THE DESINGULARIZATIONS OF CLOSURES OF MORIN SINGULAR SETS

By
Masahiko Tomonobu

(Received July 21, 2010)

Abstract

For a miniversal unfolding of a holomorphic function germ, we consider the closures of Morin singular sets. We construct their desingularizations. Our basic tool are Bell polynomials.

1. Introduction

Let N^{n}, M^{m} be complex analytic manifolds, and let $F: N^{n} \rightarrow M^{m}$ be a generic holomorphic map. For each positive integer k we have the ThomBoardman singular set $\Sigma^{1^{k}} F(n \leq m)$ or $\Sigma^{n-m+1,1^{k-1}} F(n \geq m)$ in N, where $1^{k}=1, \ldots, 1$ with k ones. We call this set the Morin singular set and denote it by Σ_{k} (cf. [6]).

It is well known that these sets Σ_{k} are nonsingular, while their closures $\overline{\Sigma_{k}}$ are not. However it is possible to construct desingularizations of $\overline{\Sigma_{k}}$. The usual way of constructing desingularizations of $\overline{\Sigma_{k}}$ is to represent a desingularization as the zeros of a generic section of a vector bundle (see [9], [4], [11], [5]). We call such a vector bundle specifying $\overline{\Sigma_{k}}$.

In the case $n \leq m$, Gaffney ([4]) constructed desingularizations of $\overline{\Sigma_{k}}(k=$ $1,2,3,4)$. The vector bundles are defined locally, and it is not clear why they are defined independently of coordinates. In [11] Turnbull introduced the natural higher tangent bundles, and constructed desingularizations of not only $\overline{\Sigma_{k}}(k=$ $1,2,3,4$) but also $\overline{\Sigma_{5}}$ (the last one is restricted to $\Sigma^{1} F \cup \Sigma^{2} F$).

On the other hand, in the case $n \geq m$, it is more complicated to construct desingularizations of $\overline{\Sigma_{k}}$. In [5], for F given locally by a generic unfolding of a function germ, Kazarian constructed desingularizations of $\overline{\Sigma_{k}}(k=1,2,3)$ and defined a vector bundle specifying $\overline{\Sigma_{4}}$.

[^0]The purpose of this paper is, in the local situation where F is a miniversal unfolding of a function germ, to construct desingularizations of not only $\overline{\Sigma_{k}}$ ($k=$ $1,2,3,4)$ but also $\overline{\Sigma_{5}}, \overline{\Sigma_{6}}$. We do these in terms of Turnbull's higher tangent bundles.

Our basic tool are Bell polynomials. These polynomials appear in the equations defining Σ_{k} (see $\S 3$), which we use to guide our definitions of vector bundles specifying $\overline{\bar{\Sigma}_{k}}$. Choosing local coordinates, we can consider a Bell polynomial as an element of a basis of local sections of a vector bundle (see §7.2). Moreover operations of Bell polynomials correspond to operations of vector bundles. That is, by using Bell polynomials we can organize the definitions of vector bundles specifying $\overline{\Sigma_{k}}$.

By the symmetry of the equations defining Σ_{k}, we need blowups only for $\overline{\Sigma_{2 i}}$. Unlike the cases $\overline{\Sigma_{2}}, \overline{\Sigma_{4}}$, the case $\overline{\Sigma_{6}}$ needs an extra blowup which is along the locus corresponding to the closure $\overline{E_{7}}$ (E_{7} is Arnold's notation [1, $\S 15.1$], and we denote by E_{7} the set of E_{7} points). Therefore the case $\overline{\Sigma_{6}}$ is of particular interest.

There is a famous application of desingularizations of $\overline{\Sigma_{k}}$. Gaffney, Turnbull, and Kazarian used their desingularizations to calculate Thom polynomials. In order to calculate Thom polynomials further in the case $n \geq m$, one may use our desingularizations.

In $\S 2$ we recall Bell polynomials and take up their two properties. In $\S 3$ we determine the equations defining Σ_{k}. In $\S 4$ we summarize Turnbull's higher tangent bundles. In $\S 5$ we define our vector bundles specifying $\overline{\Sigma_{k}}$ and state our theorems. In $\S 6$ we prove the well-definedness of the vector bundles and the transversality of the sections. The section 7 is the core of this paper, in which we establish the relationship between the equations defining Σ_{k} and the vector bundles specifying $\overline{\Sigma_{k}}$. In $\S 8$ Appendix, as a byproduct of our desingularizations of $\overline{\Sigma_{k}}$, we give desingularizations of the closures $\overline{D_{5}}, \overline{E_{6}}, \overline{D_{6}}, \overline{E_{7}}, \overline{E_{8}}, \overline{X_{9}}$.

2. Bell polynomials

We recall Bell polynomials and take up their two properties. Bell polynomials appear in Faà de Bruno's formula.

2.1 Faà de Bruno's formula

For C^{∞} functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$, write

$$
(f g)_{i}=\frac{d^{i} f(g(x))}{d x^{i}}, f_{i}=\left.\frac{d^{i} f(y)}{d y^{i}}\right|_{y=g(x)}, g_{i}=\frac{d^{i} g(x)}{d x^{i}}
$$

By differentiating $f(g(x))$ successively, we have

$$
\begin{array}{rlrl}
(f g)_{1} & =[f(g(x))]^{\prime} & & =f_{1} g_{1} \\
(f g)_{2} & =\left[f^{\prime}(g(x)) g^{\prime}(x)\right]^{\prime} & & =f_{2} g_{1}^{2}+f_{1} g_{2} \\
(f g)_{3} & =\left[f^{\prime \prime}(g(x))\left(g^{\prime}(x)\right)^{2}+f^{\prime}(g(x)) g^{\prime \prime}(x)\right]^{\prime} & =f_{3} g_{1}^{3}+3 f_{2} g_{1} g_{2}+f_{1} g_{3},
\end{array}
$$

etc.
These are generalized to Faà de Bruno's formula ([3])

$$
(f g)_{k}=\sum \frac{k!f_{s}}{j_{1}!\cdots j_{k}!}\left(\frac{g_{1}}{1!}\right)^{j_{1}} \cdots\left(\frac{g_{k}}{k!}\right)^{j_{k}}
$$

where the sum ranges over $s=1,2, \ldots, k$ and $j_{1}, j_{2}, \ldots, j_{k} \in \mathbb{N} \cup\{0\}$ such that $j_{1}+j_{2}+\cdots+j_{k}=s$ and $j_{1}+2 j_{2}+\cdots+k j_{k}=k$.

It is known that this formula also holds in the case that f, g are maps (see [10]).

2.2 Bell polynomials

Write v for the set of k variables $\left(v_{1}, \ldots, v_{k}\right)$. The Bell polynomial $Y_{k}(v)$ ([2, $\S 7])$ is defined by

$$
Y_{k}(v)=\sum \frac{k!}{j_{1}!\cdots j_{k}!}\left(\frac{v_{1}}{1!}\right)^{j_{1}} \cdots\left(\frac{v_{k}}{k!}\right)^{j_{k}}
$$

where the sum ranges over $s=1,2, \ldots, k$ and $j_{1}, j_{2}, \ldots, j_{k} \in \mathbb{N} \cup\{0\}$ such that $j_{1}+j_{2}+\cdots+j_{k}=s$ and $j_{1}+2 j_{2}+\cdots+k j_{k}=k$. Set $Y_{0}(v)=1$.

For example, $Y_{1}(v)=v_{1}, Y_{2}(v)=v_{2}+v_{1}^{2}, Y_{3}(v)=v_{3}+3 v_{1} v_{2}+v_{1}^{3}$, etc. Each v_{i} corresponds to g_{i} in the Faà de Bruno's formula.

For fixed s, set

$$
Y_{k, s}(v)=\sum \frac{k!}{j_{1}!\cdots j_{k}!}\left(\frac{v_{1}}{1!}\right)^{j_{1}} \cdots\left(\frac{v_{k}}{k!}\right)^{j_{k}}
$$

where the sum ranges over $j_{1}, j_{2}, \ldots, j_{k} \in \mathbb{N} \cup\{0\}$ such that $j_{1}+j_{2}+\cdots+j_{k}=s$ and $j_{1}+2 j_{2}+\cdots+k j_{k}=k$. Then $Y_{k}(v)=\sum_{s=1}^{k} Y_{k, s}(v)$, and the Faà de Bruno's formula can be written in the form

$$
\begin{equation*}
(f g)_{k}=\sum_{s=1}^{k} f_{s} Y_{k, s}\left(g_{1}, \ldots, g_{k}\right) \tag{2.1}
\end{equation*}
$$

For the sets of k variables $v=\left(v_{1}, \ldots, v_{k}\right)$ and $w=\left(w_{1}, \ldots, w_{k}\right)$, write $v+w=\left(v_{1}+w_{1}, \ldots, v_{k}+w_{k}\right)$. The following two properties will be useful in $\S 7$.

LEMMA 2.1. ([8, p.36,p.45])
(i) $Y_{k}(v)=\sum_{i=0}^{k-1}\binom{k-1}{i} v_{k-i} Y_{i}(v)$.
(ii) $Y_{k}(v+w)=\sum_{i=0}^{k}\binom{k}{i} Y_{i}(v) Y_{k-i}(w)$.

Proof. Note that for $f(y)=e^{y}$, we have $f_{i}=e^{g(x)}$. Substituting $f(y)=e^{y}$ in (2.1), we get that

$$
\begin{aligned}
\left(e^{g(x)}\right)_{k} & =\sum_{s=1}^{k} e^{g(x)} Y_{k, s}\left(g_{1}, \ldots, g_{k}\right) \\
& =e^{g(x)} Y_{k}\left(g_{1}, \ldots, g_{k}\right) .
\end{aligned}
$$

Hence

$$
Y_{k}\left(g_{1}, \ldots, g_{k}\right)=e^{-g(x)} \frac{d^{k} e^{g(x)}}{d x^{k}}
$$

(i) Using Leibniz's formula for differentiation of a product, we have

$$
\begin{aligned}
Y_{k}\left(g_{1}, \ldots, g_{k}\right) & =e^{-g(x)} \frac{d^{k-1}}{d x^{k-1}}\left(g_{1} \cdot e^{g(x)}\right) \\
& =\sum_{i=0}^{k-1}\binom{k-1}{i}\left(\frac{d^{(k-1)-i}}{d x^{(k-1)-i}} g_{1}\right) \cdot\left(e^{-g(x)} \frac{d^{i}}{d x^{i}} e^{g(x)}\right) \\
& =\sum_{i=0}^{k-1}\binom{k-1}{i} g_{k-i} Y_{i}\left(g_{1}, \ldots, g_{k}\right)
\end{aligned}
$$

Since $g(x)$ is arbitrary, (i) is proved.
(ii) Let $h(x)$ be a C^{∞} function, and write $h_{i}=\frac{d^{i}}{d x^{i}} h(x)$. Using Leibniz's formula for differentiation of a product, we have

$$
\begin{aligned}
Y_{k}\left(g_{1}+h_{1}, \ldots, g_{k}+h_{k}\right) & =e^{-(g(x)+h(x))} \frac{d^{k}}{d x^{k}}\left(e^{g(x)} \cdot e^{h(x)}\right) \\
& =\sum_{i=0}^{k}\binom{k}{i}\left(e^{-g(x)} \frac{d^{i}}{d x^{i}} e^{g(x)}\right) \cdot\left(e^{-h(x)} \frac{d^{k-i}}{d x^{k-i}} e^{h(x)}\right) \\
& =\sum_{i=0}^{k}\binom{k}{i} Y_{i}\left(g_{1}, \ldots, g_{k}\right) Y_{k-i}\left(h_{1}, \ldots, h_{k}\right) .
\end{aligned}
$$

Since $g(x), h(x)$ are arbitrary, (ii) is proved.

For example, in the case $k=3$ we consider Lemma 2.1. Assertion (i) says that $Y_{3}(v)=v_{3} Y_{0}(v)+2 v_{2} Y_{1}(v)+v_{1} Y_{2}(v)$. This can be encoded by Table 1.

Table 1 The encoding of $Y_{3}(v)$

1	v_{3}
v_{1}	$2 v_{2}$
$v_{2}+v_{1}^{2}$	v_{1}

On the other hand, assertion (ii) says that $Y_{3}(v+w)=Y_{0}(v) Y_{3}(w)+3 Y_{1}(v) Y_{2}(w)$ $+3 Y_{2}(v) Y_{1}(w)+Y_{3}(v) Y_{0}(w)$. More precisely, $\left(v_{3}+w_{3}\right)+3\left(v_{1}+w_{1}\right)\left(v_{2}+w_{2}\right)+$ $\left(v_{1}+w_{1}\right)^{3}=1\left(w_{3}+3 w_{1} w_{2}+w_{1}^{3}\right)+3 v_{1}\left(w_{2}+w_{1}^{2}\right)+3\left(v_{2}+v_{1}^{2}\right) w_{1}+\left(v_{3}+3 v_{1} v_{2}+v_{1}^{3}\right) 1$.

3. The equations defining Morin singular sets

In this section, for an unfolding of a function germ we give the equations defining Morin singular sets.

Let $f_{0}:\left(\mathbb{C}^{n}, 0\right) \rightarrow(\mathbb{C}, 0)$ be a complex holomorphic function germ with an isolated singular point at $0 \in \mathbb{C}^{n}$, and let $F:\left(\mathbb{C}^{n} \times \mathbb{C}^{p},(0,0)\right) \rightarrow\left(\mathbb{C} \times \mathbb{C}^{p},(0,0)\right)$ be a holomorphic unfolding of f_{0} given by

$$
F(x, t)=(f(x, t), t) \text { with } f(x, 0)=f_{0}(x),
$$

where $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{C}^{n}, t=\left(t_{1}, \ldots, t_{p}\right) \in \mathbb{C}^{p}$. Let r be a sufficiently large integer, and let $J^{r}\left(\mathbb{C}^{n+p}, \mathbb{C}^{1+p}\right)$ be the jet space. In this section, we assume that the jet extension $j^{r} F:\left(\mathbb{C}^{n} \times \mathbb{C}^{p},(0,0)\right) \rightarrow J^{r}\left(\mathbb{C}^{n+p}, \mathbb{C}^{1+p}\right)$ is transverse to all the Morin singularities Σ^{n} and $\Sigma^{n, 1^{k}}(k \geq 1)$ in $J^{r}\left(\mathbb{C}^{n+p}, \mathbb{C}^{1+p}\right)(c f .[6])$.

The Morin singular sets $\Sigma^{n} F$ and $\Sigma^{n, 1^{k}} F(k \geq 1)$ are given by the inverse image of the Morin singularities under $j^{r} F$. We write

$$
\Sigma_{1}=\Sigma^{n} F, \Sigma_{k+1}=\Sigma^{n, 1^{k}} F(k \geq 1)
$$

By the assumption of transversality, these sets are nonsingular.
For each point $a \in \mathbb{C}^{n} \times \mathbb{C}^{p}$ near $(0,0)$, we define the affine map germ \mathfrak{a} : $\left(\mathbb{C}^{n}, 0\right) \rightarrow\left(\mathbb{C}^{n} \times \mathbb{C}^{p}, a\right)$ by $x \mapsto a+(x, 0)$. By modifying Gaffney's proposition ([4, Proposition 1.1]), we get the following result. This is based on the "probe" due to Porteous ([7]).

Proposition 3.1.

(i) A point $a \in \mathbb{C}^{n} \times \mathbb{C}^{p}$ near $(0,0)$ is in Σ_{1} if and only if $\left.d(f \circ \mathfrak{a})(x)\right|_{x=0}=0$, where $d(f \circ \mathfrak{a})(x)$ is the derivative of $f \circ \mathfrak{a}$ at $x \in \mathbb{C}^{n}$.
(ii) A point $a \in \Sigma_{1}$ near $(0,0)$ is in Σ_{2} if and only if (a) there exists an analytic curve $c:(\mathbb{C}, 0) \rightarrow\left(\mathbb{C}^{n}, 0\right)$ with $\frac{d c}{d u}(0) \neq 0$ such that $\left.\frac{d}{d u}[d(f \circ \mathfrak{a})(c(u))]\right|_{u=0}=$ 0 , and (b) all such curves have the unique tangent direction at $u=0$.
(iii) Let $k \geq 2$. A point $a \in \Sigma_{2}$ near $(0,0)$ is in Σ_{k+1} if and only if there exists an analytic curve $c:(\mathbb{C}, 0) \rightarrow\left(\mathbb{C}^{n}, 0\right)$ with $\frac{d c}{d u}(0) \neq 0$ such that $\left.\frac{d^{i}}{d u^{i}}[d(f \circ \mathfrak{a})(c(u))]\right|_{u=0}=0$ for every i with $1 \leq i \leq k$.

Proof. (i) By definition of \mathfrak{a}, we have $d(f \circ \mathfrak{a})(x)=\left(\frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{n}}\right)(\mathfrak{a}(x))$. So $\left.d(f \circ \mathfrak{a})(x)\right|_{x=0}=\left(\frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{n}}\right)(a)$. Since $\Sigma^{n} F=\left\{(x, t) \in \mathbb{C}^{n} \times \mathbb{C}^{p} \left\lvert\, \frac{\partial f}{\partial x_{1}}(x, t)=\right.\right.$ $\left.\cdots=\frac{\partial f}{\partial x_{n}}(x, t)=0\right\}$, assertion (i) is proved.
(iii) Before proving (ii), we show (iii).

Suppose that $a \in \Sigma^{n, 1} F\left(=\Sigma_{2}\right)$. Then there exists $l(\geq 1)$ such that $a \in$ $\Sigma^{n, 1^{l}, 0} F$. We can choose coordinates $x=\left(x_{1}, \ldots, x_{n}\right)$ of \mathbb{C}^{n} centered at 0 such that $f \circ \mathfrak{a}(x)=x_{1}^{l+2}+x_{2}^{2}+\cdots+x_{n}^{2}$. Then

$$
\begin{equation*}
d(f \circ \mathfrak{a})(x)=\left((l+2) x_{1}^{l+1}, 2 x_{2}, \ldots, 2 x_{n}\right) \tag{3.1}
\end{equation*}
$$

If we choose the curve c such that

$$
c(u)=(u, 0, \ldots, 0),
$$

then $d(f \circ \mathfrak{a})(c(u))=\left((l+2) u^{l+1}, 0, \ldots, 0\right)$.
Now if $a \in \Sigma^{n, 1^{k}} F$ then $k \leq l$. Hence $\left.\frac{d^{i}}{d u^{i}}[d(f \circ \mathfrak{a})(c(u))]\right|_{u=0}=0$ for every i with $1 \leq i \leq k$.

Conversely if $a \notin \Sigma^{n, 1^{k}} F$ then $a \in \Sigma^{n, 1^{l}, 0} F$ for some l with $l<k$. By (3.1), there are no curves that satisfy the condition.
(ii) The "only if" part is similar to the proof of (iii). The "if" part follows from the uniqueness of the tangent direction.

Before giving an example, we recall higher derivatives: Let S, T be finite dimensional vector spaces over \mathbb{C}, U an open subset of S, and $\varphi: U \rightarrow T$ a holomorphic map. We denote by $\varphi_{1}: U \rightarrow L(S, T)$ the first derivative of φ. The second derivative of φ is $\varphi_{2}: U \rightarrow L(S, L(S, T))=L(S \otimes S, T)$. It is well known that φ_{2} is symmetric. So $\varphi_{2}: U \rightarrow L(S \circ S, T)$, where \circ denotes the symmetric product. In general, the i th derivative is $\varphi_{i}: U \rightarrow L\left(\mathrm{O}^{i} S, T\right)$.

Example 3.1. The first three derivatives $\frac{d^{i}}{d u^{i}}(d(f \circ \mathfrak{a})(c(u)))$ are:

$$
\begin{aligned}
\frac{d}{d u}(d(f \circ \mathfrak{a})(c(u))) & =\left((f \circ \mathfrak{a})_{1} \circ c\right)_{1} \\
& =\left(\left(f_{1} \circ \mathfrak{a} \circ c\right)\left(\mathfrak{a}_{1} \circ c\right)\right)_{1} \\
& =f_{2}\left(\mathfrak{a}_{1} c_{1}\right) \mathfrak{a}_{1}+f_{1}\left(\mathfrak{a}_{2} c_{1}\right) \\
& =f_{2}\left(\mathfrak{a}_{1} c_{1}\right) \mathfrak{a}_{1} \\
\frac{d^{2}}{d u^{2}}(d(f \circ \mathfrak{a})(c(u))) & =\left(f_{2}\left(\mathfrak{a}_{1} c_{1}\right) \mathfrak{a}_{1}\right)_{1} \\
& =f_{3}\left(\mathfrak{a}_{1} c_{1}\right)^{2} \mathfrak{a}_{1}+f_{2}\left(\mathfrak{a}_{1} c_{2}\right) \mathfrak{a}_{1}, \\
\frac{d^{3}}{d u^{3}}(d(f \circ \mathfrak{a})(c(u))) & =\left(f_{3}\left(\mathfrak{a}_{1} c_{1}\right)^{2} \mathfrak{a}_{1}+f_{2}\left(\mathfrak{a}_{1} c_{2}\right) \mathfrak{a}_{1}\right)_{1} \\
& =f_{4}\left(\mathfrak{a}_{1} c_{1}\right)^{3} \mathfrak{a}_{1}+3 f_{3}\left(\mathfrak{a}_{1} c_{1}\right)\left(\mathfrak{a}_{1} c_{2}\right) \mathfrak{a}_{1}+f_{2}\left(\mathfrak{a}_{1} c_{3}\right) \mathfrak{a}_{1} .
\end{aligned}
$$

Here the superscript of a vector refers to the number of copies of the vector and, for example, $f_{3}\left(\mathfrak{a}_{1} c_{1}\right)^{2} \mathfrak{a}_{1}$ is shorthand for

$$
\left(f_{3} \circ \mathfrak{a} \circ c\right)\left[\left(\mathfrak{a}_{1} \circ c\right) c_{1},\left(\mathfrak{a}_{1} \circ c\right) c_{1}, \mathfrak{a}_{1} \circ c\right](u) .
$$

Note that $\left(f_{i}\right)_{1}=f_{i+1}\left(\mathfrak{a}_{1} c_{1}\right)$ since $\left(f_{i} \circ \mathfrak{a} \circ c\right)_{1}=\left(f_{i+1} \circ \mathfrak{a} \circ c\right)\left(\mathfrak{a}_{1} \circ c\right) c_{1}$, and that $\mathfrak{a}_{2}=\mathfrak{a}_{3}=\cdots=0$ since \mathfrak{a} is affine.

Write $f_{t}(x)=f(x, t)$, and consider f_{t} as a function with respect to $x \in \mathbb{C}^{n}$. In Example 3.1, each $f_{i} \mathfrak{a}_{1}^{i}$, for instance $f_{4} \mathfrak{a}_{1}^{4}$ appearing in the term $f_{4}\left(\mathfrak{a}_{1} c_{1}\right)^{3} \mathfrak{a}_{1}$, is exactly the i th derivative of f_{t}. Hence we can write

$$
f_{i} \mathfrak{a}_{1}^{i}=\left(f_{t}\right)_{i} .
$$

Replacing c_{i} by vectors v_{i} and the absence of c_{i} by a vector V, we get the equations defining Σ_{k}.
The equations defining Σ_{k}. Near $(0,0)$, the points of Σ_{k} are characterized as follows.

