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Abstract. A problem which is dual to solving the linear ordinary differential
equation is considered. That is, given a function f(x), a generalized differential
operator ϕ(d/dx) is found so as to satisfy ϕ(d/dx)f(x)θ(x) = δ(x), where θ(x)
and δ(x) stand for the Heaviside function and the Dirac measure, respectively.
The general formulae are presented for ϕ(d/dx) and for its representation in terms
of the convolution integral, which is what was previously proposed by modifying
the framework of Mikusiński’s operational calculus. Various explicit examples are
considered. Especially, the case of f(x) = (log x)m, m being a positive integer, is
analyzed completely, that is, the convolution representation formula for ϕ(d/dx)
is explicitly calculated and it is confirmed that ϕ(d/dx)(log x)mθ(x) = δ(x) is
satisfied in terms of the convolution integral.

1. Introduction

To solve a linear ordinary differential equation, ϕ(D, x)f(x) = 0 (D ≡
d/dx), amounts to find f(x) for a given differential operator ϕ(D, x). We wish

to consider a problem which is dual to this problem, that is, to find such a

“differential operator” that the corresponding equation is satisfied by a given

function f(x). But, in order for our problem to be well-posed, the setup of the

problem needs some arrangements.

If we admit the “differential operator” which depends not only on D but also

on x explicitly, there always exists a trivial solution and independent solutions

are of formidable variety. Thus this situation is uninteresting. Hence we exclude

such a general case, that is, we restrict ourselves to considering the situation in

which the “differential operator” is independent of x. Then, if the “differential

operator” ϕ(D) is restricted to a genuine (local) differential operator, the solution

will not exist for most cases. Hence, we should admit more general functions of

D, such as constant coefficient pseudo-differential operators, that is, we suppose
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that the function ϕ is arbitrary in principle. We call ϕ(D) for an arbitrary

function ϕ 1) a generalized differential operator. If we set up the problem in the

sense of ϕ(D)f(x) = 0, it is inconvenient because if a solution ϕ(D) is found,

φ(D)ϕ(D) is also a solution for any well-defined φ(D). Hence, we normalize the

solution by requiring ϕ(D)f(x) = δ(x), where δ(x) stands for the Dirac measure.

Furthermore, in order to avoid the ambiguity caused by adding solutions of the

corresponding homogeneous equation, we restrict the function considered to the

one whose support is included in R+ ≡ {x|x = 0}. That is, we consider f(x)θ(x)

rather than f(x), where θ(x) = 1 for x = 0, θ(x) = 0 for x < 0.

From the above consideration, we set up our problem in the following way. 2)

PROBLEM 1.1. Given a well-behaved function f(x), find the generalized dif-

ferential operator ϕ(D) satisfying

ϕ(D)f(x)θ(x) = δ(x). (1. 1)

EXAMPLE. If f(x) = eax, then ϕ(D) = D − a is the solution to (1.1). Note

that the right-hand side of (1.1) arises from Dθ(x) = δ(x).

As a concrete framework of representing the generalized differential operator,

we adopt our previous formulation based on the convolution [3], 3) which is a

slight modification of the framework of Mikusiński’s operational calculus [2].

That is, for an arbitrary C1-class function F (x) whose support is included in

R+, we represent ϕ(D) in the following way:

ϕ(D)F (x) ≡
∫ x+0

−0

dy Ω(x − y)F ′(y). (1. 2)

Here, Ω is, in general, a distribution in the sense of Schwartz [4]. But, in particu-

lar, if it is a C1-class function whose support is included in R+ and if Ω(+0) = 0,

then (1.2) reduces to Mikusiński’s formula,

ϕ(D)F (x) =

∫ x

0

dy Φ(x − y)F (y), (1. 3)

by setting Φ = Ω′.

1) The function ϕ which we actually consider is such that the corresponding operator ϕ(D)
is definable by (1.2).

2) Extension of (1.1) to the case of several-variables is straightforward:
For x = (x1, x2, · · · , xn) and D = (D1, D2, · · ·Dn), we have only to set θ(x) ≡

∏
j θ(xj) and

δ(x) ≡
∏

j δ(xj).
3) Hereafter, we quote Ref. [3] as I.
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EXAMPLE. (Riemann-Liouville)

D−αF (x) =

∫ x

0

dy
(x − y)α−1

Γ (α)
F (y) (Rα > 0). (1. 4)

As is shown in I, it is convenient to introduce Schwartz’s pseudo-function

[4]: 4)

Yλ(x) =

Pf.
xλ−1

Γ (λ)
θ(x) for λ 6= 0,−1,−2, · · ·

δ(n)(x) for λ = −n = 0,−1,−2, · · · .

