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Abstract. We weave well-known fractals into non-porous “Fractal Sheets.”

1. Introduction

We present a new type of fractal sets without any holes of positive sizes, which

we call “Fractal Sheets.” Up to now many kinds of fractals have been constructed,

but most of them were very porous. Our idea is to keep pasting together known

fractals infinitely many times until their holes disappear. Given a fractal F , we

can use it as an ingredient to weave a non-porous sheet Ω(F ) modeled on F .

First, in Sections 2,3 and 4, we construct such a sheet Ω(S) modeled on the

Sierpinski gasket S and study its structure from the geometric point of view.

Next, in Section 5, we choose the Sierpinski carpet K. The resultant sheet Ω(K)

happens to be identical with “the universal 1-dimensional pseudo-boundary” of

the Euclidean plane introduced by Geoghagen and Summerhill [2]. We hope our

geometric approach makes this space accessible to those who concern Fractals.

In Section 6 we present a geometric embedding of Ω(S) into Ω(K). Further

applications utilizing the circle packing will be discussed in the final Section 7.

2. Sierpiński Triangle “Sheet”

We want to make a non-porous fractal sheet modeled on the Sierpinski gasket.

Let ∆ be the equilateral solid triangle in the complex plane C of vertices α1 =

0, α2 = 1, α3 = ρ = exp(iπ
3
) = 1

2
+

√
3

2
i (“ρ” suggesting the “rhombic” coordinate

system). Then the well-known Sierpinski gasket S is the invariant set of the

iterated function system (f1, f2, f3) of the similarities with ratio 1/2 and centers

at the three vertices. Precisely, S = f1(S)∪f2(S)∪f3(S), and fi(z) = αi +
1
2
(z−

αi) (i = 1, 2, 3). Besides these three functions, we introduce one more function
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f0 : C → C such that
f0(z) = ξ +

1

2
ρ (z − ξ) =

1

2
(ρz + 1)

where ξ = (1 + ρ)/3 = 1
2

+ 1
2
√

3
i is the center of gravity of the triangle ∆. This

map plays an essential role in our construction. Geometrically, f0 is the rotation

π/3 around the fixed point ξ followed by the contraction 1/2. Recalling the

construction “by tremas” of the Sierpinski gasket, we start with the triangle ∆.

Devide it into four triangles with size (= edge length) 1/2 using midpoints of

the sides of ∆, that is, ∆ = ∆(0)∪∆(1)∪∆(2)∪∆(3) where ∆(i) = fi(∆) (i =

0, 1, 2, 3). Observe that ∆(0) is the “upside down” middle triangle with size

1/2. Let 4<ω = {0, 1, 2, 3}<ω =
⋃

p∈ω 4 p, where p = {0, 1, · · · , p − 1} and ω =

{0, 1, 2, · · · }, denotes the set of all finite strings consisting of 0, 1, 2, 3. For each

string σ = (σ(0), σ(1), · · · , σ(p− 1)) ∈ 4 p ⊂ 4<ω put fσ = fσ(0) ◦ fσ(1) · · · ◦ fσ(p−1)

and ∆(σ) = fσ(∆). Now make the Sierpinski gasket S in the usual way: delete all

the interiors of the triangles ∆(σ) (σ ∈ 4<ω) such that only the final coordinate

of σ has the value 0. In this S look at the tremas of size 1/2; this gasket has only

one such, which is ∆(0). Here, attach a copy of the Sierpinski gasket S using the

map f0. Now, in the resultant space S(1) = S ∪ f0(S), look at the tremas of size

1/22. We have four such tremas ∆(i, 0) = fi(f0(∆)) (i < 4). See Figure 1. Attach

to these 4 tremas the copies of the Sierpinski gasket fi0(S) = fi(f0(S)) (i < 4)

of the same size. Then we get S(2) = S(1) ∪
⋃

i<4 fi0(S), which now has 42

tremas ∆(i, j, 0) (i, j < 4) of size 1/23. See Figure 2. Again fill up these 42 holes:

S(3) = S(2) ∪
⋃

i,j<4 fij0(S). Repeating these procedures ad infinitum, we will

finally get
⋃

p<ω S(p), where all tremas of positive sizes are filled up by the copies

of Sierpinski gasket S = S(0). This is what we wanted. Let us call this space the

Sierpiński triangle sheet and denote ω(S), or simply, T;

T = ω(S) =
⋃
p<ω

S(p) ⊂ ∆.