- A point of Σ_{1} is in Σ_{2} if and only if at the point, $0 \neq \exists v_{1} \in \mathbb{C}^{n}$, unique up to scalar multiplication, such that

$$
\begin{equation*}
\left(f_{t}\right)_{2}\left(v_{1} V\right)=0\left(\forall V \in \mathbb{C}^{n}\right) \tag{3.2}
\end{equation*}
$$

- A point of Σ_{2} is in Σ_{3} if and only if at the point, also $\exists v_{2} \in \mathbb{C}^{n}$ such that

$$
\begin{equation*}
\left(f_{t}\right)_{2}\left(v_{2} V\right)+\left(f_{t}\right)_{3}\left(v_{1}^{2} V\right)=0\left(\forall V \in \mathbb{C}^{n}\right) \tag{3.3}
\end{equation*}
$$

- A point of Σ_{3} is in Σ_{4} if and only if at the point, also $\exists v_{3} \in \mathbb{C}^{n}$ such that

$$
\begin{equation*}
\left(f_{t}\right)_{2}\left(v_{3} V\right)+\left(f_{t}\right)_{3}\left(3 v_{1} v_{2} V\right)+\left(f_{t}\right)_{4}\left(v_{1}^{3} V\right)=0\left(\forall V \in \mathbb{C}^{n}\right) . \tag{3.4}
\end{equation*}
$$

- A point of Σ_{4} is in Σ_{5} if and only if at the point, also $\exists v_{4} \in \mathbb{C}^{n}$ such that

$$
\begin{align*}
& \left(f_{t}\right)_{2}\left(v_{4} V\right)+\left(f_{t}\right)_{3}\left(4 v_{1} v_{3} V\right)+\left(f_{t}\right)_{3}\left(3 v_{2}^{2} V\right) \\
& +\left(f_{t}\right)_{4}\left(6 v_{1}^{2} v_{2} V\right)+\left(f_{t}\right)_{5}\left(v_{1}^{4} V\right)=0\left(\forall V \in \mathbb{C}^{n}\right) . \tag{3.5}
\end{align*}
$$

- A point of Σ_{5} is in Σ_{6} if and only if at the point, also $\exists v_{5} \in \mathbb{C}^{n}$ such that

$$
\begin{align*}
& \left(f_{t}\right)_{2}\left(v_{5} V\right)+\left(f_{t}\right)_{3}\left(5 v_{1} v_{4} V\right)+\left(f_{t}\right)_{3}\left(10 v_{2} v_{3} V\right)+\left(f_{t}\right)_{4}\left(10 v_{1}^{2} v_{3} V\right) \tag{3.6}\\
& +\left(f_{t}\right)_{4}\left(15 v_{1} v_{2}^{2} V\right)+\left(f_{t}\right)_{5}\left(10 v_{1}^{3} v_{2} V\right)+\left(f_{t}\right)_{6}\left(v_{1}^{5} V\right)=0\left(\forall V \in \mathbb{C}^{n}\right)
\end{align*}
$$

4. Turnbull's higher tangent bundles

In this section we summarize Turnbull's higher tangent bundles ([11, §1]). Whereas Turnbull has worked over \mathbb{R}, for our purposes we work over \mathbb{C}.

First, we recall symmetric products; $\circ^{s} \mathbb{C}^{n}$ is a subspace of $\otimes^{s} \mathbb{C}^{n}$, and consists of the elements which are invariant under permutations of the factors. If $v_{1}, \ldots, v_{s} \in \mathbb{C}^{n}$ then we write

$$
v_{1} \cdots v_{s}=\frac{1}{s!} \sum_{\sigma \in \mathfrak{S}_{s}} v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(s)} \in \circ^{s} \mathbb{C}^{n}
$$

where \mathfrak{S}_{s} is the symmetric group of degree s. If $v_{1}, \ldots, v_{n} \in \mathbb{C}^{n}$ is a basis of \mathbb{C}^{n} then $\left\{v_{i_{1}} \cdots v_{i_{s}} \mid 1 \leq i_{1} \leq \cdots \leq i_{s} \leq n\right\}$ is a basis of $\circ^{s} \mathbb{C}^{n}$.

4.1 The higher tangent bundles

Let r be a positive integer. The vector space $S_{r} \mathbb{C}^{n}$ is defined by

$$
S_{r} \mathbb{C}^{n}=\mathbb{C}^{n} \oplus \mathbb{C}^{n} \circ \mathbb{C}^{n} \oplus \circ^{3} \mathbb{C}^{n} \oplus \cdots \oplus \circ^{r} \mathbb{C}^{n}
$$

Here \circ takes precedence over \oplus.
Let $U \subset \mathbb{C}^{n}$ and $W \subset \mathbb{C}^{m}$ be open subsets, and let $f: U \rightarrow W$ be a holomorphic map. The linear map $S_{r} f: S_{r} \mathbb{C}^{n} \rightarrow S_{r} \mathbb{C}^{m}$ at $x \in U$ is defined by

$$
S_{r} f=\left(\sum f_{i}, \sum C_{i_{1} i_{2}} f_{i_{1}} f_{i_{2}}, \sum C_{i_{1} i_{2} i_{3}} f_{i_{1}} f_{i_{2}} f_{i_{3}}, \ldots, f_{1}^{r}\right)
$$

Here f_{j} is the j th derivative of f at x. The coefficient $C_{i_{1} \cdots i_{s}}$ is the number of distinct partitions of a set of order $i_{1}+\cdots+i_{s}$ into subsets of order i_{1}, \ldots, i_{s}. The first sum is over $\{i \mid 1 \leq i \leq r\}$, the second is over $\left\{i_{1}, i_{2} \mid i_{1}+i_{2} \leq r, 1 \leq i_{1} \leq i_{2}\right\}$, the third is over $\left\{i_{1}, i_{2}, i_{3} \mid i_{1}+i_{2}+i_{3} \leq r, 1 \leq i_{1} \leq i_{2} \leq i_{3}\right\}$ and so on. A monomial $f_{i_{1}} f_{i_{2}} \cdots f_{i_{s}}$ acts on $\mathrm{O}^{i_{1}+\cdots+i_{s}} \mathbb{C}^{n}$ to give an element of $\mathrm{O}^{s} \mathbb{C}^{m}$.

For example, if $r=3$ then $S_{3} f=\left(f_{1}+f_{2}+f_{3}, f_{1}^{2}+3 f_{1} f_{2}, f_{1}^{3}\right)$. Note that $\left(3 f_{1} f_{2}\right)\left(v_{1} v_{2} v_{3}\right)=f_{1}\left(v_{1}\right) f_{2}\left(v_{2} v_{3}\right)+f_{1}\left(v_{2}\right) f_{2}\left(v_{1} v_{3}\right)+f_{1}\left(v_{3}\right) f_{2}\left(v_{1} v_{2}\right)\left(v_{1} v_{2} v_{3} \in O^{3} \mathbb{C}^{n}\right)$.

Let $k=i_{1}+i_{2}+\cdots+i_{s}$, and let j_{l} be the number of times that a particular integer l occurs in i_{1}, \ldots, i_{s}. Then the coefficient $C_{i_{1} \cdots i_{s}}$ equals $\frac{k!}{j_{1}!\cdots j_{k}!}\left(\frac{1}{1!}\right)^{j_{1}} \cdots\left(\frac{1}{k!}\right)^{j_{k}}$, which appears in the Faà de Bruno's formula in $\S 2.1$. By the map version of the formula, we can show that $S_{r} f$ satisfies the equality

$$
\left(\phi_{1}+\cdots+\phi_{r}\right) \circ S_{r} f=(\phi \circ f)_{1}+\cdots+(\phi \circ f)_{r}
$$

for any holomorphic function $\phi: W \rightarrow \mathbb{C}([11$, Proposition 3]). By using this equality, Turnbull proved the chain rule

$$
S_{r}(g \circ f)=S_{r} g \circ S_{r} f
$$

for holomorphic maps $f: U \rightarrow W$ and $g: W \rightarrow \mathbb{C}^{l}$, and obtained the following result.

THEOREM 4.1. (Turnbull [11, §1.5]) Let N^{n}, M^{m}, and L^{l} be complex analytic manifolds, and let $f: N \rightarrow M$ and $g: M \rightarrow L$ be holomorphic maps.
(i) There exists an vector bundle $T_{r} N$ over N, with fibre $S_{r} \mathbb{C}^{n}$ and with transition map $S_{r}\left(\varphi \circ\left(\varphi^{\prime} \mid U \cap U^{\prime}\right)^{-1}\right)$ for any pair of charts $(U, \varphi),\left(U^{\prime}, \varphi^{\prime}\right)$ of N.
(ii) There exists a bundle map $T_{r} f: T_{r} N \rightarrow T_{r} M$ which is given locally by $S_{r} f$.
(iii) The chain rule $T_{r}(g \circ f)=T_{r} g \circ T_{r} f$ holds.
(iv) There exist natural inclusions $T_{1} N \hookrightarrow T_{2} N \hookrightarrow \cdots$ such that $\left.T_{r} f\right|_{T_{r-1} N}=$ $T_{r-1} f$.

4.2 The map $\sigma: T_{r} N \rightarrow T_{r} N \bigcirc T_{r} N$

We will in what follows distinguish the two types of symmetric products; ○ inside $S_{r} \mathbb{C}^{n}\left(=\mathbb{C}^{n} \oplus \mathbb{C}^{n} \bigcirc \mathbb{C}^{n} \oplus \cdots \oplus \circ^{r} \mathbb{C}^{n}\right)$ and \bigcirc outside $S_{r} \mathbb{C}^{n}$ (for example, \bigcirc of $\left.S_{r} \mathbb{C}^{n} \bigcirc S_{r} \mathbb{C}^{n}\right)$.

It is not possible to define a multiplication $T_{r} N \bigcirc T_{s} N \rightarrow T_{r+s} N$ independently of coordinates. But Turnbull defined instead a map $\sigma: T_{r} N \rightarrow$ $T_{r} N \bigcirc T_{r} N$. For subbundles ξ, η of $T_{r} N$, we will use $\sigma^{-1}(\xi \bigcirc \eta)$ like a multiplication of ξ and η.

The space $S_{r} \mathbb{C}^{n}$ is spanned by elements of the form $v_{1} \cdots v_{s} \quad\left(v_{1}, \ldots\right.$, $\left.v_{s} \in \mathbb{C}^{n}, s \leq r\right)$. So we can define the linear map $\sigma: S_{r} \mathbb{C}^{n} \rightarrow S_{r} \mathbb{C}^{n} \bigcirc S_{r} \mathbb{C}^{n}$ by

$$
\sigma\left(v_{1} \cdots v_{s}\right)= \begin{cases}0 & (s=1) \\ \sum\left(v_{i_{1}} \cdots v_{i_{l}}\right) \bigcirc\left(v_{i_{l+1}} \cdots v_{i_{s}}\right) & (s \geq 2)\end{cases}
$$

Here the sum is over all partitions of $\{1, \ldots, s\}$ into disjoint, nonempty subsets $\left\{i_{1}, \ldots, i_{l}\right\},\left\{i_{l+1}, \ldots, i_{s}\right\}\left(1 \leq l \leq \frac{s}{2}\right)$.

For example, $\sigma\left(v_{1}^{2} v_{2}^{2}\right)=2 v_{1} \bigcirc v_{1} v_{2}^{2}+2 v_{2} \bigcirc v_{1}^{2} v_{2}+v_{1}^{2} \bigcirc v_{2}^{2}+2 v_{1} v_{2} \bigcirc v_{1} v_{2}$.
Let θ be an analytic change of coordinates. By direct computation, we can get that

$$
\begin{equation*}
\sigma \circ S_{r} \theta=\left(S_{r} \theta \bigcirc S_{r} \theta\right) \circ \sigma \tag{4.1}
\end{equation*}
$$

where $S_{r} \theta \bigcirc S_{r} \theta$ denotes the map $S_{r} \mathbb{C}^{n} \bigcirc S_{r} \mathbb{C}^{n} \rightarrow S_{r} \mathbb{C}^{n} \bigcirc S_{r} \mathbb{C}^{n}$ given by $\left(S_{r} \theta \bigcirc S_{r} \theta\right)(a \bigcirc b)=S_{r} \theta(a) \bigcirc S_{r} \theta(b)$. So σ does not depend on the particular choice of coordinates, and we obtain the map $\sigma: T_{r} N \rightarrow T_{r} N \bigcirc T_{r} N$ given locally by $\sigma: S_{r} \mathbb{C}^{n} \rightarrow S_{r} \mathbb{C}^{n} \bigcirc S_{r} \mathbb{C}^{n}$. By definition of σ, we see that $\operatorname{Ker} \sigma=T_{1} N$.

For later use we state the general result of (4.1).
Lemma 4.1. (Turnbull [11, §1.6, §2.7]) For a holomorphic map $f: N \rightarrow M$, we have $\sigma_{M} \circ T_{r} f=\left(T_{r} f \bigcirc T_{r} f\right) \circ \sigma_{N}$, where σ_{N} and σ_{M} act on $T_{r} N$ and $T_{r} M$, respectively.

4.3 The image of Bell polynomials under σ

In almost the same way as the map σ, we define the map $\tilde{\sigma}: S_{r} \mathbb{C}^{n} \rightarrow$ $S_{r} \mathbb{C}^{n} \otimes S_{r} \mathbb{C}^{n}$ by

$$
\tilde{\sigma}\left(v_{1} \cdots v_{s}\right)= \begin{cases}0 & (s=1) \\ \sum\left(v_{i_{1}} \cdots v_{i_{l}}\right) \otimes\left(v_{i_{l+1}} \cdots v_{i_{s}}\right) & (s \geq 2)\end{cases}
$$

Here the sum is over all ordered partitions $\left(A_{1}, A_{2}\right)$ of $\{1, \ldots, s\}$ into disjoint, nonempty subsets $A_{1}=\left\{i_{1}, \ldots, i_{l}\right\}, A_{2}=\left\{i_{l+1}, \ldots, i_{s}\right\}(1 \leq l \leq s-1)$. Then $\sigma=\frac{1}{2} \pi \circ \tilde{\sigma}$, where π denotes the canonical projection $S_{r} \mathbb{C}^{n} \otimes S_{r} \mathbb{C}^{n} \rightarrow S_{r} \mathbb{C}^{n} \bigcirc S_{r} \mathbb{C}^{n}$ given by $\pi(a \otimes b)=\frac{1}{2!}(a \otimes b+b \otimes a)$.

The space $S_{r} \mathbb{C}^{n} \otimes S_{r} \mathbb{C}^{n}$ is spanned by elements of the form $v_{1} \cdots v_{l} \otimes v_{l+1} \cdots$ $v_{l+m}\left(v_{1}, \ldots, v_{l+m} \in \mathbb{C}^{n} ; l, m \leq r\right)$. We associate $v_{1} \cdots v_{l} \otimes v_{l+1} \cdots v_{l+m}$ with the monomial $v_{1} \cdots v_{l} w_{l+1} \cdots w_{l+m}$. By extending this linearly, we can associate the image $\tilde{\sigma}\left(v_{1} \cdots v_{s}\right)$ with the polynomial $\left(v_{1}+w_{1}\right) \cdots\left(v_{s}+w_{s}\right)-\left(v_{1} \cdots v_{s}\right)-$ $\left(w_{1} \cdots w_{s}\right)$.

We now fix vectors $v_{1}, \ldots, v_{k}(k \leq r)$ of \mathbb{C}^{n}, and set $v=\left(v_{1}, \ldots, v_{k}\right)$. The Bell polynomial $Y_{k}(v)$ can be considered as an element of $S_{r} \mathbb{C}^{n}$.

The following lemma will be useful to define the vector bundles specifying $\overline{\Sigma_{k}}$ (see Note 7.1).

LEMMA 4.2. For the map σ, we have $\sigma\left(Y_{k}(v)\right)=\frac{1}{2} \sum_{i=1}^{k-1}\binom{k}{i} Y_{i}(v) \bigcirc Y_{k-i}(v)$.
Proof. As above, we can associate the image $\tilde{\sigma}\left(Y_{k}(v)\right)$ with the polynomial $Y_{k}(v+$ $w)-Y_{k}(v)-Y_{k}(w)$. By Lemma 2.1 (ii), the polynomial $Y_{k}(v+w)-Y_{k}(v)-Y_{k}(w)$
equals $\sum_{i=1}^{k-1}\binom{k}{i} Y_{i}(v) Y_{k-i}(w)$, with which $\sum_{i=1}^{k-1}\binom{k}{i} Y_{i}(v) \otimes Y_{k-i}(v)$ is associated. Thus $\tilde{\sigma}\left(Y_{k}(v)\right)=\sum_{i=1}^{k-1}\binom{k}{i} Y_{i}(v) \otimes Y_{k-i}(v)$. Since $\sigma=\frac{1}{2} \pi \circ \tilde{\sigma}$, the lemma is proved.

For example, if $k=4$ then $\sigma\left(Y_{4}(v)\right)=\frac{1}{2}\left(4 Y_{1}(v) \bigcirc Y_{3}(v)+6 Y_{2}(v) \bigcirc Y_{2}(v)+\right.$ $\left.4 Y_{3}(v) \bigcirc Y_{1}(v)\right)=4 Y_{1}(v) \bigcirc Y_{3}(v)+3 Y_{2}(v) \bigcirc Y_{2}(v)$.

5. Construction of the desingularizations

In this section, we construct our desingularizations of $\overline{\Sigma_{1}}, \ldots, \overline{\Sigma_{6}}$. Some of the proofs will be given in the later sections.

By a desingularization of an analytic set A, we mean a holomorphic map $\pi: \tilde{A} \rightarrow A$ such that (i) π is proper and surjective, (ii) \tilde{A} is a nonsingular analytic set, and (iii) there exists an open dense subset U of A satisfying the conditions that $\pi^{-1}(U)$ is open dense in \tilde{A} and $\left.\pi\right|_{\pi^{-1}(U)}: \pi^{-1}(U) \rightarrow U$ is biholomorphic.

Let $f_{0}:\left(\mathbb{C}^{n}, 0\right) \rightarrow(\mathbb{C}, 0)$ be a holomorphic function germ with an isolated singular point at $0 \in \mathbb{C}^{n}$, and let $F:\left(\mathbb{C}^{n} \times \mathbb{C}^{p},(0,0)\right) \rightarrow\left(\mathbb{C} \times \mathbb{C}^{p},(0,0)\right)$ be the \mathcal{R}^{+}-miniversal unfolding (cf. [1, §19.4]) of f_{0} defined by

$$
F(x, t)=(f(x, t), t), f(x, t)=f_{0}(x)+\sum_{i=1}^{p} t_{i} g_{i}(x)
$$

such that
(i) $g_{i} \in \mathbb{C}\{x\}$ and $g_{i}(0)=0$ for every i,
(ii) $1, g_{1}, \ldots, g_{p}$ is a basis of $\mathbb{C}\{x\} /\left(\frac{\partial f_{0}}{\partial x_{1}}, \ldots, \frac{\partial f_{0}}{\partial x_{n}}\right)$ as a \mathbb{C}-vector space,
where $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{C}^{n}, t=\left(t_{1}, \ldots, t_{p}\right) \in \mathbb{C}^{p}, \mathbb{C}\{x\}$ is the ring of convergent power series, and $\left(\frac{\partial f_{0}}{\partial x_{1}}, \ldots, \frac{\partial f_{0}}{\partial x_{n}}\right)$ is the ideal of $\mathbb{C}\{x\}$ generated by $\frac{\partial f_{0}}{\partial x_{1}}, \ldots, \frac{\partial f_{0}}{\partial x_{n}}$. Then this F satisfies the assumption that the jet extension $j^{r} F$ is transverse to all the Morin singularities Σ^{n} and $\Sigma^{n, 1^{k}}(k \geq 1)$, and hence we can use the equations (3.2)-(3.6) defining Σ_{k}.

By considering the stable equivalence $([1, \S 11.1])$ we can assume that $n \geq 3$, and for our purpose we assume that $(0,0) \in \overline{\Sigma_{6}}$.

Write $f_{t}(x)=f(x, t)$, and consider f_{t} as a function with respect to $x \in \mathbb{C}^{n}$. Let r be a sufficiently large integer. We have the map $T_{r}\left(f_{t}\right): T_{r} \mathbb{C}^{n} \rightarrow T_{r} \mathbb{C}$ over \mathbb{C}^{n}. By considering its pullback over $\mathbb{C}^{n} \times \mathbb{C}^{p}$ under the standard projection $\mathbb{C}^{n} \times \mathbb{C}^{p} \rightarrow \mathbb{C}^{n}$, we will in what follows consider all sets, bundles, and bundle maps above a sufficiently small, open neighbourhood of $(0,0)$ in $\mathbb{C}^{n} \times \mathbb{C}^{p}$.

5.1 The desingularization of $\overline{\Sigma_{1}}$

By Proposition 3.1 (i),

$$
\Sigma_{1}=\left\{(x, t) \in \mathbb{C}^{n} \times \mathbb{C}^{p} \mid T_{1}\left(f_{t}\right)=0 \text { at }(x, t)\right\}
$$

By the transversality of $j^{r} F$, the set Σ_{1} is nonsingular. Since Σ_{1} is closed, it follows that $\overline{\Sigma_{1}}=\Sigma_{1}$. So we write $\tilde{\Sigma}_{1}$ for Σ_{1}, and call it a desingularization of $\overline{\Sigma_{1}}$.

5.2 The desingularization of $\overline{\Sigma_{2}}$

By restricting bundles to $\tilde{\Sigma}_{1}$, we now work over $\tilde{\Sigma}_{1}$. Let us denote $T_{1} \mathbb{C}^{n}$ by ξ_{1} and $T_{1} \mathbb{C}$ by ι_{1}. Then $T_{1}\left(f_{t}\right)\left(\xi_{1}\right)=\{0\}$.

We have the projective bundle of ξ_{1} which we denote by $\mathbb{P}\left(\xi_{1}\right)$. Write π_{2} for the projection of $\mathbb{P}\left(\xi_{1}\right)$ onto $\tilde{\Sigma}_{1}$. Over $\mathbb{P}\left(\xi_{1}\right)$ we have the tautological line bundle ξ_{1}^{1} whose fibre is corresponding to the point of $\mathbb{P}\left(\xi_{1}\right)$.

Let η_{2} be the inverse image of $\xi_{1}^{1} \bigcirc \xi_{1}$ under the map $\sigma: T_{r} \mathbb{C}^{n} \rightarrow T_{r} \mathbb{C}^{n} \bigcirc T_{r} \mathbb{C}^{n}$ (cf. the equation (3.2) defining Σ_{2}). Since $\xi_{1}^{1} \bigcirc \xi_{1}$ is contained in the image of σ, it follows that η_{2} is a $2 n$ dimensional subbundle of $T_{2} \mathbb{C}^{n}$. Then $\xi_{1} \subset \eta_{2}$. Since $\xi_{1}^{1} \subset \operatorname{Ker} T_{1}\left(f_{t}\right)$, by Lemma 4.1, $T_{2}\left(f_{t}\right)$ maps η_{2} into ι_{1}. So let $\bar{T}_{2}\left(f_{t}\right): \eta_{2} / \xi_{1} \rightarrow \iota_{1}$ be the map induced by $T_{2}\left(f_{t}\right)$. Then we have a section, say Φ_{2}, of $\operatorname{Hom}\left(\eta_{2} / \xi_{1}, \iota_{1}\right)$ over $\mathbb{P}\left(\xi_{1}\right)$, induced by $\bar{T}_{2}\left(f_{t}\right)$.

