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Abstract. For a miniversal unfolding of a holomorphic function germ, we con-
sider the closures of Morin singular sets. We construct their desingularizations.
Our basic tool are Bell polynomials.

1. Introduction

Let Nn,Mm be complex analytic manifolds, and let F : Nn → Mm be

a generic holomorphic map. For each positive integer k we have the Thom-

Boardman singular set Σ1k
F (n ≤ m) or Σn−m+1,1k−1

F (n ≥ m) in N , where

1k = 1, . . . , 1 with k ones. We call this set the Morin singular set and denote it

by Σk (cf. [6]).

It is well known that these sets Σk are nonsingular, while their closures Σk

are not. However it is possible to construct desingularizations of Σk. The usual

way of constructing desingularizations of Σk is to represent a desingularization

as the zeros of a generic section of a vector bundle (see [9], [4], [11], [5]). We call

such a vector bundle specifying Σk.

In the case n ≤ m, Gaffney ([4]) constructed desingularizations of Σk (k =

1, 2, 3, 4). The vector bundles are defined locally, and it is not clear why they are

defined independently of coordinates. In [11] Turnbull introduced the natural

higher tangent bundles, and constructed desingularizations of not only Σk (k =

1, 2, 3, 4) but also Σ5 (the last one is restricted to Σ1F ∪ Σ2F ).

On the other hand, in the case n ≥ m, it is more complicated to construct

desingularizations of Σk. In [5], for F given locally by a generic unfolding of a

function germ, Kazarian constructed desingularizations of Σk (k = 1, 2, 3) and

defined a vector bundle specifying Σ4.
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The purpose of this paper is, in the local situation where F is a miniversal

unfolding of a function germ, to construct desingularizations of not only Σk (k =

1, 2, 3, 4) but also Σ5, Σ6. We do these in terms of Turnbull’s higher tangent

bundles.

Our basic tool are Bell polynomials. These polynomials appear in the equa-

tions defining Σk (see §3), which we use to guide our definitions of vector bundles

specifying Σk. Choosing local coordinates, we can consider a Bell polynomial as

an element of a basis of local sections of a vector bundle (see §7.2). Moreover

operations of Bell polynomials correspond to operations of vector bundles. That

is, by using Bell polynomials we can organize the definitions of vector bundles

specifying Σk.

By the symmetry of the equations defining Σk, we need blowups only for Σ2i.

Unlike the cases Σ2, Σ4, the case Σ6 needs an extra blowup which is along the

locus corresponding to the closure E7 (E7 is Arnold’s notation [1, §15.1], and we

denote by E7 the set of E7 points). Therefore the case Σ6 is of particular interest.

There is a famous application of desingularizations of Σk. Gaffney, Turnbull,

and Kazarian used their desingularizations to calculate Thom polynomials. In

order to calculate Thom polynomials further in the case n ≥ m, one may use our

desingularizations.

In §2 we recall Bell polynomials and take up their two properties. In §3
we determine the equations defining Σk. In §4 we summarize Turnbull’s higher

tangent bundles. In §5 we define our vector bundles specifying Σk and state

our theorems. In §6 we prove the well-definedness of the vector bundles and the

transversality of the sections. The section 7 is the core of this paper, in which

we establish the relationship between the equations defining Σk and the vector

bundles specifying Σk. In §8 Appendix, as a byproduct of our desingularizations

of Σk, we give desingularizations of the closures D5, E6, D6, E7, E8, X9.

2. Bell polynomials

We recall Bell polynomials and take up their two properties. Bell polynomials

appear in Faà de Bruno’s formula.

2.1 Faà de Bruno’s formula

For C∞ functions f, g : R→ R, write

(fg)i =
dif(g(x))

dxi
, fi =

dif(y)

dyi

∣∣∣∣
y=g(x)

, gi =
dig(x)

dxi
.
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By differentiating f(g(x)) successively, we have

(fg)1 = [f(g(x))]′ = f1g1,

(fg)2 = [f ′(g(x))g′(x)]′ = f2g
2
1 + f1g2,

(fg)3 = [f ′′(g(x))(g′(x))2 + f ′(g(x))g′′(x)]′ = f3g
3
1 + 3f2g1g2 + f1g3,

etc.

These are generalized to Faà de Bruno’s formula ([3])

(fg)k =
∑ k!fs

j1! · · · jk!

(g1

1!

)j1 · · ·
(gk

k!

)jk

,

where the sum ranges over s = 1, 2, . . . , k and j1, j2, . . . , jk ∈ N ∪ {0} such that

j1 + j2 + · · ·+ jk = s and j1 + 2j2 + · · ·+ kjk = k.

It is known that this formula also holds in the case that f, g are maps (see

[10]).

2.2 Bell polynomials

Write v for the set of k variables (v1, . . . , vk). The Bell polynomial Yk(v) ([2,

§7]) is defined by

Yk(v) =
∑ k!

j1! · · · jk!

(v1

1!

)j1 · · ·
(vk

k!

)jk

,

where the sum ranges over s = 1, 2, . . . , k and j1, j2, . . . , jk ∈ N ∪ {0} such that

j1 + j2 + · · ·+ jk = s and j1 + 2j2 + · · ·+ kjk = k. Set Y0(v) = 1.

For example, Y1(v) = v1, Y2(v) = v2 + v2
1, Y3(v) = v3 + 3v1v2 + v3

1, etc. Each

vi corresponds to gi in the Faà de Bruno’s formula.

For fixed s, set

Yk,s(v) =
∑ k!

j1! · · · jk!

(v1

1!

)j1 · · ·
(vk

k!

)jk

,

where the sum ranges over j1, j2, . . . , jk ∈ N∪{0} such that j1 + j2 + · · ·+ jk = s

and j1 +2j2 + · · ·+ kjk = k. Then Yk(v) =
∑k

s=1 Yk,s(v), and the Faà de Bruno’s

formula can be written in the form

(2. 1) (fg)k =
k∑

s=1

fsYk,s(g1, . . . , gk).

For the sets of k variables v = (v1, . . . , vk) and w = (w1, . . . , wk), write

v +w = (v1 +w1, . . . , vk +wk). The following two properties will be useful in §7.
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LEMMA 2.1. ([8, p.36,p.45])

(i) Yk(v) =
∑k−1

i=0

(
k−1

i

)
vk−iYi(v).

(ii) Yk(v + w) =
∑k

i=0

(
k
i

)
Yi(v)Yk−i(w).

Proof. Note that for f(y) = ey, we have fi = eg(x). Substituting f(y) = ey in

(2. 1), we get that

(eg(x))k =
k∑

s=1

eg(x)Yk,s(g1, . . . , gk)

= eg(x)Yk(g1, . . . , gk).

Hence

Yk(g1, . . . , gk) = e−g(x)d
keg(x)

dxk
.

(i) Using Leibniz’s formula for differentiation of a product, we have

Yk(g1, . . . , gk) = e−g(x) dk−1

dxk−1
(g1 · eg(x))

=
k−1∑
i=0

(
k − 1

i

)
(

d(k−1)−i

dx(k−1)−i
g1) · (e−g(x) di

dxi
eg(x))

=
k−1∑
i=0

(
k − 1

i

)
gk−iYi(g1, . . . , gk).

Since g(x) is arbitrary, (i) is proved.

(ii) Let h(x) be a C∞ function, and write hi = di

dxi h(x). Using Leibniz’s

formula for differentiation of a product, we have

Yk(g1 + h1, . . . , gk + hk) = e−(g(x)+h(x)) dk

dxk
(eg(x) · eh(x))

=
k∑

i=0

(
k

i

)
(e−g(x) di

dxi
eg(x)) · (e−h(x) dk−i

dxk−i
eh(x))

=
k∑

i=0

(
k

i

)
Yi(g1, . . . , gk)Yk−i(h1, . . . , hk).

Since g(x), h(x) are arbitrary, (ii) is proved.
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For example, in the case k = 3 we consider Lemma 2.1. Assertion (i) says

that Y3(v) = v3Y0(v) + 2v2Y1(v) + v1Y2(v). This can be encoded by Table 1.

Table 1 The encoding of Y3(v)

1 v3

v1 2v2

v2 + v2
1 v1

On the other hand, assertion (ii) says that Y3(v+w) = Y0(v)Y3(w)+3Y1(v)Y2(w)

+ 3Y2(v)Y1(w) + Y3(v)Y0(w). More precisely, (v3 + w3) + 3(v1 + w1)(v2 + w2) +

(v1+w1)
3 = 1(w3+3w1w2+w3

1)+3v1(w2 +w2
1)+3(v2+v2

1)w1+(v3+3v1v2+v3
1)1.

3. The equations defining Morin singular sets

In this section, for an unfolding of a function germ we give the equations

defining Morin singular sets.

Let f0 : (Cn, 0) → (C, 0) be a complex holomorphic function germ with an

isolated singular point at 0 ∈ Cn, and let F : (Cn ×Cp, (0, 0)) → (C×Cp, (0, 0))

be a holomorphic unfolding of f0 given by

F (x, t) = (f(x, t), t) with f(x, 0) = f0(x),

where x = (x1, . . . , xn) ∈ Cn, t = (t1, . . . , tp) ∈ Cp. Let r be a sufficiently large

integer, and let Jr(Cn+p,C1+p) be the jet space. In this section, we assume that

the jet extension jrF : (Cn×Cp, (0, 0)) → Jr(Cn+p,C1+p) is transverse to all the

Morin singularities Σn and Σn,1k
(k ≥ 1) in Jr(Cn+p,C1+p) (cf. [6]).

The Morin singular sets ΣnF and Σn,1k
F (k ≥ 1) are given by the inverse

image of the Morin singularities under jrF . We write

Σ1 = ΣnF, Σk+1 = Σn,1k

F (k ≥ 1).

By the assumption of transversality, these sets are nonsingular.

For each point a ∈ Cn × Cp near (0, 0), we define the affine map germ a :

(Cn, 0) → (Cn × Cp, a) by x 7→ a + (x, 0). By modifying Gaffney’s proposition

([4, Proposition 1.1]), we get the following result. This is based on the “probe”

due to Porteous ([7]).

PROPOSITION 3.1.

(i) A point a ∈ Cn × Cp near (0, 0) is in Σ1 if and only if d(f ◦ a)(x)|x=0 = 0,

where d(f ◦ a)(x) is the derivative of f ◦ a at x ∈ Cn .
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(ii) A point a ∈ Σ1 near (0, 0) is in Σ2 if and only if (a) there exists an analytic

curve c : (C, 0) → (Cn, 0) with dc
du

(0) 6= 0 such that d
du

[d(f ◦ a)(c(u))]
∣∣
u=0

=

0, and (b) all such curves have the unique tangent direction at u = 0.

(iii) Let k ≥ 2. A point a ∈ Σ2 near (0, 0) is in Σk+1 if and only if there

exists an analytic curve c : (C, 0) → (Cn, 0) with dc
du

(0) 6= 0 such that
di

dui [d(f ◦ a)(c(u))]
∣∣∣
u=0

= 0 for every i with 1 ≤ i ≤ k.

Proof. (i) By definition of a, we have d(f ◦ a)(x) = ( ∂f
∂x1

, . . . , ∂f
∂xn

)(a(x)). So

d(f ◦ a)(x)|x=0 = ( ∂f
∂x1

, . . . , ∂f
∂xn

)(a). Since ΣnF = {(x, t) ∈ Cn × Cp | ∂f
∂x1

(x, t) =

· · · = ∂f
∂xn

(x, t) = 0}, assertion (i) is proved.

(iii) Before proving (ii), we show (iii).

Suppose that a ∈ Σn,1F (= Σ2). Then there exists l (≥ 1) such that a ∈
Σn,1l,0F . We can choose coordinates x = (x1, . . . , xn) of Cn centered at 0 such

that f ◦ a(x) = xl+2
1 + x2

2 + · · ·+ x2
n. Then

(3. 1) d(f ◦ a)(x) = ((l + 2)xl+1
1 , 2x2, . . . , 2xn).

If we choose the curve c such that

c(u) = (u, 0, . . . , 0),

then d(f ◦ a)(c(u)) = ((l + 2)ul+1, 0, . . . , 0).

Now if a ∈ Σn,1k
F then k ≤ l. Hence di

dui [d(f ◦ a)(c(u))]
∣∣∣
u=0

= 0 for every i

with 1 ≤ i ≤ k.

Conversely if a /∈ Σn,1k
F then a ∈ Σn,1l,0F for some l with l < k. By (3. 1),

there are no curves that satisfy the condition.

(ii) The “only if” part is similar to the proof of (iii). The “if” part follows

from the uniqueness of the tangent direction.

Before giving an example, we recall higher derivatives: Let S, T be finite

dimensional vector spaces over C, U an open subset of S, and ϕ : U → T a

holomorphic map. We denote by ϕ1 : U → L(S, T ) the first derivative of ϕ. The

second derivative of ϕ is ϕ2 : U → L(S, L(S, T )) = L(S⊗S, T ). It is well known

that ϕ2 is symmetric. So ϕ2 : U → L(S eS, T ), where e denotes the symmetric

product. In general, the i th derivative is ϕi : U → L( eiS, T ).
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EXAMPLE 3.1. The first three derivatives di

dui (d(f ◦ a)(c(u))) are:

d

du
(d(f ◦ a)(c(u))) = ((f ◦ a)1 ◦ c)1

= ((f1 ◦ a ◦ c)(a1 ◦ c))1

= f2(a1c1)a1 + f1(a2c1)

= f2(a1c1)a1,

d2

du2
(d(f ◦ a)(c(u))) = (f2(a1c1)a1)1

= f3(a1c1)
2a1 + f2(a1c2)a1,

d3

du3
(d(f ◦ a)(c(u))) = (f3(a1c1)

2a1 + f2(a1c2)a1)1

= f4(a1c1)
3a1 + 3f3(a1c1)(a1c2)a1 + f2(a1c3)a1.