So, as a result we just pasted together countably many Sierpinski gaskets along

their edges. Though here we needed an infinite iterative procedure, we have an

alternative, all-at-once construction of T as follows.

Let 4ω be the compact space of all functions from ω = {0, 1, 2, · · · } to 4 =

{0, 1, 2, 3} with the product topology generated by the open bases of the form

σ × 4ω\p where σ ∈ 4 p and p ∈ ω. Let Φ be the continuous map from 4ω onto

∆ which assigns to each s ∈ 4ω the single point ∆(s) =
⋂

p∈ω ∆(s ¹ p) in ∆.

This is at most six-to-one map. Consider the subset Σ of 4ω consisting of all the

functions s such that s(i) > 0 for almost all i ∈ ω, that is,

Σ =
⋃
p∈ω

(4 p × {1, 2, 3}ω\p) ⊂ 4ω.
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Figure 1 The first stage S(1) for ω(S).

Figure 2 The second stage S(2) for ω(S).

Then the image of this set Φ(Σ) is nothing but our Sierpinski triangle sheet

T. The subspace S(p) used in the above inductive construction is identical with

Φ(4 p × {1, 2, 3}ω\p). For a finite string σ ∈ 4 p denote by S(σ) the image Φ(σ ×
{1, 2, 3}ω\p), and note then that this is a copy of the Sierpinski gasket fitted

in with the triangle ∆(σ). So, our Sierpinski triangle sheet T is the union of

countably many copies of Sierpinski gaskets S(σ) (σ ∈ 4<ω).

Since the operation of “taking countable union” preserves most properties of

fractals, those most properties of T will be inherited from the Sierpinski gasket.

For example, the Haudorff dimension of the Sierpinski triangle sheet is equal to

that of the Sierpinski gasket log 3/ log 2. But, of course, some aspects are slightly

different from the Sierpinski gasket. First of all, the sheet is not compact missing

many points of ∆; in particular, the center of every triangle ∆(σ) never belongs

to the sheet. Remark also that our triangle sheet is invariant with respect to the

function system (f0, f1, f2, f3), that is,

T = f0(T) ∪ f1(T) ∪ f2(T) ∪ f3(T);

but it is not the unique such set, because obviously the compact solid triangle

∆ itself is also invariant! Start with the Sierpinski gasket S and repeat apply-

ing the four functions f0, f1, f2, f3; then you will finally reach our sheet. Hence,

the triangle sheet T is characterized as the minimal set in the plane which con-

tains the Sierpinski gasket S and is closed with respect to the function system

(f0, f1, f2, f3).
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Remark 1. Our construction is closely related with that of Lipscomb; in Chapter

13 of [3] he defines a “2-simplex iterated function system” and the address map,

which are essentially the same with our (f0, f1, f2, f3) and Φ. Lipscomb aims to

encode the 2-simplex ∆, and phrases the role of the extra digit “0” (which is the

digit “3” in [3]) as encoding an iterated pasting.

Remark 2. We note that the subspaces S(p) (p > 0) appeared on the way of

construction are topologically quite different from the gasket S = S(0) itself.

Indeed, let S∗ = S1 ∪ S2 be a union of two copies S1, S2 of S such that their

intersection S1 ∩ S2 forms an edge e, and suppose there was a homeomorphic

embedding g of S∗ into S. As is well known, the Sierpinski gasket is quite rigid:

FACT 1. (Dȩbski-Mioduszewski [1]) Every homeomorphic embedding of S into

S is a similarity onto some standard subtriangle of S.

Hence, g(S1) and g(S2) are such standard subtriangles, and, by the structure

of Sierpinski gasket their intersection must be only one vertex v. Let g(v∗) = v.

Then, g(S∗)\{v} is disconnected, while S∗\{v∗} is still connected by e\{v∗}.This

contradiction proves that S∗ is not embeddable into S. Consequently, none of

S(p) (p > 0) are embeddable into S. The situation will turn out to be quite

different if we use the Sierpinski “carpet” instead of the gasket (see Section 5).

3. Spread Sheet

Now we want to spread the triangle sheet T = ω(S) over the entire plane.

Let Q2 denote the subring of the rationals Q consisting of all “binary ratio-

nals” m 2−p (m ∈ Z, p ∈ ω). Using this Q2 and the vertices of the triangle ∆, we

generate in the plane C a “rhombic or triangular” lattice V (“V” for “vertices”)

such that

V = Q2[ρ] = Q2 + Q2 ρ = { (l + mρ) 2−p | l,m ∈ Z, p ∈ ω}.