We are interested in the zeros of this section Φ_{2}. At such points $T_{2}\left(f_{t}\right)\left(\eta_{2}\right)=$ $\{0\}$. Let $\tilde{\Sigma}_{2}$ be the zeros of the section.

$$
\begin{array}{ccc}
& & \operatorname{Hom}\left(\eta_{2} / \xi_{1}, \iota_{1}\right) \\
& & \downarrow \mid \Phi_{2} \\
\tilde{\Sigma}_{2} & \hookrightarrow & \mathbb{P}\left(\xi_{1}\right) \\
& & \downarrow \pi_{2} \\
& & \tilde{\Sigma}_{1}
\end{array}
$$

Set $S=\cup_{i \geq 2} \Sigma^{n, i} F$. It is easy to see that S is an analytic subset of $\tilde{\Sigma}_{1}$ and satisfies $\Sigma_{2}=\overline{\Sigma_{2}} \backslash S$. Also set $\tilde{S}_{2}=\left(\pi_{2} \mid \tilde{\Sigma}_{2}\right)^{-1}(S)$.

THEOREM 5.1. The restriction of π_{2} to $\tilde{\Sigma}_{2}$ is a desingularization of $\overline{\Sigma_{2}}$.
Proof. We will prove in $\S 6.1$ that Φ_{2} is transverse to the zero section of $\operatorname{Hom}\left(\eta_{2} / \xi_{1}, \iota_{1}\right)$. Hence $\tilde{\Sigma}_{2}$ is nonsingular.

By definition of η_{2}, π_{2} maps $\tilde{\Sigma}_{2} \backslash \tilde{S}_{2}$ into Σ_{2}. Above each point of $\Sigma_{2}\left(\subset \tilde{\Sigma}_{1}\right)$, there exists a unique line ξ_{1}^{1} such that Φ_{2} vanishes. Hence $\left.\pi_{2}\right|_{\tilde{\Sigma}_{2} \backslash \tilde{S}_{2}}: \tilde{\Sigma}_{2} \backslash \tilde{S}_{2} \rightarrow \Sigma_{2}$
is surjective and has the inverse map. It follows that $\left.\pi_{2}\right|_{\tilde{\Sigma}_{2} \backslash \tilde{S}_{2}}: \tilde{\Sigma}_{2} \backslash \tilde{S}_{2} \rightarrow \Sigma_{2}$ is biholomorphic.

By choosing local coordinates of $\tilde{\Sigma}_{2}$, we see that \tilde{S}_{2} is a nowhere dense analytic subset of $\tilde{\Sigma}_{2}$, and hence $\tilde{\Sigma}_{2} \backslash \tilde{S}_{2}$ is open dense in $\tilde{\Sigma}_{2}$.

Since π_{2} is proper and Σ_{2} is open dense in $\overline{\Sigma_{2}}$, it follows that π_{2} maps $\tilde{\Sigma}_{2}$ onto $\overline{\Sigma_{2}}$. The theorem is proved.

5.3 The desingularization of $\overline{\Sigma_{3}}$

The next stage does not need a blowup such as π_{2}. By raising bundles to $\tilde{\Sigma}_{2}$, we now work over $\tilde{\Sigma}_{2}$. Then $T_{2}\left(f_{t}\right)\left(\eta_{2}\right)=\{0\}$.

Let ξ_{2} be the inverse image of $\xi_{1}^{1} \bigcirc \xi_{1}^{1}$ under σ. Since $\xi_{1}^{1} \bigcirc \xi_{1}^{1}$ is contained in the image of σ, it follows that ξ_{2} is an $(n+1)$ dimensional subbundle of $T_{2} \mathbb{C}^{n}$. Let η_{3} be the inverse image of $\xi_{1}^{1} \bigcirc \xi_{2}$ under σ (cf. $\S 7.1$ together with the equation (3.3) defining Σ_{3}). Similarly η_{3} is a $(2 n+1)$ dimensional subbundle of $T_{3} \mathbb{C}^{n}$. Then $\xi_{1} \subset \xi_{2} \subset \eta_{2} \subset \eta_{3}$.

Since $\xi_{1}^{1} \subset \operatorname{Ker} T_{1}\left(f_{t}\right)$, by Lemma 4.1, $T_{3}\left(f_{t}\right)$ maps η_{3} into ι_{1}. So let $\bar{T}_{3}\left(f_{t}\right)$: $\eta_{3} / \eta_{2} \rightarrow \iota_{1}$ be the map induced by $T_{3}\left(f_{t}\right)$. Then we have a section, say Φ_{3}, of $\operatorname{Hom}\left(\eta_{3} / \eta_{2}, \iota_{1}\right)$ over $\tilde{\Sigma}_{2}$, induced by $\bar{T}_{3}\left(f_{t}\right)$. Let $\tilde{\Sigma}_{3}$ be the zeros of the section Φ_{3}.

$$
\begin{aligned}
& \operatorname{Hom}\left(\eta_{3} / \eta_{2}, \iota_{1}\right) \\
& \\
& \downarrow \upharpoonright \Phi_{3} \\
\tilde{\Sigma}_{3} \hookrightarrow \quad & \tilde{\Sigma}_{2}
\end{aligned}
$$

We have $\Sigma_{3}=\overline{\Sigma_{3}} \backslash S$, and set $\tilde{S}_{3}=\left(\pi_{2} \mid \tilde{\Sigma}_{3}\right)^{-1}(S)$.
THEOREM 5.2. The restriction of π_{2} to $\tilde{\Sigma}_{3}$ is a desingularization of $\overline{\Sigma_{3}}$.
Proof. The same argument as in $\S 6.1$ shows that Φ_{3} is transverse to the zero section of $\operatorname{Hom}\left(\eta_{3} / \eta_{2}, \iota_{1}\right)$. On the other hand, in $\S 7.1$ we will prove the relation $\pi_{2}\left(\tilde{\Sigma}_{3} \backslash \tilde{S}_{3}\right)=\Sigma_{3}$, the existence of the inverse map of $\left.\pi_{2}\right|_{\tilde{\Sigma}_{3} \backslash \tilde{S}_{3}}: \tilde{\Sigma}_{3} \backslash \tilde{S}_{3} \rightarrow \Sigma_{3}$, and the density of $\tilde{\Sigma}_{3} \backslash \tilde{S}_{3}$ in $\tilde{\Sigma}_{3}$. As in the proof of Theorem 5.1, these imply the theorem.

5.4 The desingularization of $\overline{\Sigma_{4}}$

This stage is similar to that of $\overline{\Sigma_{2}}$. We now work over $\tilde{\Sigma}_{3}$. Then $T_{3}\left(f_{t}\right)\left(\eta_{3}\right)=$ $\{0\}$.

Let $\bar{\xi}_{2}=\xi_{2} / \xi_{1}^{1}$. We have the projective bundle $\mathbb{P}\left(\bar{\xi}_{2}\right)$ and the tautological line bundle $\bar{\xi}_{2}^{1}$ over it. Write π_{4} for the projection of $\mathbb{P}\left(\bar{\xi}_{2}\right)$ onto $\tilde{\Sigma}_{3}$. Let ξ_{2}^{2} be the inverse image of $\bar{\xi}_{2}^{1}$ under the quotient map $\xi_{2} \rightarrow \bar{\xi}_{2}$. This is a 2 dimensional
subbundle of ξ_{2}. Let ζ_{4} be the inverse image of $\xi_{1}^{1} \bigcirc \eta_{3}+\xi_{2}^{2} \bigcirc \xi_{2}$ under σ (cf. $\S 7.2$ together with the equations (3.3), (3.4)). Then ζ_{4} is a $(3 n+1)$ dimensional subbundle of $T_{4} \mathbb{C}^{n}$ (see $\S 6.2$), and satisfies $\eta_{3} \subset \zeta_{4}$.

Since $\xi_{1}^{1} \subset \operatorname{Ker} T_{1}\left(f_{t}\right)$ and $\xi_{2}^{2} \subset \operatorname{Ker} T_{2}\left(f_{t}\right)$, by Lemma 4.1, $T_{4}\left(f_{t}\right)$ maps ζ_{4} into ι_{1}. So let $\bar{T}_{4}\left(f_{t}\right): \zeta_{4} / \eta_{3} \rightarrow \iota_{1}$ be the map induced by $T_{4}\left(f_{t}\right)$. Then we have a section, say Φ_{4}, of $\operatorname{Hom}\left(\zeta_{4} / \eta_{3}, \iota_{1}\right)$ over $\mathbb{P}\left(\bar{\xi}_{2}\right)$, induced by $\bar{T}_{4}\left(f_{t}\right)$. Let $\tilde{\Sigma}_{4}$ be the zeros of the section Φ_{4}.

$$
\begin{array}{ccc}
& & \operatorname{Hom}\left(\zeta_{4} / \eta_{3}, \iota_{1}\right) \\
& & \downarrow \mid \Phi_{4} \\
\tilde{\Sigma}_{4} & \hookrightarrow & \mathbb{P}\left(\bar{\xi}_{2}\right) \\
& & \downarrow \pi_{4} \\
& & \tilde{\Sigma}_{3}
\end{array}
$$

We have $\Sigma_{4}=\overline{\Sigma_{4}} \backslash S$, and set $\tilde{S}_{4}=\left(\left.\pi_{2} \circ \pi_{4}\right|_{\Sigma_{4}}\right)^{-1}(S)$.
THEOREM 5.3. The restriction of $\pi_{2} \circ \pi_{4}$ to $\tilde{\Sigma}_{4}$ is a desingularization of $\overline{\Sigma_{4}}$.
The theorem follows from the same argument as in the proof of Theorem 5.1. See $\S 7.2$ for the relation $\pi_{2} \circ \pi_{4}\left(\tilde{\Sigma}_{4} \backslash \tilde{S}_{4}\right)=\Sigma_{4}$, the existence of the inverse map of $\left.\pi_{2} \circ \pi_{4}\right|_{\tilde{\Sigma}_{4} \backslash \tilde{S}_{4}}: \tilde{\Sigma}_{4} \backslash \tilde{S}_{4} \rightarrow \Sigma_{4}$, and the density of $\tilde{\Sigma}_{4} \backslash \tilde{S}_{4}$ in $\tilde{\Sigma}_{4}$.

5.5 The desingularization of $\overline{\Sigma_{5}}$

This stage is similar to that of $\overline{\Sigma_{3}}$, and again does not need a blowup. We now work over $\tilde{\Sigma}_{4}$. Then $T_{4}\left(f_{t}\right)\left(\zeta_{4}\right)=\{0\}$.

Let ξ_{3} be the inverse image of $\xi_{1}^{1} \bigcirc \xi_{2}^{2}$ under σ. Since $\xi_{1}^{1} \bigcirc \xi_{2}^{2}$ is contained in the image of σ, it follows that ξ_{3} is an $(n+2)$ dimensional subbundle of $T_{3} \mathbb{C}^{n}$. Then $\xi_{2} \subset \xi_{3} \subset \eta_{3}$. Let η_{4} be the inverse image of $\xi_{1}^{1} \bigcirc \xi_{3}+\xi_{2}^{2} \bigcirc \xi_{2}^{2}$ under σ. Then η_{4} is a $(2 n+2)$ dimensional subbundle of $T_{4} \mathbb{C}^{n}$ (see $\S 6.3$), and satisfies $\eta_{3} \subset \eta_{4} \subset \zeta_{4}$. Finally, let ζ_{5} be the inverse image of $\xi_{1}^{1} \bigcirc \eta_{4}+\xi_{2}^{2} \bigcirc \xi_{3}$ under σ (cf. $\S 7.3$). Then ζ_{5} is a $(3 n+2)$ dimensional subbundle of $T_{5} \mathbb{C}^{n}$ (see $\S 6.3$), and satisfies $\zeta_{4} \subset \zeta_{5}$.

Since $\xi_{1}^{1} \subset \operatorname{Ker} T_{1}\left(f_{t}\right)$ and $\xi_{2}^{2} \subset \operatorname{Ker} T_{2}\left(f_{t}\right)$, by Lemma 4.1, $T_{5}\left(f_{t}\right)$ maps ζ_{5} into ι_{1}. So let $\bar{T}_{5}\left(f_{t}\right): \zeta_{5} / \zeta_{4} \rightarrow \iota_{1}$ be the map induced by $T_{5}\left(f_{t}\right)$. We have a section, say Φ_{5}, of $\operatorname{Hom}\left(\zeta_{5} / \zeta_{4}, \iota_{1}\right)$ over $\tilde{\Sigma}_{4}$, induced by $\bar{T}_{5}\left(f_{t}\right)$. Let $\tilde{\Sigma}_{5}$ be the zeros of the section Φ_{5}.

$$
\begin{array}{ll}
& \operatorname{Hom}\left(\zeta_{5} / \zeta_{4}, \iota_{1}\right) \\
& \\
& \downarrow \Phi_{5} \\
\tilde{\Sigma}_{5} \hookrightarrow & \tilde{\Sigma}_{4}
\end{array}
$$

We have $\Sigma_{5}=\overline{\Sigma_{5}} \backslash S$, and set $\tilde{S}_{5}=\left(\pi_{2} \circ \pi_{4} \mid \tilde{\Sigma}_{5}\right)^{-1}(S)$.
THEOREM 5.4. The restriction of $\pi_{2} \circ \pi_{4}$ to $\tilde{\Sigma}_{5}$ is a desingularization of $\overline{\Sigma_{5}}$.
The proof is similar to that of Theorem 5.1. See $\S 7.3$ for the relation $\pi_{2} \circ$ $\pi_{4}\left(\tilde{\Sigma}_{5} \backslash \tilde{S}_{5}\right)=\Sigma_{5}$, the existence of the inverse map of $\left.\pi_{2} \circ \pi_{4}\right|_{\Sigma_{5} \backslash \tilde{S}_{5}}: \tilde{\Sigma}_{5} \backslash \tilde{S}_{5} \rightarrow \Sigma_{5}$, and the density of $\tilde{\Sigma}_{5} \backslash \tilde{S}_{5}$ in $\tilde{\Sigma}_{5}$.

5.6 The desingularization of $\overline{\Sigma_{6}}$

We now work over $\tilde{\Sigma}_{5}$. Let $\bar{\xi}_{3}=\xi_{3} / \xi_{2}^{2}$. We have the projective bundle $\mathbb{P}\left(\bar{\xi}_{3}\right)$, and the tautological line bundle $\bar{\xi}_{3}^{1}$ over it. Write π_{5}^{\prime} for the projection of $\mathbb{P}\left(\bar{\xi}_{3}\right)$ onto $\tilde{\Sigma}_{5}$. Let ξ_{3}^{3} be the inverse image of $\bar{\xi}_{3}^{1}$ under the quotient map $\xi_{3} \rightarrow \xi_{3} / \xi_{2}^{2}$. This is a 3 dimensional subbundle of ξ_{3}.

By looking carefully at how the bundles was defined in the previous sections, we are tempted to define ω_{6} to be $\sigma^{-1}\left(\xi_{1}^{1} \bigcirc \zeta_{5}+\xi_{2}^{2} \bigcirc \eta_{4}+\xi_{3}^{3} \bigcirc \xi_{3}\right)$. However it is impossible, for this is $(4 n+3)$ dimensional over some points of \tilde{S}_{5}; although it is $(4 n+2)$ dimensional over $\tilde{\Sigma}_{5} \backslash \tilde{S}_{5}$ (cf. Note 6.2 and Claim 7.2).

To overcome this difficulty, we divide the construction of the desingularization of $\overline{\Sigma_{6}}$ into three steps: first in $\S 5.6 .1$ to blow up $\tilde{\Sigma}_{5}$ in order to get the line bundle $\bar{\xi}_{3}^{1}$ determined by the equations (3.4), (3.5); second in $\S 5.6 .2$ to perform an extra blowup which avoids the difficulty; third in $\S 5.6 .3$ to construct the desingularization of $\overline{\Sigma_{6}}$.

5.6.1 A preliminary blowup

Working over $\tilde{\Sigma}_{5}$, we have $T_{5}\left(f_{t}\right)\left(\zeta_{5}\right)=\{0\}$. Let ω_{5} be the inverse image of $\xi_{1}^{1} \bigcirc \zeta_{4}+\xi_{2}^{2} \bigcirc \eta_{3}+\xi_{3}^{3} \bigcirc \xi_{2}$ under σ (cf. §7.4). Then ω_{5} is a $(4 n+1)$ dimensional subbundle of $T_{5} \mathbb{C}^{n}$ (see $\S 6.4$), and satisfies $\zeta_{5} \subset \omega_{5}$.

Since $\xi_{1}^{1} \subset \operatorname{Ker} T_{1}\left(f_{t}\right), \xi_{2}^{2} \subset \operatorname{Ker} T_{2}\left(f_{t}\right)$, and $\xi_{3}^{3} \subset \operatorname{Ker} T_{3}\left(f_{t}\right)$, by Lemma 4.1, $T_{5}\left(f_{t}\right)$ maps ω_{5} into ι_{1}. So let $\bar{T}_{5}\left(f_{t}\right): \omega_{5} / \zeta_{5} \rightarrow \iota_{1}$ be the map induced by $T_{5}\left(f_{t}\right)$. Then we have a section, say Φ_{5}^{\prime}, of $\operatorname{Hom}\left(\omega_{5} / \zeta_{5}, \iota_{1}\right)$ over $\mathbb{P}\left(\bar{\xi}_{3}\right)$, induced by $\bar{T}_{5}\left(f_{t}\right)$. Let $\tilde{\Sigma}_{5}^{\prime}$ be the zeros of the section Φ_{5}^{\prime}.

$$
\begin{array}{ccc}
& & \operatorname{Hom}\left(\omega_{5} / \zeta_{5}, \iota_{1}\right) \\
& & \downarrow \upharpoonright \Phi_{5}^{\prime} \\
\tilde{\Sigma}_{5}^{\prime} & \hookrightarrow & \mathbb{P}\left(\bar{\xi}_{3}\right) \\
& & \downarrow \pi_{5}^{\prime} \\
& & \tilde{\Sigma}_{5}
\end{array}
$$

Set $\tilde{S}_{5}^{\prime}=\left(\pi_{2} \circ \pi_{4} \circ \pi_{5}^{\prime} \mid \tilde{\Sigma}_{5}^{\prime}\right)^{-1}(S)$.

THEOREM 5.5. The restriction of $\pi_{2} \circ \pi_{4} \circ \pi_{5}^{\prime}$ to $\tilde{\Sigma}_{5}^{\prime}$ is also a desingularization of $\overline{\Sigma_{5}}$.

The proof is similar to that of Theorem 5.1. See $\S 7.4$ for the relation $\pi_{2} \circ \pi_{4} \circ$ $\pi_{5}^{\prime}\left(\tilde{\Sigma}_{5}^{\prime} \backslash \tilde{S}_{5}^{\prime}\right)=\Sigma_{5}$, the existence of the inverse map of $\left.\pi_{2} \circ \pi_{4} \circ \pi_{5}^{\prime}\right|_{\tilde{\Sigma}_{5}^{\prime} \mid \tilde{S}_{5}^{\prime}}: \tilde{\Sigma}_{5}^{\prime} \backslash \tilde{S}_{5}^{\prime} \rightarrow$ Σ_{5}, and the density of $\tilde{\Sigma}_{5}^{\prime} \backslash \tilde{S}_{5}^{\prime}$ in $\tilde{\Sigma}_{5}^{\prime}$.

5.6.2 An extra blowup

The blowup below is an analogue of Turnbull's extra blowup ([11, §2.7]), and is given by using the following map σ_{2}.

Considering $T_{r} N \bigcirc T_{r} N$ as a subbundle of $T_{r} N \otimes T_{r} N$, we define the map $\sigma_{2}: T_{r} N \bigcirc T_{r} N \rightarrow\left(T_{r} N \bigcirc T_{r} N\right) \wedge T_{r} N$ by

$$
\sigma_{2}=\sigma \otimes i d-i d \otimes \sigma .
$$

We summarize some properties of σ_{2}. From the definition, it follows that

$$
\begin{equation*}
\sigma_{2}(a \bigcirc b)=\sigma(a) \wedge b+\sigma(b) \wedge a\left(a, b \in T_{r} N\right) \tag{5.1}
\end{equation*}
$$

Indeed, $\sigma_{2}(a \bigcirc b)=\frac{1}{2} \sigma_{2}(a \otimes b+b \otimes a)=\frac{1}{2}(\sigma(a) \otimes b-a \otimes \sigma(b)+\sigma(b) \otimes a-b \otimes \sigma(a))=$ $\sigma(a) \wedge b+\sigma(b) \wedge a$. Hence $\operatorname{Im} \sigma_{2} \subset\left(T_{r} N \bigcirc T_{r} N\right) \wedge T_{r} N$. On the other hand, by an easy calculation, we get that

$$
\begin{equation*}
(a \bigcirc b) \wedge c+(b \bigcirc c) \wedge a+(c \bigcirc a) \wedge b=0\left(a, b, c \in T_{r} N\right) \tag{5.2}
\end{equation*}
$$

Hence $(a \bigcirc a) \wedge a=0$ and $(a \bigcirc b) \wedge a=-\frac{1}{2}(a \bigcirc a) \wedge b$. From these, for example, it follows that $\sigma_{2}\left(\sigma\left(a^{4}\right)\right)=\sigma_{2}\left(4 a \bigcirc a^{3}+3 a^{2} \bigcirc a^{2}\right)=12\left(a \bigcirc a^{2}\right) \wedge a+6(a \bigcirc a) \wedge a^{2}=0$. More generally, Turnbull proved the following result.

Proposition 5.1. (Turnbull $[11, \S 2.7]) \operatorname{Ker} \sigma_{2} \cap\left[T_{r} N \bigcirc T_{r} N\right]_{r}=\operatorname{Im} \sigma$, where [$\left.T_{r} N \bigcirc T_{r} N\right]_{r}$ denotes the subset of $T_{r} N \bigcirc T_{r} N$ of elements of order at most r.

We now work over $\tilde{\Sigma}_{5}^{\prime}$. Setting

$$
\begin{aligned}
& \alpha_{5}=\xi_{1}^{1} \bigcirc \zeta_{4}+\xi_{2}^{2} \bigcirc \eta_{3}+\xi_{3}^{3} \bigcirc \xi_{2} \text { and } \\
& \alpha_{6}=\xi_{1}^{1} \bigcirc \zeta_{5}+\xi_{2}^{2} \bigcirc \eta_{4}+\xi_{3}^{3} \bigcirc \xi_{3},
\end{aligned}
$$

the quotient space α_{6} / α_{5} is three dimensional, and setting

$$
\begin{aligned}
& \beta_{5}=\left(\xi_{1}^{1} \bigcirc \eta_{3}\right) \wedge \xi_{1}^{1}+\left(\xi_{1}^{1} \bigcirc \xi_{2}\right) \wedge \xi_{2}^{2}+\left(\xi_{2}^{2} \bigcirc \xi_{2}\right) \wedge \xi_{1}^{1} \text { and } \\
& \beta_{6}=\left(\xi_{1}^{1} \bigcirc \eta_{4}\right) \wedge \xi_{1}^{1}+\left(\xi_{1}^{1} \bigcirc \xi_{3}\right) \wedge \xi_{2}^{2}+\left(\xi_{2}^{2} \bigcirc \xi_{3}\right) \wedge \xi_{1}^{1}
\end{aligned}
$$

the quotient space β_{6} / β_{5} is three dimensional (cf. $\S 6.5$). From (5.1) and (5.2), it follows that

$$
\sigma_{2}\left(\alpha_{5}\right) \subset \beta_{5} \text { and } \sigma_{2}\left(\alpha_{6}\right) \subset \beta_{6} .
$$

For example, $\sigma_{2}\left(\alpha_{6}\right) \subset\left(\xi_{1}^{1} \bigcirc \eta_{4}+\xi_{2}^{2} \bigcirc \xi_{3}\right) \wedge \xi_{1}^{1}+\left(\xi_{1}^{1} \bigcirc \xi_{1}^{1}\right) \wedge \eta_{4}+\left(\xi_{1}^{1} \bigcirc \xi_{3}+\right.$ $\left.\xi_{2}^{2} \bigcirc \xi_{2}^{2}\right) \wedge \xi_{2}^{2}+\left(\xi_{1}^{1} \bigcirc \xi_{2}^{2}\right) \wedge \xi_{3}+\left(\xi_{1}^{1} \bigcirc \xi_{2}^{2}\right) \wedge \xi_{3}^{3}=\left(\xi_{1}^{1} \bigcirc \xi_{1}^{1}\right) \wedge \eta_{4}+\left(\xi_{1}^{1} \bigcirc \xi_{2}^{2}\right) \wedge \xi_{3}+$ $\left(\xi_{2}^{2} \bigcirc \xi_{3}\right) \wedge \xi_{1}^{1}+\left(\xi_{1}^{1} \bigcirc \xi_{3}\right) \wedge \xi_{2}^{2}=\beta_{6}$.

