CANONICAL FORM OF ELEMENT OF JORDAN ALGEBRA BY GROUP $\operatorname{Spin}(9)$

By
Takashi Miyasaka, Osamu Shukuzawa and Ichiro Yokota

(Received May 20, 2009)

Abstract

We give the canonical form an element of the exceptional Jordan algebras and explicit classification of orbits in those Jordan algebras under the action of the spinor group $\operatorname{Spin}(9)$.

Introduction

It is well known that any element of the exceptional Jordan algebra \mathfrak{J} can be uniquely transformed to a diagonal form by the natural action of some element of the exceptional Lie group $F_{4}([1],[5])$.

In the present paper, we shall first give the canonical form of an element of \mathfrak{J} by the natural action of some element of the group $\operatorname{Spin}(9)$ which is a maximal subgroup of the compact exceptional Lie group F_{4} with the maximal rank (Theorem 2.1). In almost the same way as Proof of Theorem 2.1, we shall next give the canonical form of an element of another exceptional Jordan algebra \mathfrak{J}_{1} by the natural action of some element of the group $\operatorname{Spin}(9)$ which is a maximal compact subgroup of the noncompact exceptional Lie group $F_{4(-20)}$ (Theorem 3.1).

Finally, the authors would like here to express gratitude to Professor Osami Yasukura for his useful advice and friendly encouragement.

1. The Jordan algebra \mathfrak{J} and the group $F_{4}([1],[4],[5])$

Let \mathfrak{C} be the Cayley algebra with the canonical \boldsymbol{R}-basis $e_{0}=1, e_{1}, \cdots, e_{7}$ and $\mathfrak{C}_{0}=\left\{\sum_{k=1}^{7} x_{k} e_{k} \in \mathfrak{C} \mid x_{k} \in \boldsymbol{R}\right\}$ be the \boldsymbol{R}-vector subspace of \mathfrak{C} consisting of pure Cayley numbers. In \mathfrak{C}, the conjugate \bar{x} and the length $|x|$ of $x=\sum_{k=0}^{7} x_{k} e_{k}\left(x_{k} \in\right.$ $\boldsymbol{R})$ are defined as $\overline{x_{0}+\sum_{k=1}^{7} x_{k} e_{k}}=x_{0}-\sum_{k=1}^{7} x_{k} e_{k}$ and $|x|=\sqrt{x \bar{x}}$, respectively.

[^0]Now, let \mathfrak{J} be the exceptional Jordan algebra:

$$
\mathfrak{J}=\mathfrak{J}(3, \mathfrak{C})=\left\{X \in M(3, \mathfrak{C}) \mid X^{*}=X\right\}
$$

with the Jordan multiplication $X \circ Y=\frac{1}{2}(X Y+Y X)$. In \mathfrak{J}, the Freudenthal multiplication $X \times Y$, an inner product (X, Y), a trilinear form (X, Y, Z) and the determinant $\operatorname{det} X$ are defined by

$$
\begin{gathered}
X \times Y=\frac{1}{2}(2 X \circ Y-\operatorname{tr}(X) Y-\operatorname{tr}(Y) X+(\operatorname{tr}(X) \operatorname{tr}(Y)-\operatorname{tr}(X \circ Y)) E), \\
(X, Y)=\operatorname{tr}(X \circ Y), \quad(X, Y, Z)=(X \times Y, Z), \quad \operatorname{det} X=\frac{1}{3}(X, X, X),
\end{gathered}
$$

respectively, where $\operatorname{tr}(\mathrm{X})$ denotes the trace of X and E is the unit matrix. The group F_{4} is defined as the automorphism group of the Jordan algebra \mathfrak{J} :

$$
\begin{aligned}
F_{4} & =\left\{\alpha \in \operatorname{Iso}_{R}(\mathfrak{J}) \mid \alpha(X \circ Y)=\alpha X \circ \alpha Y\right\} \\
& =\left\{\alpha \in \operatorname{Iso}_{R}(\mathfrak{J}) \mid \alpha(X \times Y)=\alpha X \times \alpha Y\right\},
\end{aligned}
$$

which is a connected compact exceptional Lie group of type F_{4}. The group F_{4} leaves the inner product (X, Y), the trilinear form (X, Y, Z) and the determinant $\operatorname{det} X$ invariant, that is, for $\alpha \in F_{4}$, we have

$$
(\alpha X, \alpha Y)=(X, Y), \quad(\alpha X, \alpha Y, \alpha Z)=(X, Y, Z), \quad \operatorname{det} \alpha X=\operatorname{det} X
$$