For each p ∈ ω put V(p) = 2−p Z[ρ]; then V =
⋃

p∈ω V(p). Note that ρ2 = ρ − 1

and V(0) = Z[ρ] = Z[ρ2] = Z + Z ρ is the so-called “ring of Eisenstein integers.”

The ring structure of Z[ρ] will be inherited to the union V of the multiples

V(p) = 2−p · V(0). So, the lattice V is a subring of C. Very well suited to

our construction is that V is closed with respect to the operation of “taking

midpoints.”

Remark 3. Note that 1/3 is not in Q2, hence not in V, and that neither the

center ξ = (1+ρ)/3 of ∆ nor the imaginary unit i = (−1+2ρ)/
√

3 belongs to V.
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Our V is the least “subring” of C containing 1/2 and ρ, while the least “subfield”

of C containing ρ is Q[ρ] = Q + Q ρ. See that i ∈ C \Q[ρ] and ξ ∈ Q[ρ] \V.

Let us utilize this dense triangular lattice V =
⋃

p∈ω V(p). Translate the

triangle sheet T by V over the entire plane C. We call the resultant space the

Sierpiński spread sheet or simply Sierpiński sheet and denote it as Ω(S). Since

the sheet T contains the rhombus subsheet f0(T) ∪ f1(T) of size 1/2, the whole

sheet Ω(S) will be covered with the copies of T only by the translations through

the discrete lattice V(1) of mesh size 1/2. The following equivalent descriptions

show that Ω(S) can be constructed in various ways. Here, C6 = {ρk |k < 6} is

the cyclic group of order 6 in the plane, or the set of vertices of the hexagon.

Ω(S) = T + V = T + V(1) = (±T) + V(0) = (T · C6) + V(0)

=
⋃
n∈ω

2n · (T · C6) = (±S) + V = (S · C6) + V

For example, (S · C6) + V means the set of all points of the form z · c + v in C
such that z ∈ S, c ∈ C6 and v ∈ V. In other words, first, rotate S to make the

hexagonal gasket S · C6, next translate it by V; then we get our spread sheet.

Let us present an alternative simple construction of our spread sheet. For

each p ∈ ω consider the infinite 2-dimensional cell complex Mp in the plane

naturally induced by the triangular lattice V(p) whose 2-dimensional cells are

the closed triangles of size 2−p. Replace each of these cells by a copy of the

Sierpinski gasket S, and denote the resultant space as Mp[S]. Precisely,

Mp[S] = (± 2−p) · S + V(p).

Then our sheet Ω(S) is identical with the union
⋃

p∈ω Mp[S]. Note here that the

sequence M0[S] ⊂ M1[S] ⊂ M2[S] ⊂ · · · is increasing and obtained from succes-

sive contractions by 1/2 (“contractions” making sets bigger!). Moreover, each of

these contractions Mp[S] → Mp+1[S] is an onto homeomorphism. Hence the sheet

Ω(S) is the increasing union of the homeomorphs Mp[S] = 2−p · M0[S] (p ∈ ω).

Figure 3 illustrates

M1[S] = 2−1 · M0[S] = 2−1(±S + Z[ρ]).

Through every construction of the above we can see that Ω(S) is, as in the

case of ω(S), a union of countably many copies of Sierpinski gaskets and so, its

Hausdorff dimension is equal with that of the Sierpinski gasket.

Remark 4. The sheet Ω(S) can be characterized as the minimal set in the plane

C which contains S and is closed with respect to the following three kinds of op-

erations: the rotation ρ, the translations by the discrete lattice Z[ρ] of Eisenstein
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0 1

Figure 3 An intermediate stage for Ω(S).

integers and the contraction 1/2. In other words, starting with S and applying

these operations, one can generate the sheet Ω(S).

4. Geometric structures of the Sheet

We first examine “homogeneity” aspects of the sheet Ω(S).