Since $\sigma_{2}\left(\alpha_{5}+\xi_{1}^{1} \bigcirc \zeta_{5}\right) \subset \beta_{5}+\left(\xi_{1}^{1} \bigcirc \eta_{4}\right) \wedge \xi_{1}^{1}+\left(\xi_{2}^{2} \bigcirc \xi_{3}\right) \wedge \xi_{1}^{1}$, by setting

$$
\begin{aligned}
& \bar{\alpha}_{6}=\alpha_{6} /\left(\alpha_{5}+\xi_{1}^{1} \bigcirc \zeta_{5}\right) \text { and } \\
& \bar{\beta}_{6}=\beta_{6} /\left[\beta_{5}+\left(\xi_{1}^{1} \bigcirc \eta_{4}\right) \wedge \xi_{1}^{1}+\left(\xi_{2}^{2} \bigcirc \xi_{3}\right) \wedge \xi_{1}^{1}\right]
\end{aligned}
$$

we get the map $\bar{\sigma}_{2}: \bar{\alpha}_{6} \rightarrow \bar{\beta}_{6}$ induced by σ_{2}. Here $\bar{\alpha}_{6}$ and $\bar{\beta}_{6}$ are two and one dimensional, respectively.

We have the projective bundle $\mathbb{P}\left(\bar{\alpha}_{6}\right)$, and the tautological line bundle $\bar{\alpha}_{6}^{1}$ over it. Write ρ for the projection of $\mathbb{P}\left(\bar{\alpha}_{6}\right)$ onto $\tilde{\Sigma}_{5}^{\prime}$. The map $\bar{\sigma}_{2}$ induces a section Ψ of $\operatorname{Hom}\left(\bar{\alpha}_{6}^{1}, \bar{\beta}_{6}\right)$ over $\mathbb{P}\left(\bar{\alpha}_{6}\right)$. Let $\tilde{\Sigma}_{5}^{\prime \prime}$ be the zeros of the section Ψ.

$$
\begin{array}{ccc}
& & \operatorname{Hom}\left(\bar{\alpha}_{6}^{1}, \bar{\beta}_{6}\right) \\
& & \downarrow \mid \Psi \\
\tilde{\Sigma}_{5}^{\prime \prime} \hookrightarrow & \mathbb{P}\left(\bar{\alpha}_{6}\right) \\
& & \downarrow \rho \\
& & \tilde{\Sigma}_{5}^{\prime}
\end{array}
$$

Set $\tilde{S}_{5}^{\prime \prime \prime}=\left(\pi_{2} \circ \pi_{4} \circ \pi_{5}^{\prime} \circ \rho \tilde{\tilde{\Sigma}}_{5}^{\prime \prime}\right)^{-1}(S)$.
THEOREM 5.6. The restriction of $\pi_{2} \circ \pi_{4} \circ \pi_{5}^{\prime} \circ \rho$ to $\tilde{\Sigma}_{5}^{\prime \prime}$ is also a desingularization of $\overline{\Sigma_{5}}$.

For the proof, see $\S 6.5$.

5.6.3 The desingularization of $\overline{\Sigma_{6}}$

We now work over $\tilde{\Sigma}_{5}^{\prime \prime}$. Then $T_{5}\left(f_{t}\right)\left(\omega_{5}\right)=\{0\}$.
We have the line bundle $\bar{\alpha}_{6}^{1}$. Let α be the inverse image of $\bar{\alpha}_{6}^{1}$ under the quotient map $\alpha_{6} \rightarrow \bar{\alpha}_{6}$, and let ω_{6} be the inverse image of α under σ (cf. $\S 7.5$). Then ω_{6} is a $(4 n+2)$ dimensional subbundle of $T_{6} \mathbb{C}^{n}$ (see $\S 6.6$), and satisfies $\omega_{5} \subset \omega_{6}$.

Since $\xi_{1}^{1} \subset \operatorname{Ker} T_{1}\left(f_{t}\right), \xi_{2}^{2} \subset \operatorname{Ker} T_{2}\left(f_{t}\right)$, and $\xi_{3}^{3} \subset \operatorname{Ker} T_{3}\left(f_{t}\right)$, by Lemma 4.1, $T_{6}\left(f_{t}\right)$ maps ω_{6} into ι_{1}. So let $\bar{T}_{6}\left(f_{t}\right): \omega_{6} / \omega_{5} \rightarrow \iota_{1}$ be the map induced by $T_{6}\left(f_{t}\right)$. We have a section, say Φ_{6}, of $\operatorname{Hom}\left(\omega_{6} / \omega_{5}, \iota_{1}\right)$ over $\tilde{\Sigma}_{5}^{\prime \prime}$, induced by $\bar{T}_{6}\left(f_{t}\right)$. Let $\tilde{\Sigma}_{6}$ be the zeros of the section Φ_{6}.

$$
\begin{array}{ll}
& \operatorname{Hom}\left(\omega_{6} / \omega_{5}, \iota_{1}\right) \\
& \\
\tilde{\Sigma}_{6} \hookrightarrow & \begin{array}{l}
\\
\tilde{\Sigma}_{5}^{\prime \prime}
\end{array}
\end{array}
$$

We have $\Sigma_{6}=\overline{\Sigma_{6}} \backslash S$, and set $\tilde{S}_{6}=\left(\left.\pi_{2} \circ \pi_{4} \circ \pi_{5}^{\prime} \circ \rho\right|_{\tilde{\Sigma}_{6}}\right)^{-1}(S)$.
THEOREM 5.7. The restriction of $\pi_{2} \circ \pi_{4} \circ \pi_{5}^{\prime} \circ \rho$ to $\tilde{\Sigma}_{6}$ is a desingularization of $\overline{\Sigma_{6}}$.

The proof is similar to that of Theorem 5.1. See $\S 7.5$ for the relation $\pi_{2} \circ \pi_{4} \circ$ $\pi_{5}^{\prime} \circ \rho\left(\tilde{\Sigma}_{6} \backslash \tilde{S}_{6}\right)=\Sigma_{6}$, the existence of the inverse map of $\left.\pi_{2} \circ \pi_{4} \circ \pi_{5}^{\prime} \circ \rho\right|_{\tilde{\Sigma}_{6} \backslash \tilde{S}_{6}}$: $\tilde{\Sigma}_{6} \backslash \tilde{S}_{6} \rightarrow \Sigma_{6}$, and the density of $\tilde{\Sigma}_{6} \backslash \tilde{S}_{6}$ in $\tilde{\Sigma}_{6}$.

6. Well-definedness of the vector bundles and transversality of the sections

In this section we will prove the results stated in $\S 5$; the inverse images $\zeta_{4}, \eta_{4}, \zeta_{5}, \omega_{5}, \omega_{6}$ are certainly vector bundles, and the sections $\Phi_{2}, \ldots, \Phi_{5}, \Phi_{5}^{\prime}, \Psi$, Φ_{6} are transverse to the zero sections. We do these by choosing local coordinates.

6.1 Transversality of $\Phi_{2}, \ldots, \Phi_{5}, \Phi_{5}^{\prime}, \Phi_{6}$

We prove the transversality only for Φ_{2} as the others except Ψ are similar. The transversality of Ψ will be proved in $\S 6.5$.

Over $\tilde{\Sigma}_{1}$, we have the projective bundle $\mathbb{P}\left(\xi_{1}\right)$ and the map $\bar{T}_{2}\left(f_{t}\right): \eta_{2} / \xi_{1} \rightarrow \iota_{1}$. This map induces the section $\Phi_{2}: \mathbb{P}\left(\xi_{1}\right) \rightarrow \operatorname{Hom}\left(\eta_{2} / \xi_{1}, \iota_{1}\right)$. Take any point P of $\tilde{\Sigma}_{2} \cap \pi_{2}^{-1}(0,0)$. Choose a small open neighbourhood U of P in $\mathbb{P}\left(\xi_{1}\right)$ such that over U, there exists the local projection pr of $\operatorname{Hom}\left(\eta_{2} / \xi_{1}, \iota_{1}\right)$ onto its fibre $\operatorname{Hom}_{f i b}\left(\eta_{2} / \xi_{1}, \iota_{1}\right)$ along the zero section. We want to show that pr$\left.\circ \Phi_{2}\right|_{U}: U \rightarrow$ $\operatorname{Hom}_{f i b}\left(\eta_{2} / \xi_{1}, \iota_{1}\right)$ is submersive at P.

Replacing U by a smaller neighbourhood, we choose local coordinates $\left(x, t, \xi_{1}^{1}\right) \in U$ with $\xi_{1}^{1}=\left\langle v_{1}\right\rangle\left(0 \neq v_{1} \in \xi_{1}\right)$. Then we can write $\eta_{2}=\xi_{1} \oplus$ $\left\langle v_{1}\right\rangle \circ \xi_{1}$. Identifying $\operatorname{Hom}_{f i b}\left(\eta_{2} / \xi_{1}, \iota_{1}\right)$ with $\operatorname{Hom}\left(\mathbb{C O} \mathbb{C}^{n}, \mathbb{C}\right)$, we have $\left.p r \circ \Phi_{2}\right|_{U}=$ $\left.\left(f_{t}\right)_{2}\left(v_{1},-\right)\right|_{U}$, where $\left(f_{t}\right)_{2}$ is the second derivative of f_{t} with respect to x. Set $P=\left(0,0,\left\langle v_{1}^{\circ}\right\rangle\right)$ and define $U\left(v_{1}^{\circ}\right)=U \cap\left\{\left(x, t, \xi_{1}^{1}\right) \mid \xi_{1}^{1}=\left\langle v_{1}^{\circ}\right\rangle\right\}$. It is enough to show that $\left.\left(f_{t}\right)_{2}\left(v_{1}^{\circ},-\right)\right|_{U\left(v_{1}^{\circ}\right)}: U\left(v_{1}^{\circ}\right) \rightarrow \operatorname{Hom}\left(\mathbb{C} \circ \mathbb{C}^{n}, \mathbb{C}\right)$ is submersive at P.

Assume that $v_{1}^{\circ}=\frac{\partial}{\partial x_{1}}$ and define an unfolding $G:\left(\mathbb{C}^{n} \times \mathbb{C}^{p} \times \mathbb{C}^{n},(0,0,0)\right) \rightarrow$ $\left(\mathbb{C} \times \mathbb{C}^{p} \times \mathbb{C}^{n},(0,0,0)\right)$ of f_{0} by

$$
G(x, t, u)=(g(x, t, u), t, u), g(x, t, u)=f(x, t)+\sum_{i=1}^{n} u_{i} x_{1} x_{i}
$$

Let $\left(\tilde{\Sigma}_{1}\right)_{G}$ denote the singular set of G in $\mathbb{C}^{n} \times \mathbb{C}^{p} \times \mathbb{C}^{n}$. Then $\left(\tilde{\Sigma}_{1}\right)_{G} \cap\{(x, t, u) \mid u=$ $0\}=\tilde{\Sigma}_{1}$ and $\{(x, t, u) \mid x=t=0\} \subset\left(\tilde{\Sigma}_{1}\right)_{G}$.

By the versality of F, the unfolding G is equivalent to a constant unfolding of F (as unfoldings of f_{0}). Namely, there exist a holomorphic unfolding $H:\left(\mathbb{C}^{n} \times \mathbb{C}^{p} \times \mathbb{C}^{n},(0,0,0)\right) \rightarrow\left(\mathbb{C}^{n} \times \mathbb{C}^{p} \times \mathbb{C}^{n},(0,0,0)\right), H(x, t, u)=$ $(h(x, t, u), \phi(t, u), \psi(t, u))$ of $i d_{\mathbb{C}^{n}}$ and a holomorphic function germ $a:\left(\mathbb{C}^{p} \times\right.$ $\left.\mathbb{C}^{n},(0,0)\right) \rightarrow(\mathbb{C}, 0)$ such that H is biholomorphic and

$$
g(H(x, t, u))+a(t, u)=f(x, t) .
$$

By definition of G, we can take H to satisfy $H(x, t, 0)=(x, t, 0)$.
We have $g_{\phi_{t, u}, \psi_{t, u}}\left(h_{t, u}(x)\right)+a_{t, u}=f_{t}(x)$, where $g_{t, u}(x)=g(x, t, u), h_{t, u}(x)=$ $h(x, t, u), \phi_{t, u}=\phi(t, u), \psi_{t, u}=\psi(t, u)$ and $a_{t, u}=a(t, u)$. Hence over $\mathbb{C}^{n} \times \mathbb{C}^{p} \times \mathbb{C}^{n}$,

$$
\begin{equation*}
T_{2}\left(g_{\phi_{t, u}, \psi_{t, u}}\right) \circ T_{2}\left(h_{t, u}\right)=T_{2}\left(f_{t}\right) \tag{6.1}
\end{equation*}
$$

where T_{2} is Turnbull's second derivative with respect to x.
We now work over $\left(\tilde{\Sigma}_{1}\right)_{G}$. The same procedure as for Φ_{2} and $\tilde{\Sigma}_{2}$ gives the section $\left(\Phi_{2}\right)_{G}: \mathbb{P}\left(\xi_{1}\right) \rightarrow \operatorname{Hom}\left(\eta_{2} / \xi_{1}, \iota_{1}\right)$ over $\left(\tilde{\Sigma}_{1}\right)_{G}$ and its zeros $\left(\tilde{\Sigma}_{2}\right)_{G}$. Then $\left.\left(\Phi_{2}\right)_{G}\right|_{\left\{\left(x, t, u, \xi_{1}^{1}\right) \mid u=0\right\}}=\Phi_{2}$ and $\left(\tilde{\Sigma}_{2}\right)_{G} \cap\left\{\left(x, t, u, \xi_{1}^{1}\right) \mid u=0\right\}=\tilde{\Sigma}_{2}$. Again replacing U by a smaller neighbourhood, we have an open neighbourhood U_{G} of P in $\mathbb{P}\left(\xi_{1}\right)$ over $\left(\tilde{\Sigma}_{1}\right)_{G}$ such that (i) $U_{G} \cap\left\{\left(x, t, u, \xi_{1}^{1}\right) \mid u=0\right\}=U$, and (ii) over U_{G} there exists the local projection $p r: \operatorname{Hom}\left(\eta_{2} / \xi_{1}, \iota_{1}\right) \rightarrow \operatorname{Hom}_{f i b}\left(\eta_{2} / \xi_{1}, \iota_{1}\right)$. Define $U_{G}\left(v_{1}^{\circ}\right)=$ $U_{G} \cap\left\{\left(x, t, u, \xi_{1}^{1}\right) \mid \xi_{1}^{1}=\left\langle v_{1}^{\circ}\right\rangle\right\}$. Then $\left.p r \circ\left(\Phi_{2}\right)_{G}\right|_{U_{G}\left(v_{1}^{\circ}\right)}=\left.\left(g_{t, u}\right)_{2}\left(v_{1}^{\circ},-\right)\right|_{U_{G}\left(v_{1}^{\circ}\right)}$, and by definition of g this is submersive at P.

By (6.1) we get that

$$
\left.\left(\left(g_{\phi_{t, u}, \psi_{t, u}}\right)_{2} \circ h_{t, u}\right)\left(\left(h_{t, u}\right)_{1}\left(v_{1}^{\circ}\right),\left(h_{t, u}\right)_{1}(-)\right)\right|_{U_{G}\left(v_{1}^{\circ}\right)}=\left.\left(f_{t}\right)_{2}\left(v_{1}^{\circ},-\right)\right|_{U_{G}\left(v_{1}^{\circ}\right)} .
$$

Since $\psi:\left(\mathbb{C}^{p} \times \mathbb{C}^{n},(0,0)\right) \rightarrow\left(\mathbb{C}^{n}, 0\right)$ is submersive and $h_{t, u}:\left(\mathbb{C}^{n}, 0\right) \rightarrow\left(\mathbb{C}^{n}, 0\right)$ is biholomorphic, we see that $\left.\left(f_{t}\right)_{2}\left(v_{1}^{\circ},-\right)\right|_{U_{G}\left(v_{1}^{\circ}\right)}: U_{G}\left(v_{1}^{\circ}\right) \rightarrow \operatorname{Hom}\left(\mathbb{C O} \mathbb{C}^{n}, \mathbb{C}\right)$ is submersive at P. Since this map is independent of u, its restriction to $\tilde{\Sigma}_{1}$, $\left.\left(f_{t}\right)_{2}\left(v_{1}^{\circ},-\right)\right|_{U\left(v_{1}^{\circ}\right)}: U\left(v_{1}^{\circ}\right) \rightarrow \operatorname{Hom}\left(\mathbb{C} \mathbb{C}^{n}, \mathbb{C}\right)$ is submersive at P. Therefore $p r \circ$ $\left.\Phi_{2}\right|_{U}$ is submersive at P, from the start.

6.2 Well-definedness of ζ_{4}

In $\S 5.4$, we defined ζ_{4} as the inverse image of $\xi_{1}^{1} \bigcirc \eta_{3}+\xi_{2}^{2} \bigcirc \xi_{2}$ under σ. By definition ζ_{4} is independent of coordinates. But to see that ζ_{4} is a vector bundle, we must prove that the fibres of ζ_{4} are equidimensional.

The space $\xi_{1}^{1} \bigcirc \eta_{3}+\xi_{2}^{2} \bigcirc \xi_{2}$ contains $\xi_{1}^{1} \bigcirc \xi_{2}$, and we already know that $\eta_{3}(=$ $\left.\sigma^{-1}\left(\xi_{1}^{1} \bigcirc \xi_{2}\right)\right)$ is a vector bundle. So let $\bar{\sigma}: T_{r} \mathbb{C}^{n} / \eta_{3} \rightarrow\left(T_{r} \mathbb{C}^{n} \bigcirc T_{r} \mathbb{C}^{n}\right) /\left(\xi_{1}^{1} \bigcirc \xi_{2}\right)$ be the linear map induced by σ. Since $\operatorname{Ker} \sigma \subset \eta_{3}$, this is injective.

By choosing local coordinates, we can write $\left(x, t, \xi_{1}^{1}, \bar{\xi}_{2}^{1}\right) \in \mathbb{P}\left(\bar{\xi}_{2}\right)$ and

$$
\begin{align*}
& \xi_{1}^{1}=\left\langle v_{1}\right\rangle, \eta_{2}=\xi_{1} \oplus\left\langle v_{1}\right\rangle \circ \xi_{1}, \quad \xi_{2}=\xi_{1} \oplus\left\langle v_{1}^{2}\right\rangle \\
& \eta_{3}=\xi_{1} \oplus\left\langle v_{1}\right\rangle \circ \xi_{1} \oplus\left\langle v_{1}^{3}\right\rangle, \quad \xi_{2}^{2}=\left\langle v_{1}\right\rangle \oplus\left\langle v_{2}+b_{1} v_{1}^{2}\right\rangle \tag{6.2}
\end{align*}
$$

where $0 \neq v_{1} \in \xi_{1}, 0 \neq v_{2}+b_{1} v_{1}^{2} \in \xi_{2}\left(b_{1} \in \mathbb{C}\right)$.
Then $\bar{\xi}_{2}^{1}\left(=\xi_{2}^{2} /\left\langle v_{1}\right\rangle\right)$ can be written in the form $\bar{\xi}_{2}^{1}=\left\langle\bar{v}_{2}+b_{1} v_{1}^{2}\right\rangle$, where \bar{v}_{2} is the equivalent class of v_{2} in $\xi_{1} /\left\langle v_{1}\right\rangle$. But by abuse of notation, only in $\S 6$ we will write v_{2} also for \bar{v}_{2}.

Write $\bar{\xi}_{1}$ for $\xi_{1} /\left\langle v_{1}\right\rangle$. Then the quotient space $\left(\xi_{1}^{1} \bigcirc \eta_{3}+\xi_{2}^{2} \bigcirc \xi_{2}\right) /\left(\xi_{1}^{1} \bigcirc \xi_{2}\right)$ can be written in the form

$$
\left\langle v_{1}\right\rangle \bigcirc\left(\left\langle v_{1}\right\rangle \circ \bar{\xi}_{1} \oplus\left\langle v_{1}^{3}\right\rangle\right)+\left\langle v_{2}+b_{1} v_{1}^{2}\right\rangle \bigcirc\left(\bar{\xi}_{1} \oplus\left\langle v_{1}^{2}\right\rangle\right) .
$$

Write B for this sum of bundles, B_{1} for the first bundle, and B_{2} for the second bundle. These have the properties that $\operatorname{dim} B_{1}=\operatorname{dim} B_{2}=n$ and $B_{1} \cap B_{2}=\{0\}$.

Consider the subbundle

$$
\left\langle v_{2}+b_{1} v_{1}^{2}\right\rangle \circ \bar{\xi}_{1} \oplus\left\langle 3 v_{1}^{2} v_{2}+b_{1} v_{1}^{4}\right\rangle
$$

of $T_{r} \mathbb{C}^{n} / \eta_{3}$. Write A for this direct sum of bundles, A_{1} for the first bundle, and A_{2} for the second bundle. Then $\operatorname{dim} A=n$.

We want to show that A is independent of coordinates. Since so is B, we will prove that $A=\bar{\sigma}^{-1}(B)$. For this, the following two claims are useful.

Claim 6.1. $\bar{\sigma}(A) \subset B$.
Proof. An element $\left(v_{2}+b_{1} v_{1}^{2}\right) x\left(x \in \bar{\xi}_{1}\right)$ of A_{1} is mapped by $\bar{\sigma}$ to $2 b_{1} v_{1} \bigcirc$ $v_{1} x+\left(v_{2}+b_{1} v_{1}^{2}\right) \bigcirc x$, and an element $3 v_{1}^{2} v_{2}+b_{1} v_{1}^{4}$ of A_{2} is mapped by $\bar{\sigma}$ to $2 v_{1} \bigcirc\left(3 v_{1} v_{2}+2 b_{1} v_{1}^{3}\right)+3\left(v_{2}+b_{1} v_{1}^{2}\right) \bigcirc v_{1}^{2}$. These imply that $\bar{\sigma}(A) \subset B$.

