Then any face incident

to A is also fixed by σ since G is faithfully embedded. Repeating this, we conclude

that all faces are fixed by σ and hence all vertices of G are fixed by σ.

(ii) If σ fixes a vertex v of G and all vertices lying along its link, then σ fixes

each of faces incident to v and hence σ fixes all vertices of G by (i).

As the following lemma suggests, degree conditions for vertices often work

well to analyze the distinguishability of graphs.

LEMMA 5. Let G be a triangulation faithfully embedded on a closed surface F 2.

If G has a vertex of odd prime degree, then χD(G) ≤ χ(G) + 1.

Proof. Let c : V (G) → {1, 2, . . . , χ(G)} be any vertex coloring of G with precisely

χ(G) colors and u a vertex of odd prime degree, say degG(u) = p. Define another

vertex coloring c′ : V (G) → {1, 2, . . . χ(G), χ(G) + 1} of G by c′(u) = χ(G) + 1

and c′(x) = c(x) for each vertex x other than u.

Let C = x0x1 · · · xp−1 be the link of u and σ any automorphism of G preserv-

ing the colors given by c′. Since u is a unique vertex of G colored by “χ(G)+1”,

σ fixes u and hence it acts on the link C of u as either a rotation or a reflection
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if it is not the identity map over C.

First, suppose that σ is a rotation over the cycle C of length p. Since p is odd

prime, σ must be of order p and {σi(x0) : i = 0, . . . , p − 1} consists of p distinct

vertices. Then there exists i ∈ {1, . . . , p − 1} such that σi(x0) is adjacent to x0

and hence they would have the same color since σ preserves the colors. However,

this contradicts that c′ is a vertex coloring.

Next, suppose that σ is a reflection over C. Since p is odd, say 2k+1, we may

assume that σ(xi) = x−i after re-labeling, where the indices are taken modulo

p. In particular, σ fixes x0 and exchanges xk and xk+1. The latter implies that

the adjacent pair xk and xk+1 would have the same color since σ preserves the

colors. However, this contradicts that c′ is a vertex coloring, again.

Therefore, σ must be the identity map over C and hence that over G by

Lemma 4. This implies that c′ is a distinguishing coloring of G and we have

χD(G) ≤ χ(G) + 1.

We shall focus on the structures around vertices of degree 4 in our proof of

Theorem 3 given below. The next lemma is very useful to do it but can be proved

easily. We can find it in [6] for example.

LEMMA 6. Let G be a triangulation with minimum degree at least 4 on a closed

surface and H any component of the subgraph induced by the vertices of degree 4

in G. Then, one of the following four holds:

(i) H is either an isolated point or a path.

(ii) H is a cycle of length 3 bounding a face.

(iii) H is a cycle of length at least 5 and G is isomorphic to a double wheel with

rim H on the sphere.

(iv) H = G and it is isomorphic to K2,2,2 on the sphere.

2. Proof

We shall prove Theorem 3 throughout this section. Since any triangulation on

the sphere is 3-connected, it is faithfully embedded on the sphere, as is mentioned

in introduction. Thus, we may use lemmas in the previous section freely for

triangulations on the sphere even if we do not assume the faithfulness of their

embedding explicitly.

The following two lemmas will be used to skip many cases in our arguments

given later:

LEMMA 7. If a triangulation G on the sphere is not 4-connected, then χD(G) ≤
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χ(G) + 1.

Proof. Let G be a triangulation on the sphere. Suppose that G is not 4-connected

and is not isomorphic to K4 since χD(K4) = χ(K4) = 4 clearly. Then there is a

cycle uvw of length 3 not bounding any face and {u, v, w} forms a 3-cut of G.

Choose it to minimize the number of faces contained inside one of the regions

bounded by uvw, say A, and let x be a vertex of G inside the region A.