Let E(p) (“E” for “edges”) be the set of points in its 1-dimensional skeleton

of the complex Mp, and put E =
⋃

p∈ω E(p). That is, E is the union of all

the “edges” of triangles in the sheet Ω(S), along which our “weaving” job was

done.This skeleton E induces the metric d in the entire plane C such that d(x, y)

is the infimum of lengths of all continuous paths C(x, y) connecting the points

x and y with the property that C(x, y)\{x, y} lies in the set E. Obviously this

metric is compatible with the natural Euclidean metric, and we call it the metric

induced by E. Now let U(x ; ε) denote the open neighborhood at a point x ∈ C
of radius ε with respect to this metric d, that is, U(x ; ε) = {y ∈ C | d(x, y) < ε}.
Then the open “ball” U(0 ; 1) of radius 1 at the origin 0 is just the inside of the

hexagon ∆ · C6. Observe that

(U(0 ; 2−p) ∩ Ω(S)) + v = U(v ; 2−p) ∩ Ω(S)

for each “vertex” v ∈ V; hence in Ω(S) each “vertex” v has a neighborhood

system of hexagons U(v ; 2−p) ∩ Ω(S) (p ∈ ω) similar to that of at the origin

U(0 ; 2−p) ∩ Ω(S) (p ∈ ω). So,

PROPERTY 1. Ω(S) is topologically homogeneous with respect to the transla-

tions by its dense subset V.
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This is a bit notable property of our sheet Ω(S) compared with that of the

Sierpinski gasket S, where every vertex except the three corners separate S lo-

cally. No point can separate our sheet locally! Though we don’t know presently

if our sheet Ω(S) is topologically homogeneous (we believe there would be no

homeomorphism of Ω(S) which maps the origin to an inner point of S), we can

show in the next Property 2 that the sheet essentially admits only a few home-

omorphisms. Consider a similarity h of the plane C which takes the form such

that

(∗) h(z) = α z + β or α z̄ + β

for some α, β in V, and furthermore, the coefficient α takes the form of 2m γ

where m ∈ Z and γ ∈ C6. Note that, since the group of units in the ring Z[ρ]

is C6, the group of units in the ring V = Q2[ρ] coincides with all of its multiples

2m · C6 (m ∈ Z). Hence taking account of Property 1, it follows that every such

similarity (∗) provides an autohomeomorphism of Ω(S). The converse is true

essentially:

PROPERTY 2. Let h be a homeomorphic embedding of Ω(S) into Ω(S) such that

each standard subgasket of sufficiently small size is mapped into some standard

subgasket. Then h is a similarity as the above (∗).

Here, a “standard subgasket” means a copy of the Sierpinski gasket fitted in

with a triangular cell of the complex Mp for some p ∈ ω; precisely, such gaskets

are ±S(σ) (σ ∈ 4<ω) and their translations by the discrete lattice V(0) = Z[ρ].

Note, first of all, that our sheet is connected in the following strong sense: Every

two points x, y of Ω(S) can be joined by a sequence of standard subgaskets, with

any small size, S1, S2, · · · , Sk such that x ∈ S1, y ∈ Sk and Si ∩ Si+1 is an edge

for each i = 1, · · · , k − 1. We may simply express that the Sierpinski sheet is

“connected by edges,” while the Sierpinski gasket is connected only by vertices

(see Remark 2).

Proof of Property 2. Suppose h is an embedding as above, and let ε > 0 be

such that every standard subgasket of size < ε is mapped into some standard

subgasket. Take any two points x, y in Ω(S). Since Ω(S) is connected by edges,

we can find standard subgaskets Si (i < k) of size < ε which join x ∈ S1 and

y ∈ Sk such that Si ∩ Si+1 is an edge for each i < k. By Fact 1 the restriction of

h to Si is a similarity of the form h(z) = αi z+βi or αi z̄+βi for some αi, βi ∈ V.

Since h is a homeomorphism, taking account of the orientations of two triangles

with a common edge, it does not happen for example that h is αi z + βi on the

one side Si, while αi+1 z̄ +βi+1 on the other side Si+1. Moreover, h ¹ Si coincides

with h ¹ Si+1 on the edge Si ∩ Si+1, and so, we have that α1 = · · · = αk−1 and
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β1 = · · · = βk−1. Thus we can conclude that h is of the form α z + β or α z̄ + β

for some α, β ∈ V. Since h is a similarity from S1 onto h(S1), the coefficient α

can be written as 2 p−q γ (γ ∈ C6) if the sizes of S1 and h(S1) are 2−p and 2−q

respectively.

0 1

Figure 4 The Baravelle spirals by f0.

Typical examples of autohomeomorphisms of Ω(S) described in the above

Property 2 are the maps f0, f1, f2, f3 which we first introduced in Section 2.