Claim 6.2. $\operatorname{dim}(\operatorname{Im} \bar{\sigma} \cap B) \leq n$.
Proof. By the calculations in the proof of Claim 6.1, we see that there are no nonzero elements of B_{1} that have the inverse image under $\bar{\sigma}$, by itself without elements of B_{2}. Hence $\operatorname{Im} \bar{\sigma} \cap B_{1}=\{0\}$. (Note that if $b_{1}=0$ then $\operatorname{Im} \bar{\sigma} \cap B_{2} \neq\{0\}$.) From the properties of B_{1} and B_{2}, it follows that $\operatorname{dim}(\operatorname{Im} \bar{\sigma} \cap B) \leq n$.

By Claim 6.1 we have $A \subset \bar{\sigma}^{-1}(B)$, and by Claim 6.2 we have $\operatorname{dim} \bar{\sigma}^{-1}(B) \leq$ n. Since $\operatorname{dim} A=n$, we get that $A=\bar{\sigma}^{-1}(B)$.

Consequently ζ_{4} can be written in the form

$$
\begin{equation*}
\zeta_{4}=\eta_{3} \oplus\left\langle v_{2}+b_{1} v_{1}^{2}\right\rangle \circ \bar{\xi}_{1} \oplus\left\langle 3 v_{1}^{2} v_{2}+b_{1} v_{1}^{4}\right\rangle \tag{6.3}
\end{equation*}
$$

It follows from this that ζ_{4} has the equidimensional fibres and is a $(3 n+1)$ dimensional vector bundle.

Note 6.1. The inverse image A of B will appear clearly in Y_{4} of $\S 7.2$.

6.3 Well-definedness of η_{4}, ζ_{5}

We will show that η_{4} and ζ_{5} defined in $\S 5.5$ are certainly vector bundles, that is, have the equidimensional fibres, respectively.

We first consider η_{4}, which was defined as the inverse image of $\xi_{1}^{1} \bigcirc \xi_{3}+\xi_{2}^{2} \bigcirc \xi_{2}^{2}$ under σ. The space $\xi_{1}^{1} \bigcirc \xi_{3}+\xi_{2}^{2} \bigcirc \xi_{2}^{2}$ contains $\xi_{1}^{1} \bigcirc \xi_{2}$, and we already know that $\eta_{3}\left(=\sigma^{-1}\left(\xi_{1}^{1} \bigcirc \xi_{2}\right)\right)$ is a vector bundle. So we use the same map $\bar{\sigma}$ as in the previous section.

By choosing local coordinates, we can write $\left(x, t, \xi_{1}^{1}, \bar{\xi}_{2}^{1}\right) \in \tilde{\Sigma}_{4}$ and, in addition to (6.2) and (6.3),

$$
\begin{equation*}
\xi_{3}=\xi_{1} \oplus\left\langle v_{1}^{2}\right\rangle \oplus\left\langle 3 v_{1} v_{2}+b_{1} v_{1}^{3}\right\rangle \tag{6.4}
\end{equation*}
$$

By (6.2), (6.4), the quotient space $\left(\xi_{1}^{1} \bigcirc \xi_{3}+\xi_{2}^{2} \bigcirc \xi_{2}^{2}\right) /\left(\xi_{1}^{1} \bigcirc \xi_{2}\right)$ can be written in the form

$$
\left\langle v_{1}\right\rangle \bigcirc\left\langle 3 v_{1} v_{2}+b_{1} v_{1}^{3}\right\rangle+\left\langle v_{2}+b_{1} v_{1}^{2}\right\rangle \bigcirc\left\langle v_{2}+b_{1} v_{1}^{2}\right\rangle
$$

Write B for this sum of bundles, B_{1} for the first bundle, and B_{2} for the second bundle. These have the properties that $\operatorname{dim} B_{1}=\operatorname{dim} B_{2}=1$ and $B_{1} \cap B_{2}=\{0\}$.

Consider the subbundle

$$
\left\langle 3 v_{2}^{2}+6 b_{1} v_{1}^{2} v_{2}+b_{1}^{2} v_{1}^{4}\right\rangle
$$

of $T_{r} \mathbb{C}^{n} / \eta_{3}$, and write A for this. Then $\operatorname{dim} A=1$.
An element $3 v_{2}^{2}+6 b_{1} v_{1}^{2} v_{2}+b_{1}^{2} v_{1}^{4}$ of A is mapped by $\bar{\sigma}$ to $4 b_{1} v_{1} \bigcirc\left(3 v_{1} v_{2}+b_{1} v_{1}^{3}\right)+$ $3\left(v_{2}+b_{1} v_{1}^{2}\right) \bigcirc\left(v_{2}+b_{1} v_{1}^{2}\right)$. So $\bar{\sigma}(A) \subset B$. From this calculation and the properties of B_{1} and B_{2}, as in the proof of Claim 6.2, it follows that $\operatorname{dim}(\operatorname{Im} \bar{\sigma} \cap B) \leq 1$. Hence as in the previous section, we get that $A=\bar{\sigma}^{-1}(B)$. Therefore η_{4} can be written in the form

$$
\begin{equation*}
\eta_{4}=\eta_{3} \oplus\left\langle 3 v_{2}^{2}+6 b_{1} v_{1}^{2} v_{2}+b_{1}^{2} v_{1}^{4}\right\rangle \tag{6.5}
\end{equation*}
$$

and is a $(2 n+2)$ dimensional vector bundle.
We next consider ζ_{5}, which was defined as the inverse image of $\xi_{1}^{1} \bigcirc \eta_{4}+\xi_{2}^{2} \bigcirc \xi_{3}$ under σ. The space $\xi_{1}^{1} \bigcirc \eta_{4}+\xi_{2}^{2} \bigcirc \xi_{3}$ contains $\xi_{1}^{1} \bigcirc \eta_{3}+\xi_{2}^{2} \bigcirc \xi_{2}$, and we have already seen that $\zeta_{4}\left(=\sigma^{-1}\left(\xi_{1}^{1} \bigcirc \eta_{3}+\xi_{2}^{2} \bigcirc \xi_{2}\right)\right)$ is a vector bundle. So let $\overline{\bar{\sigma}}: T_{r} \mathbb{C}^{n} / \zeta_{4} \rightarrow\left(T_{r} \mathbb{C}^{n} \bigcirc T_{r} \mathbb{C}^{n}\right) /\left(\xi_{1}^{1} \bigcirc \eta_{3}+\xi_{2}^{2} \bigcirc \xi_{2}\right)$ be the linear map induced by σ. This is injective.

By using (6.2), (6.4), (6.5), we can write the quotient space ($\xi_{1}^{1} \bigcirc \eta_{4}+\xi_{2}^{2} \bigcirc$ $\left.\xi_{3}\right) /\left(\xi_{1}^{1} \bigcirc \eta_{3}+\xi_{2}^{2} \bigcirc \xi_{2}\right)$ in the form

$$
\left\langle v_{1}\right\rangle \bigcirc\left\langle 3 v_{2}^{2}+6 b_{1} v_{1}^{2} v_{2}+b_{1}^{2} v_{1}^{4}\right\rangle+\left\langle v_{2}+b_{1} v_{1}^{2}\right\rangle \bigcirc\left\langle 3 v_{1} v_{2}+b_{1} v_{1}^{3}\right\rangle
$$

Write B for this.
Consider the subbundle

$$
\left\langle 15 v_{1} v_{2}^{2}+10 b_{1} v_{1}^{3} v_{2}+b_{1}^{2} v_{1}^{5}\right\rangle
$$

of $T_{r} \mathbb{C}^{n} / \zeta_{4}$, and write A for this.
An element $15 v_{1} v_{2}^{2}+10 b_{1} v_{1}^{3} v_{2}+b_{1}^{2} v_{1}^{5}$ of A is mapped by $\overline{\bar{\sigma}}$ to $5 v_{1} \bigcirc\left(3 v_{2}^{2}+\right.$ $\left.6 b_{1} v_{1}^{2} v_{2}+b_{1}^{2} v_{1}^{4}\right)+10\left(v_{2}+b_{1} v_{1}^{2}\right) \bigcirc\left(3 v_{1} v_{2}+b_{1} v_{1}^{3}\right)$. From this, in the same way as before, it follows that $A=\overline{\bar{\sigma}}^{-1}(B)$. Therefore ζ_{5} can be written in the form

$$
\begin{equation*}
\zeta_{5}=\zeta_{4} \oplus\left\langle 15 v_{1} v_{2}^{2}+10 b_{1} v_{1}^{3} v_{2}+b_{1}^{2} v_{1}^{5}\right\rangle \tag{6.6}
\end{equation*}
$$

and is a $(3 n+2)$ dimensional vector bundle.

6.4 Well-definedness of ω_{5}

In §5.6.1 we defined ω_{5} as the inverse image of $\xi_{1}^{1} \bigcirc \zeta_{4}+\xi_{2}^{2} \bigcirc \eta_{3}+\xi_{3}^{3} \bigcirc \xi_{2}$ under σ. The space $\xi_{1}^{1} \bigcirc \zeta_{4}+\xi_{2}^{2} \bigcirc \eta_{3}+\xi_{3}^{3} \bigcirc \xi_{2}$ contains $\xi_{1}^{1} \bigcirc \eta_{4}+\xi_{2}^{2} \bigcirc \xi_{3}$, and we have already seen that $\zeta_{5}\left(=\sigma^{-1}\left(\xi_{1}^{1} \bigcirc \eta_{4}+\xi_{2}^{2} \bigcirc \xi_{3}\right)\right)$ is a vector bundle. So let $\bar{\sigma}^{(3)}: T_{r} \mathbb{C}^{n} / \zeta_{5} \rightarrow\left(T_{r} \mathbb{C}^{n} \bigcirc T_{r} \mathbb{C}^{n}\right) /\left(\xi_{1}^{1} \bigcirc \eta_{4}+\xi_{2}^{2} \bigcirc \xi_{3}\right)$ be the linear map induced by σ. This is injective. It is enough to show that the inverse image of $\left(\xi_{1}^{1} \bigcirc \zeta_{4}+\xi_{2}^{2} \bigcirc \eta_{3}+\xi_{3}^{3} \bigcirc \xi_{2}\right) /\left(\xi_{1}^{1} \bigcirc \eta_{4}+\xi_{2}^{2} \bigcirc \xi_{3}\right)$ under $\bar{\sigma}^{(3)}$ has the equidimensional fibres.

We choose local coordinates $\left(x, t, \xi_{1}^{1}, \bar{\xi}_{2}^{1}, \bar{\xi}_{3}^{1}\right) \in \mathbb{P}\left(\bar{\xi}_{3}\right)$ satisfying (6.2)-(6.6). Then

$$
\xi_{2}^{2}=\left\langle v_{1}\right\rangle \oplus\left\langle v_{2}+b_{1} v_{1}^{2}\right\rangle
$$

where $0 \neq v_{1} \in \xi_{1}, 0 \neq v_{2}+b_{1} v_{1}^{2} \in \xi_{2}\left(b_{1} \in \mathbb{C}\right)$. Since $v_{2}+b_{1} v_{1}^{2} \neq 0$, there are the two cases with $v_{2} \neq 0$ or $b_{1} \neq 0$. If $b_{1} \neq 0$ then by a linear change of the coordinates v_{2}, we can assume that $b_{1}=1$. Then

$$
\bar{\xi}_{3}=\xi_{3} / \xi_{2}^{2}= \begin{cases}\left(\xi_{1} /\left\langle v_{1}, v_{2}\right\rangle\right) \oplus\left\langle v_{1}^{2}\right\rangle \oplus\left\langle 3 v_{1} v_{2}+b_{1} v_{1}^{3}\right\rangle & \left(v_{2} \neq 0\right) \\ \bar{\xi}_{1} \oplus\left\langle 3 v_{1} v_{2}+v_{1}^{3}\right\rangle & \left(b_{1} \neq 0\right)\end{cases}
$$

where v_{1}, v_{2} are linearly independent in the case $v_{2} \neq 0$. So we can write

$$
\xi_{3}^{3}= \begin{cases}\left\langle v_{1}\right\rangle \oplus\left\langle v_{2}+b_{1} v_{1}^{2}\right\rangle \oplus\left\langle v_{3}+b_{3} v_{1}^{2}+b_{2}\left(3 v_{1} v_{2}+b_{1} v_{1}^{3}\right)\right\rangle & \left(v_{2} \neq 0\right) \tag{6.7}\\ \left\langle v_{1}\right\rangle \oplus\left\langle v_{2}+v_{1}^{2}\right\rangle \oplus\left\langle v_{3}+b_{2}\left(3 v_{1} v_{2}+v_{1}^{3}\right)\right\rangle & \left(b_{1} \neq 0\right)\end{cases}
$$

where $0 \neq v_{3}+b_{3} v_{1}^{2}+b_{2}\left(3 v_{1} v_{2}+b_{1} v_{1}^{3}\right) \in \xi_{3}$ or $0 \neq v_{3}+b_{2}\left(3 v_{1} v_{2}+v_{1}^{3}\right) \in \xi_{3}$ $\left(b_{2}, b_{3} \in \mathbb{C}\right)$.

For the expression of ξ_{3}^{3} in the case $v_{2} \neq 0$, if $b_{1} \neq 0$ then by linear changes of the coordinates v_{2}, v_{3}, we can assume that $b_{1}=1$ and $b_{3}=0$, that is, we get the expression of ξ_{3}^{3} in the case $b_{1} \neq 0$. For this reason, in the rest of $\S 6$ we describe the calculations only for the expression of ξ_{3}^{3} in the case $v_{2} \neq 0$, and the results for both cases $v_{2} \neq 0$ and $b_{1} \neq 0$.

Write $\overline{\bar{\xi}}_{1}$ for $\xi_{1} /\left\langle v_{1}, v_{2}\right\rangle$. By using (6.2)-(6.5),(6.7), the quotient space $\left(\xi_{1}^{1} \bigcirc \zeta_{4}+\xi_{2}^{2} \bigcirc \eta_{3}+\xi_{3}^{3} \bigcirc \xi_{2}\right) /\left(\xi_{1}^{1} \bigcirc \eta_{4}+\xi_{2}^{2} \bigcirc \xi_{3}\right)$ can be written in the form

$$
\begin{aligned}
& \left\langle v_{1}\right\rangle \bigcirc\left(\left\langle v_{2}+b_{1} v_{1}^{2}\right\rangle \circ \overline{\bar{\xi}}_{1} \oplus\left\langle 3 v_{1}^{2} v_{2}+b_{1} v_{1}^{4}\right\rangle\right) \\
& +\left\langle v_{2}+b_{1} v_{1}^{2}\right\rangle \bigcirc\left(\left\langle v_{1}\right\rangle \bigcirc \overline{\bar{\xi}}_{1} \oplus\left\langle v_{1}^{3}\right\rangle\right) \\
& +\left\langle v_{3}+b_{3} v_{1}^{2}+b_{2}\left(3 v_{1} v_{2}+b_{1} v_{1}^{3}\right)\right\rangle \bigcirc\left(\overline{\bar{\xi}}_{1} \oplus\left\langle v_{1}^{2}\right\rangle\right)
\end{aligned}
$$

Here we again write v_{3} for its equivalent class.
In almost the same way as in the previous sections, we are able to prove that ω_{5} can be written in the form

$$
\begin{aligned}
\omega_{5}=\zeta_{5} & \oplus\left\langle v_{3}+b_{3} v_{1}^{2}+b_{2}\left(3 v_{1} v_{2}+b_{1} v_{1}^{3}\right)\right\rangle \bigcirc \overline{\bar{\xi}}_{1} \\
& \oplus\left\langle 15 v_{1}^{2} v_{3}+5 b_{3} v_{1}^{4}+3 b_{2}\left(5 v_{1}^{3} v_{2}+b_{1} v_{1}^{5}\right)\right\rangle .
\end{aligned}
$$

Indeed, this is shown by the following two calculations; an element $\left(v_{3}+b_{3} v_{1}^{2}+\right.$ $\left.b_{2}\left(3 v_{1} v_{2}+b_{1} v_{1}^{3}\right)\right) x\left(x \in \overline{\bar{\xi}}_{1}\right)$ of ω_{5} / ζ_{5} is mapped by $\bar{\sigma}^{(3)}$ to $2 b_{3} v_{1} \bigcirc v_{1} x+3 b_{2} v_{1} \bigcirc$ $\left(v_{2}+b_{1} v_{1}^{2}\right) x+3 b_{2}\left(v_{2}+b_{1} v_{1}^{2}\right) \bigcirc v_{1} x+\left(v_{3}+b_{3} v_{1}^{2}+b_{2}\left(3 v_{1} v_{2}+b_{1} v_{1}^{3}\right)\right) \bigcirc x$, where the first term $2 b_{3} v_{1} \bigcirc v_{1} x$ is zero modulo $\xi_{1}^{1} \bigcirc \eta_{4}+\xi_{2}^{2} \bigcirc \xi_{3}$; an element $15 v_{1}^{2} v_{3}+$ $5 b_{3} v_{1}^{4}+3 b_{2}\left(5 v_{1}^{3} v_{2}+b_{1} v_{1}^{5}\right)$ of ω_{5} / ζ_{5} is mapped by $\bar{\sigma}^{(3)}$ to $10 v_{1} \bigcirc\left(3 v_{1} v_{3}+2 b_{3} v_{1}^{3}\right)+$ $15 b_{2}\left(3 v_{1}^{2} v_{2}+b_{1} v_{1}^{4}\right) \bigcirc v_{1}+15 b_{2}\left(v_{2}+b_{1} v_{1}^{2}\right) \bigcirc v_{1}^{3}+15\left(v_{3}+b_{3} v_{1}^{2}+b_{2}\left(3 v_{1} v_{2}+b_{1} v_{1}^{3}\right)\right) \bigcirc v_{1}^{2}$, where the first term $10 v_{1} \bigcirc\left(3 v_{1} v_{3}+2 b_{3} v_{1}^{3}\right)$ is zero modulo $\xi_{1}^{1} \bigcirc \eta_{4}+\xi_{2}^{2} \bigcirc \xi_{3}$.

Together with the case $b_{1} \neq 0$, we get that

$$
\omega_{5}=\zeta_{5} \oplus \begin{cases}\left\langle v_{3}+b_{3} v_{1}^{2}+b_{2}\left(3 v_{1} v_{2}+b_{1} v_{1}^{3}\right)\right\rangle \bigcirc \overline{\bar{\xi}}_{1} & \left(v_{2} \neq 0\right) \tag{6.8}\\ \oplus\left\langle 15 v_{1}^{2} v_{3}+5 b_{3} v_{1}^{4}+3 b_{2}\left(5 v_{1}^{3} v_{2}+b_{1} v_{1}^{5}\right)\right\rangle & \\ \left\langle v_{3}+b_{2}\left(3 v_{1} v_{2}+v_{1}^{3}\right)\right\rangle \circ \bar{\xi}_{1} & \left(b_{1} \neq 0\right)\end{cases}
$$

Therefore ω_{5} is a $(4 n+1)$ dimensional vector bundle.

6.5 Transversality of Ψ

This is essentially Turnbull's result (see [11, §3.2]). Instead of the proof, we will write out the bundle $\bar{\alpha}_{6}^{1}$ and the section Ψ in local coordinates.

We choose local coordinates $\left(x, t, \xi_{1}^{1}, \bar{\xi}_{2}^{1}, \bar{\xi}_{3}^{1}, \bar{\alpha}_{6}^{1}\right) \in \mathbb{P}\left(\bar{\alpha}_{6}\right)$ satisfying (6.2)-(6.8). We again describe the calculations only for the expression (6.7) of ξ_{3}^{3} in the case $v_{2} \neq 0$.

The quotient space $\bar{\alpha}_{6}\left(=\left(\xi_{1}^{1} \bigcirc \zeta_{5}+\xi_{2}^{2} \bigcirc \eta_{4}+\xi_{3}^{3} \bigcirc \xi_{3}\right) /\left(\xi_{1}^{1} \bigcirc \zeta_{4}+\xi_{2}^{2} \bigcirc \eta_{3}+\right.\right.$ $\left.\xi_{3}^{3} \bigcirc \xi_{2}+\xi_{1}^{1} \bigcirc \zeta_{5}\right)$) can be written in the form

$$
\begin{aligned}
\bar{\alpha}_{6}= & \left\langle v_{2}+b_{1} v_{1}^{2}\right\rangle \bigcirc\left\langle 3 v_{2}^{2}+6 b_{1} v_{1}^{2} v_{2}+b_{1}^{2} v_{1}^{4}\right\rangle \\
& +\left\langle v_{3}+b_{3} v_{1}^{2}+b_{2}\left(3 v_{1} v_{2}+b_{1} v_{1}^{3}\right)\right\rangle \bigcirc\left\langle 3 v_{1} v_{2}+b_{1} v_{1}^{3}\right\rangle .
\end{aligned}
$$

Let $X=\left(v_{2}+b_{1} v_{1}^{2}\right) \bigcirc\left(3 v_{2}^{2}+6 b_{1} v_{1}^{2} v_{2}+b_{1}^{2} v_{1}^{4}\right)$ and $Y=\left(v_{3}+b_{3} v_{1}^{2}+b_{2}\left(3 v_{1} v_{2}+\right.\right.$ $\left.\left.b_{1} v_{1}^{3}\right)\right) \bigcirc\left(3 v_{1} v_{2}+b_{1} v_{1}^{3}\right)$. Then we can write the tautological line bundle $\bar{\alpha}_{6}^{1}$ in the form

$$
\bar{\alpha}_{6}^{1}=\langle 3 \lambda X+2 \mu Y\rangle \quad((\lambda, \mu) \neq(0,0)) .
$$

The section Ψ is induced by $\bar{\sigma}_{2}$, and can be written in the form

$$
\left.\begin{array}{rl}
\bar{\sigma}_{2}(3 \lambda X+2 \mu Y) \\
= & 3 \lambda
\end{array}\right] b_{1}\left(v_{1} \bigcirc v_{1}\right) \wedge\left(3 v_{2}^{2}+6 b_{1} v_{1}^{2} v_{2}+b_{1}^{2} v_{1}^{4}\right) .
$$

modulo $\left[\left(\xi_{1}^{1} \bigcirc \eta_{3}\right) \wedge \xi_{1}^{1}+\left(\xi_{1}^{1} \bigcirc \xi_{2}\right) \wedge \xi_{2}^{2}+\left(\xi_{2}^{2} \bigcirc \xi_{2}\right) \wedge \xi_{1}^{1}\right]+\left[\left(\xi_{1}^{1} \bigcirc \eta_{4}\right) \wedge \xi_{1}^{1}+\left(\xi_{2}^{2} \bigcirc \xi_{3}\right) \wedge \xi_{1}^{1}\right]$. If $\bar{\sigma}_{2}(3 \lambda X+2 \mu Y)=0$ then

$$
\lambda b_{1}=\mu b_{2} .
$$

Hence the independence of b_{1}, b_{2} implies the transversality of Ψ, and the nonsingularity of $\tilde{\Sigma}_{5}^{\prime \prime}$.