Here the superscript of a vector refers to the number of copies of the vector

and, for example, f3(a1c1)
2a1 is shorthand for

(f3 ◦ a ◦ c)[(a1 ◦ c)c1, (a1 ◦ c)c1, a1 ◦ c](u).

Note that (fi)1 = fi+1(a1c1) since (fi ◦ a ◦ c)1 = (fi+1 ◦ a ◦ c)(a1 ◦ c)c1, and that

a2 = a3 = · · · = 0 since a is affine.

Write ft(x) = f(x, t), and consider ft as a function with respect to x ∈ Cn.

In Example 3.1, each fia
i
1, for instance f4a

4
1 appearing in the term f4(a1c1)

3a1,

is exactly the i th derivative of ft. Hence we can write

fia
i
1 = (ft)i.

Replacing ci by vectors vi and the absence of ci by a vector V , we get the

equations defining Σk.

The equations defining Σk. Near (0, 0), the points of Σk are characterized as

follows.

• A point of Σ1 is in Σ2 if and only if at the point, 0 6= ∃v1 ∈ Cn, unique up

to scalar multiplication, such that

(3. 2) (ft)2(v1V ) = 0 (∀V ∈ Cn).

• A point of Σ2 is in Σ3 if and only if at the point, also ∃v2 ∈ Cn such that

(3. 3) (ft)2(v2V ) + (ft)3(v
2
1V ) = 0 (∀V ∈ Cn).

• A point of Σ3 is in Σ4 if and only if at the point, also ∃v3 ∈ Cn such that

(3. 4) (ft)2(v3V ) + (ft)3(3v1v2V ) + (ft)4(v
3
1V ) = 0 (∀V ∈ Cn).
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• A point of Σ4 is in Σ5 if and only if at the point, also ∃v4 ∈ Cn such that

(3. 5)
(ft)2(v4V ) + (ft)3(4v1v3V ) + (ft)3(3v

2
2V )

+(ft)4(6v
2
1v2V ) + (ft)5(v

4
1V ) = 0 (∀V ∈ Cn).

• A point of Σ5 is in Σ6 if and only if at the point, also ∃v5 ∈ Cn such that

(3. 6)
(ft)2(v5V ) + (ft)3(5v1v4V ) + (ft)3(10v2v3V ) + (ft)4(10v2

1v3V )

+(ft)4(15v1v
2
2V ) + (ft)5(10v3

1v2V ) + (ft)6(v
5
1V ) = 0 (∀V ∈ Cn).

4. Turnbull’s higher tangent bundles

In this section we summarize Turnbull’s higher tangent bundles ([11, §1]).

Whereas Turnbull has worked over R, for our purposes we work over C.

First, we recall symmetric products; esCn is a subspace of ⊗sCn, and con-

sists of the elements which are invariant under permutations of the factors. If

v1, . . . , vs ∈ Cn then we write

v1 · · · vs =
1

s!

∑

σ∈Ss

vσ(1) ⊗ · · · ⊗ vσ(s) ∈ esCn,

where Ss is the symmetric group of degree s. If v1, . . . , vn ∈ Cn is a basis of Cn

then {vi1 · · · vis|1 ≤ i1 ≤ · · · ≤ is ≤ n} is a basis of esCn.

4.1 The higher tangent bundles

Let r be a positive integer. The vector space SrCn is defined by

SrCn = Cn ⊕ Cn eCn ⊕ e3Cn ⊕ · · · ⊕ erCn.

Here e takes precedence over ⊕.

Let U ⊂ Cn and W ⊂ Cm be open subsets, and let f : U → W be a

holomorphic map. The linear map Srf : SrCn → SrCm at x ∈ U is defined by

Srf = (
∑

fi,
∑

Ci1i2fi1fi2 ,
∑

Ci1i2i3fi1fi2fi3 , . . . , f
r
1 ).

Here fj is the j th derivative of f at x. The coefficient Ci1···is is the number of

distinct partitions of a set of order i1+ · · ·+is into subsets of order i1, . . . , is. The

first sum is over {i | 1 ≤ i ≤ r}, the second is over {i1, i2 | i1+i2 ≤ r, 1 ≤ i1 ≤ i2},
the third is over {i1, i2, i3 | i1+i2+i3 ≤ r, 1 ≤ i1 ≤ i2 ≤ i3} and so on. A monomial

fi1fi2 · · · fis acts on ei1+···+isCn to give an element of esCm.
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For example, if r = 3 then S3f = (f1 + f2 + f3, f 2
1 + 3f1f2, f 3

1 ). Note that

(3f1f2)(v1v2v3) = f1(v1)f2(v2v3)+f1(v2)f2(v1v3)+f1(v3)f2(v1v2) (v1v2v3 ∈ e3Cn).

Let k = i1+i2+· · ·+is, and let jl be the number of times that a particular in-

teger l occurs in i1, . . . , is. Then the coefficient Ci1···is equals k!
j1!···jk!

(
1
1!

)j1· · · ( 1
k!

)jk,

which appears in the Faà de Bruno’s formula in §2.1. By the map version of the

formula, we can show that Srf satisfies the equality

(φ1 + · · ·+ φr) ◦ Srf = (φ ◦ f)1 + · · ·+ (φ ◦ f)r

for any holomorphic function φ : W → C ([11, Proposition 3]). By using this

equality, Turnbull proved the chain rule

Sr(g ◦ f) = Srg ◦ Srf

for holomorphic maps f : U → W and g : W → Cl, and obtained the following

result.

THEOREM 4.1. (Turnbull [11, §1.5]) Let Nn,Mm, and Ll be complex analytic

manifolds, and let f : N → M and g : M → L be holomorphic maps.

(i) There exists an vector bundle TrN over N , with fibre SrCn and with tran-

sition map Sr(ϕ ◦ (ϕ′|U∩U ′)
−1) for any pair of charts (U,ϕ), (U ′, ϕ′) of N .

(ii) There exists a bundle map Trf : TrN → TrM which is given locally by Srf .

(iii) The chain rule Tr(g ◦ f) = Trg ◦ Trf holds.

(iv) There exist natural inclusions T1N ↪→ T2N ↪→ · · · such that Trf |Tr−1N =

Tr−1f .

4.2 The map σ : TrN → TrN © TrN

We will in what follows distinguish the two types of symmetric products; e
inside SrCn(= Cn ⊕Cn eCn ⊕ · · · ⊕ erCn) and © outside SrCn (for example, ©
of SrCn © SrCn).

It is not possible to define a multiplication TrN © TsN → Tr+sN inde-

pendently of coordinates. But Turnbull defined instead a map σ : TrN →
TrN © TrN . For subbundles ξ, η of TrN , we will use σ−1(ξ © η) like a mul-

tiplication of ξ and η.

The space SrCn is spanned by elements of the form v1 · · · vs (v1, . . . ,

vs ∈ Cn, s ≤ r). So we can define the linear map σ : SrCn → SrCn © SrCn by

σ(v1 · · · vs) =

{
0 (s = 1),∑

(vi1 · · · vil)© (vil+1
· · · vis) (s ≥ 2).

Here the sum is over all partitions of {1, . . . , s} into disjoint, nonempty subsets

{i1, . . . , il}, {il+1, . . . , is} (1 ≤ l ≤ s
2
).
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For example, σ(v2
1v

2
2) = 2v1 © v1v

2
2 + 2v2 © v2

1v2 + v2
1 © v2

2 + 2v1v2 © v1v2.

Let θ be an analytic change of coordinates. By direct computation, we can

get that

(4. 1) σ ◦ Srθ = (Srθ© Srθ) ◦ σ,

where Srθ © Srθ denotes the map SrCn © SrCn → SrCn © SrCn given by

(Srθ© Srθ)(a© b) = Srθ(a)© Srθ(b). So σ does not depend on the particular

choice of coordinates, and we obtain the map σ : TrN → TrN©TrN given locally

by σ : SrCn → SrCn © SrCn. By definition of σ, we see that Kerσ = T1N .

For later use we state the general result of (4. 1).

LEMMA 4.1. (Turnbull [11, §1.6, §2.7]) For a holomorphic map f : N → M ,

we have σM ◦ Trf = (Trf © Trf) ◦ σN , where σN and σM act on TrN and TrM ,

respectively.

4.3 The image of Bell polynomials under σ

In almost the same way as the map σ, we define the map σ̃ : SrCn →
SrCn ⊗ SrCn by

σ̃(v1 · · · vs) =

{
0 (s = 1),∑

(vi1 · · · vil)⊗ (vil+1
· · · vis) (s ≥ 2).

Here the sum is over all ordered partitions (A1, A2) of {1, . . . , s} into disjoint,

nonempty subsets A1 = {i1, . . . , il}, A2 = {il+1, . . . , is} (1 ≤ l ≤ s − 1). Then

σ = 1
2
π◦σ̃, where π denotes the canonical projection SrCn⊗SrCn → SrCn©SrCn

given by π(a⊗ b) = 1
2!
(a⊗ b + b⊗ a).

The space SrCn⊗SrCn is spanned by elements of the form v1 · · · vl⊗ vl+1 · · ·
vl+m (v1, . . . , vl+m ∈ Cn; l, m ≤ r). We associate v1 · · · vl ⊗ vl+1 · · · vl+m with

the monomial v1 · · · vlwl+1 · · ·wl+m. By extending this linearly, we can associate

the image σ̃(v1 · · · vs) with the polynomial (v1 + w1) · · · (vs + ws) − (v1 · · · vs) −
(w1 · · ·ws).

We now fix vectors v1, . . . , vk (k ≤ r) of Cn, and set v = (v1, . . . , vk). The

Bell polynomial Yk(v) can be considered as an element of SrCn.

The following lemma will be useful to define the vector bundles specifying Σk

(see Note 7.1).

LEMMA 4.2. For the map σ, we have σ(Yk(v)) = 1
2

∑k−1
i=1

(
k
i

)
Yi(v)© Yk−i(v).

Proof. As above, we can associate the image σ̃(Yk(v)) with the polynomial Yk(v+

w)−Yk(v)−Yk(w). By Lemma 2.1 (ii), the polynomial Yk(v+w)−Yk(v)−Yk(w)
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equals
∑k−1

i=1

(
k
i

)
Yi(v)Yk−i(w), with which

∑k−1
i=1

(
k
i

)
Yi(v) ⊗ Yk−i(v) is associated.

Thus σ̃(Yk(v)) =
∑k−1

i=1

(
k
i

)
Yi(v)⊗Yk−i(v). Since σ = 1

2
π◦ σ̃, the lemma is proved.

For example, if k = 4 then σ(Y4(v)) = 1
2
(4Y1(v)© Y3(v) + 6Y2(v)© Y2(v) +

4Y3(v)© Y1(v)) = 4Y1(v)© Y3(v) + 3Y2(v)© Y2(v).

5. Construction of the desingularizations

In this section, we construct our desingularizations of Σ1, . . . , Σ6. Some of

the proofs will be given in the later sections.

By a desingularization of an analytic set A, we mean a holomorphic map

π : Ã → A such that (i) π is proper and surjective, (ii) Ã is a nonsingular analytic

set, and (iii) there exists an open dense subset U of A satisfying the conditions

that π−1(U) is open dense in Ã and π|π−1(U) : π−1(U) → U is biholomorphic.

Let f0 : (Cn, 0) → (C, 0) be a holomorphic function germ with an isolated

singular point at 0 ∈ Cn, and let F : (Cn × Cp, (0, 0)) → (C × Cp, (0, 0)) be the

R+-miniversal unfolding (cf. [1, §19.4]) of f0 defined by

F (x, t) = (f(x, t), t), f(x, t) = f0(x) +

p∑
i=1

tigi(x)

such that

(i) gi ∈ C{x} and gi(0) = 0 for every i,

(ii) 1, g1, . . . , gp is a basis of C{x}/( ∂f0

∂x1
, . . . , ∂f0

∂xn
) as a C-vector space,

where x = (x1, . . . , xn) ∈ Cn, t = (t1, . . . , tp) ∈ Cp, C{x} is the ring of convergent

power series, and ( ∂f0

∂x1
, . . . , ∂f0

∂xn
) is the ideal of C{x} generated by ∂f0

∂x1
, . . . , ∂f0

∂xn
.

Then this F satisfies the assumption that the jet extension jrF is transverse

to all the Morin singularities Σn and Σn,1k
(k ≥ 1), and hence we can use the

equations (3. 2)-(3. 6) defining Σk.

By considering the stable equivalence ([1, §11.1]) we can assume that n ≥ 3,

and for our purpose we assume that (0, 0) ∈ Σ6.

Write ft(x) = f(x, t), and consider ft as a function with respect to x ∈ Cn.

Let r be a sufficiently large integer. We have the map Tr(ft) : TrCn → TrC
over Cn. By considering its pullback over Cn×Cp under the standard projection

Cn × Cp → Cn, we will in what follows consider all sets, bundles, and bundle

maps above a sufficiently small, open neighbourhood of (0, 0) in Cn × Cp.
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5.1 The desingularization of Σ1

By Proposition 3.1 (i),

Σ1 = {(x, t) ∈ Cn × Cp | T1(ft) = 0 at (x, t)}.

By the transversality of jrF , the set Σ1 is nonsingular. Since Σ1 is closed, it

follows that Σ1 = Σ1. So we write Σ̃1 for Σ1, and call it a desingularization of

Σ1.

5.2 The desingularization of Σ2

By restricting bundles to Σ̃1, we now work over Σ̃1. Let us denote T1Cn by

ξ1 and T1C by ι1. Then T1(ft)(ξ1) = {0}.
We have the projective bundle of ξ1 which we denote by P(ξ1). Write π2 for

the projection of P(ξ1) onto Σ̃1. Over P(ξ1) we have the tautological line bundle

ξ1
1 whose fibre is corresponding to the point of P(ξ1).