The group F_{4} has the following series of subgroups:

$$
F_{4} \supset \operatorname{Spin}(9) \supset \operatorname{Spin}(8) \supset G_{2} .
$$

These subgroups are constructed as follows.
The group $\operatorname{Spin}(9)$ is defined as

$$
\operatorname{Spin}(9)=\left\{\alpha \in F_{4} \mid \alpha E_{1}=E_{1}\right\}
$$

where $E_{1}=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$. For $A \in O(2)=\left\{\left.A \in M(2, \boldsymbol{R})\right|^{t} A A=E\right\}$, let $\alpha(A)$ be the \boldsymbol{R}-linear transformation of \mathfrak{J} defined by

$$
\alpha(A) X=\widetilde{A} X \widetilde{A}^{-1}, X \in \mathfrak{J}, \quad \widetilde{A}=\left(\begin{array}{ll}
1 & 0 \\
0 & A
\end{array}\right) .
$$

Then $\alpha(A) \in F_{4}$, furthermore $\alpha(A) \in \operatorname{Spin}(9)$.

The group $\operatorname{Spin}(8)$ is defined as

$$
\operatorname{Spin}(8)=\left\{\alpha \in \operatorname{Spin}(9) \mid \alpha E_{k}=E_{k}, k=2,3\right\},
$$

where $E_{2}=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right), E_{3}=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$. For $a \in \mathfrak{c},|a|=1$, let $\beta_{1}(a)$ be the \boldsymbol{R}-linear transformation of \mathfrak{J} defined by

$$
\beta_{1}(a) X=\beta_{1}(a)\left(\begin{array}{ccc}
\xi_{1} & x_{3} & \bar{x}_{2} \\
\bar{x}_{3} & \xi_{2} & x_{1} \\
x_{2} & \bar{x}_{1} & \xi_{3}
\end{array}\right)=\left(\begin{array}{ccc}
\xi_{1} & \bar{a} x_{3} \bar{a} & \bar{a} \bar{x}_{2} \\
a \bar{x}_{3} a & \xi_{2} & a x_{1} \\
x_{2} a & \bar{x}_{1} \bar{a} & \xi_{3}
\end{array}\right) .
$$

Then we see that $\beta_{1}(a) \in \operatorname{Spin}(8)$ by using the Moufang formula $(a x)(y a)=$ $a(x y) a, x, y \in \mathfrak{C}$. Similarly, for $a \in \mathfrak{C},|a|=1, \boldsymbol{R}$-linear transformations $\beta_{2}(a)$ and $\beta_{3}(a)$ of \mathfrak{J} defined by

$$
\beta_{2}(a) X=\left(\begin{array}{ccc}
\xi_{1} & x_{3} a & \bar{x}_{2} \bar{a} \\
\bar{a} \bar{x}_{3} & \xi_{2} & \bar{a} x_{1} \bar{a} \\
a x_{2} & a \bar{x}_{1} a & \xi_{3}
\end{array}\right), \quad \beta_{3}(a) X=\left(\begin{array}{ccc}
\xi_{1} & a x_{3} & a \bar{x}_{2} a \\
\bar{x}_{3} \bar{a} & \xi_{2} & x_{1} a \\
\bar{a} x_{2} \bar{a} & \bar{a} \bar{x}_{1} & \xi_{3}
\end{array}\right)
$$

are elements of $\operatorname{Spin}(8)$.
The group G_{2} is defined as the automorphism group of the Cayley algebra \mathfrak{C} :

$$
G_{2}=\left\{\alpha \in \operatorname{Iso}_{R}(\mathfrak{C}) \mid \alpha(x y)=(\alpha x)(\alpha y), x, y \in \mathfrak{c}\right\} .
$$

Let $S^{6}=\left\{x \in \mathfrak{C}_{0}| | x \mid=1\right\}$. Then it is known that the group G_{2} acts transitively on S^{6}. Next, for $\alpha \in G_{2}$, let $\widetilde{\alpha}$ be the \boldsymbol{R}-linear transformation of \mathfrak{J} defined by

$$
\widetilde{\alpha}\left(\begin{array}{ccc}
\xi_{1} & x_{3} & \bar{x}_{2} \\
\bar{x}_{3} & \xi_{2} & x_{1} \\
x_{2} & \bar{x}_{1} & \xi_{3}
\end{array}\right)=\left(\begin{array}{ccc}
\xi_{1} & \alpha x_{3} & \overline{\alpha x_{2}} \\
\overline{\alpha x_{3}} & \xi_{2} & \alpha x_{1} \\
\alpha x_{2} & \overline{\alpha x_{1}} & \xi_{3}
\end{array}\right) .
$$