Put k = χ(G). First make a vertex coloring of G with colors 1, . . . , k and

re-color only x with color k + 1. It is clear that any automorphism σ of G

preserving the colors fixes x and that σ(uvw) coincides with uvw by the choice

of uvw. Furthermore, σ fixes each of u, v and w since they have different colors.

This implies that σ fixes each face inside A and hence must be the identity map

of G by Lemma 4. Therefore, the coloring of G with color 1, . . . , k + 1 is a

distinguishing coloring and we have χD(G) ≤ χ(G) + 1.

LEMMA 8. If a triangulation G on the sphere has a vertex of degree at least 7

and is not isomorphic to any double wheel K2 + Cr, then χD(G) ≤ χ(G) + 1.

Proof. Let G be a triangulation on the sphere and v a vertex of degree d ≥ 7

in G. Let lk(v) = u0 · · · ud−1 be the link of v with indices modulo d. We may

assume that G is 4-connected by Lemma 7 and hence ui and uj are not adjacent

if |i − j| ≥ 2; otherwise, {v, ui, uj} would form a 3-cut of G.

Let wi be a common neighbor of ui and ui+3 other than v if any. Such a

vertex wi does not lie on the cycle lk(v) and does outside it by the assumption

of G being 4-connected. If wi’s exist for all i’s, then G must be isomorphic to

K2 + Cd so that {v, wi} corresponds to “K2” and lk(v) to Cd, by the planarity.

However, this case is excluded in the lemma. Thus, ui and ui+3 do not have such

a common neighbor wi for some i, say i = 0 without loss of generality.

Put k = χ(G). First make a vertex coloring of G with colors 1, . . . , k and

re-color u0 and u3 with color k + 1. Let σ be any automorphism of G preserving

the colors. The σ fixes {u0, u3} as a set since no other vertices have color k + 1.

By our assumption on u0 and u3, we have σ(v) = v; otherwise σ(v) would be w0.

This implies that σ maps the link of v to itself. Since d ≥ 7, σ does not exchange

the two segments that {u0, u3} cuts lk(v) into. Since u1 and u2 have different

colors, σ fixes the segments u0u1u2u3 pointwise. Thus, σ fixes v and its link and

hence it is the identity map of G by Lemma 4. Therefore, the coloring of G with

k +1 colors is a distinguishing coloring and hence we have χD(G) ≤ χ(G)+ 1.

Proof of Theorem 3. Let G be a triangulation on the sphere. Then G is 4-

colorable by Four Color Theorem. We denote the set of vertices of degree i by
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Vi. By Euler’s formula, we have the following equality:

3|V3| + 2|V4| + |V5| = 12 +
∑
i≥7

(i − 6)|Vi| (1)

We may assume that |Vi| = 0 for i ≥ 7 by Lemma 8, and |V3| = |V5| = 0 in

addition by Lemma 5. Thus, G consists of vertices of degree 4 and 6 and there

are precisely six vertices of degree 4. We may assume that G is 4-connected, by

Lemma 7.

It is well-known that a triangulation on the sphere is 3-colorable if and only

if its vertices have all even degree. Thus, G has a 3-coloring c : V (G) → {1, 2, 3}.
We shall modify it to be a distinguishing coloring, assuming that the vertices are

colored by c in advance.

Focus on the structures around vertices of degree 4, which have been classified

as in Lemma 6. Let H be any component of the subgraph induced by V4. If (iii)

or (iv) in the lemma happens, G itself is isomorphic to either K2 + Cr or K2,2,2,

which are excluded as exceptions in the theorem. Thus, it suffices to discuss the

cases of (i) and (ii).

First suppose that H is a cycle x0x1x2 of length 3 bounding a face of G, cor-

responding to (ii). Then there is a cycle y0y1y2 of length 3 bounding a triangular

region which contains only three vertices x0, x1 and x2 and yi is adjacent to xj

and xk for {i, j, k} = {1, 2, 3}. Define c′ : V (G) → {1, 2, 3, 4} of G by re-coloring

x0 with “4”, and let σ be any automorphism of G preserving the colors given by

c′.