Note that these contractive maps never become autohomeomorphisms on any

bounded subsets like ω(S) or S. The map f0(z) = 1
2
(ρz+1) especially provides an

interesting autohomeomorphism of Ω(S) whose orbits approach to the attracting

point ξ lying outside of Ω(S). Figure 4 shows a decomposition of Ω(S) into three

sets invariant by f0, which are well known as the “Baravelle spirals.” Should be

noted, on the other hand, is that neither the very simple map h(z) = 3 z nor z/3

induces an autohomeomorphism of Ω(S).

Now, to look for some “dual” structure of our sheet, we use the multiplication

by ξ = exp(iπ
6
)/
√

3, which is the rotation π/6 followed by contraction 1/
√

3. For

each p ∈ ω, multiply ξ to the entire structure of the complex Mp, and put

V∗(p) = ξ · V(p), V∗ = ξ · V, E∗(p) = ξ · E(p) and E∗ = ξ · E. Observe the

followings:

(1) Z[ξ] = Z + Z ξ = ξ · Z[ρ] (notice 1 = ξ · (2 − ρ) ∈ ξ · Z[ρ]), and

Z[ρ] ⊂ Z[ξ] ⊂ Z[ξ] · Z[ξ] =
1

3
Z[ρ].

Be careful especially that Z[ξ] is not a ring because ξ2 = ρ/3 ∈ 1
3

Z[ρ]\Z[ξ].

(2) V∗(p) = 2−p · Z[ξ] and

V∗ =
⋃
p∈ω

V∗(p) = Q2[ξ] = Q2 + Q2 ξ



FRACTAL SHEETS 69

consists of points with the form (l + mξ) 2−p where l,m ∈ Z, p ∈ ω.

(3) Every point z ∈ V∗\V is the center of some standard triangle, that is,

z = v ± 2−p · ξ for some v ∈ V and some p ∈ ω. Therefore, new points of V∗

added to V are always outside of the sheet Ω(S).

(4) E∗ contains only countably many points of the sheet Ω(S); indeed, E∗ ∩
Ω(S) ⊂ V. This is because the Sierpinski gasket has only countably many points

on its bisectors, and all of these points are vertices.

Now consider the 2-dimensional cell complex M∗
p , “dual” to Mp, induced by

the triangular lattice V∗(p). The triangular cells of Mp and M∗
p are of sizes 2−p

and 2−p/
√

3 respectively. The so-called “Voronoi” cells of centers v ∈ V(p) can

be identified with the hexagons v + ξ · 2−p(∆ · C6), the inside of which is the

open “ball” at v of radius 2−p/
√

3 with respect to the metric induced by the grid

E∗. The above observation (4) tells that geometric boundaries of the triangular

cells in M∗
p as well as those of the “Voronoi” hexagons contain only countably

many points of the sheet Ω(S). So, they are very loosely connected each other,

as well indicating that Ω(S) has the topological “inductive” dimension 1. We

note especially that Ω(S)\V is 0-dimensional, and hence, totally disconnected.

This fact implies, for example, that any continuous path in Ω(S) inevitably hits

the vertices, that is, the points of the countable set V.

5. The “Sheet” modeled on the Sierpiński Carpet

Hitherto, using the Sierpinski gasket we made the Sierpinski sheet. If we

select other fractals as ingredients, we can make other kinds of “sheets.” Now let

us choose the Sierpinski carpet K. As was mentioned in the Introduction, the

resultant space will be identical with the space known (in the field of infinite-

dimensional topology) as “the universal 1-dimensional pseudo-boundary” of the

Euclidean plane [2]. Recall that the Sierpinski carpet K itself is universal in

the sense that every nowhere dense compact subsets in the plane is topologically

embeddable into K.