Let η2 be the inverse image of ξ1
1©ξ1 under the map σ : TrCn → TrCn©TrCn

(cf. the equation (3. 2) defining Σ2). Since ξ1
1 © ξ1 is contained in the image of

σ, it follows that η2 is a 2n dimensional subbundle of T2Cn. Then ξ1 ⊂ η2. Since

ξ1
1 ⊂ KerT1(ft), by Lemma 4.1, T2(ft) maps η2 into ι1. So let T̄2(ft) : η2/ξ1 → ι1

be the map induced by T2(ft). Then we have a section, say Φ2, of Hom(η2/ξ1, ι1)

over P(ξ1), induced by T̄2(ft).

We are interested in the zeros of this section Φ2. At such points T2(ft)(η2) =

{0}. Let Σ̃2 be the zeros of the section.

Hom(η2/ξ1, ι1)

↓¹ Φ2

Σ̃2 ↪→ P(ξ1)

↓ π2

Σ̃1

Set S = ∪i≥2Σ
n,iF . It is easy to see that S is an analytic subset of Σ̃1 and

satisfies Σ2 = Σ2 \ S. Also set S̃2 = (π2|Σ̃2
)−1(S).

THEOREM 5.1. The restriction of π2 to Σ̃2 is a desingularization of Σ2.

Proof. We will prove in §6.1 that Φ2 is transverse to the zero section of

Hom(η2/ξ1, ι1). Hence Σ̃2 is nonsingular.

By definition of η2, π2 maps Σ̃2 \ S̃2 into Σ2. Above each point of Σ2(⊂ Σ̃1),

there exists a unique line ξ1
1 such that Φ2 vanishes. Hence π2|Σ̃2\S̃2

: Σ̃2 \ S̃2 → Σ2
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is surjective and has the inverse map. It follows that π2|Σ̃2\S̃2
: Σ̃2 \ S̃2 → Σ2 is

biholomorphic.

By choosing local coordinates of Σ̃2, we see that S̃2 is a nowhere dense analytic

subset of Σ̃2, and hence Σ̃2 \ S̃2 is open dense in Σ̃2.

Since π2 is proper and Σ2 is open dense in Σ2, it follows that π2 maps Σ̃2

onto Σ2. The theorem is proved.

5.3 The desingularization of Σ3

The next stage does not need a blowup such as π2. By raising bundles to Σ̃2,

we now work over Σ̃2. Then T2(ft)(η2) = {0}.
Let ξ2 be the inverse image of ξ1

1 © ξ1
1 under σ. Since ξ1

1 © ξ1
1 is contained in

the image of σ, it follows that ξ2 is an (n+1) dimensional subbundle of T2Cn. Let

η3 be the inverse image of ξ1
1 © ξ2 under σ (cf. §7.1 together with the equation

(3. 3) defining Σ3). Similarly η3 is a (2n + 1) dimensional subbundle of T3Cn.

Then ξ1 ⊂ ξ2 ⊂ η2 ⊂ η3.

Since ξ1
1 ⊂ KerT1(ft), by Lemma 4.1, T3(ft) maps η3 into ι1. So let T̄3(ft) :

η3/η2 → ι1 be the map induced by T3(ft). Then we have a section, say Φ3, of

Hom(η3/η2, ι1) over Σ̃2, induced by T̄3(ft). Let Σ̃3 be the zeros of the section Φ3.

Hom(η3/η2, ι1)

↓¹ Φ3

Σ̃3 ↪→ Σ̃2

We have Σ3 = Σ3 \ S, and set S̃3 = (π2|Σ̃3
)−1(S).

THEOREM 5.2. The restriction of π2 to Σ̃3 is a desingularization of Σ3.

Proof. The same argument as in §6.1 shows that Φ3 is transverse to the zero

section of Hom(η3/η2, ι1). On the other hand, in §7.1 we will prove the relation

π2(Σ̃3 \ S̃3) = Σ3, the existence of the inverse map of π2|Σ̃3\S̃3
: Σ̃3 \ S̃3 → Σ3,

and the density of Σ̃3 \ S̃3 in Σ̃3. As in the proof of Theorem 5.1, these imply

the theorem.

5.4 The desingularization of Σ4

This stage is similar to that of Σ2. We now work over Σ̃3. Then T3(ft)(η3) =

{0}.
Let ξ̄2 = ξ2/ξ

1
1 . We have the projective bundle P(ξ̄2) and the tautological line

bundle ξ̄1
2 over it. Write π4 for the projection of P(ξ̄2) onto Σ̃3. Let ξ2

2 be the

inverse image of ξ̄1
2 under the quotient map ξ2 → ξ̄2. This is a 2 dimensional
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subbundle of ξ2. Let ζ4 be the inverse image of ξ1
1 © η3 + ξ2

2 © ξ2 under σ (cf.

§7.2 together with the equations (3. 3), (3. 4)). Then ζ4 is a (3n+1) dimensional

subbundle of T4Cn (see §6.2), and satisfies η3 ⊂ ζ4.

Since ξ1
1 ⊂ KerT1(ft) and ξ2

2 ⊂ KerT2(ft), by Lemma 4.1, T4(ft) maps ζ4 into

ι1. So let T̄4(ft) : ζ4/η3 → ι1 be the map induced by T4(ft). Then we have a

section, say Φ4, of Hom(ζ4/η3, ι1) over P(ξ̄2), induced by T̄4(ft). Let Σ̃4 be the

zeros of the section Φ4.

Hom(ζ4/η3, ι1)

↓¹ Φ4

Σ̃4 ↪→ P(ξ̄2)

↓ π4

Σ̃3

We have Σ4 = Σ4 \ S, and set S̃4 = (π2 ◦ π4|Σ̃4
)−1(S).

THEOREM 5.3. The restriction of π2 ◦ π4 to Σ̃4 is a desingularization of Σ4.

The theorem follows from the same argument as in the proof of Theorem 5.1.

See §7.2 for the relation π2 ◦ π4(Σ̃4 \ S̃4) = Σ4, the existence of the inverse map

of π2 ◦ π4|Σ̃4\S̃4
: Σ̃4 \ S̃4 → Σ4, and the density of Σ̃4 \ S̃4 in Σ̃4.

5.5 The desingularization of Σ5

This stage is similar to that of Σ3, and again does not need a blowup. We

now work over Σ̃4. Then T4(ft)(ζ4) = {0}.
Let ξ3 be the inverse image of ξ1

1 © ξ2
2 under σ. Since ξ1

1 © ξ2
2 is contained in

the image of σ, it follows that ξ3 is an (n + 2) dimensional subbundle of T3Cn.

Then ξ2 ⊂ ξ3 ⊂ η3. Let η4 be the inverse image of ξ1
1 © ξ3 + ξ2

2 © ξ2
2 under σ.

Then η4 is a (2n + 2) dimensional subbundle of T4Cn (see §6.3), and satisfies

η3 ⊂ η4 ⊂ ζ4. Finally, let ζ5 be the inverse image of ξ1
1 © η4 + ξ2

2 © ξ3 under σ

(cf. §7.3). Then ζ5 is a (3n + 2) dimensional subbundle of T5Cn (see §6.3), and

satisfies ζ4 ⊂ ζ5.

Since ξ1
1 ⊂ KerT1(ft) and ξ2

2 ⊂ KerT2(ft), by Lemma 4.1, T5(ft) maps ζ5 into

ι1. So let T̄5(ft) : ζ5/ζ4 → ι1 be the map induced by T5(ft). We have a section,

say Φ5, of Hom(ζ5/ζ4, ι1) over Σ̃4, induced by T̄5(ft). Let Σ̃5 be the zeros of the

section Φ5.

Hom(ζ5/ζ4, ι1)

↓¹ Φ5

Σ̃5 ↪→ Σ̃4
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We have Σ5 = Σ5 \ S, and set S̃5 = (π2 ◦ π4|Σ̃5
)−1(S).

THEOREM 5.4. The restriction of π2 ◦ π4 to Σ̃5 is a desingularization of Σ5.

The proof is similar to that of Theorem 5.1. See §7.3 for the relation π2 ◦
π4(Σ̃5 \ S̃5) = Σ5, the existence of the inverse map of π2 ◦π4|Σ̃5\S̃5

: Σ̃5 \ S̃5 → Σ5,

and the density of Σ̃5 \ S̃5 in Σ̃5.

5.6 The desingularization of Σ6

We now work over Σ̃5. Let ξ̄3 = ξ3/ξ
2
2 . We have the projective bundle P(ξ̄3),

and the tautological line bundle ξ̄1
3 over it. Write π′5 for the projection of P(ξ̄3)

onto Σ̃5. Let ξ3
3 be the inverse image of ξ̄1

3 under the quotient map ξ3 → ξ3/ξ
2
2 .

This is a 3 dimensional subbundle of ξ3.

By looking carefully at how the bundles was defined in the previous sections,

we are tempted to define ω6 to be σ−1(ξ1
1 © ζ5 + ξ2

2 © η4 + ξ3
3 © ξ3). However it

is impossible, for this is (4n + 3) dimensional over some points of S̃5; although it

is (4n + 2) dimensional over Σ̃5 \ S̃5 (cf. Note 6.2 and Claim 7.2).

To overcome this difficulty, we divide the construction of the desingularization

of Σ6 into three steps: first in §5.6.1 to blow up Σ̃5 in order to get the line

bundle ξ̄1
3 determined by the equations (3. 4), (3. 5); second in §5.6.2 to perform

an extra blowup which avoids the difficulty; third in §5.6.3 to construct the

desingularization of Σ6.

5.6.1 A preliminary blowup

Working over Σ̃5, we have T5(ft)(ζ5) = {0}. Let ω5 be the inverse image of

ξ1
1 © ζ4 + ξ2

2 © η3 + ξ3
3 © ξ2 under σ (cf. §7.4). Then ω5 is a (4n+1) dimensional

subbundle of T5Cn (see §6.4), and satisfies ζ5 ⊂ ω5.

Since ξ1
1 ⊂ KerT1(ft), ξ2

2 ⊂ KerT2(ft), and ξ3
3 ⊂ KerT3(ft), by Lemma 4.1,

T5(ft) maps ω5 into ι1. So let T̄5(ft) : ω5/ζ5 → ι1 be the map induced by T5(ft).

Then we have a section, say Φ′
5, of Hom(ω5/ζ5, ι1) over P(ξ̄3), induced by T̄5(ft).

Let Σ̃′
5 be the zeros of the section Φ′

5.

Hom(ω5/ζ5, ι1)

↓¹ Φ′
5

Σ̃′
5 ↪→ P(ξ̄3)

↓ π′5
Σ̃5

Set S̃ ′5 = (π2 ◦ π4 ◦ π′5|Σ̃′5)−1(S).



38 M. TOMONOBU

THEOREM 5.5. The restriction of π2 ◦ π4 ◦ π′5 to Σ̃′
5 is also a desingularization

of Σ5.

The proof is similar to that of Theorem 5.1. See §7.4 for the relation π2 ◦π4 ◦
π′5(Σ̃

′
5 \ S̃ ′5) = Σ5, the existence of the inverse map of π2 ◦π4 ◦π′5|Σ̃′5\S̃′5 : Σ̃′

5 \ S̃ ′5 →
Σ5, and the density of Σ̃′

5 \ S̃ ′5 in Σ̃′
5.

5.6.2 An extra blowup

The blowup below is an analogue of Turnbull’s extra blowup ([11, §2.7]), and

is given by using the following map σ2.

Considering TrN © TrN as a subbundle of TrN ⊗ TrN , we define the map

σ2 : TrN © TrN → (TrN © TrN) ∧ TrN by

σ2 = σ ⊗ id− id⊗ σ.

We summarize some properties of σ2. From the definition, it follows that

(5. 1) σ2(a© b) = σ(a) ∧ b + σ(b) ∧ a (a, b ∈ TrN).

Indeed, σ2(a©b) = 1
2
σ2(a⊗b+b⊗a) = 1

2
(σ(a)⊗b−a⊗σ(b)+σ(b)⊗a−b⊗σ(a)) =

σ(a) ∧ b + σ(b) ∧ a. Hence Imσ2 ⊂ (TrN © TrN) ∧ TrN . On the other hand, by

an easy calculation, we get that

(5. 2) (a© b) ∧ c + (b© c) ∧ a + (c© a) ∧ b = 0 (a, b, c ∈ TrN).

Hence (a©a)∧a = 0 and (a©b)∧a = −1
2
(a©a)∧b. From these, for example, it

follows that σ2(σ(a4)) = σ2(4a©a3+3a2©a2) = 12(a©a2)∧a+6(a©a)∧a2 = 0.

More generally, Turnbull proved the following result.

PROPOSITION 5.1. (Turnbull [11, §2.7]) Kerσ2∩ [TrN©TrN ]r = Imσ, where

[TrN © TrN ]r denotes the subset of TrN © TrN of elements of order at most r.