If we introduce a test function g(x) according to the definition of the distribution,∫
dx g(x)Yλ(x) is an entire function of λ. Therefore, the Riemann-Liouville

formula (1.4) can be extended to an arbitrary complex value of α. That is,

corresponding to (1.2), we obtain

D−αF (x) =

∫ x+0

−0

dy Yα+1(x − y)F ′(y). (1. 5)

The main results of the present paper are as follows. In §2, we show that the

solution to the above problem is given by

ϕ(D) =
1

L[f ](D)
,

where L[·] stands for the Laplace transform. Furthermore, it is shown that this

solution can be represented in the form of (1.2), that is, we obtain the following

identity: ∫ x+0

−0

dy L−1
[ p−1

L[f ](p)

]
(x − y)θ(x − y)

d

dy
[f(y)θ(y)] = δ(x),

where L−1[·] stands for the inverse Laplace transform. In §3, we discuss the

implication of the results presented in §2 by various concrete examples. In §4, we

explicitly demonstrate that the above identity indeed holds for f(x) = (log x)m,

m being a positive integer.

2. General consideration

The Laplace transform of F (x) is defined by

G(p) = L[F ](p) ≡
∫ ∞

0

dx e−pxF (x) (Rp > 0), (2. 1)

4) Pf. means Hadamard’s finite part; see Section II-2 of Ref. [4]. We omit writing Pf. in
what follows.
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and the inverse Laplace transform of G(p) is given by

F (x) = L−1[G](x) ≡ 1

2πi

∫ c+i∞

c−i∞
dp epxG(p). (2. 2)

THEOREM 1. The formal solution to the problem (1.1) is given by ϕ(D) =
1

L[f ](D)
, that is,

1

L[f ](D)
f(x)θ(x) = δ(x). (2. 3)

Proof. We see that (2.1) implies L[F (x)θ(x)](p) = L[F (x)](p); (2.2) yields

ϕ(D)L−1[G(p)](x) = L−1[ϕ(p)G(p)](x), and δ(x) = L−1[1](x). Hence, (1.1) can

be rewritten as

ϕ(D)L−1[L[fθ](p)](x) = L−1[ϕ(p)L[f ](p)](x) = L−1[1](x). (2. 4)

Taking the Laplace transforms of both sides, we find

ϕ(p)L[f ](p) = 1. (2. 5)

From (2.5), we obtain

ϕ(D) =
1

L[f ](D)
.

This is the formal solution to (1.1).

THEOREM 2. The convolution representation of (2.3) is given by∫ x+0

−0

dy L−1
[ p−1

L[f ](p)

]
(x − y)θ(x − y)

d

dy
[f(y)θ(y)] = δ(x). (2. 6)

Proof. Multiplying both sides of (2.3) by L[f ](D) and using δ(x) = Dθ(x), we

have

DL[f ](D)θ(x) = f(x)θ(x). (2. 7)

Since this formula holds for an arbitrary f(x), we may set

f(x) = L−1[p−1ϕ(p)](x).

Then (2.7) becomes

ϕ(D)θ(x) = L−1[p−1ϕ(p)](x)θ(x). (2. 8)
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Using (2.5), we rewrite (2.8) as

ϕ(D)θ(x) = L−1
[ p−1

L[f ](p)

]
(x)θ(x). (2. 9)

On the other hand, (1.2) with F (x) = θ(x) yields

Ω(x) = ϕ(D)θ(x). (2. 10)

Substituting (2.9) into (2.10), we obtain

Ω(x) = L−1
[ p−1

L[f ](p)

]
(x)θ(x). (2. 11)

By setting F (x) = f(x)θ(x) in (1.2), (1.1) and (2.11) yield (2.6).

EXAMPLE. For f(x) = eax, we have L[eax](p) = (p− a)−1. Then (2.11) implies

Ω(x) = L−1[1 − ap−1](x)θ(x) = δ(x) − aθ(x). Hence∫ x+0

−0

dy [δ(x−y)−aθ(x−y)]
d

dy
[eayθ(y)] = aeaxθ(x)+eaxδ(x)−aeaxθ(x) = δ(x).

Thus (2.6) is indeed satisfied.

In the above example, the genuine Laplace transform of eax exists only for

Ra < Rp. But we can remove this restriction by analytic continuation with

respect to a. We always make such extension of the Laplace transform as long

as possible.