Let us start with the unit square I2 ⊂ C. Index the nine points a + b i (a, b =

0, 1
2
, 1) by αk (k < 9) so that α0 is the middle point 1

2
+ 1

2
i. Let gk be the

contraction by 1/3 with centers αk, that is, gk(z) = αk + 1
3
(z − αk). The unit

square is decomposed into nine small squares gk(I
2) (k < 9) of size 1/3, and g0(I

2)

is the middle one. The Sierpinski carpet K is the invariant set of the iterated

function system of eight functions (gk : 0 < k < 9). Now let the function g0 join

in. Using the same techniques as in Sections 2 and 3, we can weave (along edges)

countably many copies of K into the square sheet ω(K) and the spread sheet

Ω(K). Figure 6 shows the first stage towards the sheet ω(K). More precisely: Let
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9<ω = {0, 1, 2, · · · , 8}<ω be the set of all finite strings consisting of 0, 1, 2, · · · , 8,

and for each string σ = (σ(0), σ(1), · · · , σ(p−1)) put gσ = gσ(0) ◦gσ(1) · · ·◦gσ(p−1)

and I2(σ) = gσ(I2). Let Ψ be the continuous (at most four-to-one) map from

9ω onto I2 which assigns to each s ∈ 9ω the single point I2(s) =
⋂

p∈ω I2(s ¹ p).

Consider the subset Σ of 9ω consisting of all the functions s such that s(i) > 0 for

almost all i ∈ ω. Then the image Ψ(Σ) is our square sheet ω(K), while the image

Ψ({1, 2, · · · , 8}ω) is the Sierpinski carpet K itself. If we put K(σ) = gσ(K), we

know that ω(K) is the union of countably many copies of the Sierpinski carpet

K(σ) (σ ∈ 9<ω). Put K(p) = Ψ(9 p × {1, 2, · · · , 9}ω\p) which corresponds to

the p-th step S(p) in the iterative construction of ω(S) in Section 2. Though

we observed there that S(p) (p > 0) was not homeomorphic with the gasket S

itself (see Remark 2), in the present case, each K(p) (p ∈ ω) is homeomorphic

with the Sierpinski carpet K itself, due to the following result of Whyburn.

Recall that, by definition, a Sierpinski curve is a compact, connected, locally

connected, nowhere-dense subset of the plane that has the property that any two

boundaries of complementary domains are pairwise-disjoint simple closed curves.

The Sierpinski carpet is the most well known example of a Sierpinski curve.

Figure 5 The first stage K(1) for ω(K).

FACT 2. (Whyburn [7]) Any two Sierpinski curves are homeomorphic.

So, we can say that ω(K) =
⋃

p∈ω K(p) is the increasing union of countably

many homeomorphic copies of the Sierpinski carpet.

Let Q3 denote the subring of Q consisting of all “ternary rationals” m 3−p

(m ∈ Z, p ∈ ω). Using this Q3 and the four vertices of I2, we generate in the

plane a lattice V(3) such that V(3) = Q3[ i ] = Q3 + Q3 i = { (l + m i) 3−p | l,m ∈
Z, p ∈ ω}. For each p ∈ ω put V(3)(p) = 3−p · Z[ i ]; then V(3) =

⋃
p∈ω V(3)(p), and

V(3)(0) = Z[ i ] is the ring of Gaussian integers. Note that, since Q2∩Q3 = Z, the

number 1/2 is not in Q3, and the center 1
2
+ 1

2
i does not belong to V(3). Translate

the carpet K by this countable dense lattice V(3), or translate the square sheet
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ω(K) only by the discrete square lattice V(3)(0) = Z[ i ]; then we get the spread

sheet Ω(K) modeled on the carpet K:

Ω(K) = ω(K) + Z[ i ] = K + V(3) =
⋃
n∈ω

3n · (ω(K) · C4),

where C4 = {±1, ±i}. So, both sheets Ω(K) and ω(K) are obtained by weaving

countably many copies of Sierpinski carpets along their edges, and their Hausdorff

dimension is equal to that of the Sierpinski carpet log 8/ log 3 = 1.8927 · · · . Let

K
(p)
∗ be the finite union of the translates of K(p) by l + m i ∈ Z[ i ] such that

|l|, |m| 6 p. Then, by Fact 2, this is a homeomorph of K; hence, as in the case

of ω(K), the spread sheet Ω(K) =
⋃

p∈ω K
(p)
∗ also takes the form of the increasing

union of countably many homeomorphic copies of the Sierpinski carpet.