For later use we describe the expression of $\bar{\alpha}_{6}^{1}$ together with the case $b_{1} \neq 0$:
(6.9) $\bar{\alpha}_{6}^{1}=\left\{\begin{array}{lr}\left\langle 3 \lambda\left(v_{2}+b_{1} v_{1}^{2}\right) \bigcirc\left(3 v_{2}^{2}+6 b_{1} v_{1}^{2} v_{2}+b_{1}^{2} v_{1}^{4}\right)\right. & \left(v_{2} \neq 0\right), \\ \left.+2 \mu\left[v_{3}+b_{3} v_{1}^{2}+b_{2}\left(3 v_{1} v_{2}+b_{1} v_{1}^{3}\right)\right] \bigcirc\left(3 v_{1} v_{2}+b_{1} v_{1}^{3}\right)\right\rangle & \\ \left\langle 3 \lambda\left(v_{2}+v_{1}^{2}\right) \bigcirc\left(3 v_{2}^{2}+6 v_{1}^{2} v_{2}+v_{1}^{4}\right)\right. & \left(b_{1} \neq 0\right), \\ \left.+2 \mu\left[v_{3}+b_{2}\left(3 v_{1} v_{2}+v_{1}^{3}\right)\right] \bigcirc\left(3 v_{1} v_{2}+v_{1}^{3}\right)\right\rangle & \end{array}\right.$
where (i) $(\lambda, \mu) \neq(0,0)$, and (ii) over $\tilde{\Sigma}_{5}^{\prime \prime}$ we have $\lambda b_{1}=\mu b_{2}$.

6.6 Well-definedness of ω_{6}

In $\S 5.6 .3$ we defined ω_{6} as the inverse image of $\alpha\left(\subset \alpha_{6}=\xi_{1}^{1} \bigcirc \zeta_{5}+\xi_{2}^{2} \bigcirc \eta_{4}+\right.$ $\left.\xi_{3}^{3} \bigcirc \xi_{3}\right)$ under σ. The space α contains $\alpha_{5}\left(=\xi_{1}^{1} \bigcirc \zeta_{4}+\xi_{2}^{2} \bigcirc \eta_{3}+\xi_{3}^{3} \bigcirc \xi_{2}\right)$, and we have already seen that $\omega_{5}\left(=\sigma^{-1}\left(\alpha_{5}\right)\right)$ is a vector bundle. So let $\bar{\sigma}^{(4)}: T_{r} \mathbb{C}^{n} / \omega_{5} \rightarrow$ $\left(T_{r} \mathbb{C}^{n} \bigcirc T_{r} \mathbb{C}^{n}\right) / \alpha_{5}$ be the linear map induced by σ. This is injective.

We choose local coordinates $\left(x, t, \xi_{1}^{1}, \bar{\xi}_{2}^{1}, \bar{\xi}_{3}^{1}, \bar{\alpha}_{6}^{1}\right) \in \tilde{\Sigma}_{5}^{\prime \prime}$ satisfying (6.2)-(6.9). We again describe the calculations only for the expression (6.7) of ξ_{3}^{3} in the case $v_{2} \neq 0$.

The quotient space α / α_{5} can be written in the form

$$
\begin{aligned}
& \left\langle v_{1}\right\rangle \bigcirc\left\langle 15 v_{1} v_{2}^{2}+10 b_{1} v_{1}^{3} v_{2}+b_{1}^{2} v_{1}^{5}\right\rangle \\
& \quad+\left\langle 3 \lambda\left(v_{2}+b_{1} v_{1}^{2}\right) \bigcirc\left(3 v_{2}^{2}+6 b_{1} v_{1}^{2} v_{2}+b_{1}^{2} v_{1}^{4}\right)\right. \\
& \left.\quad+2 \mu\left[v_{3}+b_{3} v_{1}^{2}+b_{2}\left(3 v_{1} v_{2}+b_{1} v_{1}^{3}\right)\right] \bigcirc\left(3 v_{1} v_{2}+b_{1} v_{1}^{3}\right)\right\rangle .
\end{aligned}
$$

In the same way as in the previous sections, we are able to prove that ω_{6} can be written in the form

$$
\begin{aligned}
\omega_{6}= & \omega_{5} \oplus\left\langle 10 \mu\left(3 v_{1} v_{2} v_{3}+b_{1} v_{1}^{3} v_{3}\right)+2 \mu b_{3}\left(5 v_{1}^{3} v_{2}+b_{1} v_{1}^{5}\right)\right. \\
& \left.+\lambda\left(15 v_{2}^{3}+45 b_{1} v_{1}^{2} v_{2}^{2}+15 b_{1}^{2} v_{1}^{4} v_{2}+b_{1}^{3} v_{1}^{6}\right)\right\rangle
\end{aligned}
$$

where $(\lambda, \mu) \neq(0,0)$ and $\lambda b_{1}=\mu b_{2}$.
Indeed, this is shown by the following calculation; an element $10 \mu\left(3 v_{1} v_{2} v_{3}+\right.$ $\left.b_{1} v_{1}^{3} v_{3}\right)+2 \mu b_{3}\left(5 v_{1}^{3} v_{2}+b_{1} v_{1}^{5}\right)+\lambda\left(15 v_{2}^{3}+45 b_{1} v_{1}^{2} v_{2}^{2}+15 b_{1}^{2} v_{1}^{4} v_{2}+b_{1}^{3} v_{1}^{6}\right)$ of ω_{6} / ω_{5} is mapped by $\bar{\sigma}^{(4)}$ to $10 \mu v_{1} \bigcirc\left[3\left(v_{2}+b_{1} v_{1}^{2}\right) v_{3}+b_{3}\left(3 v_{1}^{2} v_{2}+b_{1} v_{1}^{4}\right)\right]+10 \mu\left(v_{2}+b_{1} v_{1}^{2}\right) \bigcirc$ $\left(3 v_{1} v_{3}+b_{3} v_{1}^{3}\right)+6 \lambda b_{1} v_{1} \bigcirc\left(15 v_{1} v_{2}^{2}+10 b_{1} v_{1}^{3} v_{2}+b_{1}^{2} v_{1}^{5}\right)+15 \lambda\left(v_{2}+b_{1} v_{1}^{2}\right) \bigcirc\left(3 v_{2}^{2}+\right.$ $\left.6 b_{1} v_{1}^{2} v_{2}+b_{1}^{2} v_{1}^{4}\right)+10 \mu\left[v_{3}+b_{3} v_{1}^{2}+b_{2}\left(3 v_{1} v_{2}+b_{1} v_{1}^{3}\right)\right] \bigcirc\left(3 v_{1} v_{2}+b_{1} v_{1}^{3}\right)$, where the first two terms $10 \mu v_{1} \bigcirc\left[3\left(v_{2}+b_{1} v_{1}^{2}\right) v_{3}+b_{3}\left(3 v_{1}^{2} v_{2}+b_{1} v_{1}^{4}\right)\right], 10 \mu\left(v_{2}+b_{1} v_{1}^{2}\right) \bigcirc\left(3 v_{1} v_{3}+b_{3} v_{1}^{3}\right)$ are zero modulo $\xi_{1}^{1} \bigcirc \zeta_{4}+\xi_{2}^{2} \bigcirc \eta_{3}+\xi_{3}^{3} \bigcirc \xi_{2}$. (Note that $\lambda b_{1}=\mu b_{2}$.)

Together with the case $b_{1} \neq 0$, we get that

$$
\omega_{6}=\left\{\begin{array}{rrr}
\omega_{5} \oplus\left\langle 10 \mu\left(3 v_{1} v_{2} v_{3}+b_{1} v_{1}^{3} v_{3}\right)+2 \mu b_{3}\left(5 v_{1}^{3} v_{2}+b_{1} v_{1}^{5}\right)\right. & & \left(v_{2} \neq 0\right) \tag{6.10}\\
\left.+\lambda\left(15 v_{2}^{3}+45 b_{1} v_{1}^{2} v_{2}^{2}+15 b_{1}^{2} v_{1}^{4} v_{2}+b_{1}^{3} v_{1}^{6}\right)\right\rangle & \\
\omega_{5} \oplus\left\langle 10 \mu\left(3 v_{1} v_{2} v_{3}+v_{1}^{3} v_{3}\right)\right. & & \left(b_{1} \neq 0\right) \\
& \left.+\lambda\left(15 v_{2}^{3}+45 v_{1}^{2} v_{2}^{2}+15 v_{1}^{4} v_{2}+v_{1}^{6}\right)\right\rangle &
\end{array}\right.
$$

where $(\lambda, \mu) \neq(0,0)$ and $\lambda b_{1}=\mu b_{2}$. Therefore ω_{6} is a $(4 n+2)$ dimensional vector bundle.

NOTE 6.2. Without the extra blowup, when $b_{1}=b_{2}=b_{3}=0$, each of $\left(v_{2}+\right.$ $\left.b_{1} v_{1}^{2}\right) \bigcirc\left(3 v_{2}^{2}+6 b_{1} v_{1}^{2} v_{2}+b_{1}^{2} v_{1}^{4}\right)$ and $\left[v_{3}+b_{3} v_{1}^{2}+b_{2}\left(3 v_{1} v_{2}+b_{1} v_{1}^{3}\right)\right] \bigcirc\left(3 v_{1} v_{2}+b_{1} v_{1}^{3}\right)$ in $\bar{\alpha}_{6}$ has the inverse image under the composite of $\bar{\sigma}^{(4)}$ and the quotient map $\alpha_{6} / \alpha_{5} \rightarrow \bar{\alpha}_{6}$, separately.

7. The relationship between the defining equations and the vector bundles

In this section, we will establish the relationship between the equations defining Σ_{k} and the vector bundles used to construct Σ_{k}. Then we give proofs of the existence and density results stated in $\S 5$. We use the same local coordinates as in $\S 6$. Since the cases $\tilde{\Sigma}_{1}$ and $\tilde{\Sigma}_{2}$ are straightforward, we begin with the case $\tilde{\Sigma}_{3}$.

7.1 The case $\tilde{\Sigma}_{3}$

The points of Σ_{3} in $\Sigma_{2}\left(=\Sigma^{n, 1} F\right)$ are characterized by the equations (3.2), (3.3), and the subset $\tilde{\Sigma}_{3}$ of $\tilde{\Sigma}_{2}$ is defined by the zeros of the section $\Phi_{3}: \tilde{\Sigma}_{2} \rightarrow$ $\operatorname{Hom}\left(\eta_{3} / \eta_{2}, \iota_{1}\right)$. To clarify the relationship between Σ_{3} and $\tilde{\Sigma}_{3}$, we will prove that $\pi_{2}\left(\tilde{\Sigma}_{3} \backslash \tilde{S}_{3}\right)=\Sigma_{3}$, where $\tilde{S}_{3}=\left(\left.\pi_{2}\right|_{\Sigma_{3}}\right)^{-1}(S)$ and $S=\cup_{i \geq 2} \Sigma^{n, i} F$. For this, we shall examine a necessary and sufficient condition for a point of $\tilde{\Sigma}_{2} \backslash \tilde{S}_{2}$ to lie above Σ_{3}, where $\tilde{S}_{2}=\left(\pi_{2} \mid \tilde{\Sigma}_{2}\right)^{-1}(S)$. Note that $\left.\pi_{2}\right|_{\tilde{\Sigma}_{2} \backslash \tilde{S}_{2}}: \tilde{\Sigma}_{2} \backslash \tilde{S}_{2} \rightarrow \Sigma_{2}$ is biholomorphic and its restriction over Σ_{3} is a one sheeted cover of Σ_{3}.

Let W be a small open neighbourhood of $(0,0)$ in $\mathbb{C}^{n} \times \mathbb{C}^{p}$ and choose the local coordinates $\left(x, t, \xi_{1}^{1}\right) \in\left(\pi_{2} \tilde{\Sigma}_{2}\right)^{-1}(W)$ with $\xi_{1}^{1}=\left\langle v_{1}\right\rangle$. Take a point P of $\left(\left.\pi_{2}\right|_{\tilde{\Sigma}_{2}}\right)^{-1}(W) \backslash \tilde{S}_{2}$ and let U be an open neighbourhood of P in $\left(\left.\pi_{2}\right|_{\tilde{\Sigma}_{2}}\right)^{-1}(W) \backslash \tilde{S}_{2}$. By definition of $\tilde{\Sigma}_{2}$, the vector v_{1} at P satisfies the equation (3.2). Hence the point P lies above Σ_{3} if and only if there exists a vector $v_{2} \in \xi_{1}$ at P satisfying the equation (3.3). Consider the map

$$
\begin{equation*}
\left(f_{t}\right)_{2}+\left(f_{t}\right)_{3}:\left(\xi_{1} \oplus\left\langle v_{1}^{2}\right\rangle\right) \circ \xi_{1} \rightarrow \iota_{1} \tag{7.1}
\end{equation*}
$$

over U. The condition for the vector v_{2} at P means that the restriction of (7.1) to the subspace $\left\langle v_{2}+v_{1}^{2}\right\rangle \bigcirc \xi_{1}$ vanishes at P.

As a subspace of the tensor product $\left(\xi_{1} \oplus\left\langle v_{1}^{2}\right\rangle\right) \otimes \xi_{1}$, the source space $\left(\xi_{1} \oplus\right.$ $\left.\left\langle v_{1}^{2}\right\rangle\right) \bigcirc \xi_{1}$ of (7.1) can be visualized by a diagram (Figure 1).

Figure 1 The diagram for Σ_{3}

The diagram represents the space $\left(\xi_{1} \oplus\left\langle v_{1}^{2}\right\rangle\right) \bigcirc \xi_{1}$ by the coordinates with respect to the standard basis. Each row represents $\xi_{1} \oplus\left\langle v_{1}^{2}\right\rangle$, and each column
represents ξ_{1}. In the diagram, we assume that the subspace $\left\langle v_{1}\right\rangle$ of ξ_{1} is represented by the first coordinate. The symbol • indicates the quotient space $\left\langle v_{1}^{3}\right\rangle=\left[\left(\xi_{1} \oplus\left\langle v_{1}^{2}\right\rangle\right) \circ\left\langle v_{1}\right\rangle\right] /\left(\xi_{1} \bigcirc\left\langle v_{1}\right\rangle\right)$ considered as the subspace of $\left(\xi_{1} \oplus\left\langle v_{1}^{2}\right\rangle\right) \circ \xi_{1}$.

Since U is contained in $\tilde{\Sigma}_{2}$, the hatched areas $\xi_{1} \bigcirc\left\langle v_{1}\right\rangle,\left\langle v_{1}\right\rangle \circ \xi_{1}$ in Figure 1 are mapped by (7.1) to zero. Hence (7.1) (more precisely $\left.\left(f_{t}\right)_{2}\right)$ induces the map Δ from $\bar{\xi}_{1} \bigcirc \bar{\xi}_{1}$ to ι_{1}, where $\bar{\xi}_{1}=\xi_{1} /\left\langle v_{1}\right\rangle$. By definition of U, this Δ is a nondegenerate bilinear form over U. The space $\bar{\xi}_{1} \circ \bar{\xi}_{1}$ can be considered as the shaded box in Figure 1.

Consider the map ϵ_{3} from $\bullet\left(=\left\langle v_{1}^{3}\right\rangle\right)$ to ι_{1} induced by (7.1). Since Δ is nondegenerate at P, the condition for v_{2} at P mentioned above is equivalent to the condition that ϵ_{3} vanishes at P. By the expression (6.2), we see that ϵ_{3} is $\bar{T}_{3}\left(f_{t}\right): \eta_{3} / \eta_{2} \rightarrow \iota_{1}$, which induces the section Φ_{3}. Hence the point P lies above Σ_{3} if and only if it is in $\tilde{\Sigma}_{3}$. Since P is any point of $\tilde{\Sigma}_{2} \backslash \tilde{S}_{2}$, we get that $\pi_{2}\left(\tilde{\Sigma}_{3} \backslash \tilde{S}_{3}\right)=\Sigma_{3}$.

The map $\left.\pi_{2}\right|_{\tilde{\Sigma}_{2} \backslash \tilde{S}_{2}}: \tilde{\Sigma}_{2} \backslash \tilde{S}_{2} \rightarrow \Sigma_{2}$ has the inverse map, and the map $\left.\pi_{2}\right|_{\tilde{\Sigma}_{3} \backslash \tilde{S}_{3}}$: $\tilde{\Sigma}_{3} \backslash \tilde{S}_{3} \rightarrow \Sigma_{3}$ is the restriction of $\left.\pi_{2}\right|_{\tilde{\Sigma}_{2} \backslash \tilde{S}_{2}}$ to $\tilde{\Sigma}_{3} \backslash \tilde{S}_{3}$. Hence there exists the inverse map of $\left.\pi_{2}\right|_{\tilde{\Sigma}_{3} \backslash \tilde{S}_{3}}: \tilde{\Sigma}_{3} \backslash \tilde{S}_{3} \rightarrow \Sigma_{3}$.

Referring the map Δ, we consider the map $\bar{\Delta}: \bar{\xi}_{1} \bigcirc \bar{\xi}_{1} \rightarrow \iota_{1}$ over $\left(\left.\pi_{2}\right|_{\tilde{\Sigma}_{3}}\right)^{-1}(W)$ induced by $\left(f_{t}\right)_{2}$. Then $\tilde{S}_{3} \cap\left(\left.\pi_{2}\right|_{\tilde{\Sigma}_{\mathfrak{z}}}\right)^{-1}(W)$ consists of the points of $\left(\left.\pi_{2}\right|_{\tilde{\Sigma}_{3}}\right)^{-1}(W)$ at which $\bar{\Delta}$ is degenerate. Since Σ_{3} is nonsingular and $\bar{\Delta}$ is not identically zero (on each connected component of $\tilde{\Sigma}_{3}$), it follows that $\tilde{S}_{3} \cap\left(\left.\pi_{2}\right|_{\Sigma_{3}}\right)^{-1}(W)$ is a nowhere dense analytic subset of $\left(\pi_{2} \tilde{\Sigma}_{3}\right)^{-1}(W)$. Hence $\tilde{\Sigma}_{3} \backslash \tilde{S}_{3}$ is dense in $\tilde{\Sigma}_{3}$.

7.2 The case $\tilde{\Sigma}_{4}$

We will prove that $\pi_{2} \circ \pi_{4}\left(\tilde{\Sigma}_{4} \backslash \tilde{S}_{4}\right)=\Sigma_{4}$, where $\tilde{S}_{4}=\left(\pi_{2} \circ \pi_{4} \mid \tilde{\Sigma}_{4}\right)^{-1}(S)$. For this, we shall examine a sufficient condition for a point of $\mathbb{P}\left(\bar{\xi}_{2}\right)$ to lie above Σ_{4}. Note that $\left.\pi_{2}\right|_{\tilde{\Sigma}_{3} \backslash \tilde{S}_{3}}: \tilde{\Sigma}_{3} \backslash \tilde{S}_{3} \rightarrow \Sigma_{3}$ is biholomorphic and the restriction of $\mathbb{P}\left(\bar{\xi}_{2}\right)$ over $\left(\pi_{2} \tilde{\Sigma}_{3} \backslash \tilde{S}_{3}\right)^{-1}\left(\Sigma_{4}\right)$ is a fibre bundle.

Let W be a small open neighbourhood of $(0,0)$ in $\mathbb{C}^{n} \times \mathbb{C}^{p}$ and choose the local coordinates $\left(x, t, \xi_{1}^{1}, \bar{\xi}_{2}^{1}\right) \in\left(\pi_{2} \circ \pi_{4}\right)^{-1}(W)\left(\subset \mathbb{P}\left(\bar{\xi}_{2}\right)\right)$ with $\xi_{2}^{2}=\left\langle v_{1}\right\rangle \oplus\left\langle v_{2}+b_{1} v_{1}^{2}\right\rangle$. Take a point P of $\left(\pi_{2} \circ \pi_{4}\right)^{-1}(W \backslash S)$ and let U be an open neighbourhood of P in $\left(\pi_{2} \circ \pi_{4}\right)^{-1}(W \backslash S)$.

The vector v_{1} at P satisfies the equation (3.2), and hence P lies above Σ_{4} if the vector v_{2} at P satisfies the equation (3.3) and there exists a vector $v_{3} \in \xi_{1}$ at P satisfying the equation (3.4). Consider the maps

$$
\begin{align*}
\left(f_{t}\right)_{2}+\left(f_{t}\right)_{3} & :\left(\xi_{1} \oplus\left\langle v_{1}^{2}\right\rangle\right) \bigcirc \xi_{1} \rightarrow \iota_{1} \tag{7.2}\\
\left(f_{t}\right)_{2}+\left(f_{t}\right)_{3}+\left(f_{t}\right)_{4} & :\left(\xi_{1} \oplus\left\langle v_{1}\right\rangle \bigcirc \xi_{1} \oplus\left\langle v_{1}^{3}\right\rangle\right) \bigcirc \xi_{1} \rightarrow \iota_{1}
\end{align*}
$$

over U. The condition for the vectors v_{2}, v_{3} at P means that the restrictions of (7.2) to the subspaces $\left\langle v_{2}+v_{1}^{2}\right\rangle \circ \xi_{1},\left\langle v_{3}+3 v_{1} v_{2}+v_{1}^{3}\right\rangle \circ \xi_{1}$ vanish at P, respectively.

As in the previous section, the source spaces of (7.2) can be visualized by a diagram (Figure 2).

Figure 2 The diagram for Σ_{4}

Since U lies above $\tilde{\Sigma}_{3}$, the symbols $\bullet\left(=\left\langle v_{1}^{3}\right\rangle\right)$ in Figure 2 are mapped by (7.2) to zero. The other symbols except the dashed box are the same as in Figure 1. The dashed box is the space

$$
\left[\left(\bar{\xi}_{1} \oplus\left\langle v_{1}^{2}\right\rangle\right) \circ \bar{\xi}_{1}\right] \oplus\left[\left(\left\langle v_{1}\right\rangle \circ \bar{\xi}_{1} \oplus\left\langle v_{1}^{3}\right\rangle\right) \bigcirc\left\langle v_{1}\right\rangle\right]
$$

over U.
Consider the subspace

$$
K_{4}=\left[\left\langle\bar{v}_{2}+v_{1}^{2}\right\rangle \circ \bar{\xi}_{1}\right] \oplus\left[\left\langle 3 v_{1} \bar{v}_{2}+v_{1}^{3}\right\rangle \circ\left\langle v_{1}\right\rangle\right]
$$

of the dashed box, and let δ_{4} be the map from K_{4} to $\iota_{1} \oplus \iota_{1}$ induced by (7.2). Over U, the map Δ (on the lower left shaded box in Figure 2), which is the pullback of Δ of $\S 7.1$, is nondegenerate. Hence the condition for v_{2}, v_{3} at P mentioned above is equivalent to the condition that δ_{4} vanishes at P. Let ϵ_{4} be the map from K_{4} to ι_{1} induced by $\sum_{i=2}^{4}\left(f_{t}\right)_{i}$. Then the condition for δ_{4} at P is equivalent to the condition that ϵ_{4} vanishes at P.

By the condition for ϵ_{4} at P, we perform the following operations. At each point of U, choose two vectors in K_{4} and let $\left(v_{2}+v_{1}^{2}\right) V_{2},\left(3 v_{1} v_{2}+v_{1}^{3}\right) v_{1}$ be their representatives, where $V_{2} \in \xi_{1}$ is some vector. Insert these representatives to the third and fourth rows in Table 2, where $V_{3}, V_{4} \in \xi_{1}$ are some vectors.