Our problem is nonlinear in the sense that the solution for f(x) = c1f1(x) +

c2f2(x) is not a linear combination of those for f1(x) and f2(x).

EXAMPLE. For f(x) = cosh ax, we have L[cosh ax](p) = p(p2 − a2)−1. Then

(2.11) implies Ω(x) = L−1[1 − a2p−2](x)θ(x) = δ(x) − a2xθ(x). Hence∫ x+0

−0

dy [δ(x − y) − a2(x − y)θ(x − y)]
d

dy
[e±ayθ(y)] = δ(x) ± aθ(x),

so that we have δ(x) for putting cosh ay in place of e±ay in the integrand.
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3. Concrete examples of Theorem 1

The above consideration is heavily based on the Laplace transforms. From the

well-known table of Laplace transforms [1], 5) we quote the following formulae:

L[xα](p) = Γ (α + 1)p−α−1 (Rα > −1, Rp > 0); (3. 1)

L[log x](p) = −p−1 log(eγp) (Rp > 0), (3. 2)

L[(log x)2](p) = p−1[π2/6 + {log(eγp)}2] (Rp > 0); (3. 3)

L[µ(x, α − 1)](p) = Γ (α)p−1(log p)−α (Rα > 0, Rp > 1), (3. 4)

L[ν(x, α)](p) = p−α−1(log p)−1 (Rα > −1, Rp > 1), (3. 5)

where

µ(x, α) ≡
∫ ∞

0

ds
xssα

Γ (s + 1)
, (3. 6)

ν(x, α) ≡
∫ ∞

0

ds
xs+α

Γ (s + α + 1)
, (3. 7)

µ(x, 0) = ν(x, 0) = ν(x) ≡
∫ ∞

0

ds
xs

Γ (s + 1)
.

First, applying (3.1) to (2.3), we obtain the well-known result,

Dα+1Yα+1(x) = δ(x),

which follows from (1.6) with F (x) = θ(x).

Next, applying (3.2) and (3.3) to (2.7), we obtain

−(γ + log D)θ(x) = (log x) θ(x), (3. 8)

[ζ(2) + (γ + log D)2]θ(x) = (log x)2θ(x), (3. 9)

respectively, where π2/6 = ζ(2) has been used. Replacing x by eγx, writing

γ + log x = L(x) and then solving (3.8) and (3.9) with respect to log D, we

obtain [I, (3.2)] and [I, (3.3)], respectively.

Conversely, therefore, we solve the general formula for (log D)mθ(x) presented

in [I, (3.7)], namely,

(log D)mθ(x)

=
( [m/2]∑

l=0

1

l!

∑
k1=2,··· ,kl=2

(−1)m−|k|−l
m!

∏l
j=1 ζ(kj)∏l

j=1 kj · (m − |k|)!
Lm−|k|(x)

)
θ(x), (3. 10)

5) See p.137, p.148, p.149, p.225, p.225 of Ref.[1], respectively. Note that our “γ” stands for
the Euler constant γ = limn→∞(

∑n
k=1

1
k − log n) but not its exponentiated one. See also p.388

of Ref.[1].
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where |k| ≡
∑l

j=1 kj, with respect to L(x). Then the solution is seen to be

Lm(x)θ(x) = (−1)m
( [m/2]∑

l=0

1

l!

∑
k1=2,··· ,kl=2

m!
∏l

j=1 ζ(kj)∏l
j=1 kj · (m − |k|)!

(log D)m−|k|
)
θ(x).

(3. 11)

This can be shown as follows.

Substituting (3.10) with replacement of m by m−|k| into the right-hand side

of (3.11) and then canceling the factors (−1)m and (m − |k|)!, we find 6)

Lm(x)
?
=

[m/2]∑
l=0

1

l!

∑
kj=2; 15j5l

m!
∏l

j=1 ζ(kj)∏l
j=1 kj

·

[(m−|k|)/2]∑
l′=0

(−1)|k|+|k′|+l′

l′!

∑
k′

j′=2; 15j′5l′

∏l′

j′=1 ζ(k′
j′)∏l′

j′=1 k′
j′ · (m − |k| − |k′|)!

Lm−|k|−|k′|(x),

(3. 12)

where θ(x) on both sides has been omitted. By setting l̃ = l + l′, k̃j = kj (1 5
j 5 l) and k̃l+j′ = k′

j′ (1 5 j′ 5 l′), toghther with |k̃| = |k|+ |k′|, (3.12) becomes

Lm(x)
?
=

[m/2]∑
l̃=0

l̃∑
l′=0

(−1)l′

(l̃ − l′)! l′!