We now work over Σ̃′
5. Setting

α5 = ξ1
1 © ζ4 + ξ2

2 © η3 + ξ3
3 © ξ2 and

α6 = ξ1
1 © ζ5 + ξ2

2 © η4 + ξ3
3 © ξ3,

the quotient space α6/α5 is three dimensional, and setting

β5 = (ξ1
1 © η3) ∧ ξ1

1 + (ξ1
1 © ξ2) ∧ ξ2

2 + (ξ2
2 © ξ2) ∧ ξ1

1 and

β6 = (ξ1
1 © η4) ∧ ξ1

1 + (ξ1
1 © ξ3) ∧ ξ2

2 + (ξ2
2 © ξ3) ∧ ξ1

1 ,

the quotient space β6/β5 is three dimensional (cf. §6.5). From (5. 1) and (5. 2),

it follows that

σ2(α5) ⊂ β5 and σ2(α6) ⊂ β6.
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For example, σ2(α6) ⊂ (ξ1
1 © η4 + ξ2

2 © ξ3) ∧ ξ1
1 + (ξ1

1 © ξ1
1) ∧ η4 + (ξ1

1 © ξ3 +

ξ2
2 © ξ2

2)∧ ξ2
2 + (ξ1

1 © ξ2
2)∧ ξ3 + (ξ1

1 © ξ2
2)∧ ξ3

3 = (ξ1
1 © ξ1

1)∧ η4 + (ξ1
1 © ξ2

2)∧ ξ3 +

(ξ2
2 © ξ3) ∧ ξ1

1 + (ξ1
1 © ξ3) ∧ ξ2

2 = β6.

Since σ2(α5 + ξ1
1 © ζ5) ⊂ β5 + (ξ1

1 © η4) ∧ ξ1
1 + (ξ2

2 © ξ3) ∧ ξ1
1 , by setting

ᾱ6 = α6/(α5 + ξ1
1 © ζ5) and

β̄6 = β6/[β5 + (ξ1
1 © η4) ∧ ξ1

1 + (ξ2
2 © ξ3) ∧ ξ1

1 ],

we get the map σ̄2 : ᾱ6 → β̄6 induced by σ2. Here ᾱ6 and β̄6 are two and one

dimensional, respectively.

We have the projective bundle P(ᾱ6), and the tautological line bundle ᾱ1
6 over

it. Write ρ for the projection of P(ᾱ6) onto Σ̃′
5. The map σ̄2 induces a section Ψ

of Hom(ᾱ1
6, β̄6) over P(ᾱ6). Let Σ̃′′

5 be the zeros of the section Ψ.

Hom(ᾱ1
6, β̄6)

↓¹ Ψ

Σ̃′′
5 ↪→ P(ᾱ6)

↓ ρ

Σ̃′
5

Set S̃ ′′5 = (π2 ◦ π4 ◦ π′5 ◦ ρ|Σ̃′′5 )−1(S).

THEOREM 5.6. The restriction of π2◦π4◦π′5◦ρ to Σ̃′′
5 is also a desingularization

of Σ5.

For the proof, see §6.5.

5.6.3 The desingularization of Σ6

We now work over Σ̃′′
5. Then T5(ft)(ω5) = {0}.

We have the line bundle ᾱ1
6. Let α be the inverse image of ᾱ1

6 under the

quotient map α6 → ᾱ6, and let ω6 be the inverse image of α under σ (cf. §7.5).

Then ω6 is a (4n + 2) dimensional subbundle of T6Cn (see §6.6), and satisfies

ω5 ⊂ ω6.

Since ξ1
1 ⊂ KerT1(ft), ξ2

2 ⊂ KerT2(ft), and ξ3
3 ⊂ KerT3(ft), by Lemma 4.1,

T6(ft) maps ω6 into ι1. So let T̄6(ft) : ω6/ω5 → ι1 be the map induced by T6(ft).

We have a section, say Φ6, of Hom(ω6/ω5, ι1) over Σ̃′′
5, induced by T̄6(ft). Let Σ̃6

be the zeros of the section Φ6.

Hom(ω6/ω5, ι1)

↓¹ Φ6

Σ̃6 ↪→ Σ̃′′
5
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We have Σ6 = Σ6 \ S, and set S̃6 = (π2 ◦ π4 ◦ π′5 ◦ ρ|Σ̃6
)−1(S).

THEOREM 5.7. The restriction of π2 ◦ π4 ◦ π′5 ◦ ρ to Σ̃6 is a desingularization

of Σ6.

The proof is similar to that of Theorem 5.1. See §7.5 for the relation π2 ◦π4 ◦
π′5 ◦ ρ(Σ̃6 \ S̃6) = Σ6, the existence of the inverse map of π2 ◦ π4 ◦ π′5 ◦ ρ|Σ̃6\S̃6

:

Σ̃6 \ S̃6 → Σ6, and the density of Σ̃6 \ S̃6 in Σ̃6.

6. Well-definedness of the vector bundles and transversality of the

sections

In this section we will prove the results stated in §5; the inverse images

ζ4, η4, ζ5, ω5, ω6 are certainly vector bundles, and the sections Φ2, . . . , Φ5, Φ
′
5, Ψ,

Φ6 are transverse to the zero sections. We do these by choosing local coordinates.

6.1 Transversality of Φ2, . . . , Φ5, Φ
′
5, Φ6

We prove the transversality only for Φ2 as the others except Ψ are similar.

The transversality of Ψ will be proved in §6.5.

Over Σ̃1, we have the projective bundle P(ξ1) and the map T̄2(ft) : η2/ξ1 → ι1.

This map induces the section Φ2 : P(ξ1) → Hom(η2/ξ1, ι1). Take any point P

of Σ̃2 ∩ π−1
2 (0, 0). Choose a small open neighbourhood U of P in P(ξ1) such

that over U , there exists the local projection pr of Hom(η2/ξ1, ι1) onto its fibre

Homfib(η2/ξ1, ι1) along the zero section. We want to show that pr ◦ Φ2|U : U →
Homfib(η2/ξ1, ι1) is submersive at P .

Replacing U by a smaller neighbourhood, we choose local coordinates

(x, t, ξ1
1) ∈ U with ξ1

1 = 〈v1〉 (0 6= v1 ∈ ξ1). Then we can write η2 = ξ1 ⊕
〈v1〉 eξ1. Identifying Homfib(η2/ξ1, ι1) with Hom(C eCn,C), we have pr ◦ Φ2|U =

(ft)2(v1,−)|U , where (ft)2 is the second derivative of ft with respect to x. Set

P = (0, 0, 〈v◦1〉) and define U(v◦1) = U ∩ {(x, t, ξ1
1)|ξ1

1 = 〈v◦1〉}. It is enough to

show that (ft)2(v
◦
1,−)|U(v◦1) : U(v◦1) → Hom(C eCn,C) is submersive at P .

Assume that v◦1 = ∂
∂x1

and define an unfolding G : (Cn×Cp×Cn, (0, 0, 0)) →
(C× Cp × Cn, (0, 0, 0)) of f0 by

G(x, t, u) = (g(x, t, u), t, u), g(x, t, u) = f(x, t) +
n∑

i=1

uix1xi.

Let (Σ̃1)G denote the singular set of G in Cn×Cp×Cn. Then (Σ̃1)G∩{(x, t, u)|u =

0} = Σ̃1 and {(x, t, u)|x = t = 0} ⊂ (Σ̃1)G.
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By the versality of F , the unfolding G is equivalent to a constant unfold-

ing of F (as unfoldings of f0). Namely, there exist a holomorphic unfold-

ing H : (Cn × Cp × Cn, (0, 0, 0)) → (Cn × Cp × Cn, (0, 0, 0)), H(x, t, u) =

(h(x, t, u), φ(t, u), ψ(t, u)) of idCn and a holomorphic function germ a : (Cp ×
Cn, (0, 0)) → (C, 0) such that H is biholomorphic and

g(H(x, t, u)) + a(t, u) = f(x, t).

By definition of G, we can take H to satisfy H(x, t, 0) = (x, t, 0).

We have gφt,u,ψt,u(ht,u(x)) + at,u = ft(x), where gt,u(x) = g(x, t, u), ht,u(x) =

h(x, t, u), φt,u = φ(t, u), ψt,u = ψ(t, u) and at,u = a(t, u). Hence over Cn×Cp×Cn,

(6. 1) T2(gφt,u,ψt,u) ◦ T2(ht,u) = T2(ft),

where T2 is Turnbull’s second derivative with respect to x.

We now work over (Σ̃1)G. The same procedure as for Φ2 and Σ̃2 gives the

section (Φ2)G : P(ξ1) → Hom(η2/ξ1, ι1) over (Σ̃1)G and its zeros (Σ̃2)G. Then

(Φ2)G|{(x,t,u,ξ1
1)|u=0} = Φ2 and (Σ̃2)G ∩ {(x, t, u, ξ1

1)|u = 0} = Σ̃2. Again replacing

U by a smaller neighbourhood, we have an open neighbourhood UG of P in P(ξ1)

over (Σ̃1)G such that (i) UG∩{(x, t, u, ξ1
1)|u = 0} = U , and (ii) over UG there exists

the local projection pr : Hom(η2/ξ1, ι1) → Homfib(η2/ξ1, ι1). Define UG(v◦1) =

UG ∩ {(x, t, u, ξ1
1)|ξ1

1 = 〈v◦1〉}. Then pr ◦ (Φ2)G|UG(v◦1) = (gt,u)2(v
◦
1,−)|UG(v◦1), and

by definition of g this is submersive at P .

By (6. 1) we get that

(
(gφt,u,ψt,u)2 ◦ ht,u

)
((ht,u)1(v

◦
1), (ht,u)1(−))|UG(v◦1) = (ft)2(v

◦
1,−)|UG(v◦1).

Since ψ : (Cp × Cn, (0, 0)) → (Cn, 0) is submersive and ht,u : (Cn, 0) → (Cn, 0)

is biholomorphic, we see that (ft)2(v
◦
1,−)|UG(v◦1) : UG(v◦1) → Hom(C eCn,C) is

submersive at P . Since this map is independent of u, its restriction to Σ̃1,

(ft)2(v
◦
1,−)|U(v◦1) : U(v◦1) → Hom(C eCn,C) is submersive at P . Therefore pr ◦

Φ2|U is submersive at P , from the start. ¤

6.2 Well-definedness of ζ4

In §5.4, we defined ζ4 as the inverse image of ξ1
1 © η3 + ξ2

2 © ξ2 under σ. By

definition ζ4 is independent of coordinates. But to see that ζ4 is a vector bundle,

we must prove that the fibres of ζ4 are equidimensional.

The space ξ1
1 © η3 + ξ2

2 © ξ2 contains ξ1
1 © ξ2, and we already know that η3(=

σ−1(ξ1
1 © ξ2)) is a vector bundle. So let σ̄ : TrCn/η3 → (TrCn©TrCn)/(ξ1

1 © ξ2)

be the linear map induced by σ. Since Kerσ ⊂ η3, this is injective.
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By choosing local coordinates, we can write (x, t, ξ1
1 , ξ̄

1
2) ∈ P(ξ̄2) and

(6. 2)
ξ1
1 = 〈v1〉, η2 = ξ1 ⊕ 〈v1〉 eξ1, ξ2 = ξ1 ⊕ 〈v2

1〉,
η3 = ξ1 ⊕ 〈v1〉 eξ1 ⊕ 〈v3

1〉, ξ2
2 = 〈v1〉 ⊕ 〈v2 + b1v

2
1〉,

where 0 6= v1 ∈ ξ1, 0 6= v2 + b1v
2
1 ∈ ξ2 (b1 ∈ C).

Then ξ̄1
2(= ξ2

2/〈v1〉) can be written in the form ξ̄1
2 = 〈v̄2 + b1v

2
1〉, where v̄2 is

the equivalent class of v2 in ξ1/〈v1〉. But by abuse of notation, only in §6 we will

write v2 also for v̄2.

Write ξ̄1 for ξ1/〈v1〉. Then the quotient space (ξ1
1 © η3 + ξ2

2 © ξ2)/(ξ
1
1 © ξ2)

can be written in the form

〈v1〉 © (〈v1〉 eξ̄1 ⊕ 〈v3
1〉) + 〈v2 + b1v

2
1〉 © (ξ̄1 ⊕ 〈v2

1〉).
Write B for this sum of bundles, B1 for the first bundle, and B2 for the second

bundle. These have the properties that dim B1 = dim B2 = n and B1∩B2 = {0}.
Consider the subbundle

〈v2 + b1v
2
1〉 eξ̄1 ⊕ 〈3v2

1v2 + b1v
4
1〉

of TrCn/η3. Write A for this direct sum of bundles, A1 for the first bundle, and

A2 for the second bundle. Then dim A = n.

We want to show that A is independent of coordinates. Since so is B, we will

prove that A = σ̄−1(B). For this, the following two claims are useful.

CLAIM 6.1. σ̄(A) ⊂ B.

Proof. An element (v2 + b1v
2
1)x (x ∈ ξ̄1) of A1 is mapped by σ̄ to 2b1v1 ©

v1x + (v2 + b1v
2
1) © x, and an element 3v2

1v2 + b1v
4
1 of A2 is mapped by σ̄ to

2v1 © (3v1v2 + 2b1v
3
1) + 3(v2 + b1v

2
1)© v2

1. These imply that σ̄(A) ⊂ B.

CLAIM 6.2. dim(Imσ̄ ∩B) ≤ n.

Proof. By the calculations in the proof of Claim 6.1, we see that there are no

nonzero elements of B1 that have the inverse image under σ̄, by itself without

elements of B2. Hence Imσ̄∩B1 = {0}. (Note that if b1 = 0 then Imσ̄∩B2 6= {0}.)
From the properties of B1 and B2, it follows that dim(Imσ̄ ∩B) ≤ n.

By Claim 6.1 we have A ⊂ σ̄−1(B), and by Claim 6.2 we have dim σ̄−1(B) ≤
n. Since dim A = n, we get that A = σ̄−1(B).

Consequently ζ4 can be written in the form

(6. 3) ζ4 = η3 ⊕ 〈v2 + b1v
2
1〉 eξ̄1 ⊕ 〈3v2

1v2 + b1v
4
1〉.

It follows from this that ζ4 has the equidimensional fibres and is a (3n + 1)

dimensional vector bundle.
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NOTE 6.1. The inverse image A of B will appear clearly in Y4 of §7.2.