Table 2 The table for Y_{4}

1	V_{4}
v_{1}	$3 V_{3}$
$v_{2}+v_{1}^{2}$	$3 V_{2}$
$V_{3}+3 v_{1} v_{2}+v_{1}^{3}$	v_{1}

Applying Lemma 2.1 (i) to Table 2, we get the vector

$$
Y_{4}=V_{4}+4 v_{1} V_{3}+3\left(v_{2}+v_{1}^{2}\right) V_{2}+\left(3 v_{1}^{2} v_{2}+v_{1}^{4}\right) .
$$

Then the point P lies above Σ_{4} if Y_{4} at P is mapped by $\sum_{i=1}^{4}\left(f_{t}\right)_{i}$ to zero for all $V_{2}, V_{3}, V_{4} \in \xi_{1}$.

At a point of U with $b_{1} \neq 0$, we can consider Y_{4} as a representative of a basis element of ζ_{4} / η_{3} in ζ_{4}, and also $\sum_{i=1}^{4}\left(f_{t}\right)_{i}$ on Y_{4} as $T_{4}\left(f_{t}\right)$ on Y_{4}. Indeed, by the expression (6.3), the space ζ_{4} / η_{3} has a basis of the form $3\left(\bar{v}_{2}+b_{1} v_{1}^{2}\right) \bar{V}_{2}^{(i)}+\left(3 v_{1}^{2} \bar{v}_{2}+\right.$ $\left.b_{1} v_{1}^{4}\right)\left(\bar{V}_{2}^{(i)} \in \bar{\xi}_{1}, 1 \leq i \leq n\right)$, and an element $3\left(\bar{v}_{2}+b_{1} v_{1}^{2}\right) \bar{V}_{2}+\left(3 v_{1}^{2} \bar{v}_{2}+b_{1} v_{1}^{4}\right)$ of the basis has a representative $V_{4}+4 v_{1} V_{3}+3\left(v_{2}+b_{1} v_{1}^{2}\right) V_{2}+\left(3 v_{1}^{2} v_{2}+b_{1} v_{1}^{4}\right)\left(V_{2}, V_{3}, V_{4} \in\right.$ ξ_{1}) in ζ_{4}. At a point of U with $b_{1} \neq 0$, by a linear change of the coordinates v_{2}, we can assume that $b_{1}=1$ in the representative. Then the representative is Y_{4}, and $T_{4}\left(f_{t}\right)$ on Y_{4} is essentially $\sum_{i=1}^{4}\left(f_{t}\right)_{i}$ on Y_{4}.

Then the following claim is useful.
CLAIM 7.1. At every point of $\tilde{\Sigma}_{4} \cap U$, we have $b_{1} \neq 0$.
Proof. At a point of $\tilde{\Sigma}_{4} \cap U$, the map $\bar{T}_{4}\left(f_{t}\right): \zeta_{4} / \eta_{3} \rightarrow \iota_{1}$ vanishes, and then, by the expression (6.3), so is the map from $\left\langle\bar{v}_{2}+b_{1} v_{1}^{2}\right\rangle \circ \bar{\xi}_{1}$ to ι_{1} induced by $\sum_{i=2}^{3}\left(f_{t}\right)_{i}$.

At the point, if $b_{1}=0$ then the restriction of the map Δ to $\left\langle\bar{v}_{2}\right\rangle \circ \bar{\xi}_{1}$ vanishes. This contradicts the fact that Δ is nondegenerate over U. The claim is proved.

Because $\tilde{\Sigma}_{4}$ is the zeros of Φ_{4} induced by $\bar{T}_{4}\left(f_{t}\right)$, the above argument shows that if the point P is in $\tilde{\Sigma}_{4}$ then it lies above Σ_{4}. Since P is any point of $\left(\pi_{2} \circ \pi_{4}\right)^{-1}(W \backslash S)$, we see that $\pi_{2} \circ \pi_{4}\left(\tilde{\Sigma}_{4} \backslash \tilde{S}_{4}\right) \subset \Sigma_{4}$.

The converse also holds. Indeed, for each point Q of $\Sigma_{4} \cap W$ there exist vectors $v_{1}, v_{2} \in \xi_{1}$ at Q satisfying (3.2),(3.3). These determine a point P of $\left(\pi_{2} \circ \pi_{4}\right)^{-1}(W \backslash S)\left(\subset \mathbb{P}\left(\bar{\xi}_{2}\right)\right)$; for such Q, v_{1}, v_{2}, the point P is given by $\left(Q, \xi_{1}^{1}, \bar{\xi}_{2}^{1}\right)$ with $\xi_{2}^{2}=\left\langle v_{1}\right\rangle \oplus\left\langle v_{2}+v_{1}^{2}\right\rangle$. By definition of $\tilde{\Sigma}_{4}$, this P is in $\tilde{\Sigma}_{4}$.

Thus we get that $\pi_{2} \circ \pi_{4}\left(\tilde{\Sigma}_{4} \backslash \tilde{S}_{4}\right)=\Sigma_{4}$.
For any point Q of $\Sigma_{4} \cap W$, a point P of $\tilde{\Sigma}_{4} \backslash \tilde{S}_{4}$ is given as above. By the nondegeneracy of Δ, such a point P is unique; indeed, there exists a unique
vector $v_{1} \in \xi_{1}$ at Q satisfying (3.2) and there exists a unique vector $\bar{v}_{2} \in \bar{\xi}_{1}$ at Q such that ϵ_{4} vanishes at P. This implies the existence of the inverse map of $\left.\pi_{2} \circ \pi_{4}\right|_{\tilde{\Sigma}_{4} \backslash \tilde{S}_{4}}: \tilde{\Sigma}_{4} \backslash \tilde{S}_{4} \rightarrow \Sigma_{4}$.

Consider the map $\bar{\Delta}$ over $\left(\left.\pi_{2} \circ \pi_{4}\right|_{\tilde{\Sigma}_{4}}\right)^{-1}(W)$, which is the pullback of $\bar{\Delta}$ of §7.1. Then $\tilde{S}_{4} \cap\left(\pi_{2} \circ \pi_{4} \mid \tilde{\Sigma}_{4}\right)^{-1}(W)$ consists of the points of $\left(\pi_{2} \circ \pi_{4} \mid \tilde{\Sigma}_{4}\right)^{-1}(W)$ at which $\bar{\Delta}$ is degenerate. As in $\S 7.1$, we see that $\tilde{\Sigma}_{4} \backslash \tilde{S}_{4}$ is dense in $\tilde{\Sigma}_{4}$.
Note 7.1. Applying Lemma 4.2 to Y_{4}, we get that

$$
\sigma\left(Y_{4}\right)=4 v_{1} \bigcirc\left(V_{3}+\frac{3}{2} v_{1} V_{2}+\frac{3}{2} v_{1} v_{2}+v_{1}^{3}\right)+3\left(v_{2}+v_{1}^{2}\right) \bigcirc\left(V_{2}+v_{1}^{2}\right),
$$

which is a representative of an element of $\left(\xi_{1}^{1} \bigcirc \eta_{3}+\xi_{2}^{2} \bigcirc \xi_{2}\right) /\left(\xi_{1}^{1} \bigcirc \xi_{2}\right)$. Following this recipe, we defined ζ_{4} as in $\S 5.4$.

7.3 The case $\tilde{\Sigma}_{5}$

We will prove that $\pi_{2} \circ \pi_{4}\left(\tilde{\Sigma}_{5} \backslash \tilde{S}_{5}\right)=\Sigma_{5}$, where $\tilde{S}_{5}=\left(\pi_{2} \circ \pi_{4} \mid \tilde{\Sigma}_{5}\right)^{-1}(S)$. For this, we shall examine a necessary and sufficient condition for a point of $\tilde{\Sigma}_{4} \backslash \tilde{S}_{4}$ to lie above Σ_{5}. Note that $\left.\pi_{2} \circ \pi_{4}\right|_{\Sigma_{4} \backslash \tilde{S}_{4}}: \tilde{\Sigma}_{4} \backslash \tilde{S}_{4} \rightarrow \Sigma_{4}$ is biholomorphic and its restriction over Σ_{5} is a one sheeted cover of Σ_{5}.

Let W be a small open neighbourhood of $(0,0)$ in $\mathbb{C}^{n} \times \mathbb{C}^{p}$, and choose the local coordinates $\left(x, t, \xi_{1}^{1}, \bar{\xi}_{2}^{1}\right) \in\left(\pi_{2} \circ \pi_{4} \mid \tilde{\Sigma}_{4}\right)^{-1}(W)$ with $\xi_{2}^{2}=\left\langle v_{1}\right\rangle \oplus\left\langle v_{2}+b_{1} v_{1}^{2}\right\rangle$. Take a point P of $\left(\pi_{2} \circ \pi_{4} \tilde{\Sigma}_{4}\right)^{-1}(W) \backslash \tilde{S}_{4}$ and let U be an open neighbourhood of P in $\left(\pi_{2} \circ \pi_{4} \mid \tilde{\Sigma}_{4}\right)^{-1}(W) \backslash \tilde{S}_{4}$. Applying Claim 7.1 to this U, by a linear change of the coordinates v_{2}, we can assume that $b_{1}=1$ on U.

The vectors v_{1}, v_{2} at P satisfy the equations (3.2), (3.3), and hence P lies above Σ_{5} if and only if there exist vectors $v_{3}, v_{4} \in \xi_{1}$ at P satisfying the equations (3.4), (3.5). Consider the maps

$$
\begin{align*}
\sum_{i=2}^{4}\left(f_{t}\right)_{i} & :\left(\xi_{1} \oplus\left\langle 3 v_{1} v_{2}+v_{1}^{3}\right\rangle\right) \circ \xi_{1} \rightarrow \iota_{1}, \\
\sum_{i=2}^{5}\left(f_{t}\right)_{i} & :\left(\xi_{1} \oplus\left\langle v_{1}\right\rangle \circ \xi_{1} \oplus\left\langle 3 v_{2}^{2}+6 v_{1}^{2} v_{2}+v_{1}^{4}\right\rangle\right) \circ \xi_{1} \rightarrow \iota_{1} \tag{7.3}
\end{align*}
$$

over U. The condition for the vectors v_{3}, v_{4} at P means that the restrictions of (7.3) to the subspaces $\left\langle v_{3}+3 v_{1} v_{2}+v_{1}^{3}\right\rangle \circ \xi_{1},\left\langle v_{4}+4 v_{1} v_{3}+3 v_{2}^{2}+6 v_{1}^{2} v_{2}+v_{1}^{4}\right\rangle \circ \xi_{1}$ vanish at P, respectively.

As in the previous sections, the source spaces of (7.3) can be visualized by a diagram (Figure 3).

Figure 3 The diagram for Σ_{5}

Since U is contained in $\tilde{\Sigma}_{4}$, the symbol $\triangleright\left(=\left\langle 3 v_{1}^{2} v_{2}+v_{1}^{4}\right\rangle\right)$ in Figure 3 is mapped by (7.3) to zero. The other symbols except the dashed box are the same as in Figure 2. The dashed box is the space

$$
\left[\left(\bar{\xi}_{1} \oplus\left\langle 3 v_{1} v_{2}+v_{1}^{3}\right\rangle\right) \circ \bar{\xi}_{1}\right] \oplus\left[\left(\left\langle v_{1}\right\rangle \circ \bar{\xi}_{1} \oplus\left\langle 3 v_{2}^{2}+6 v_{1}^{2} v_{2}+v_{1}^{4}\right\rangle\right) \bigcirc\left\langle v_{1}\right\rangle\right]
$$

over U.
Consider the subspace

$$
K_{5}=\left[\left\langle\bar{v}_{3}+3 v_{1} v_{2}+v_{1}^{3}\right\rangle \circ \bar{\xi}_{1}\right] \oplus\left[\left\langle 4 v_{1} \bar{v}_{3}+3 v_{2}^{2}+6 v_{1}^{2} v_{2}+v_{1}^{4}\right\rangle \circ\left\langle v_{1}\right\rangle\right]
$$

of the dashed box, and let δ_{5} be the map from K_{5} to $\iota_{1} \oplus \iota_{1}$ induced by (7.3). Over U, the map Δ (on the lower left shaded box in Figure 3) is nondegenerate. Hence the condition for v_{3}, v_{4} at P mentioned above is equivalent to the condition that δ_{5} vanishes at P. Let ϵ_{5} be the map from K_{5} to ι_{1} induced by $\sum_{i=2}^{5}\left(f_{t}\right)_{i}$. Then the condition for δ_{5} at P is equivalent to the condition that ϵ_{5} vanishes at P.

We can consider the space $\bar{\xi}_{1} \bigcirc\left\langle\bar{v}_{2}+v_{1}^{2}\right\rangle$ as a subspace of the dashed box, and since U is contained in $\tilde{\Sigma}_{4}$, this space is mapped to zero under the map induced by $\sum_{i=2}^{3}\left(f_{t}\right)_{i}$. On the other hand, over U the map Δ (on the shaded box in the dashed box) is nondegenerate. Bearing these two facts in mind, by the condition for ϵ_{5} at P, we perform the following operations (cf. the argument in $\S 7.1$). At each point of U, choose two vectors in K_{5} and let $\left(V_{3}+3 v_{1} v_{2}+v_{1}^{3}\right) v_{2},\left(4 v_{1} V_{3}+\right.$ $\left.3 v_{2}^{2}+6 v_{1}^{2} v_{2}+v_{1}^{4}\right) v_{1}$ be their representatives, where $V_{3} \in \xi_{1}$ is some vector. Insert these representatives to the fourth and fifth rows in Table 3, where $V_{4}, V_{5} \in \xi_{1}$ are some vectors.

Table 3 The table for Y_{5}

1	V_{5}
v_{1}	$4 V_{4}$
$v_{2}+v_{1}^{2}$	$6 V_{3}$
$V_{3}+3 v_{1} v_{2}+v_{1}^{3}$	$4 v_{2}$
$V_{4}+4 v_{1} V_{3}+3 v_{2}^{2}+6 v_{1}^{2} v_{2}+v_{1}^{4}$	v_{1}

Applying Lemma 2.1 (i) to Table 3, we get the vector

$$
Y_{5}=V_{5}+5 v_{1} V_{4}+10\left(v_{2}+v_{1}^{2}\right) V_{3}+\left(15 v_{1} v_{2}^{2}+10 v_{1}^{3} v_{2}+v_{1}^{5}\right) .
$$

Then the point P lies above Σ_{5} if and only if Y_{5} at P is mapped by $\sum_{i=1}^{5}\left(f_{t}\right)_{i}$ to zero for all $V_{3}, V_{4}, V_{5} \in \xi_{1}$.

By Claim 7.1 we have $b_{1} \neq 0$ at every point of U, and hence we can consider Y_{5} as a representative of a basis element of ζ_{5} / ζ_{4} in ζ_{5} (for the expression (6.6), substitute $b_{1}=1$), and also $\sum_{i=1}^{5}\left(f_{t}\right)_{i}$ on Y_{5} as $T_{5}\left(f_{t}\right)$ on Y_{5}. Hence the point P lies above Σ_{5} if and only if it is in $\tilde{\Sigma}_{5}$. Since P is any point of $\tilde{\Sigma}_{4} \backslash \tilde{S}_{4}$, we get that $\pi_{2} \circ \pi_{4}\left(\tilde{\Sigma}_{5} \backslash \tilde{S}_{5}\right)=\Sigma_{5}$.

Since $\pi_{2} \circ \pi_{4} \mid \tilde{\Sigma}_{4} \backslash \tilde{S}_{4}: \tilde{\Sigma}_{4} \backslash \tilde{S}_{4} \rightarrow \Sigma_{4}$ has the inverse map, as in $\S 7.1$, there exists the inverse map of $\left.\pi_{2} \circ \pi_{4}\right|_{\tilde{\Sigma}_{5} \backslash \tilde{S}_{5}}: \tilde{\Sigma}_{5} \backslash \tilde{S}_{5} \rightarrow \Sigma_{5}$. The density of $\tilde{\Sigma}_{5} \backslash \tilde{S}_{5}$ in $\tilde{\Sigma}_{5}$ follows from the same argument as in §7.2.

7.4 The case $\tilde{\Sigma}_{5}^{\prime}$

In this section, we will prove that $\pi_{2} \circ \pi_{4} \circ \pi_{5}^{\prime}\left(\tilde{\Sigma}_{5}^{\prime} \backslash \tilde{S}_{5}^{\prime}\right)=\Sigma_{5}$, where $\tilde{S}_{5}^{\prime}=$ $\left(\pi_{2} \circ \pi_{4} \circ \pi_{5}^{\prime} \mid \tilde{\Sigma}_{5}^{\prime}\right)^{-1}(S)$. For this, we shall examine a sufficient condition for a point of $\mathbb{P}\left(\bar{\xi}_{3}\right)$ to lie above Σ_{5}. Note that $\left.\pi_{2} \circ \pi_{4}\right|_{\Sigma_{5} \backslash \tilde{S}_{5}}: \tilde{\Sigma}_{5} \backslash \tilde{S}_{5} \rightarrow \Sigma_{5}$ is biholomorphic and the restriction of $\mathbb{P}\left(\bar{\xi}_{3}\right)$ over $\tilde{\Sigma}_{5} \backslash \tilde{S}_{5}$ is a fibre bundle.

Let W be a small open neighbourhood of $(0,0)$ in $\mathbb{C}^{n} \times \mathbb{C}^{p}$, and choose the local coordinates $\left(x, t, \xi_{1}^{1}, \bar{\xi}_{2}^{1}, \bar{\xi}_{3}^{1}\right) \in\left(\pi_{2} \circ \pi_{4} \circ \pi_{5}^{\prime}\right)^{-1}(W)\left(\subset \mathbb{P}\left(\bar{\xi}_{3}\right)\right)$ with $\xi_{3}^{3}=\left\langle v_{1}\right\rangle \oplus$ $\left\langle v_{2}+b_{1} v_{1}^{2}\right\rangle \oplus\left\langle v_{3}+b_{3} v_{1}^{2}+b_{2}\left(3 v_{1} v_{2}+b_{1} v_{1}^{3}\right)\right\rangle$. Take a point P of $\left(\pi_{2} \circ \pi_{4} \circ \pi_{5}^{\prime}\right)^{-1}(W \backslash S)$ and let U be an open neighbourhood of P in $\left(\pi_{2} \circ \pi_{4} \circ \pi_{5}^{\prime}\right)^{-1}(W \backslash S)$. Applying Claim 7.1 to this U, by linear changes of the coordinates v_{2}, v_{3}, we can assume that $b_{1}=1, b_{3}=0$ on U.

The vectors v_{1}, v_{2} at P satisfy the equations (3.2), (3.3), and hence P lies above Σ_{5} if the vector v_{3} at P satisfies the equation (3.4) and there exists a vector $v_{4} \in \xi_{1}$ at P satisfying the equation (3.5).

We again consider the maps and the spaces in the previous section, but over U of this section. The condition for the vectors v_{3}, v_{4} at P is equivalent to the condition that ϵ_{5} vanishes at P. Note that the space $\left[\bar{\xi}_{1} \bigcirc\left\langle 4\left(\bar{v}_{2}+v_{1}^{2}\right)\right\rangle\right] \oplus$ $\left\langle 4\left(3 v_{1} v_{2}+v_{1}^{3}\right) \bar{v}_{2}+3 v_{1} v_{2}^{2}+6 v_{1}^{3} v_{2}+v_{1}^{5}\right\rangle$ can be considered as a subspace of the dashed box in Figure 3, and since U lies above $\tilde{\Sigma}_{5}$, this space is mapped to zero under the map induced by $\sum_{i=2}^{5}\left(f_{t}\right)_{i}$.

By the condition for ϵ_{5} at P, we perform the following operations. At each point of U, choose two vectors in K_{5} and let $\left(v_{3}+3 v_{1} v_{2}+v_{1}^{3}\right) V_{2},\left(4 v_{1} v_{3}+3 v_{2}^{2}+\right.$ $\left.6 v_{1}^{2} v_{2}+v_{1}^{4}\right) v_{1}$ be their representatives, where $V_{2} \in \xi_{1}$ is some vector. Insert these representatives to the fourth and fifth rows in Table 4, where $V_{3}, V_{4}, V_{5} \in \xi_{1}$ are some vectors.

Table 4 The table for Y_{5}^{\prime}

1	V_{5}
v_{1}	$4 V_{4}$
$v_{2}+v_{1}^{2}$	$6 V_{3}$
$v_{3}+3 v_{1} v_{2}+v_{1}^{3}$	$4 V_{2}$
$V_{4}+4 v_{1} v_{3}+3 v_{2}^{2}+6 v_{1}^{2} v_{2}+v_{1}^{4}$	v_{1}

Applying Lemma 2.1 (i), we get the vector

$$
\begin{aligned}
Y_{5}^{\prime}= & V_{5}+5 v_{1} V_{4}+6\left(v_{2}+v_{1}^{2}\right) V_{3}+4\left(v_{3}+3 v_{1} v_{2}+v_{1}^{3}\right) V_{2} \\
& +\left(4 v_{1}^{2} v_{3}+3 v_{1} v_{2}^{2}+6 v_{1}^{3} v_{2}+v_{1}^{5}\right) .
\end{aligned}
$$

By eliminating the term $3 v_{1} v_{2}^{2}$ (see Note 7.2), we rewrite Y_{5}^{\prime} in the simpler form

$$
\begin{aligned}
Y_{5}^{\prime \prime}= & V_{5}+5 v_{1} V_{4}+5\left(v_{2}+v_{1}^{2}\right) V_{3}^{\prime}+5\left(v_{3}+3 v_{1} v_{2}+v_{1}^{3}\right) V_{2}^{\prime}+\left(v_{2}+v_{1}^{2}\right) v_{3} \\
& -\left(v_{3}+3 v_{1} v_{2}+v_{1}^{3}\right) v_{2}+\left(4 v_{1}^{2} v_{3}+3 v_{1} v_{2}^{2}+6 v_{1}^{3} v_{2}+v_{1}^{5}\right) \\
= & V_{5}+5 v_{1} V_{4}+5\left(v_{2}+v_{1}^{2}\right) V_{3}^{\prime}+5\left(v_{3}+3 v_{1} v_{2}+v_{1}^{3}\right) V_{2}^{\prime} \\
& +\left(5 v_{1}^{2} v_{3}+5 v_{1}^{3} v_{2}+v_{1}^{5}\right),
\end{aligned}
$$

where $4 V_{2}=5 V_{2}^{\prime}-v_{2}, 6 V_{3}=5 V_{3}^{\prime}+v_{3}$. Then the point P lies above Σ_{5} if $Y_{5}^{\prime \prime}$ at P is mapped by $\sum_{i=1}^{5}\left(f_{t}\right)_{i}$ to zero for all $V_{2}^{\prime}, V_{3}^{\prime}, V_{4}, V_{5} \in \xi_{1}$.

By an argument similar to the proof of Claim 7.1, we can prove the following claim.
CLAIM 7.2. At every point of $\tilde{\Sigma}_{5}^{\prime} \cap U$, we have $b_{1} b_{2} \neq 0$.

By Claim 7.2, at every point of $\tilde{\Sigma}_{5}^{\prime} \cap U$ we can consider $Y_{5}^{\prime \prime}$ as a representative of a basis element of ω_{5} / ζ_{5} in ω_{5} (for the expression (6.8) in the case $v_{2} \neq 0$, substitute $b_{1}=b_{2}=1, b_{3}=0$), and also $\sum_{i=1}^{5}\left(f_{t}\right)_{i}$ on $Y_{5}^{\prime \prime}$ as $T_{5}\left(f_{t}\right)$ on $Y_{5}^{\prime \prime}$. It follows that if the point P is in $\tilde{\Sigma}_{5}^{\prime}$ then it lies above Σ_{5}. Since P is any point of $\left(\pi_{2} \circ \pi_{4} \circ \pi_{5}^{\prime}\right)^{-1}(W \backslash S)$, we see that $\pi_{2} \circ \pi_{4} \circ \pi_{5}^{\prime}\left(\tilde{\Sigma}_{5}^{\prime} \backslash \tilde{S}_{5}^{\prime}\right) \subset \Sigma_{5}$.