∑
k̃j=2; 15j5l̃

(−1)|k̃|m!
∏l̃

j=1 ζ(k̃j)∏l̃
j=1 k̃j · (m − |k̃|)!

Lm−|k̃|(x). (3. 13)

Since
∑l̃

l′=0
(−1)l′

(l̃−l′)! l′!
= (1−1)l̃

l̃ !
= δl̃ 0, we see that the right-hand side of (3.13) is

indeed equal to Lm(x). ¤
On the right-hand side of (3.11), if we replace log D by γ +log D, the formula

for (log x)m is obtained. Removing θ(x), replacing D by p and then multiplying

the resultant by p−1, we should obtain the Laplace transform of (log x)m owing

to (2.7). That is, we should have

L[(log x)m](p)

= (−1)mp−1

[m/2]∑
l=0

1

l!

∑
k1=2,··· ,kl=2

m!
∏l

j=1 ζ(kj)∏l
j=1 kj · (m − |k|)!

(γ + log p)m−|k|. (3. 14)

This is indeed the case, as is shown in the following way.

6) The symbol ?= means the equality to be established.
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We consider the generating functions of both sides of (3.14). The generating

function of the left-hand side is

L
[ ∞∑

m=0

αm

m!
(log x)m

]
(p) = L[xα](p) = Γ (α + 1)p−α−1.

On the other hand, the generating function of the right-hand side of (3.14), which

is denoted by

K(p; α) ≡
∞∑

m=0

αm

m!
[r.h.s. of (3.14)],

becomes as follows. Setting m − |k| = n, we change the summation over m into

that over n, and then perform calculation similar to the one done in I:

K(p; α) = p−1

∞∑
n=0

[−α(γ + log p)]n

n!

∞∑
l=0

1

l!

( ∑
k=2

(−1)k ζ(k)

k
αk

)l

= p−1 exp
(
− α(γ + log p) +

∑
k=2

ζ(k)

k
(−α)k

)
= p−1 exp[−α log p + log Γ (α + 1)]

= Γ (α + 1)p−α−1.

Thus the generating functions of both sides coincide. ¤
Digression. A similar calculation based on the generating function yields

[m/2]∑
l=0

1

l!

∑
k1=2,··· ,kl=2

1∏l
j=1 kj · (m − |k|)!

= 1.

Finally, applying (3.4) and (3.5) to (2.7), we obtain

(log D)−αθ(x) =
µ(x, α − 1)

Γ (α)
θ(x), (3. 15)

D−α(log D)−1θ(x) = ν(x, α)θ(x), (3. 16)

respectively. Substitutions of (3.6) into (3.15) and of (3.7) into (3.16) yield

(log D)−αθ(x) =

∫ ∞

0

dt Yα(t)Yt+1(x),

D−α(log D)−1θ(x) =

∫ ∞

0

dt Yt+α+1(x),



A PROBLEM DUAL TO SOLVING THE LINEAR DIFFERENTIAL EQUATION 17

respectively, where use has been made of Yλ(x) defined in (1.5). They are nothing

but two particular cases of [I, (5.10)], namely,

Dα(log D)βθ(x) =

∫ ∞

0

dt Y−β(t)Y−α+t+1(x).

4. Concrete examples of Theorem 2

In this section, we directly confirm (2.6) for f(x) = (log x)m.

4.1 The case of log x

From (3.2), we have

p−1

L[log x](p)
= − 1

γ + log p
. (4. 1)

On the other hand, the inverse Laplace transform of (3.5) with α = 0 yields

L−1
[ 1

p log p

]
(x) =

∫ ∞

0

ds
xs

Γ (s + 1)
. (4. 2)

Extending (4.2) in the sense of the distribution and multiplying it by D, we have

L−1
[ 1

log p

]
(x)θ(x) =

∫ ∞

0

ds Ys(x). (4. 3)

By scale transformation, (4.3) becomes

L−1
[ 1

γ + log p

]
(x)θ(x) = e−γ

∫ ∞

0

ds Ys(e
−γx). (4. 4)

Thus, from (4.1) and (4.4), we obtain 7)

Ωlog(x) ≡ L−1
[ p−1

L[log](p)

]
(x)θ(x) = −e−γ

∫ ∞

0

ds Ys(e
−γx). (4. 5)