In the theory of infinite-dimensional topology this sheet Ω(K) is usually de-

scribed as follows. For each p ∈ ω let Lp be the infinite 2-dimensional cell complex

in the plane induced by the square lattice V(3)(p), whose 2-dimensional cells are

the closed squares of size 3−p. Let L
(1)
p denote the 1-skeleton (that is, all the

edges and vertices) of Lp. Consider the “star” of L
(1)
p in the subdivision Lp+1 of

Lp:

Np = star(L
(1)
p , Lp+1) which is the union of all the 2-dimensional cells in Lp+1

meeting L
(1)
p . This star forms a regular (or collar) neighborhood of the skeleton

L
(1)
p . Now take the limit inferior of the collection {Np | p ∈ ω}:

B2
1 =

⋃
p∈ω

(
⋂
i>p

Ni)

which consists of points belonging to almost all of Np’s. This B2
1 is called “the

universal 1-dimensional pseudo-boundary” of the Euclidean plane (see [2]). Simi-

larly to the case of the complex Mp in Section 3, replace each of the 2-dimensional

cells in Lp by a copy of the Sierpinski carpet K, and denote the resultant space

as Lp[K] = 3−p · K + V(3)(p). Then it can be seen that the above set
⋂

i>p Ni

is the same as this Lp[K]. Hence, the universal pseudo-boundary B2
1 is identical

with our sheet Ω(K) =
⋃

p∈ω Lp[K], which is, as in the case of Ω(S), the union of

the increasing sequence L0[K] ⊂ L1[K] ⊂ L2[K] ⊂ · · · obtained from successive

contractions by 1/3.

Though it seems well known, since from its original construction by Ge-

oghagen and Summerhill, that the universal pseudo-boundary is topologically

homogeneous, we don’t know any literature which stated this result explicitly.

So, for the reader’s convenience, we present the proof of the following property.

PROPERTY 3. The sheet Ω(K) is topologically homogeneous. More precisely,

for any two points x, y of ω(K) inside the unit square I2 there exists an auto-
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homeomorphism h of ω(K) such that h(x) = y and h fixes every point on the

boundary of the unit square I2.

From our construction it is easy to see that Ω(K) is homogeneous with respect

to the dense lattice V(3). But, as is well known, the Sierpinski carpet K itself

is not homogeneous (see the following Fact 3). So the above property is not

obvious. Recall that a Sierpinski curve is a homeomorph of the Sierpinski carpet

K in the plane, and its points on the boundaries of complementary domains

are called rational, while other points are irrational or inner. The rational part

of a Sierpinski curve consists of countably many disjoint circles, which we call

boundary circles.

FACT 3. (Whyburn [7]) K is homogeneous between points x and y if and only

if both belong either to the rational part of K or to the irrational part of K.

FACT 4. (Whyburn [7]) Let X1 and X2 be any Sierpinski curves in the plane.

Then, every homeomorphism from any boundary circle of X1 to any boundary

circle of X2 can be extended to a homeomorphism from X1 onto X2.

FACT 5. (Visser [5]) Let X be any Sierpinski curve in the plane and let S0 be

any boundary circle of X. Then for any inner points x, y of X there exists an

autohomeomorphism h of X such that h(x) = y and h fixes every point of S0.

Now we can prove Property 3. Due to the homogeneity with respect to the

dense lattice V(3), we need only show its latter assertion. So, let x, y be any

two points of ω(K) inside the unit square. Recall that ω(K) =
⋃

p∈ω K(p) is the

increasing union of copies of the Sierpinski carpet, and observe that the boundary

circles of K(p), which are boundaries of some squares of size 3−q (q > p), become

an inner (or irrational) part of K(q). Hence, taking sufficiently large q ∈ ω, we

can assume that both of x, y are the inner points of K(q). So, by Fact 5 there

exists an autohomeomorphism hq of K(q) such that hq(x) = y and hq fixes every

point on the boundary of the unit square. Now think of the restrictions of hq

to the boundary circles of K(q) with size 3−q−1, and extend them using Fact 4

to get an autohomeomorphism hq+1 of K(q+1). Next consider the restrictions of

hq+1 to the boundary circles of K(q+2) with size 3−q−2, and extend them to an

autohomeomorphism hq+2 of K(q+2). Repeating these procedures infinitely many

times, we will finally reach the desired homeomorphism of ω(K). ¤
So, intuitively speaking, Property 3 holds because we pasted together the

rational parts (the geometric boundaries) of Sierpinski carpets to end up with

no distinction between the rational points and the irrational points.
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6. Comparison of the two sheets

Let us now compare what we have constructed, Ω(S) and Ω(K). We can

show that they are quite distinct topologically.

PROPERTY 4. The carpet K is not embeddable into the Sierpinski sheet Ω(S);

consequently, Ω(K) is not embeddable into Ω(S). But Ω(S) is embeddable into

Ω(K).