Then $\widetilde{\alpha} \in \operatorname{Spin}(8)$, and α will be identified with $\widetilde{\alpha}$. Thus the group G_{2} is regarded as a subgroup of $\operatorname{Spin}(8)$:

$$
G_{2}=\left\{\widetilde{\alpha} \in \operatorname{Spin}(8) \mid \alpha \in G_{2}\right\} .
$$

2. Canonical form of X of \mathfrak{J} under the action of of maximal compact subgroup $\operatorname{Spin}(9)$ of $F_{4(-20)}$

For an element $X=\left(\begin{array}{ccc}\xi_{1} & x_{3} & \bar{x}_{2} \\ \bar{x}_{3} & \xi_{2} & x_{1} \\ x_{2} & \bar{x}_{1} & \xi_{3}\end{array}\right)$ of \mathfrak{J}, we define the discriminant $\delta(X)$ of X by

$$
\begin{aligned}
\delta(X) & =\left(E-E_{1}, X\right)^{2}-4\left(E_{1}, X, X\right) \\
& =\left(\xi_{2}+\xi_{3}\right)^{2}-4\left(\xi_{2} \xi_{3}-\left|x_{1}\right|^{2}\right)=\left(\xi_{2}-\xi_{3}\right)^{2}+4\left|x_{1}\right|^{2} .
\end{aligned}
$$

Note that $\delta(X)$ is left invariant under the action of $\operatorname{Spin}(9)$, that is, we have

$$
\delta(\alpha X)=\delta(X), \quad \alpha \in \operatorname{Spin}(9)
$$

THEOREM 2.1. An element X of \mathfrak{J} can be uniquely transformed to the following form by some element α of the group $\operatorname{Spin}(9)$ (the $(1,1)$-entry ξ_{1} of X is invariant).
(1) Case $\delta(X) \neq 0 . \quad \alpha X=\left(\begin{array}{ccc}\xi_{1} & s_{3} & s_{2} \\ s_{3} & r_{2} & 0 \\ s_{2} & 0 & r_{3}\end{array}\right), \quad \begin{aligned} & r_{2}, r_{3}, s_{2}, s_{3} \in \boldsymbol{R}, \\ & r_{2}>r_{3}, s_{2} \geq 0, s_{3} \geq 0 .\end{aligned}$
(2) Case $\delta(X)=0 . \quad \alpha X=\left(\begin{array}{ccc}\xi_{1} & 0 & s_{2} \\ 0 & r_{2} & 0 \\ s_{2} & 0 & r_{2}\end{array}\right), \begin{aligned} & r_{2}, s_{2} \in \boldsymbol{R}, \\ & s_{2} \geq 0 .\end{aligned}$

All these orbits are distinct, and the union of all these orbits is the whole space \mathfrak{J}.

Proof. Let X be a given element of \mathfrak{J}. First we shall show that the x_{1}-entry of X can be transformed to 0 by the action of $\operatorname{Spin}(9)$. Suppose $x_{1} \neq 0$, and let $a=\frac{x_{1}}{\left|x_{1}\right|}$. By the action $\beta_{1}(\bar{a}), x_{1}$ can be transformed to a real number t_{1}, that is, $\beta_{1}(\bar{a}) X=\left(\begin{array}{ccc}\xi_{1} & x_{3}{ }^{\prime} & \bar{x}_{2}{ }^{\prime} \\ \bar{x}_{3}{ }^{\prime} & \xi_{2}{ }^{\prime} & t_{1} \\ x_{2}{ }^{\prime} & t_{1} & \xi_{3}{ }^{\prime}\end{array}\right)=X^{\prime}$. Since the matrix $X_{1}=\left(\begin{array}{cc}\xi_{2}{ }^{\prime} & t_{1} \\ t_{1} & \xi_{3}{ }^{\prime}\end{array}\right)$ is real symmetric, this can be transformed to a diagonal form by some matrix $A \in O(2): A X_{1} A^{-1}=\left(\begin{array}{cc}r_{2} & 0 \\ 0 & r_{3}\end{array}\right), r_{2} \geq r_{3}$. Act $\alpha(A) \in \operatorname{Spin}(9)$ on X^{\prime}. Then $\alpha(A) X^{\prime}$ is of the form $\left(\begin{array}{ccc}\xi_{1} & x_{3}{ }^{\prime \prime} & \bar{x}_{2}{ }^{\prime \prime} \\ \bar{x}_{3}{ }^{\prime \prime} & r_{2} & 0 \\ x_{2}{ }^{\prime \prime} & 0 & r_{3}\end{array}\right)=X^{\prime \prime}$. We shall show that $r_{2}>r_{3}$. Indeed, $\left(r_{2}-r_{3}\right)^{2}=\delta\left(X^{\prime \prime}\right)=\delta(X) \neq 0$, so $r_{2} \neq r_{3}$, that is, $r_{2}>r_{3}$.