Now, from (2.6), what we should calculate is

Hlog(x) ≡
∫ x+0

−0

dy Ωlog(x − y)
d

dy
(log y θ(y)). (4. 6)

7) Note that since Ωlog(+0) does not exist, we cannot construct the corresponding Φlog(x) of
the Mikusiński theory (see (1.3)).
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Substituting (4.5) into (4.6), we have

Hlog(x) = −
∫ ∞

0

ds
e−γs

Γ (s)
I1(x; s), (4. 7)

where

I1(x; s) ≡
∫ x+0

−0

dy (x − y)s−1θ(x − y)
d

dy
(log y θ(y)). (4. 8)

By setting y = xt, (4.8) becomes

I1(x; s) = xs−1(log x + J1(s))θ(x) (4. 9)

with

J1(s) ≡
∫ 1

−0

dt (1 − t)s−1 d

dt
(log t θ(t))

= lim
ε→0

∂

∂ε

∫ 1

−0

dt (1 − t)s−1 d

dt
(tε θ(t)).

After integration by parts, we encouter a beta-function integral. In this way, we

obtain

J1(s) = −γ − ψ(s), (4. 10)

where ψ(s) ≡ Γ ′(s)/Γ (s) is the digamma function. Substituting (4.9) with (4.10)

into (4.7), we have

Hlog(x) = −
∫ ∞

0

ds
e−γsxs−1

Γ (s)
(log x − γ − ψ(s))θ(x).

This integral is easily calculated as follows:

Hlog(x) = −e−γ

∫ ∞

0

ds
∂

∂s
Ys(e

−γx) = e−γY0(e
−γx) = δ(x).

Thus the right-hand side of (2.6) for f(x) = log x is reproduced.

4.2 The case of (log x)2

From (3.3), we have

p−1

L[(log x)2](p)
=

1

(log eγp)2 + ζ(2)

= − 1

α − α

( 1

log eαp
− 1

log eαp

)
,
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where α = γ + i
√

ζ(2). Hence, in the same way as in the case of log x, we obtain

Ωlog2(x) ≡ L−1
[ p−1

L[log2](p)

]
(x)θ(x) = − 1

α − α

∫ ∞

0

ds (e−αs − e−αs)Ys(x).

What we should calculate is

Hlog2(x) ≡
∫ x+0

−0

dy Ωlog2(x − y)
d

dy
((log y)2θ(y))

= − 1

α − α

∫ ∞

0

ds
e−αs − e−αs

Γ (s)
I2(x; s), (4. 11)

where

I2(x; s) ≡
∫ x+0

−0

dy (x − y)s−1θ(x − y)
d

dy
((log y)2 θ(y)). (4. 12)

By setting y = xt, (4.12) becomes

I2(x; s) = xs−1((log x)2 + 2(log x)J1(s) + J2(s))θ(x), (4. 13)

where J1(s) is given by (4.10) and

J2(s) ≡
∫ 1

−0

dt (1 − t)s−1 d

dt
((log t)2 θ(t))

= Γ (s) lim
ε→0

( ∂

∂ε

)2Γ (1 + ε)

Γ (s + ε)

= (ψ(s))2 + 2γψ(s) − ψ′(s) + γ2 + ζ(2)

= (α + ψ(s))(α + ψ(s)) − ψ′(s). (4. 14)

Substituting (4.10) and (4.14) into (4.13), we obtain

I2(x; s) = xs−1[(log x − α − ψ(s))(log x − α − ψ(s)) − ψ′(s)]θ(x). (4. 15)

Substituting (4.15) into (4.11), we find

Hlog2(x) = − 1

α − α

∫ ∞

0

ds
∂

∂s

[xs−1e−αs

Γ (s)
(log x − α − ψ(s))

− xs−1e−αs

Γ (s)
(log x − α − ψ(s))

]
θ(x)

=
1

α − α
lim
s→0

Ys(x)[e−αs(log x − α − ψ(s)) − e−αs(log x − α − ψ(s))].