Since x0 is a unique vertex colored with “4”, σ fixes x0 and hence maps the

link of x0 onto itself. The link of x0 is a cycle x1x2y1y0 and hence c′(x1) = c′(y1)

and c′(x2) = c′(y0). By the assumption on H, we have 4 = degG(x1) 6= degG(y1)

and 4 = degG(x2) 6= degG(y0). Under this situation, σ fixes the four vertices lying

on lk(x0) and hence it must be the identity map over G by Lemma 4. Therefore,

c′ is a distinguishing coloring of G and we have χD(G) ≤ χ(G) + 1.

Now suppose that H is a path u0u1 · · · ur−1, corresponding to (i) in Lemma

6; H may be a single vertex. Then it is clear that there are a cycle a0b0a1b1 of

length 4 bounding a quadrilateral region which contains only the vertices lying

along H and such that a0 and a1 are adjacent to u0 and ur−1 respectively, and

b0 and b1 are adjacent to all vertices on H. Under our assumption on G, each of

a0, a1, b0 and b1 has degree 6.

First, assume that there H is a path consisting of at least two vertices, that

is, r ≥ 2. However, we have r = 2 or 3 since degG(b0) = 6. For, if r = 4, then

G would be isomorphic to K2 + C6. Without loss of generality, we may assume

that c(b0) = c(b1) = 3, c(a0) = 1, c(u0) = 2 and that the path a0u0u1 · · · ur−1a1

is colored with 1 and 2 alternately. Let w be the common neighbor of b0 and a1
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other than ur−1 such that b0a1w bounds a face. Define a 4-coloring c′ : V (G) →
{1, 2, 3, 4} by re-coloring u0 and w by “4”. Let σ be any automorphism of G

preserving the colors given by c′.

If r = 2, then c(a1) = c′(a1) = 2 and w was colored with “1” in c since a1 and

w lie along the link of b0. Then σ fixes {u0, w} as a set since they have the same

color “4”. However, u0 and w had different colors in c and their links are colored

in different ways. This implies that σ does not change u0 and w and hence it

fixes each of u0 and w. Furthermore, it is clear that σ fixes each vertex lying on

the path a0u0u1a1. If σ exchanges b0 and b1, then it acts on the link of a1 as a

reflection fixing u1 and w. However, we would have degG(a1) = 4, contrary to

the assumption on H. Thus, σ fixes each of b0 and b1 and becomes the identity

map over G since it fixes the faces b0u0u1 and b1u0u1.

If r = 3, then a0u0u1u2a1w forms the link of b0. If σ exchanged u0 and w,

then w would have degree 4 and not be isolated in the subgraph induced by V4

as well as u0. Three neighbors a0, b0 and a1 of w have degree 6 and they lie along

the link of w in this order. This implies that σ would exchange a0 and b0, but it

is impossible since a0 and b0 have different colors. Thus, σ does not exchange u0

and w. By the same argument as in the previous, σ becomes the identity map

over G in this case, too. Therefore, c′ is a distinguishing coloring of G in either

case and we have χD(G) ≤ χ(G) + 1.

The remaining case is when each vertex of degree 4 is isolated in the subgraph

induced by V4. Let u0 be any vertex of degree 4 with the link a0a1a2a3 in this

case. Then we have degG(ai) = 6 and there are four faces incident to lk(u0), say

a0a1u1, a1a2u2, a2a3u3 and a3a0u4.

Let c′ : V (G) → {1, 2, 3, 4} be the 4-coloring of G obtained from c by re-

coloring u0 and u1 with “4”, and σ any automorphism of G preserving the colors

given by c′. Suppose that degG(u1) 6= 4. Then σ does not exchange u0 and u1

and hence it fixes each of them. If σ is not the identity map over G, then it does

not fix u0a0a1 and we have u1 = σ(u1) = u3 since any vertex cannot appear twice

in the link of a vertex. However, {u1, a1, a2} would form a 3-cut of G, which is

contrary to G being 4-connected. Thus, σ must be the identity map and c′ is

a distinguishing coloring of G. Therefore, we conclude that χD(G) ≤ χ(G) + 1

unless degG(u1) = 4.