We may assume that the x_{2}-entry of $X^{\prime \prime}$ is a non-negative real number s_{2}, applying $\beta_{1}\left(\frac{\bar{x}_{2}{ }^{\prime \prime}}{\left|x_{2}{ }^{\prime \prime}\right|}\right) \in \operatorname{Spin}(8)$ to $X^{\prime \prime}$ if necessary. We shall show that $x_{3}{ }^{\prime \prime}$ is transformed to a real number by the action of $\operatorname{Spin}(8)$. Let $x_{3}{ }^{\prime \prime}=u+v t, u, v \in$ $\boldsymbol{R}, t \in S^{6}$. Since the group G_{2} acts transitively on S^{6}, t is transformed to e_{1} by some element of G_{2}. Hence $x_{3}{ }^{\prime \prime}$ is transformed to the form $u+v e_{1}$ (the other entries are left invariant). Next, act $\beta_{3}\left(e_{2}\right)$ on this. Then this is transformed to the form $\left(\begin{array}{ccc}\xi_{1} & p_{3} & -s_{2} \\ \bar{p}_{3} & r_{2} & 0 \\ -s_{2} & 0 & r_{3}\end{array}\right)$, where $p_{3}=u e_{2}-v e_{3}$, that is, p_{3} is a pure Cayley number. If $p_{3} \neq 0$, then let $b=\frac{p_{3}}{\left|p_{3}\right|}$ and act $\beta_{3}(\bar{b})$ on this. Then this
is transformed to $\left(\begin{array}{ccc}\xi_{1} & s_{3} & -s_{2} \\ s_{3} & r_{2} & 0 \\ -s_{2} & 0 & r_{3}\end{array}\right)$, where $s_{3}=\left|p_{3}\right|$. Therefore, since the sign of the x_{2}-entry is exchanged by the action of $\beta_{1}(-1)$, we have shown that the element X of \mathfrak{J} can be transformed to $\left(\begin{array}{ccc}\xi_{1} & s_{3} & s_{2} \\ s_{3} & r_{2} & 0 \\ s_{2} & 0 & r_{3}\end{array}\right), r_{2}>r_{3}, s_{2} \geq 0, s_{3} \geq 0$.

Finally, We shall show the uniqueness of r_{2}, r_{3}, s_{2} and s_{3}. Since r_{2} and r_{3} satisfy

$$
\begin{aligned}
r_{2}+r_{3} & =\left(E-E_{1}, \alpha X\right)=\left(\alpha\left(E-E_{1}\right), \alpha X\right)=\left(E-E_{1}, X\right), \\
r_{2} r_{3} & =\left(E_{1}, \alpha X, \alpha X\right)=\left(\alpha E_{1}, \alpha X, \alpha X\right)=\left(E_{1}, X, X\right),
\end{aligned}
$$

r_{2} and r_{3} are uniquely determined as solutions of the equation

$$
t^{2}-\left(E-E_{1}, X\right) t+\left(E_{1}, X, X\right)=0
$$

under the condition $r_{2}>r_{3}$. Similarly, since s_{2} and s_{3} satisfy

$$
\begin{aligned}
(X, X) & =(\alpha X, \alpha X)=\xi_{1}^{2}+r_{2}^{2}+r_{3}^{2}+2 s_{2}^{2}+2 s_{3}^{2}, \\
\operatorname{det} X & =\operatorname{det}(\alpha X)=\xi_{1} r_{2} r_{3}-r_{2} s_{2}^{2}-r_{3} s_{3}^{2}
\end{aligned}
$$

that is, $s_{2}{ }^{2}$ and $s_{3}{ }^{2}$ are solutions of the following simultaneous equation,

$$
\begin{aligned}
s_{2}^{2}+s_{3}^{2} & =\frac{1}{2}\left((X, X)-\xi_{1}^{2}-r_{2}^{2}-r_{3}^{2}\right), \\
r_{2} s_{2}^{2}+r_{3} s_{3}^{2} & =\xi_{1} r_{2} r_{3}-\operatorname{det} X .
\end{aligned}
$$