(4. 16)

If ψ(s) had no singularity at s = 0, this limit would be Y0(x) = δ(x). Actually,

however, we know that ψ(s) behaves like −1/s near s = 0; hence this reasoning
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is wrong. But if this singularity were naively taken into account, we would

encounter an extra contribution of −δ(x), so that (4.16) would become equal

to 0 (incorrectly!). The problem essentially arises in the following way: If one

applies the usual rule for a limit of a product (i.e., lim AB = lim A · lim B if both

lim A and lim B exist) to

lim
s→0

s
∂

∂s
Ys(x) = lim

s→0
s(log x − ψ(s)) · Ys(x), (4. 17)

then one finds that (4.17) would be equal to δ(x). But this rule is no longer

applicable to the present case, because log x is undefined at x = 0. The correct

way of calculating (4.17) is to return to the original definition of the Schwartz

distribution, that is, before taking the limit, we should multiply a test function

g(x) and integrate the product over x. We assume that g(x) may be restricted

to the function that has its inverse Laplace transform, that is, we set

g(x) =

∫ ∞

0

dp e−pxL−1[g](p).

Then to show F (x) = δ(x) is equivalent to showing
∫

dx e−pxF (x) = 1 for any

p > 0. Applying this procedure to (4.17), we find

lim
s→0

s
∂

∂s

∫
dx e−pxYs(x) = lim

s→0
s

∂

∂s
p−s = 0.

Thus we see that (4.17) equals not δ(x) but 0.

We return to the original problem of evaluating (4.16). Applying the above

procedure to it, we obtain∫
dx e−pxHlog2(x)

=
1

α − α
lim
s→0

[( ∂

∂s
+ α − α

)
(p−se−αs) −

( ∂

∂s
+ α − α

)
(p−se−αs)

]
= 1,

that is, Hlog2(x) = δ(x).

4.3 The case of (log x)m

As is seen in (3.14), pL[(log x)m](p) is a polynomial in log p of order m. It has

m zero points −αk (k = 1, ...,m); it is natural to suppose that all of them are

different from each other 8) . Then we expand its inverse into partial fractions:

p−1

L[(log x)m](p)
=

m∑
k=1

hk

αk + log p
, (4. 18)

8) If not, we have only to change the expression infinitesimally. At the final step of the proof,
we make this change tend to zero.
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where hk’s are certain constants. Then, as before, we have

Ωlogm(x) ≡ L−1
[ p−1

L[logm](p)

]
(x)θ(x) =

m∑
k=1

hk

∫ ∞

0

ds e−αksYs(x).

Hence what we should calculate is

Hlogm(x) ≡
∫ x+0

−0

dy Ωlogm(x − y)
d

dy
((log y)mθ(y))

=
m∑

k=1

hk

∫ ∞

0

ds
e−αks

Γ (s)
Im(x; s), (4. 19)

where

Im(x; s) ≡
∫ x+0

−0

dy (x − y)s−1θ(x − y)
d

dy
((log y)m θ(y)).

As before, we write

Im(x; s) = xs−1

m∑
j=0

m!

j!(m − j)!
(log x)m−jJj(s),

where

Jj(s) ≡
∫ 1

−0

dt (1 − t)s−1 d

dt
((log t)j θ(t)). (4. 20)

It is convenient to rewrite (4.20) in the following way:

Jj(s) = Γ (s) lim
ε→0

( ∂

∂ε

)j Γ (1 + ε)

Γ (s + ε)

= Γ (s) lim
ε→0

( ∂

∂ε

)j
∫ ∞

0

dv
e−vvε

Γ (s + ε)

= Γ (s)

∫ ∞

0

dv v−s lim
λ→s

( ∂

∂λ

)j e−vvλ

Γ (λ)

= Γ (s)

∫ ∞

0

dv e−vv−s
( ∂

∂s

)j vs

Γ (s)
.

Thus we have

Im(x; s) = xs−1Γ (s)

∫ ∞

0

dv e−vv−s
(

log x +
∂

∂s

)m vs

Γ (s)

= Γ (s)

∫ ∞

0

dv e−vv−s
( ∂

∂s

)m xs−1vs

Γ (s)
.
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As was discussed in the case of (log x)2, it is necessary to introduce a test function

e−px. With v = pt, we have∫
dx e−pxIm(x; s) = Γ (s)

∫ ∞

0

dv e−vv−s
( ∂

∂s

)m

(p−svs)

= Γ (s)p−s+1

∫ ∞

0

dt e−ptt−s
( ∂

∂s

)m

ts

= Γ (s)p−s+1L[logm](p). (4. 21)

From (4.19) and (4.21), we obtain∫
dx e−pxHlogm(x) =

m∑
k=1

hk

∫ ∞

0

ds e−αksp−s+1L[logm](p)

=
m∑

k=1

hk

αk + log p
· pL[logm](p). (4. 22)

Owing to (4.18), the right-hand side of (4.22) equals 1. Thus we have confirmed

Hlogm(x) = δ(x).
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