Similarly, if one of u1, u2, u3 and u4 does not have degree 4, then we obtain

the desired inequality. Otherwise, all of u1, u2, u2 and u4 have degree 4 and this

happens around any chosen vertex u0 of degree 4 when χ(G) > χ(G) + 1. Under

this situation, it is easy to see that G is isomorphic to the face subdivision of Q3,

which is excluded as an exception in the theorem. Now we have concluded that

χD(G) ≤ χ(G) + 1 when G is none of the exceptions.
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3. Exceptions

Finally, we should determine the distinguishing chromatic numbers of the

exceptions in Theorem 3. We can find the formula for χD(K2 +Cn) in [8], which

guarantees the facts on K2+C2r with r ≥ 2 shown in introduction. Here, we shall

discuss the distinguishing chromatic number χD(S(Q3)) of the face subdivision

of the 3-cube.

The 3-cube Q3 consists of eight vertices vijk labeled with i, j, k ∈ {0, 1} so

that two vertices are adjacent whenever their labels differ by exactly one place,

as depicted in Figure 1. This is uniquely embedded on the sphere with six faces

F1 to F6 indicated as follows:

F1 : 000 100 110 010, F2 : 000 100 101 001, F3 : 000 010 011 001

F6 : 001 101 111 011, F5 : 010 110 111 011, F4 : 100 110 111 101

v v

v v
v v

v v

´
´

´
´́

´
´

´
´́

´
´

´
´́

´
´

´
´́

000 100

001

010 110

111011

101

Figure 1 3-Bit labeling of the 3-cube

To construct the face subdivision of Q3, we add a vertex us to the center of

each face Fs and join us to the four vertices lying along its boundary cycle for

s = 1, . . . , 6. Note that Fs and F7−s are placed in parallel as a dice.

THEOREM 9. χD(Q3) = 4 and χD(S(Q3)) = 5 for the 3-cube Q3 and its face

subdivision S(Q3).

Proof. We shall discuss the formulas for Q3 and for S(Q3) in the theorem to-

gether. Let c : V (Q3) → {1, 2, · · · , k} be any k-coloring of Q3 and c̃ any extension

of c to S(Q3), which uses k or more colors. However, we assume that c̃ uses at

most four colors, say “1” to “4”, to show that χD(S(Q3)) > 4.

First, suppose that c is a 2-coloring with two colors “1” and “2”. It is clear

that such a 2-coloring of Q3 is unique, up to relabeling of colors, and that there are

many automorphisms of Q3 preserving its colors. This implies that χD(Q3) > 2.

Since each face of Q3 has both two colors “1” and “2” on its boundary cycle, c̃

must assign colors “3” or “4” to each us.
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Suppose that c̃ is a distinguishing coloring of S(Q3). Assume that c(u1) = 3

and c(u6) = 4 and consider the half rotation ρ of the cube with the axis passing

through u1 and u6. Then ρ preserves the colors over Q3, but does not the colors

of us’s since c̃ is a distinguishing coloring. This implies that either c̃(u2) 6= c̃(u5)

or c̃(u3) 6= c̃(u4), say the former.

In this case, we may assume that c(u2) = 3 and c(u5) = 4, up to symmetry.

However, the reflexion fixing two edges v000v100 and v011v111 preserves all colors

of c̃, contrary to c̃ being a distinguishing coloring. Thus, we have c̃(u1) = c̃(u6)

and hence c̃(us) = c̃(u7−s) for all pairs (s, 7−s). Then, we may assume that only

u1 and u6 get “3” and the others get “4” in c̃, up to symmetry, but the same

rotation ρ as above would preserve the colors, contrary to c̃ being a distinguishing

coloring. Therefore, we can conclude that c̃ is not a distinguishing coloring if c

is a 2-coloring.