6.3 Well-definedness of η4, ζ5

We will show that η4 and ζ5 defined in §5.5 are certainly vector bundles, that

is, have the equidimensional fibres, respectively.

We first consider η4, which was defined as the inverse image of ξ1
1

eξ3 +ξ2
2©ξ2

2

under σ. The space ξ1
1 © ξ3 + ξ2

2 © ξ2
2 contains ξ1

1 © ξ2, and we already know

that η3(= σ−1(ξ1
1 © ξ2)) is a vector bundle. So we use the same map σ̄ as in the

previous section.

By choosing local coordinates, we can write (x, t, ξ1
1 , ξ̄

1
2) ∈ Σ̃4 and, in addition

to (6. 2) and (6. 3),

(6. 4) ξ3 = ξ1 ⊕ 〈v2
1〉 ⊕ 〈3v1v2 + b1v

3
1〉.

By (6. 2), (6. 4), the quotient space (ξ1
1 © ξ3 + ξ2

2 © ξ2
2)/(ξ

1
1 © ξ2) can be written

in the form

〈v1〉 © 〈3v1v2 + b1v
3
1〉+ 〈v2 + b1v

2
1〉 © 〈v2 + b1v

2
1〉.

Write B for this sum of bundles, B1 for the first bundle, and B2 for the second

bundle. These have the properties that dim B1 = dim B2 = 1 and B1∩B2 = {0}.
Consider the subbundle

〈3v2
2 + 6b1v

2
1v2 + b2

1v
4
1〉

of TrCn/η3, and write A for this. Then dim A = 1.

An element 3v2
2+6b1v

2
1v2+b2

1v
4
1 of A is mapped by σ̄ to 4b1v1©(3v1v2+b1v

3
1)+

3(v2+b1v
2
1)©(v2+b1v

2
1). So σ̄(A) ⊂ B. From this calculation and the properties

of B1 and B2, as in the proof of Claim 6.2, it follows that dim(Imσ̄ ∩ B) ≤ 1.

Hence as in the previous section, we get that A = σ̄−1(B). Therefore η4 can be

written in the form

(6. 5) η4 = η3 ⊕ 〈3v2
2 + 6b1v

2
1v2 + b2

1v
4
1〉

and is a (2n + 2) dimensional vector bundle.

We next consider ζ5, which was defined as the inverse image of ξ1
1©η4+ξ2

2©ξ3

under σ. The space ξ1
1 © η4 + ξ2

2 © ξ3 contains ξ1
1 © η3 + ξ2

2 © ξ2, and we

have already seen that ζ4(= σ−1(ξ1
1 © η3 + ξ2

2 © ξ2)) is a vector bundle. So let
¯̄σ : TrCn/ζ4 → (TrCn© TrCn)/(ξ1

1 © η3 + ξ2
2 © ξ2) be the linear map induced by

σ. This is injective.

By using (6. 2), (6. 4), (6. 5), we can write the quotient space (ξ1
1 © η4 + ξ2

2 ©
ξ3)/(ξ

1
1 © η3 + ξ2

2 © ξ2) in the form

〈v1〉 © 〈3v2
2 + 6b1v

2
1v2 + b2

1v
4
1〉+ 〈v2 + b1v

2
1〉 © 〈3v1v2 + b1v

3
1〉.
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Write B for this.

Consider the subbundle

〈15v1v
2
2 + 10b1v

3
1v2 + b2

1v
5
1〉

of TrCn/ζ4, and write A for this.

An element 15v1v
2
2 + 10b1v

3
1v2 + b2

1v
5
1 of A is mapped by ¯̄σ to 5v1 © (3v2

2 +

6b1v
2
1v2 + b2

1v
4
1) + 10(v2 + b1v

2
1)© (3v1v2 + b1v

3
1). From this, in the same way as

before, it follows that A = ¯̄σ−1(B). Therefore ζ5 can be written in the form

(6. 6) ζ5 = ζ4 ⊕ 〈15v1v
2
2 + 10b1v

3
1v2 + b2

1v
5
1〉

and is a (3n + 2) dimensional vector bundle.

6.4 Well-definedness of ω5

In §5.6.1 we defined ω5 as the inverse image of ξ1
1 © ζ4 + ξ2

2 © η3 + ξ3
3 © ξ2

under σ. The space ξ1
1 © ζ4 + ξ2

2 © η3 + ξ3
3 © ξ2 contains ξ1

1 © η4 + ξ2
2 © ξ3,

and we have already seen that ζ5(= σ−1(ξ1
1 © η4 + ξ2

2 © ξ3)) is a vector bundle.

So let σ̄(3) : TrCn/ζ5 → (TrCn © TrCn)/(ξ1
1 © η4 + ξ2

2 © ξ3) be the linear map

induced by σ. This is injective. It is enough to show that the inverse image of

(ξ1
1©ζ4+ξ2

2©η3+ξ3
3©ξ2)/(ξ

1
1©η4+ξ2

2©ξ3) under σ̄(3) has the equidimensional

fibres.

We choose local coordinates (x, t, ξ1
1 , ξ̄

1
2 , ξ̄

1
3) ∈ P(ξ̄3) satisfying (6. 2)-(6. 6).

Then

ξ2
2 = 〈v1〉 ⊕ 〈v2 + b1v

2
1〉,

where 0 6= v1 ∈ ξ1, 0 6= v2 + b1v
2
1 ∈ ξ2 (b1 ∈ C). Since v2 + b1v

2
1 6= 0, there are

the two cases with v2 6= 0 or b1 6= 0. If b1 6= 0 then by a linear change of the

coordinates v2, we can assume that b1 = 1. Then

ξ̄3 = ξ3/ξ
2
2 =





(ξ1/〈v1, v2〉)⊕ 〈v2
1〉 ⊕ 〈3v1v2 + b1v

3
1〉 (v2 6= 0),

ξ̄1 ⊕ 〈3v1v2 + v3
1〉 (b1 6= 0),

where v1, v2 are linearly independent in the case v2 6= 0. So we can write

(6. 7) ξ3
3 =




〈v1〉 ⊕ 〈v2 + b1v

2
1〉 ⊕ 〈v3 + b3v

2
1 + b2(3v1v2 + b1v

3
1)〉 (v2 6= 0),

〈v1〉 ⊕ 〈v2 + v2
1〉 ⊕ 〈v3 + b2(3v1v2 + v3

1)〉 (b1 6= 0),

where 0 6= v3 + b3v
2
1 + b2(3v1v2 + b1v

3
1) ∈ ξ3 or 0 6= v3 + b2(3v1v2 + v3

1) ∈ ξ3

(b2, b3 ∈ C).
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For the expression of ξ3
3 in the case v2 6= 0, if b1 6= 0 then by linear changes of

the coordinates v2, v3, we can assume that b1 = 1 and b3 = 0, that is, we get the

expression of ξ3
3 in the case b1 6= 0. For this reason, in the rest of §6 we describe

the calculations only for the expression of ξ3
3 in the case v2 6= 0, and the results

for both cases v2 6= 0 and b1 6= 0.

Write ¯̄ξ1 for ξ1/〈v1, v2〉. By using (6. 2)-(6. 5),(6. 7), the quotient space

(ξ1
1

eζ4 + ξ2
2

eη3 + ξ3
3

eξ2)/(ξ
1
1

eη4 + ξ2
2

eξ3) can be written in the form

〈v1〉 ©
(
〈v2 + b1v

2
1〉 e¯̄ξ1 ⊕ 〈3v2

1v2 + b1v
4
1〉

)

+ 〈v2 + b1v
2
1〉 ©

(
〈v1〉 e¯̄ξ1 ⊕ 〈v3

1〉
)

+ 〈v3 + b3v
2
1 + b2(3v1v2 + b1v

3
1)〉 ©

(
¯̄ξ1 ⊕ 〈v2

1〉
)

.

Here we again write v3 for its equivalent class.

In almost the same way as in the previous sections, we are able to prove that

ω5 can be written in the form

ω5 = ζ5 ⊕ 〈v3 + b3v
2
1 + b2(3v1v2 + b1v

3
1)〉 e¯̄ξ1

⊕ 〈15v2
1v3 + 5b3v

4
1 + 3b2(5v

3
1v2 + b1v

5
1)〉.

Indeed, this is shown by the following two calculations; an element (v3+b3v
2
1+

b2(3v1v2 + b1v
3
1))x (x ∈ ¯̄ξ1) of ω5/ζ5 is mapped by σ̄(3) to 2b3v1 © v1x + 3b2v1 ©

(v2 + b1v
2
1)x + 3b2(v2 + b1v

2
1)© v1x + (v3 + b3v

2
1 + b2(3v1v2 + b1v

3
1))© x, where

the first term 2b3v1© v1x is zero modulo ξ1
1 © η4 + ξ2

2 © ξ3; an element 15v2
1v3 +

5b3v
4
1 + 3b2(5v

3
1v2 + b1v

5
1) of ω5/ζ5 is mapped by σ̄(3) to 10v1© (3v1v3 + 2b3v

3
1) +

15b2(3v
2
1v2+b1v

4
1)©v1+15b2(v2+b1v

2
1)©v3

1 +15(v3+b3v
2
1 +b2(3v1v2+b1v

3
1))©v2

1,

where the first term 10v1 © (3v1v3 + 2b3v
3
1) is zero modulo ξ1

1 © η4 + ξ2
2 © ξ3.

Together with the case b1 6= 0, we get that

(6. 8) ω5 = ζ5 ⊕





〈v3 + b3v
2
1 + b2(3v1v2 + b1v

3
1)〉 e¯̄ξ1

⊕〈15v2
1v3 + 5b3v

4
1 + 3b2(5v

3
1v2 + b1v

5
1)〉

(v2 6= 0),

〈v3 + b2(3v1v2 + v3
1)〉 eξ̄1 (b1 6= 0).

Therefore ω5 is a (4n + 1) dimensional vector bundle.

6.5 Transversality of Ψ

This is essentially Turnbull’s result (see [11, §3.2]). Instead of the proof, we will

write out the bundle ᾱ1
6 and the section Ψ in local coordinates.

We choose local coordinates (x, t, ξ1
1 , ξ̄

1
2 , ξ̄

1
3 , ᾱ

1
6) ∈ P(ᾱ6) satisfying (6. 2)-(6. 8).

We again describe the calculations only for the expression (6. 7) of ξ3
3 in the case

v2 6= 0.
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The quotient space ᾱ6(= (ξ1
1 © ζ5 + ξ2

2 © η4 + ξ3
3 © ξ3)/(ξ

1
1 © ζ4 + ξ2

2 © η3 +

ξ3
3 © ξ2 + ξ1

1 © ζ5)) can be written in the form

ᾱ6 = 〈v2 + b1v
2
1〉 © 〈3v2

2 + 6b1v
2
1v2 + b2

1v
4
1〉

+ 〈v3 + b3v
2
1 + b2(3v1v2 + b1v

3
1)〉 © 〈3v1v2 + b1v

3
1〉.

Let X = (v2 + b1v
2
1)© (3v2

2 + 6b1v
2
1v2 + b2

1v
4
1) and Y = (v3 + b3v

2
1 + b2(3v1v2 +

b1v
3
1))© (3v1v2 + b1v

3
1). Then we can write the tautological line bundle ᾱ1

6 in the

form

ᾱ1
6 = 〈3λX + 2µY 〉 ((λ, µ) 6= (0, 0)).

The section Ψ is induced by σ̄2, and can be written in the form

σ̄2(3λX + 2µY )

= 3λ[b1(v1 © v1) ∧ (3v2
2 + 6b1v

2
1v2 + b2

1v
4
1)

+ 4b1(v1 © (3v1v2 + b1v
3
1)) ∧ (v2 + b1v

2
1)]

+ 2µ[b3(v1 © v1) ∧ (3v1v2 + b1v
3
1)

+ 3b2(v1 © (v2 + b1v
2
1)) ∧ (3v1v2 + b1v

3
1)

+ 3(v1 © (v2 + b1v
2
1)) ∧ (v3 + b3v

2
1 + b2(3v1v2 + b1v

3
1))]

≡ 12λb1[v1 © (3v1v2 + b1v
3
1)] ∧ (v2 + b1v

2
1)

+ 12µb2[v1 © (v2 + b1v
2
1)] ∧ (3v1v2 + b1v

3
1)

≡ 12(−λb1 + µb2)[v1 © (v2 + b1v
2
1)] ∧ (3v1v2 + b1v

3
1),

modulo [(ξ1
1©η3)∧ξ1

1+(ξ1
1©ξ2)∧ξ2

2+(ξ2
2©ξ2)∧ξ1

1 ]+[(ξ1
1©η4)∧ξ1

1+(ξ2
2©ξ3)∧ξ1

1 ].

If σ̄2(3λX + 2µY ) = 0 then

λb1 = µb2.

Hence the independence of b1, b2 implies the transversality of Ψ, and the nonsin-

gularity of Σ̃′′
5.

For later use we describe the expression of ᾱ1
6 together with the case b1 6= 0:

(6. 9) ᾱ1
6 =





〈3λ(v2 + b1v
2
1)© (3v2

2 + 6b1v
2
1v2 + b2

1v
4
1)

+ 2µ[v3 + b3v
2
1 + b2(3v1v2 + b1v

3
1)]© (3v1v2 + b1v

3
1)〉

(v2 6= 0),

〈3λ(v2 + v2
1)© (3v2

2 + 6v2
1v2 + v4

1)

+ 2µ[v3 + b2(3v1v2 + v3
1)]© (3v1v2 + v3

1)〉
(b1 6= 0),

where (i) (λ, µ) 6= (0, 0), and (ii) over Σ̃′′
5 we have λb1 = µb2.
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6.6 Well-definedness of ω6

In §5.6.3 we defined ω6 as the inverse image of α(⊂ α6 = ξ1
1 © ζ5 + ξ2

2 © η4 +

ξ3
3© ξ3) under σ. The space α contains α5(= ξ1

1©ζ4 + ξ2
2©η3 +ξ3

3©ξ2), and we

have already seen that ω5(= σ−1(α5)) is a vector bundle. So let σ̄(4) : TrCn/ω5 →
(TrCn © TrCn)/α5 be the linear map induced by σ. This is injective.