By the same argument as in $\S 7.2$, the converse also holds. Thus we get that $\pi_{2} \circ \pi_{4} \circ \pi_{5}^{\prime}\left(\tilde{\Sigma}_{5}^{\prime} \backslash \tilde{S}_{5}^{\prime}\right)=\Sigma_{5}$.

By the nondegeneracy of Δ, as in $\S 7.2$, there exists the inverse map of $\pi_{2} \circ$ $\left.\pi_{4} \circ \pi_{5}^{\prime}\right|_{\Sigma_{5}^{\prime} \backslash \tilde{S}_{5}^{\prime}}: \tilde{\Sigma}_{5}^{\prime} \backslash \tilde{S}_{5}^{\prime} \rightarrow \Sigma_{5}$. The density of $\tilde{\Sigma}_{5}^{\prime} \backslash \tilde{S}_{5}^{\prime}$ in $\tilde{\Sigma}_{5}^{\prime}$ follows from the same argument as in §7.2.
NOTE 7.2. Based on Y_{5}^{\prime}, we can make another expression of ω_{5} / ζ_{5} similar to (6.8), but the calculations to get (6.8) fail. For this, we eliminated the term $3 v_{1} v_{2}^{2}$ in Y_{5}^{\prime} as a representative of an element of ω_{5} / ζ_{5} in ω_{5}.
NOTE 7.3. When we consider $Y_{5}^{\prime \prime}$ as a representative of a basis element of ω_{5} / ζ_{5} in ω_{5}, we used not the case $b_{1} \neq 0$, but the case $v_{2} \neq 0$ of the expression (6.8). The reason for this is that $Y_{5}^{\prime \prime}$ is an element of not a quotient space of ω_{5} but ω_{5}, and the case $v_{2} \neq 0$ of the expression (6.8) is closer to ω_{5}.

7.5 The case $\tilde{\Sigma}_{6}$

We will prove that $\pi_{2} \circ \pi_{4} \circ \pi_{5}^{\prime} \circ \rho\left(\tilde{\Sigma}_{6} \backslash \tilde{S}_{6}\right)=\Sigma_{6}$, where $\tilde{S}_{6}=\left(\pi_{2} \circ \pi_{4} \circ \pi_{5}^{\prime} \circ\right.$ $\left.\left.\rho\right|_{\tilde{\Sigma}_{6}}\right)^{-1}(S)$. The map $\left.\pi_{2} \circ \pi_{4} \circ \pi_{5}^{\prime}\right|_{\tilde{\Sigma}_{5}^{\prime} \mid \tilde{S}_{5}^{\prime}}: \tilde{\Sigma}_{5}^{\prime} \backslash \tilde{S}_{5}^{\prime} \rightarrow \Sigma_{5}$ is biholomorphic. By Claim 7.2 , the center of the extra blowup ρ is contained in $\tilde{S}_{5}^{\prime \prime}$. (This is seen by using the local coordinates of $\mathbb{P}\left(\bar{\alpha}_{6}\right)$ given in $\S 6.5$.) Hence $\left.\pi_{2} \circ \pi_{4} \circ \pi_{5}^{\prime} \circ \rho\right|_{\tilde{\Sigma}_{5}^{\prime \prime} \backslash \tilde{S}_{5}^{\prime \prime}}: \tilde{\Sigma}_{5}^{\prime \prime} \backslash \tilde{S}_{5}^{\prime \prime} \rightarrow \Sigma_{5}$ is biholomorphic, where $\tilde{S}_{5}^{\prime \prime}=\left(\pi_{2} \circ \pi_{4} \circ \pi_{5}^{\prime} \circ \rho \tilde{\tilde{\Sigma}}_{5}^{\prime \prime}\right)^{-1}(S)$, and its restriction over Σ_{6} is a one sheeted cover of Σ_{6}. So we shall examine a necessary and sufficient condition for a point of $\tilde{\Sigma}_{5}^{\prime \prime} \backslash \tilde{S}_{5}^{\prime \prime}$ to lie above Σ_{6}.

Let W be a small open neighbourhood of $(0,0)$ in $\mathbb{C}^{n} \times \mathbb{C}^{p}$, and choose the local coordinates $\left(x, t, \xi_{1}^{1}, \bar{\xi}_{2}^{1}, \bar{\xi}_{3}^{1}, \bar{\alpha}_{6}^{1}\right) \in\left(\left.\pi_{2} \circ \pi_{4} \circ \pi_{5}^{\prime} \circ \rho\right|_{\tilde{\Sigma}_{5}^{\prime \prime}}\right)^{-1}(W)$ with $\xi_{3}^{3}=$ $\left\langle v_{1}\right\rangle \oplus\left\langle v_{2}+b_{1} v_{1}^{2}\right\rangle \oplus\left\langle v_{3}+b_{3} v_{1}^{2}+b_{2}\left(3 v_{1} v_{2}+b_{1} v_{1}^{3}\right)\right\rangle, \bar{\alpha}_{6}^{1}=\langle 3 \lambda \bar{X}+2 \mu \bar{Y}\rangle$, where $X=$ $\left(v_{2}+b_{1} v_{1}^{2}\right) \bigcirc\left(3 v_{2}^{2}+6 b_{1} v_{1}^{2} v_{2}+b_{1}^{2} v_{1}^{4}\right), Y=\left(v_{3}+b_{3} v_{1}^{2}+b_{2}\left(3 v_{1} v_{2}+b_{1} v_{1}^{3}\right)\right) \bigcirc\left(3 v_{1} v_{2}+b_{1} v_{1}^{3}\right)$, and $\bar{X}, \bar{Y} \in \bar{\alpha}_{6}$ are the equivalent classes of $X, Y \in \alpha_{6}$, respectively. Take a point P of $\left(\pi_{2} \circ \pi_{4} \circ \pi_{5}^{\prime} \circ \rho \tilde{\Sigma}_{5}^{\prime \prime}\right)^{-1}(W) \backslash \tilde{S}_{5}^{\prime \prime}$ and let U be an open neighbourhood of P in $\left(\left.\pi_{2} \circ \pi_{4} \circ \pi_{5}^{\prime} \circ \rho\right|_{\tilde{\Sigma}_{5}^{\prime \prime}}\right)^{-1}(W) \backslash \tilde{S}_{5}^{\prime \prime}$. Applying Claim 7.2 to this U, by linear changes of the coordinates v_{2}, v_{3}, we can assume that $b_{1}=b_{2}=1, b_{3}=0$ on U.

The vectors v_{1}, v_{2}, v_{3} at P satisfy the equations (3.2), (3.3), (3.4), and hence P lies above Σ_{6} if and only if there exist vectors $v_{4}, v_{5} \in \xi_{1}$ at P satisfying the
equations (3.5), (3.6). Consider the maps

$$
\left.\sum_{i=2}^{5}\left(f_{t}\right)_{i}:\left(\xi_{1} \oplus\left\langle 4 v_{1} v_{3}+3 v_{2}^{2}+6 v_{1}^{2} v_{2}+v_{1}^{4}\right\rangle\right)\right) \xi_{1} \rightarrow \iota_{1},
$$

$$
\begin{align*}
& \sum_{i=2}^{6}\left(f_{t}\right)_{i}: \tag{7.4}\\
& \quad\left(\xi_{1} \oplus\left\langle v_{1}\right\rangle \circ \xi_{1} \oplus\left\langle 10 v_{2} v_{3}+10 v_{1}^{2} v_{3}+15 v_{1} v_{2}^{2}+10 v_{1}^{3} v_{2}+v_{1}^{5}\right\rangle\right) \circ \xi_{1} \rightarrow \iota_{1}
\end{align*}
$$

over U. The condition for the vectors v_{4}, v_{5} at P means that the restrictions of (7.4) to the subspaces $\left\langle v_{4}+4 v_{1} v_{3}+3 v_{2}^{2}+6 v_{1}^{2} v_{2}+v_{1}^{4}\right\rangle \circ \xi_{1},\left\langle v_{5}+5 v_{1} v_{4}+10 v_{2} v_{3}+\right.$ $\left.10 v_{1}^{2} v_{3}+15 v_{1} v_{2}^{2}+10 v_{1}^{3} v_{2}+v_{1}^{5}\right\rangle \circ \xi_{1}$ vanish at P, respectively.

As in the previous sections, the source spaces of (7.4) can be visualized by a diagram (Figure 4).

Figure 4 The diagram for Σ_{6}

Since U lies above $\tilde{\Sigma}_{5}^{\prime}$, the symbol $\diamond\left(=\left\langle 4 v_{1}^{2} v_{3}+3 v_{1} v_{2}^{2}+6 v_{1}^{3} v_{2}+v_{1}^{5}\right\rangle\right)$ in Figure 4 is mapped by (7.4) to zero (cf. the vector Y_{5}^{\prime} in $\S 7.4$). The other symbols except the dashed box are the same as in Figure 3. The dashed box is the space

$$
\begin{aligned}
& {\left[\left(\bar{\xi}_{1} \oplus\left\langle 4 v_{1} v_{3}+3 v_{2}^{2}+6 v_{1}^{2} v_{2}+v_{1}^{4}\right\rangle\right) \circ \bar{\xi}_{1}\right]} \\
& \quad \oplus\left[\left(\left\langle v_{1}\right\rangle \circ \bar{\xi}_{1} \oplus\left\langle 10 v_{2} v_{3}+10 v_{1}^{2} v_{3}+15 v_{1} v_{2}^{2}+10 v_{1}^{3} v_{2}+v_{1}^{5}\right\rangle\right) \odot\left\langle v_{1}\right\rangle\right]
\end{aligned}
$$

over U.
Consider the subspace

$$
\begin{aligned}
K_{6}= & {\left[\left\langle\bar{v}_{4}+4 v_{1} v_{3}+3 v_{2}^{2}+6 v_{1}^{2} v_{2}+v_{1}^{4}\right\rangle \circ \bar{\xi}_{1}\right] } \\
& \oplus\left[\left\langle 5 v_{1} \bar{v}_{4}+10 v_{2} v_{3}+10 v_{1}^{2} v_{3}+15 v_{1} v_{2}^{2}+10 v_{1}^{3} v_{2}+v_{1}^{5}\right\rangle \circ\left\langle v_{1}\right\rangle\right]
\end{aligned}
$$

of the dashed box, and let δ_{6} be the map from K_{6} to $\iota_{1} \oplus \iota_{1}$ induced by (7.4). Over U, the map Δ (on the lower left shaded box in Figure 4) is nondegenerate.

Hence the condition for v_{4}, v_{5} at P mentioned above is equivalent to the condition that δ_{6} vanishes at P. Let ϵ_{6} be the map from K_{6} to ι_{1} induced by $\sum_{i=2}^{6}\left(f_{t}\right)_{i}$. Then the condition for δ_{6} at P is equivalent to the condition that ϵ_{6} vanishes at P.

For the same reason as in $\S 7.3$, we perform the following operations. At each point of U, choose two vectors in K_{6} and let $\left(V_{4}+4 v_{1} v_{3}+3 v_{2}^{2}+6 v_{1}^{2} v_{2}+\right.$ $\left.v_{1}^{4}\right) v_{2},\left(5 v_{1} V_{4}+10 v_{2} v_{3}+10 v_{1}^{2} v_{3}+15 v_{1} v_{2}^{2}+10 v_{1}^{3} v_{2}+v_{1}^{5}\right) v_{1}$ be their representatives, where $V_{4} \in \xi_{1}$ is some vector. Insert these representatives to the fifth and sixth rows in Table 5, where $V_{3}, V_{5}, V_{6} \in \xi_{1}$ are some vectors.

Table 5 The table for Y_{6}

1	V_{6}
v_{1}	$5 V_{5}$
$v_{2}+v_{1}^{2}$	$10 V_{4}$
$v_{3}+3 v_{1} v_{2}+v_{1}^{3}$	$10 V_{3}$
$V_{4}+4 v_{1} v_{3}+3 v_{2}^{2}+6 v_{1}^{2} v_{2}+v_{1}^{4}$	$5 v_{2}$
$V_{5}+5 v_{1} V_{4}+10 v_{2} v_{3}+10 v_{1}^{2} v_{3}+15 v_{1} v_{2}^{2}+10 v_{1}^{3} v_{2}+v_{1}^{5}$	v_{1}

Applying Lemma 2.1 (i) to Table 5, we get the vector

$$
\begin{aligned}
Y_{6}= & V_{6}+6 v_{1} V_{5}+15\left(v_{2}+v_{1}^{2}\right) V_{4}+10\left(v_{3}+3 v_{1} v_{2}+v_{1}^{3}\right) V_{3} \\
& +\left(30 v_{1} v_{2} v_{3}+10 v_{1}^{3} v_{3}+15 v_{2}^{3}+45 v_{1}^{2} v_{2}^{2}+15 v_{1}^{4} v_{2}+v_{1}^{6}\right) .
\end{aligned}
$$

Then the point P lies above Σ_{6} if and only if Y_{6} at P is mapped by $\sum_{i=1}^{6}\left(f_{t}\right)_{i}$ to zero for all $V_{3}, V_{4}, V_{5}, V_{6} \in \xi_{1}$.

By Claim 7.2, we have $b_{1} b_{2} \neq 0$ at every point of U. On the other hand, since U is contained in $\tilde{\Sigma}_{5}^{\prime \prime}$, over U we have $(\lambda, \mu) \neq(0,0)$ and $\lambda b_{1}=\mu b_{2}$. Hence we can consider Y_{6} as a representative of a basis element of ω_{6} / ω_{5} in ω_{6} (for the expression (6.10) in the case $v_{2} \neq 0$, substitute $b_{1}=b_{2}=1, b_{3}=0, \lambda=\mu=1$), and also $\sum_{i=1}^{6}\left(f_{t}\right)_{i}$ on Y_{6} as $T_{6}\left(f_{t}\right)$ on Y_{6}. Hence the point P lies above Σ_{6} if and only if it is in $\tilde{\Sigma}_{6}$. Since P is any point of $\tilde{\Sigma}_{5}^{\prime \prime} \backslash \tilde{S}_{5}^{\prime \prime}$, we get that $\pi_{2} \circ \pi_{4} \circ \pi_{5}^{\prime} \circ \rho\left(\tilde{\Sigma}_{6} \backslash \tilde{S}_{6}\right)=\Sigma_{6}$.

Since $\left.\pi_{2} \circ \pi_{4} \circ \pi_{5}^{\prime} \circ \rho\right|_{\tilde{\Sigma}_{5}^{\prime \prime} \mid \tilde{S}_{5}^{\prime \prime}}: \tilde{\Sigma}_{5}^{\prime \prime} \backslash \tilde{S}_{5}^{\prime \prime} \rightarrow \Sigma_{5}$ has the inverse map, as in §7.1, there exists the inverse map of $\left.\pi_{2} \circ \pi_{4} \circ \pi_{5}^{\prime} \circ \rho\right|_{\tilde{\Sigma}_{6} \backslash \tilde{S}_{6}}: \tilde{\Sigma}_{6} \backslash \tilde{S}_{6} \rightarrow \Sigma_{6}$. The density of $\tilde{\Sigma}_{6} \backslash \tilde{S}_{6}$ in $\tilde{\Sigma}_{6}$ follows from the same argument as in $\S 7.2$.
NOTE 7.4. The center $\left\{b_{1}=b_{2}=0\right\} \subset \tilde{\Sigma}_{5}^{\prime}$ of the extra blowup ρ is the locus corresponding to $\overline{E_{7}}$; the locus $\left\{b_{1}=0\right\} \subset \tilde{\Sigma}_{5}^{\prime}$ is projected onto $\overline{E_{6}}$ and the locus
$\left\{b_{2}=0\right\} \subset \tilde{\Sigma}_{5}^{\prime}$ is projected onto $\overline{D_{6}}$. (For more details, see the next section.) It is worth comparing our locus $b_{1}=b_{2}=0$ with Gaffney's locus $B_{1}=B_{2}=0$ in [4, Proposition 1.6].

8. Appendix

Desingularizations of the closures $\overline{D_{5}}, \overline{E_{6}}, \overline{D_{6}}, \overline{E_{7}}, \overline{E_{8}}, \overline{X_{9}}$ are given by restricting the desingularizations $\tilde{\Sigma}_{4}, \tilde{\Sigma}_{5}, \tilde{\Sigma}_{5}^{\prime}, \tilde{\Sigma}_{6}$ to some loci. In this appendix we will explain these facts.

In the local coordinates of $\mathbb{P}\left(\bar{\xi}_{2}\right)$ given in $\S 6.2$, the locus $\left\{b_{1}=0\right\} \subset \tilde{\Sigma}_{4}$ gives a desingularization of $\overline{D_{5}}$. Indeed, by Claim 7.1, for every point $P \in \tilde{\Sigma}_{4}$ with $b_{1}=0$ its image $\pi_{2} \circ \pi_{4}(P)$ is in $S\left(=\cup_{i \geq 2} \Sigma^{n, i} F\right)$. Moreover, the following claim holds.
CLAIM 8.1. For every point $P \in \tilde{\Sigma}_{4}$ with $b_{1}=0$ its image $\pi_{2} \circ \pi_{4}(P)$ is in \bar{D}_{5}.
Proof. At a point $P \in \tilde{\Sigma}_{4}$ with $b_{1}=0$, the map $T_{4}\left(f_{t}\right)$ vanishes on

$$
\zeta_{4}=\xi_{1} \oplus\left\langle v_{1}\right\rangle \circ \xi_{1} \oplus\left\langle v_{1}^{3}\right\rangle \oplus\left\langle v_{2}\right\rangle \circ \bar{\xi}_{1} \oplus\left\langle 3 v_{1}^{2} v_{2}\right\rangle
$$

(see the expression (6.3)). Replace the local coordinates (x, t) of $\mathbb{C}^{n} \times \mathbb{C}^{p}$ by the local coordinates centered at $\pi_{2} \circ \pi_{4}(P)$ with $v_{1}=\frac{\partial}{\partial x_{1}}, v_{2}=\frac{\partial}{\partial x_{2}}$. Then at $\pi_{2} \circ \pi_{4}(P)$, the function f_{t} does not have the terms involving monomials

$$
x_{i}(i=1, \ldots, n), x_{1} x_{i}(i=1, \ldots, n), x_{1}^{3}, x_{2} x_{i}(i=2, \ldots, n), x_{1}^{2} x_{2},
$$

that is, it is written in the form

$$
f_{t}(x)=a_{2} x_{1} x_{2}^{2}+a_{3} x_{2}^{3}+b_{11} x_{1}^{4}+\sum_{i=3}^{n} 2 b_{1 i} x_{1}^{2} x_{i}+\sum_{i, j=3}^{n} b_{i j} x_{i} x_{j}+\cdots,
$$

where $a_{i}, b_{i j} \in \mathbb{C}\{t\}$ (cf. [5, Proof of Lemma 2.3.2]). It follows from this that $\pi_{2} \circ \pi_{4}(P)$ is in \bar{D}_{5}.

Then the almost same argument as for Theorem 5.3 shows that
(i) in the local coordinates of $\mathbb{P}\left(\bar{\xi}_{2}\right)$ given in $\S 6.2$, the restriction of $\pi_{2} \circ \pi_{4}$ to the locus $\left\{b_{1}=0\right\} \cap \tilde{\Sigma}_{4}$ is a desingularization of $\overline{D_{5}}$.

Similarly, we can show the following facts:
(ii) In the local coordinates of $\tilde{\Sigma}_{4}$ given in $\S 6.3$, the restriction of $\pi_{2} \circ \pi_{4}$ to the locus $\left\{b_{1}=0\right\} \cap \tilde{\Sigma}_{5}$ is a desingularization of $\overline{E_{6}}$.
(iii) In the local coordinates of $\mathbb{P}\left(\bar{\xi}_{3}\right)$ given in $\S 6.4$, the restriction of $\pi_{2} \circ \pi_{4} \circ \pi_{5}^{\prime}$ to the locus $\left\{b_{2}=0\right\} \cap \tilde{\Sigma}_{5}^{\prime}$ is a desingularization of $\overline{D_{6}}$, and its restriction to the locus $\left\{b_{1}=b_{2}=0\right\} \cap \tilde{\Sigma}_{5}^{\prime}$ is a desingularization of $\overline{E_{7}}$.
(iv) In the local coordinates of $\tilde{\Sigma}_{5}^{\prime \prime}$ given in $\S 6.6$, the restriction of $\pi_{2} \circ \pi_{4} \circ \pi_{5}^{\prime} \circ \rho$ to the locus $\left\{b_{1}=\lambda / \mu=0\right\} \cap \tilde{\Sigma}_{6}$ is a desingularization of $\overline{E_{8}}$, and to the locus $\left\{b_{2}=\mu / \lambda=0\right\} \cap \tilde{\Sigma}_{6}$ is a desingularization of $\overline{X_{9}}$.

These loci are defined in terms of local coordinates. However all can be defined independently of coordinates.

References

[1] V. I. Arnold, S. M. Gusein-Zade, A. N. Varchenko, Singularities of differential maps Vol.I, Birkhäuser, Boston, 1985.
[2] E. T. Bell, Exponential polynomials, Ann. of Math. (2) 35 (1934) no. 2, 258-277.
[3] Faà de Bruno, Note sur une nouvelle formule de calcul différential, Quarterly J. Pure Appl. Math. 1 (1857) 359-360.
[4] T. Gaffney, The Thom polynomial of $\overline{\Sigma^{1111}}$, Proc. Sympos. Pure Math. 40 (1983) Part 1, 399-408.
[5] M. Kazarian, Thom polynomials for Lagrange, Legendre, and critical point function singularities, Proc. Lond. Math. Soc. (3) 86 (2003) 707-734.
[6] M. B. Morin, Formes canoniques des singularités d'une application différentiable, C. R. Math. Acad. Sci. Paris 260 (1965) 5662-5665, 6503-6506.
[7] I. R. Porteous, Probing singularities, Proc. Sympos. Pure Math. 40 (1983) Part 2, 395406.
[8] J. Riordan, Introduction to combinatorial analysis, Republication, Dover, New York, 2002.
[9] F. Ronga, Le calcul des classes duales aux singularités de Boardman d'ordre deux, Comment. Math. Helv. 47 (1972) 15-35.
[10] F. Ronga, A new look at Faa' de Bruno's formula for higher derivatives of composite functions and the expression of some intrinsic derivatives, Proc. Sympos. Pure Math. 40 (1983) Part 2, 423-431.
[11] R. J. H. A. Turnbull,
The Thom-Boardman singularities $\Sigma^{1}, \Sigma^{1,1}, \Sigma^{1,1,1}, \Sigma^{1,1,1,1}, \Sigma^{1,1,1,1,1}$ and their closures, Thesis, Univ. of Liverpool, 1989.

[^1]
[^0]: 2010 Mathematics Subject Classification: Primary 57R45; Secondary 32S45
 Key words and phrases: Desingularization, Morin singularity, Bell polynomial
 The author was partially supported by the Project C from Graduate School of Environment and Information Science, Yokohama National University.

[^1]: Department of Mathematics, Graduate School of Environment and Information Science, Yokohama National University, Yokohama 240-8501, JAPAN
 E-mail: tomonobu-masahiko-bx@ynu.jp