It is easy to see that K is not embedable into Ω(S), because the countable

set of vertices V totally disconnects Ω(S) (see the end of Section 4), while the

carpet K remains connected even after deleting any of its countable subset. Now

let us see that Ω(S) is embeddable into Ω(K). This follows from the fact ([4, 6])

that Ω(K) = B2
1 is known to be very universal in the sense that every subspace

in the plane which is a union of countably many nowhere dense compact subsets

is topologically embeddable into B2
1 , because Ω(S) is such a union. Here, we

want to give another proof by presenting a geometric concrete embedding. In

the triangular cell complex Mi defined in Section 3 take the 1-skeleton M
(1)
i and

consider its star of M
(1)
i in Mi+2 (not in Mi+1). Put

Ω̂(S) =
⋃
p∈ω

(
⋂
i>p

star(M
(1)
i ,Mi+2)).

Then, since the complement of star(M
(1)
i ,Mi+2) consists of disjoint triangles,

we can apply Facts 2 and 4 to see that this Ω̂(S) is homeomorphic to Ω(K) =⋃
p∈ω Lp[K]. Now, instead of “star,” consider “corona” of M

(1)
i in Mi+1:

corona(M
(1)
i , Mi+1)

which we define to be the union of all the 2-dimensional cells in Mi+1 some of

whose edges are in the realization of M
(1)
i . So, the “corona” discards the 2-

dimensional cells which meets only with some points in M
(1)
i , while the “star”

takes them. Then, Ω(S) is expressed as

Ω(S) =
⋃
p∈ω

(
⋂
i>p

corona(M
(1)
i ,Mi+1)),

where
⋂

i>p corona(M
(1)
i ,Mi+1) is identical with Mp[S]. Since corona(M

(1)
i ,

Mi+1) is included in star(M
(1)
i ,Mi+2)), we get the desired embedding

Ω(S) ⊂ Ω̂(S) ≈ Ω(K).
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Remark 5. The inclusion map⋂
i>0

corona(M
(1)
i ,Mi+1) ⊂

⋂
i>0

star(M
(1)
i ,Mi+2)

restricted to the triangle ∆, provides a natural embedding of the Sierpinski gasket

S into a homeomorph of the carpet K.

7. Appendix

Our techniques will be easily extended to higher dimensional cases or to vari-

ous hyperbolic tessellations. As one of generalizations of our way of construction,

we want to mention examples produced by “circle packing.” Let us consider a

circle packing C = {Ci |i ∈ ω} in a disk D0 of the plane where Ci is a boundary

circle of a disk Di such that:

(1)
⋃

i>0 Di is a dense subset of D0;

(2) open disks
◦
Di = Di\Ci (i > 0) are disjoint.This packing naturally de-

termines a compact nowhere dense subset A = D0 \
⋃

i>0

◦
Di, which we call the

“CPG” (Circle Packing Gasket) for short. In case that the first three circles

C0, C1, C2 touch each other, and each circle Ci (i > 3) kisses exactly three other

circles among Cj (0 6 j < i), the corresponding CPG is the well known Apollo-

nian gasket, which is made from two homeomorphic copies of Sierpinski gaskets

identifying the corresponding three vertices. In case all the boundary circles

are disjoint, the CPG is one of the Sierpinski curves described before Fact 2 in

Section 5, hence is homeomorphic with the Sierpinski carpet.

Now choose a CPG A0. Attach to every hole of A0 of the maximal size some

CPG along the boundary circle (there may be various ways of attaching). In

the resultant space A1 do the same job to its holes to get A2. Keeping these

procedures infinitely, taking care so that any holes of finite sizes disappear, we

will end up getting a non-porous sheet A∞, which is what we want. If we start

with the hexagonal circle packing of the entire plane, we will get a spread-sheet

version of A∞. This way of construction through circle packing will provide not

only the homeomorphic copies of hitherto examples like ω(S), Ω(S), ω(K), Ω(K)

but also a variety of new interesting fractal sheets. Of course, for practical use,

fractal sets which appear on some finite intermediate stages towards the sheet

A∞ will be sufficient. Figure 6 illustrates one of such examples. We imagine

that this figure looks like the “coacervates,” the colloidal droplets surrounded by

tight skins of water molecules, may be found in the ocean of the infant Earth, as

asserted by the Russian biochemist Oparin.
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Figure 6 “Coacervates.”
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