We choose local coordinates (x, t, ξ1
1 , ξ̄

1
2 , ξ̄

1
3 , ᾱ

1
6) ∈ Σ̃′′

5 satisfying (6. 2)-(6. 9).

We again describe the calculations only for the expression (6. 7) of ξ3
3 in the case

v2 6= 0.

The quotient space α/α5 can be written in the form

〈v1〉 © 〈15v1v
2
2 + 10b1v

3
1v2 + b2

1v
5
1〉

+ 〈3λ(v2 + b1v
2
1)© (3v2

2 + 6b1v
2
1v2 + b2

1v
4
1)

+ 2µ[v3 + b3v
2
1 + b2(3v1v2 + b1v

3
1)]© (3v1v2 + b1v

3
1)〉.

In the same way as in the previous sections, we are able to prove that ω6 can

be written in the form

ω6 = ω5 ⊕ 〈10µ(3v1v2v3 + b1v
3
1v3) + 2µb3(5v

3
1v2 + b1v

5
1)

+ λ(15v3
2 + 45b1v

2
1v

2
2 + 15b2

1v
4
1v2 + b3

1v
6
1)〉,

where (λ, µ) 6= (0, 0) and λb1 = µb2.

Indeed, this is shown by the following calculation; an element 10µ(3v1v2v3 +

b1v
3
1v3) + 2µb3(5v

3
1v2 + b1v

5
1) + λ(15v3

2 + 45b1v
2
1v

2
2 + 15b2

1v
4
1v2 + b3

1v
6
1) of ω6/ω5 is

mapped by σ̄(4) to 10µv1© [3(v2 + b1v
2
1)v3 + b3(3v

2
1v2 + b1v

4
1)] + 10µ(v2 + b1v

2
1)©

(3v1v3 + b3v
3
1) + 6λb1v1 © (15v1v

2
2 + 10b1v

3
1v2 + b2

1v
5
1) + 15λ(v2 + b1v

2
1)© (3v2

2 +

6b1v
2
1v2 + b2

1v
4
1)+10µ[v3 + b3v

2
1 + b2(3v1v2 + b1v

3
1)]© (3v1v2 + b1v

3
1), where the first

two terms 10µv1©[3(v2+b1v
2
1)v3+b3(3v

2
1v2+b1v

4
1)], 10µ(v2+b1v

2
1)©(3v1v3+b3v

3
1)

are zero modulo ξ1
1 © ζ4 + ξ2

2 © η3 + ξ3
3 © ξ2. (Note that λb1 = µb2.)

Together with the case b1 6= 0, we get that

(6. 10) ω6 =





ω5 ⊕ 〈10µ(3v1v2v3 + b1v
3
1v3) + 2µb3(5v

3
1v2 + b1v

5
1)

+λ(15v3
2 + 45b1v

2
1v

2
2 + 15b2

1v
4
1v2 + b3

1v
6
1)〉

(v2 6= 0),

ω5 ⊕ 〈10µ(3v1v2v3 + v3
1v3)

+λ(15v3
2 + 45v2

1v
2
2 + 15v4

1v2 + v6
1)〉

(b1 6= 0),

where (λ, µ) 6= (0, 0) and λb1 = µb2. Therefore ω6 is a (4n + 2) dimensional

vector bundle.

NOTE 6.2. Without the extra blowup, when b1 = b2 = b3 = 0, each of (v2 +

b1v
2
1)© (3v2

2 + 6b1v
2
1v2 + b2

1v
4
1) and [v3 + b3v

2
1 + b2(3v1v2 + b1v

3
1)]© (3v1v2 + b1v

3
1)

in ᾱ6 has the inverse image under the composite of σ̄(4) and the quotient map

α6/α5 → ᾱ6, separately.
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7. The relationship between the defining equations and the vector

bundles

In this section, we will establish the relationship between the equations defin-

ing Σk and the vector bundles used to construct Σ̃k. Then we give proofs of the

existence and density results stated in §5. We use the same local coordinates as

in §6. Since the cases Σ̃1 and Σ̃2 are straightforward, we begin with the case Σ̃3.

7.1 The case Σ̃3

The points of Σ3 in Σ2(= Σn,1F ) are characterized by the equations (3. 2),

(3. 3), and the subset Σ̃3 of Σ̃2 is defined by the zeros of the section Φ3 : Σ̃2 →
Hom(η3/η2, ι1). To clarify the relationship between Σ3 and Σ̃3, we will prove that

π2(Σ̃3 \ S̃3) = Σ3, where S̃3 = (π2|Σ̃3
)−1(S) and S = ∪i≥2Σ

n,iF . For this, we shall

examine a necessary and sufficient condition for a point of Σ̃2 \ S̃2 to lie above

Σ3, where S̃2 = (π2|Σ̃2
)−1(S). Note that π2|Σ̃2\S̃2

: Σ̃2 \ S̃2 → Σ2 is biholomorphic

and its restriction over Σ3 is a one sheeted cover of Σ3.

Let W be a small open neighbourhood of (0, 0) in Cn × Cp and choose the

local coordinates (x, t, ξ1
1) ∈ (π2|Σ̃2

)−1(W ) with ξ1
1 = 〈v1〉. Take a point P of

(π2|Σ̃2
)−1(W )\ S̃2 and let U be an open neighbourhood of P in (π2|Σ̃2

)−1(W )\ S̃2.

By definition of Σ̃2, the vector v1 at P satisfies the equation (3. 2). Hence the

point P lies above Σ3 if and only if there exists a vector v2 ∈ ξ1 at P satisfying

the equation (3. 3). Consider the map

(7. 1) (ft)2 + (ft)3 : (ξ1 ⊕ 〈v2
1〉) eξ1 → ι1

over U . The condition for the vector v2 at P means that the restriction of (7. 1)

to the subspace 〈v2 + v2
1〉 eξ1 vanishes at P .

As a subspace of the tensor product (ξ1 ⊕ 〈v2
1〉) ⊗ ξ1, the source space (ξ1 ⊕

〈v2
1〉) eξ1 of (7. 1) can be visualized by a diagram (Figure 1).

Figure 1 The diagram for Σ3

•
ξ1

6

?

ξ1¾ - 〈v2
1〉

〈v1〉

〈v1〉

The diagram represents the space (ξ1 ⊕ 〈v2
1〉) eξ1 by the coordinates with re-

spect to the standard basis. Each row represents ξ1 ⊕ 〈v2
1〉, and each column
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represents ξ1. In the diagram, we assume that the subspace 〈v1〉 of ξ1 is rep-

resented by the first coordinate. The symbol • indicates the quotient space

〈v3
1〉 = [(ξ1 ⊕ 〈v2

1〉) e〈v1〉] /(ξ1
e〈v1〉) considered as the subspace of (ξ1 ⊕ 〈v2

1〉) eξ1.

Since U is contained in Σ̃2, the hatched areas ξ1
e〈v1〉, 〈v1〉 eξ1 in Figure 1

are mapped by (7. 1) to zero. Hence (7. 1) (more precisely (ft)2) induces the

map ∆ from ξ̄1
eξ̄1 to ι1, where ξ̄1 = ξ1/〈v1〉. By definition of U , this ∆ is a

nondegenerate bilinear form over U . The space ξ̄1
eξ̄1 can be considered as the

shaded box in Figure 1.

Consider the map ε3 from • (= 〈v3
1〉) to ι1 induced by (7. 1). Since ∆ is

nondegenerate at P , the condition for v2 at P mentioned above is equivalent

to the condition that ε3 vanishes at P . By the expression (6. 2), we see that ε3

is T̄3(ft) : η3/η2 → ι1, which induces the section Φ3. Hence the point P lies

above Σ3 if and only if it is in Σ̃3. Since P is any point of Σ̃2 \ S̃2, we get that

π2(Σ̃3 \ S̃3) = Σ3. ¤

The map π2|Σ̃2\S̃2
: Σ̃2 \ S̃2 → Σ2 has the inverse map, and the map π2|Σ̃3\S̃3

:

Σ̃3 \ S̃3 → Σ3 is the restriction of π2|Σ̃2\S̃2
to Σ̃3 \ S̃3. Hence there exists the

inverse map of π2|Σ̃3\S̃3
: Σ̃3 \ S̃3 → Σ3.

Referring the map ∆, we consider the map ∆ : ξ̄1
eξ̄1 → ι1 over (π2|Σ̃3

)−1(W )

induced by (ft)2. Then S̃3 ∩ (π2|Σ̃3
)−1(W ) consists of the points of (π2|Σ̃3

)−1(W )

at which ∆ is degenerate. Since Σ̃3 is nonsingular and ∆ is not identically zero

(on each connected component of Σ̃3), it follows that S̃3 ∩ (π2|Σ̃3
)−1(W ) is a

nowhere dense analytic subset of (π2|Σ̃3
)−1(W ). Hence Σ̃3 \ S̃3 is dense in Σ̃3.

7.2 The case Σ̃4

We will prove that π2 ◦ π4(Σ̃4 \ S̃4) = Σ4, where S̃4 = (π2 ◦ π4|Σ̃4
)−1(S). For

this, we shall examine a sufficient condition for a point of P(ξ̄2) to lie above Σ4.

Note that π2|Σ̃3\S̃3
: Σ̃3 \ S̃3 → Σ3 is biholomorphic and the restriction of P(ξ̄2)

over (π2|Σ̃3\S̃3
)−1(Σ4) is a fibre bundle.

Let W be a small open neighbourhood of (0, 0) in Cn×Cp and choose the local

coordinates (x, t, ξ1
1 , ξ̄

1
2) ∈ (π2 ◦ π4)

−1(W ) (⊂ P(ξ̄2)) with ξ2
2 = 〈v1〉 ⊕ 〈v2 + b1v

2
1〉.

Take a point P of (π2 ◦ π4)
−1(W \ S) and let U be an open neighbourhood of P

in (π2 ◦ π4)
−1(W \ S).

The vector v1 at P satisfies the equation (3. 2), and hence P lies above Σ4 if

the vector v2 at P satisfies the equation (3. 3) and there exists a vector v3 ∈ ξ1

at P satisfying the equation (3. 4). Consider the maps

(7. 2)
(ft)2 + (ft)3 : (ξ1 ⊕ 〈v2

1〉) eξ1 → ι1,

(ft)2 + (ft)3 + (ft)4 : (ξ1 ⊕ 〈v1〉 eξ1 ⊕ 〈v3
1〉) eξ1 → ι1



50 M. TOMONOBU

over U . The condition for the vectors v2, v3 at P means that the restrictions of

(7. 2) to the subspaces 〈v2 +v2
1〉 eξ1, 〈v3 +3v1v2 +v3

1〉 eξ1 vanish at P , respectively.

As in the previous section, the source spaces of (7. 2) can be visualized by a

diagram (Figure 2).

Figure 2 The diagram for Σ4

•
ξ1

6

?

ξ1

6

?

ξ1

¾ -
〈v1〉 dξ1

¾ -

ξ1¾ -

〈v1〉 〈v2
1〉 〈v3

1〉

〈v1〉 〈v2
1〉

〈v1〉

〈v1〉•

Since U lies above Σ̃3, the symbols • (= 〈v3
1〉) in Figure 2 are mapped by (7. 2)

to zero. The other symbols except the dashed box are the same as in Figure 1.

The dashed box is the space

[
(ξ̄1 ⊕ 〈v2

1〉) eξ̄1

]⊕ [
(〈v1〉 eξ̄1 ⊕ 〈v3

1〉) e〈v1〉
]

over U .

Consider the subspace

K4 =
[〈v̄2 + v2

1〉 eξ̄1

]⊕ [〈3v1v̄2 + v3
1〉 e〈v1〉

]

of the dashed box, and let δ4 be the map from K4 to ι1 ⊕ ι1 induced by (7. 2).

Over U , the map ∆ (on the lower left shaded box in Figure 2), which is the

pullback of ∆ of §7.1, is nondegenerate. Hence the condition for v2, v3 at P

mentioned above is equivalent to the condition that δ4 vanishes at P . Let ε4 be

the map from K4 to ι1 induced by
∑4

i=2(ft)i. Then the condition for δ4 at P is

equivalent to the condition that ε4 vanishes at P .

By the condition for ε4 at P , we perform the following operations. At each

point of U , choose two vectors in K4 and let (v2 + v2
1)V2, (3v1v2 + v3

1)v1 be their

representatives, where V2 ∈ ξ1 is some vector. Insert these representatives to the

third and fourth rows in Table 2, where V3, V4 ∈ ξ1 are some vectors.
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Table 2 The table for Y4

1 V4

v1 3V3

v2 + v2
1 3V2

V3 + 3v1v2 + v3
1 v1

Applying Lemma 2.1 (i) to Table 2, we get the vector

Y4 = V4 + 4v1V3 + 3(v2 + v2
1)V2 + (3v2

1v2 + v4
1).

Then the point P lies above Σ4 if Y4 at P is mapped by
∑4

i=1(ft)i to zero for all

V2, V3, V4 ∈ ξ1.