Now suppose that c uses 3 or 4 colors. Then there is a face of Q3, say

F1, whose boundary cycle have three colors. We may assume that c(v000) = 1,

c(v100) = c(v010) = 2 and c(v110) = 3 without loss of generality; if these four

vertices got four distinct colors, then we could not assign any color to ui. Then

we must have c̃(u1) = 4. Consider the reflexion σ of the cube fixing the diagonal

v000v110 of the face F1, which fixes v001 and v111. Since this reflexion σ should

not preserve the colors, we have either (i) c(v101) 6= c(v011) or (ii) c̃(u2) 6= c̃(u3),

up to symmetry; the latter works only for S(Q3).

In Case (i), there are two possibilities essentially; either c(v011) = 1 or

c(v011) = 4 with c(v101) = 3 in each case. In the first case, we can decide

the colors of all vertices of S(Q3) but u3 and u4 in order;

c̃(u5) = 4, c̃(u2) = 4, c(v001) = 2, c̃(u6) = 4, c(v111) = 2

However, the rotation fixing u3 and u4 would preserve this coloring, not depend-

ing on the colors of u3 and u4. Therefore, if c is a 3-coloring, then it cannot be a

distinguishing coloring of Q3 and c̃ cannot be that of S(Q3). It follows from this

that χD(Q3) > 3 in particular.

On the other hand, if c(v001) = 4 and c(v101) = 3, then we can decide the

colors of all vertices of S(Q3) but u4:

c(v001) = 2, c̃(u2) = 4, c̃(u3) = 3, c̃(u5) = 1, c(v111) = 2, c̃(u6) = 1

In this case, the reflexion fixing two edges v000v100 and v011v111 would preserves

this coloring, not depending on c̃(u4). Thus, any 4-coloring c̃ obtained as an

extension of c of this type cannot be a distinguishing coloring of S(Q3).

Consider Case (ii), excluding Case (i). Then v101 and v011 must get the same

color in c, “1”, “3” or “4”. However, if c(v101) = c(v101) = 3 or 4, then we
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would have c̃(u2) = c̃(u3), contrary to the assumption of Case (ii). Thus, we may

assume that c(v101) = c(v101) = 1, c̃(u2) = 3 and c̃(u3) = 4, up to symmetry.

This implies that c̃(u4) = c̃(u5) = 4 and c(v001) = c(v111) = 2.

There are two possibilities on c̃(u6), which should be either “3” or “4”. If

c̃(u6) = 3, then the reflexion fixing edges v001v101 and v010v110 would preserve the

colors. If c̃(u6) = 4, then the reflexion fixing edges v001v011 and v100v110 would

preserve the colors. Thus, each case contradicts the assumption of c̃ being a

distinguishing coloring.

Now we have concluded that any 4-coloring of S(Q3) cannot be a distinguish-

ing coloring and hence χD(S(Q3)) > 4. We have already known that χD(Q3) > 3.

Consider the following colorings c and c̃:

c(v000) = c(v110) = 1, c(v100) = c(v001) = 2,

c(v010) = c(v111) = 3, c(v011) = c(v101) = 4

c̃(us) = 5 (s = 1, . . . , 6)

There are four faces of Q3 each of which contains a diagonal joining two

vertices colored with the same color. Since the colors are all distinct, any color-

preserving automorphism σ of Q3 must fix each of these faces and it must be the

identity map of Q3. This implies that c is a distinguishing coloring of Q3 and

hence χD(Q3) = 4.

On the other hand, any automorphism σ of S(Q3) maps Q3 onto Q3 and its

restriction to Q3 can be regarded as an automorphism of Q3. Thus, if σ preserves

the colors given by c̃, then σ fixes each vertex of Q3 and also fixes each of us’s to

be the identity map of S(Q3). Therefore, c̃ is a distinguishing coloring of S(Q3)

and hence χD(S(Q3)) = 5.
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