At a point of U with b1 6= 0, we can consider Y4 as a representative of a basis

element of ζ4/η3 in ζ4, and also
∑4

i=1(ft)i on Y4 as T4(ft) on Y4. Indeed, by the

expression (6. 3), the space ζ4/η3 has a basis of the form 3(v̄2+b1v
2
1)V̄

(i)
2 +(3v2

1 v̄2+

b1v
4
1) (V̄

(i)
2 ∈ ξ̄1, 1 ≤ i ≤ n), and an element 3(v̄2 + b1v

2
1)V̄2 +(3v2

1 v̄2 + b1v
4
1) of the

basis has a representative V4 +4v1V3 +3(v2 +b1v
2
1)V2 +(3v2

1v2 +b1v
4
1) (V2, V3, V4 ∈

ξ1) in ζ4. At a point of U with b1 6= 0, by a linear change of the coordinates v2,

we can assume that b1 = 1 in the representative. Then the representative is Y4,

and T4(ft) on Y4 is essentially
∑4

i=1(ft)i on Y4.

Then the following claim is useful.

CLAIM 7.1. At every point of Σ̃4 ∩ U , we have b1 6= 0.

Proof. At a point of Σ̃4 ∩ U , the map T̄4(ft) : ζ4/η3 → ι1 vanishes, and then, by

the expression (6. 3), so is the map from 〈v̄2+b1v
2
1〉 eξ̄1 to ι1 induced by

∑3
i=2(ft)i.

At the point, if b1 = 0 then the restriction of the map ∆ to 〈v̄2〉 eξ̄1 vanishes.

This contradicts the fact that ∆ is nondegenerate over U . The claim is proved.

Because Σ̃4 is the zeros of Φ4 induced by T̄4(ft), the above argument shows

that if the point P is in Σ̃4 then it lies above Σ4. Since P is any point of

(π2 ◦ π4)
−1(W \ S), we see that π2 ◦ π4(Σ̃4 \ S̃4) ⊂ Σ4.

The converse also holds. Indeed, for each point Q of Σ4 ∩ W there exist

vectors v1, v2 ∈ ξ1 at Q satisfying (3. 2),(3. 3). These determine a point P of

(π2 ◦π4)
−1(W \S) (⊂ P(ξ̄2)); for such Q, v1, v2, the point P is given by (Q, ξ1

1 , ξ̄
1
2)

with ξ2
2 = 〈v1〉 ⊕ 〈v2 + v2

1〉. By definition of Σ̃4, this P is in Σ̃4.

Thus we get that π2 ◦ π4(Σ̃4 \ S̃4) = Σ4. ¤

For any point Q of Σ4 ∩ W , a point P of Σ̃4 \ S̃4 is given as above. By

the nondegeneracy of ∆, such a point P is unique; indeed, there exists a unique
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vector v1 ∈ ξ1 at Q satisfying (3. 2) and there exists a unique vector v̄2 ∈ ξ̄1 at

Q such that ε4 vanishes at P . This implies the existence of the inverse map of

π2 ◦ π4|Σ̃4\S̃4
: Σ̃4 \ S̃4 → Σ4.

Consider the map ∆ over (π2 ◦ π4|Σ̃4
)−1(W ), which is the pullback of ∆ of

§7.1. Then S̃4 ∩ (π2 ◦ π4|Σ̃4
)−1(W ) consists of the points of (π2 ◦ π4|Σ̃4

)−1(W ) at

which ∆ is degenerate. As in §7.1, we see that Σ̃4 \ S̃4 is dense in Σ̃4.

NOTE 7.1. Applying Lemma 4.2 to Y4, we get that

σ(Y4) = 4v1 © (V3 +
3

2
v1V2 +

3

2
v1v2 + v3

1) + 3(v2 + v2
1)© (V2 + v2

1),

which is a representative of an element of (ξ1
1©η3 +ξ2

2©ξ2)/(ξ
1
1©ξ2). Following

this recipe, we defined ζ4 as in §5.4.

7.3 The case Σ̃5

We will prove that π2 ◦ π4(Σ̃5 \ S̃5) = Σ5, where S̃5 = (π2 ◦ π4|Σ̃5
)−1(S). For

this, we shall examine a necessary and sufficient condition for a point of Σ̃4 \ S̃4

to lie above Σ5. Note that π2 ◦ π4|Σ̃4\S̃4
: Σ̃4 \ S̃4 → Σ4 is biholomorphic and its

restriction over Σ5 is a one sheeted cover of Σ5.

Let W be a small open neighbourhood of (0, 0) in Cn × Cp, and choose the

local coordinates (x, t, ξ1
1 , ξ̄

1
2) ∈ (π2 ◦ π4|Σ̃4

)−1(W ) with ξ2
2 = 〈v1〉 ⊕ 〈v2 + b1v

2
1〉.

Take a point P of (π2 ◦ π4|Σ̃4
)−1(W ) \ S̃4 and let U be an open neighbourhood of

P in (π2 ◦ π4|Σ̃4
)−1(W ) \ S̃4. Applying Claim 7.1 to this U , by a linear change of

the coordinates v2, we can assume that b1 = 1 on U .

The vectors v1, v2 at P satisfy the equations (3. 2), (3. 3), and hence P lies

above Σ5 if and only if there exist vectors v3, v4 ∈ ξ1 at P satisfying the equations

(3. 4), (3. 5). Consider the maps

(7. 3)

∑4
i=2(ft)i : (ξ1 ⊕ 〈3v1v2 + v3

1〉) eξ1 → ι1,
∑5

i=2(ft)i : (ξ1 ⊕ 〈v1〉 eξ1 ⊕ 〈3v2
2 + 6v2

1v2 + v4
1〉) eξ1 → ι1

over U . The condition for the vectors v3, v4 at P means that the restrictions of

(7. 3) to the subspaces 〈v3 + 3v1v2 + v3
1〉 eξ1, 〈v4 + 4v1v3 + 3v2

2 + 6v2
1v2 + v4

1〉 eξ1

vanish at P , respectively.

As in the previous sections, the source spaces of (7. 3) can be visualized by a

diagram (Figure 3).
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Figure 3 The diagram for Σ5

•
ξ1

6

?

ξ1

6

?

ξ1

¾ -
〈v1〉 dξ1

¾ -

ξ1¾ -

〈v1〉 〈v2
1〉 〈3v2

2 + 6v2
1v2 + v4

1〉

〈v1〉 〈3v1v2 + v3
1〉

〈v1〉

〈v1〉.

Since U is contained in Σ̃4, the symbol . (= 〈3v2
1v2 + v4

1〉) in Figure 3 is

mapped by (7. 3) to zero. The other symbols except the dashed box are the same

as in Figure 2. The dashed box is the space

[
(ξ̄1 ⊕ 〈3v1v2 + v3

1〉) eξ̄1

]⊕ [
(〈v1〉 eξ̄1 ⊕ 〈3v2

2 + 6v2
1v2 + v4

1〉) e〈v1〉
]

over U .

Consider the subspace

K5 =
[〈v̄3 + 3v1v2 + v3

1〉 eξ̄1

]⊕ [〈4v1v̄3 + 3v2
2 + 6v2

1v2 + v4
1〉 e〈v1〉

]

of the dashed box, and let δ5 be the map from K5 to ι1 ⊕ ι1 induced by (7. 3).

Over U , the map ∆ (on the lower left shaded box in Figure 3) is nondegenerate.

Hence the condition for v3, v4 at P mentioned above is equivalent to the condition

that δ5 vanishes at P . Let ε5 be the map from K5 to ι1 induced by
∑5

i=2(ft)i.

Then the condition for δ5 at P is equivalent to the condition that ε5 vanishes at

P .

We can consider the space ξ̄1
e〈v̄2 + v2

1〉 as a subspace of the dashed box, and

since U is contained in Σ̃4, this space is mapped to zero under the map induced

by
∑3

i=2(ft)i. On the other hand, over U the map ∆ (on the shaded box in the

dashed box) is nondegenerate. Bearing these two facts in mind, by the condition

for ε5 at P , we perform the following operations (cf. the argument in §7.1). At

each point of U , choose two vectors in K5 and let (V3 + 3v1v2 + v3
1)v2, (4v1V3 +

3v2
2 + 6v2

1v2 + v4
1)v1 be their representatives, where V3 ∈ ξ1 is some vector. Insert

these representatives to the fourth and fifth rows in Table 3, where V4, V5 ∈ ξ1

are some vectors.
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Table 3 The table for Y5

1 V5

v1 4V4

v2 + v2
1 6V3

V3 + 3v1v2 + v3
1 4v2

V4 + 4v1V3 + 3v2
2 + 6v2

1v2 + v4
1 v1

Applying Lemma 2.1 (i) to Table 3, we get the vector

Y5 = V5 + 5v1V4 + 10(v2 + v2
1)V3 + (15v1v

2
2 + 10v3

1v2 + v5
1).

Then the point P lies above Σ5 if and only if Y5 at P is mapped by
∑5

i=1(ft)i to

zero for all V3, V4, V5 ∈ ξ1.

By Claim 7.1 we have b1 6= 0 at every point of U , and hence we can consider

Y5 as a representative of a basis element of ζ5/ζ4 in ζ5 (for the expression (6. 6),

substitute b1 = 1), and also
∑5

i=1(ft)i on Y5 as T5(ft) on Y5. Hence the point P

lies above Σ5 if and only if it is in Σ̃5. Since P is any point of Σ̃4 \ S̃4, we get

that π2 ◦ π4(Σ̃5 \ S̃5) = Σ5. ¤

Since π2 ◦π4|Σ̃4\S̃4
: Σ̃4 \ S̃4 → Σ4 has the inverse map, as in §7.1, there exists

the inverse map of π2 ◦ π4|Σ̃5\S̃5
: Σ̃5 \ S̃5 → Σ5. The density of Σ̃5 \ S̃5 in Σ̃5

follows from the same argument as in §7.2.

7.4 The case Σ̃′
5

In this section, we will prove that π2 ◦ π4 ◦ π′5(Σ̃
′
5 \ S̃ ′5) = Σ5, where S̃ ′5 =

(π2 ◦π4 ◦π′5|Σ̃′5)−1(S). For this, we shall examine a sufficient condition for a point

of P(ξ̄3) to lie above Σ5. Note that π2 ◦ π4|Σ̃5\S̃5
: Σ̃5 \ S̃5 → Σ5 is biholomorphic

and the restriction of P(ξ̄3) over Σ̃5 \ S̃5 is a fibre bundle.

Let W be a small open neighbourhood of (0, 0) in Cn × Cp, and choose the

local coordinates (x, t, ξ1
1 , ξ̄

1
2 , ξ̄

1
3) ∈ (π2 ◦π4 ◦π′5)

−1(W ) (⊂ P(ξ̄3)) with ξ3
3 = 〈v1〉⊕

〈v2+b1v
2
1〉⊕〈v3+b3v

2
1 +b2(3v1v2+b1v

3
1)〉. Take a point P of (π2◦π4◦π′5)−1(W \S)

and let U be an open neighbourhood of P in (π2 ◦ π4 ◦ π′5)
−1(W \ S). Applying

Claim 7.1 to this U , by linear changes of the coordinates v2, v3, we can assume

that b1 = 1, b3 = 0 on U .

The vectors v1, v2 at P satisfy the equations (3. 2), (3. 3), and hence P lies

above Σ5 if the vector v3 at P satisfies the equation (3. 4) and there exists a

vector v4 ∈ ξ1 at P satisfying the equation (3. 5).
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We again consider the maps and the spaces in the previous section, but over

U of this section. The condition for the vectors v3, v4 at P is equivalent to

the condition that ε5 vanishes at P . Note that the space
[
ξ̄1

e〈4(v̄2 + v2
1)〉

] ⊕
〈4(3v1v2 + v3

1)v̄2 + 3v1v
2
2 + 6v3

1v2 + v5
1〉 can be considered as a subspace of the

dashed box in Figure 3, and since U lies above Σ̃5, this space is mapped to zero

under the map induced by
∑5

i=2(ft)i.

By the condition for ε5 at P , we perform the following operations. At each

point of U , choose two vectors in K5 and let (v3 + 3v1v2 + v3
1)V2, (4v1v3 + 3v2

2 +

6v2
1v2 + v4

1)v1 be their representatives, where V2 ∈ ξ1 is some vector. Insert these

representatives to the fourth and fifth rows in Table 4, where V3, V4, V5 ∈ ξ1 are

some vectors.

Table 4 The table for Y ′
5

1 V5

v1 4V4

v2 + v2
1 6V3

v3 + 3v1v2 + v3
1 4V2

V4 + 4v1v3 + 3v2
2 + 6v2

1v2 + v4
1 v1

Applying Lemma 2.1 (i), we get the vector

Y ′
5 = V5 + 5v1V4 + 6(v2 + v2

1)V3 + 4(v3 + 3v1v2 + v3
1)V2

+ (4v2
1v3 + 3v1v

2
2 + 6v3

1v2 + v5
1).

By eliminating the term 3v1v
2
2 (see Note 7.2), we rewrite Y ′

5 in the simpler

form

Y ′′
5 = V5 + 5v1V4 + 5(v2 + v2

1)V
′
3 + 5(v3 + 3v1v2 + v3

1)V
′
2 + (v2 + v2

1)v3

− (v3 + 3v1v2 + v3
1)v2 + (4v2

1v3 + 3v1v
2
2 + 6v3

1v2 + v5
1)

= V5 + 5v1V4 + 5(v2 + v2
1)V

′
3 + 5(v3 + 3v1v2 + v3

1)V
′
2

+ (5v2
1v3 + 5v3

1v2 + v5
1),

where 4V2 = 5V ′
2 − v2, 6V3 = 5V ′

3 + v3. Then the point P lies above Σ5 if Y ′′
5 at

P is mapped by
∑5

i=1(ft)i to zero for all V ′
2 , V

′
3 , V4, V5 ∈ ξ1.

By an argument similar to the proof of Claim 7.1, we can prove the following

claim.

CLAIM 7.2. At every point of Σ̃′
5 ∩ U , we have b1b2 6= 0.



56 M. TOMONOBU

By Claim 7.2, at every point of Σ̃′
5∩U we can consider Y ′′

5 as a representative

of a basis element of ω5/ζ5 in ω5 (for the expression (6. 8) in the case v2 6= 0,

substitute b1 = b2 = 1, b3 = 0), and also
∑5

i=1(ft)i on Y ′′
5 as T5(ft) on Y ′′

5 . It

follows that if the point P is in Σ̃′
5 then it lies above Σ5. Since P is any point of

(π2 ◦ π4 ◦ π′5)
−1(W \ S), we see that π2 ◦ π4 ◦ π′5(Σ̃

′
5 \ S̃ ′5) ⊂ Σ5.

By the same argument as in §7.2, the converse also holds. Thus we get that

π2 ◦ π4 ◦ π′5(Σ̃
′
5 \ S̃ ′5) = Σ5. ¤

By the nondegeneracy of ∆, as in §7.2, there exists the inverse map of π2 ◦
π4 ◦ π′5|Σ̃′5\S̃′5 : Σ̃′

5 \ S̃ ′5 → Σ5. The density of Σ̃′
5 \ S̃ ′5 in Σ̃′

5 follows from the same

argument as in §7.2.

NOTE 7.2. Based on Y ′
5 , we can make another expression of ω5/ζ5 similar to

(6. 8), but the calculations to get (6. 8) fail. For this, we eliminated the term

3v1v
2
2 in Y ′

5 as a representative of an element of ω5/ζ5 in ω5.

NOTE 7.3. When we consider Y ′′
5 as a representative of a basis element of ω5/ζ5

in ω5, we used not the case b1 6= 0, but the case v2 6= 0 of the expression (6. 8).

The reason for this is that Y ′′
5 is an element of not a quotient space of ω5 but ω5,

and the case v2 6= 0 of the expression (6. 8) is closer to ω5.

7.5 The case Σ̃6

We will prove that π2 ◦ π4 ◦ π′5 ◦ ρ(Σ̃6 \ S̃6) = Σ6, where S̃6 = (π2 ◦ π4 ◦ π′5 ◦
ρ|Σ̃6

)−1(S). The map π2 ◦π4 ◦π′5|Σ̃′5\S̃′5 : Σ̃′
5 \ S̃ ′5 → Σ5 is biholomorphic. By Claim

7.2, the center of the extra blowup ρ is contained in S̃ ′5. (This is seen by using the

local coordinates of P(ᾱ6) given in §6.5.) Hence π2◦π4◦π′5◦ρ|Σ̃′′5\S̃′′5 : Σ̃′′
5\S̃ ′′5 → Σ5

is biholomorphic, where S̃ ′′5 = (π2 ◦ π4 ◦ π′5 ◦ ρ|Σ̃′′5 )−1(S), and its restriction over

Σ6 is a one sheeted cover of Σ6. So we shall examine a necessary and sufficient

condition for a point of Σ̃′′
5 \ S̃ ′′5 to lie above Σ6.

Let W be a small open neighbourhood of (0, 0) in Cn × Cp, and choose

the local coordinates (x, t, ξ1
1 , ξ̄

1
2 , ξ̄

1
3 , ᾱ

1
6) ∈ (π2 ◦ π4 ◦ π′5 ◦ ρ|Σ̃′′5 )−1(W ) with ξ3

3 =

〈v1〉⊕ 〈v2 + b1v
2
1〉⊕ 〈v3 + b3v

2
1 + b2(3v1v2 + b1v

3
1)〉, ᾱ1

6 = 〈3λX̄ +2µȲ 〉, where X =

(v2+b1v
2
1)©(3v2

2+6b1v
2
1v2+b2

1v
4
1), Y = (v3+b3v

2
1+b2(3v1v2+b1v

3
1))©(3v1v2+b1v

3
1),

and X̄, Ȳ ∈ ᾱ6 are the equivalent classes of X,Y ∈ α6, respectively. Take a point

P of (π2 ◦ π4 ◦ π′5 ◦ ρ|Σ̃′′5 )−1(W ) \ S̃ ′′5 and let U be an open neighbourhood of P in

(π2 ◦ π4 ◦ π′5 ◦ ρ|Σ̃′′5 )−1(W ) \ S̃ ′′5 . Applying Claim 7.2 to this U , by linear changes

of the coordinates v2, v3, we can assume that b1 = b2 = 1, b3 = 0 on U .

The vectors v1, v2, v3 at P satisfy the equations (3. 2), (3. 3), (3. 4), and hence

P lies above Σ6 if and only if there exist vectors v4, v5 ∈ ξ1 at P satisfying the
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equations (3. 5), (3. 6). Consider the maps

(7. 4)

∑5
i=2(ft)i : (ξ1 ⊕ 〈4v1v3 + 3v2

2 + 6v2
1v2 + v4

1〉) eξ1 → ι1,

∑6
i=2(ft)i :

(ξ1 ⊕ 〈v1〉 eξ1 ⊕ 〈10v2v3 + 10v2
1v3 + 15v1v

2
2 + 10v3

1v2 + v5
1〉) eξ1 → ι1

over U . The condition for the vectors v4, v5 at P means that the restrictions of

(7. 4) to the subspaces 〈v4 + 4v1v3 + 3v2
2 + 6v2

1v2 + v4
1〉 eξ1, 〈v5 + 5v1v4 + 10v2v3 +

10v2
1v3 + 15v1v

2
2 + 10v3

1v2 + v5
1〉 eξ1 vanish at P , respectively.

As in the previous sections, the source spaces of (7. 4) can be visualized by a

diagram (Figure 4).

Figure 4 The diagram for Σ6

•
ξ1

6

?

ξ1

6

?

ξ1

¾ -
〈v1〉 dξ1

¾ -

ξ1¾ -

〈v1〉 〈v2
1〉 〈10v2v3 + 10v2

1v3 + 15v1v
2
2 + 10v3

1v2 + v5
1〉

〈v1〉 〈4v1v3 + 3v2
2 + 6v2

1v2 + v4
1〉

〈v1〉

〈v1〉¦

Since U lies above Σ̃′
5, the symbol ¦ (= 〈4v2

1v3 +3v1v
2
2 +6v3

1v2 +v5
1〉) in Figure

4 is mapped by (7. 4) to zero (cf. the vector Y ′
5 in §7.4). The other symbols

except the dashed box are the same as in Figure 3. The dashed box is the space

[
(ξ̄1 ⊕ 〈4v1v3 + 3v2

2 + 6v2
1v2 + v4

1〉) eξ̄1

]

⊕ [
(〈v1〉 eξ̄1 ⊕ 〈10v2v3 + 10v2

1v3 + 15v1v
2
2 + 10v3

1v2 + v5
1〉) e〈v1〉

]

over U .

Consider the subspace

K6 =
[〈v̄4 + 4v1v3 + 3v2

2 + 6v2
1v2 + v4

1〉 eξ̄1

]

⊕ [〈5v1v̄4 + 10v2v3 + 10v2
1v3 + 15v1v

2
2 + 10v3

1v2 + v5
1〉 e〈v1〉

]

of the dashed box, and let δ6 be the map from K6 to ι1 ⊕ ι1 induced by (7. 4).

Over U , the map ∆ (on the lower left shaded box in Figure 4) is nondegenerate.
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Hence the condition for v4, v5 at P mentioned above is equivalent to the condition

that δ6 vanishes at P . Let ε6 be the map from K6 to ι1 induced by
∑6

i=2(ft)i.

Then the condition for δ6 at P is equivalent to the condition that ε6 vanishes at

P .

For the same reason as in §7.3, we perform the following operations. At

each point of U , choose two vectors in K6 and let (V4 + 4v1v3 + 3v2
2 + 6v2

1v2 +

v4
1)v2, (5v1V4 +10v2v3 +10v2

1v3 +15v1v
2
2 +10v3

1v2 + v5
1)v1 be their representatives,

where V4 ∈ ξ1 is some vector. Insert these representatives to the fifth and sixth

rows in Table 5, where V3, V5, V6 ∈ ξ1 are some vectors.

Table 5 The table for Y6

1 V6

v1 5V5

v2 + v2
1 10V4

v3 + 3v1v2 + v3
1 10V3

V4 + 4v1v3 + 3v2
2 + 6v2

1v2 + v4
1 5v2

V5 + 5v1V4 + 10v2v3 + 10v2
1v3 + 15v1v

2
2 + 10v3

1v2 + v5
1 v1

Applying Lemma 2.1 (i) to Table 5, we get the vector

Y6 = V6 + 6v1V5 + 15(v2 + v2
1)V4 + 10(v3 + 3v1v2 + v3

1)V3

+ (30v1v2v3 + 10v3
1v3 + 15v3

2 + 45v2
1v

2
2 + 15v4

1v2 + v6
1).

Then the point P lies above Σ6 if and only if Y6 at P is mapped by
∑6

i=1(ft)i to

zero for all V3, V4, V5, V6 ∈ ξ1.

By Claim 7.2, we have b1b2 6= 0 at every point of U . On the other hand, since

U is contained in Σ̃′′
5, over U we have (λ, µ) 6= (0, 0) and λb1 = µb2. Hence we can

consider Y6 as a representative of a basis element of ω6/ω5 in ω6 (for the expression

(6. 10) in the case v2 6= 0, substitute b1 = b2 = 1, b3 = 0, λ = µ = 1), and also∑6
i=1(ft)i on Y6 as T6(ft) on Y6. Hence the point P lies above Σ6 if and only if it

is in Σ̃6. Since P is any point of Σ̃′′
5 \ S̃ ′′5 , we get that π2 ◦π4 ◦π′5 ◦ρ(Σ̃6 \ S̃6) = Σ6.

¤

Since π2 ◦ π4 ◦ π′5 ◦ ρ|Σ̃′′5\S̃′′5 : Σ̃′′
5 \ S̃ ′′5 → Σ5 has the inverse map, as in §7.1,

there exists the inverse map of π2 ◦ π4 ◦ π′5 ◦ ρ|Σ̃6\S̃6
: Σ̃6 \ S̃6 → Σ6. The density

of Σ̃6 \ S̃6 in Σ̃6 follows from the same argument as in §7.2.

NOTE 7.4. The center {b1 = b2 = 0} ⊂ Σ̃′
5 of the extra blowup ρ is the locus

corresponding to E7; the locus {b1 = 0} ⊂ Σ̃′
5 is projected onto E6 and the locus
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{b2 = 0} ⊂ Σ̃′
5 is projected onto D6. (For more details, see the next section.) It

is worth comparing our locus b1 = b2 = 0 with Gaffney’s locus B1 = B2 = 0 in

[4, Proposition 1.6].

8. Appendix

Desingularizations of the closures D5, E6, D6, E7, E8, X9 are given by restrict-

ing the desingularizations Σ̃4, Σ̃5, Σ̃
′
5, Σ̃6 to some loci. In this appendix we will

explain these facts.

In the local coordinates of P(ξ̄2) given in §6.2, the locus {b1 = 0} ⊂ Σ̃4 gives

a desingularization of D5. Indeed, by Claim 7.1, for every point P ∈ Σ̃4 with

b1 = 0 its image π2 ◦ π4(P ) is in S (= ∪i≥2Σ
n,iF ). Moreover, the following claim

holds.

CLAIM 8.1. For every point P ∈ Σ̃4 with b1 = 0 its image π2 ◦ π4(P ) is in D5.

Proof. At a point P ∈ Σ̃4 with b1 = 0, the map T4(ft) vanishes on

ζ4 = ξ1 ⊕ 〈v1〉 eξ1 ⊕ 〈v3
1〉 ⊕ 〈v2〉 eξ̄1 ⊕ 〈3v2

1v2〉
(see the expression (6. 3)). Replace the local coordinates (x, t) of Cn × Cp by

the local coordinates centered at π2 ◦ π4(P ) with v1 = ∂
∂x1

, v2 = ∂
∂x2

. Then at

π2 ◦ π4(P ), the function ft does not have the terms involving monomials

xi (i = 1, . . . , n), x1xi (i = 1, . . . , n), x3
1, x2xi (i = 2, . . . , n), x2

1x2,

that is, it is written in the form

ft(x) = a2x1x
2
2 + a3x

3
2 + b11x

4
1 +

n∑
i=3

2b1ix
2
1xi +

n∑
i,j=3

bijxixj + · · · ,

where ai, bij ∈ C{t} (cf. [5, Proof of Lemma 2.3.2]). It follows from this that

π2 ◦ π4(P ) is in D5.

Then the almost same argument as for Theorem 5.3 shows that

(i) in the local coordinates of P(ξ̄2) given in §6.2, the restriction of π2 ◦ π4 to

the locus {b1 = 0} ∩ Σ̃4 is a desingularization of D5.

Similarly, we can show the following facts:

(ii) In the local coordinates of Σ̃4 given in §6.3, the restriction of π2 ◦π4 to the

locus {b1 = 0} ∩ Σ̃5 is a desingularization of E6.

(iii) In the local coordinates of P(ξ̄3) given in §6.4, the restriction of π2 ◦π4 ◦π′5
to the locus {b2 = 0} ∩ Σ̃′

5 is a desingularization of D6, and its restriction

to the locus {b1 = b2 = 0} ∩ Σ̃′
5 is a desingularization of E7.
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(iv) In the local coordinates of Σ̃′′
5 given in §6.6, the restriction of π2 ◦π4 ◦π′5 ◦ρ

to the locus {b1 = λ/µ = 0} ∩ Σ̃6 is a desingularization of E8, and to the

locus {b2 = µ/λ = 0} ∩ Σ̃6 is a desingularization of X9.

These loci are defined in terms of local coordinates. However all can be

defined independently of coordinates.
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