From $r_{2} \neq r_{3}, s_{2}{ }^{2}$ and $s_{3}{ }^{2}$ are uniquely determined (and depend on only the given $X)$. Thus s_{2} and s_{3} are also uniquely determined, since $s_{2} \geq 0, s_{3} \geq 0$.

Case (2) As in Case (1), X can be transformed to the form $\alpha X=$ $\left(\begin{array}{ccc}\xi_{1} & t_{3} & t_{2} \\ t_{3} & r_{2} & 0 \\ t_{2} & 0 & r_{2}\end{array}\right)=X^{\prime}, r_{2} \in \boldsymbol{R}, t_{2} \geq 0, t_{3} \geq 0$ by some element $\alpha \in \operatorname{Spin}(9)$.
Suppose $t_{3} \neq 0$. Let $T=\frac{1}{\sqrt{t_{2}{ }^{2}+t_{3}^{2}}}\left(\begin{array}{cc}t_{2} & -t_{3} \\ t_{3} & t_{2}\end{array}\right) \in O(2)$ and act $\alpha(T)$ on X^{\prime}. Then $\alpha(T) X^{\prime}$ is of the form

$$
\left(\begin{array}{ccc}
\xi_{1} & 0 & s_{2} \\
0 & r_{2} & 0 \\
s_{2} & 0 & r_{2}
\end{array}\right), \quad s_{2}=\sqrt{t_{2}^{2}+t_{3}^{2}} \geq 0
$$

which is the required form.

We shall show the uniqueness of r_{2} and s_{2}. As similar to Cace (1), r_{2} and s_{2} satisfy

$$
2 r_{2}=\left(E-E_{1}, X\right), \quad 2 s_{2}^{2}=(X, X)-\xi_{1}^{2}-2 r_{2}^{2} .
$$

Hence $r_{2}, s_{2}{ }^{2}$ (so s_{2} also) are uniquely determined as solutions of equations above. We have thus completed the proof of the theorem.

3. Canonical form of element X of \mathfrak{J}_{1} under the action of maximal compact subgroup $\operatorname{Spin}(9)$ of $F_{4(-20)}([2],[3],[4],[5])$

Another exceptional Jordan algebra \mathfrak{J}_{1} is consisting of all

$$
X=\left(\begin{array}{ccc}
\xi_{1} & i x_{3} & i \bar{x}_{2} \\
i \bar{x}_{3} & \xi_{2} & x_{1} \\
i x_{2} & \bar{x}_{1} & \xi_{3}
\end{array}\right), \quad \xi_{k} \in \boldsymbol{R}, x_{k} \in \mathfrak{C}, i^{2}=-1
$$

in which the Jordan multiplication is defined as $X \circ Y=\frac{1}{2}(X Y+Y X)$. In \mathfrak{J}_{1}, the Freudenthal multiplication $X \times Y$, the inner product (X, Y), the trilinear form (X, Y, Z), the determinant $\operatorname{det} X$ and the discriminant $\delta(X)$ are defined as similar to those of \mathfrak{J}. Further the group $F_{4(-20)}$ defined by

$$
\begin{aligned}
F_{4(-20)} & =\left\{\alpha \in \operatorname{Iso}_{R}\left(\mathfrak{J}_{1}\right) \mid \alpha(X \circ Y)=\alpha X \circ \alpha Y\right\} \\
& =\left\{\alpha \in \operatorname{Iso}_{R}\left(\mathfrak{J}_{1}\right) \mid \alpha(X \times Y)=\alpha X \times \alpha Y\right\}
\end{aligned}
$$

is a connected noncompact exceptional Lie group of type $F_{4(-20)}$. The following subgroup $\operatorname{Spin}(9)$ of $F_{4(-20)}$:

$$
\operatorname{Spin}(9)=\left\{\alpha \in F_{4(-20)} \mid \alpha E_{1}=E_{1}\right\}
$$

is a maximal compact subgroup of $F_{4(-20)}$. Then, in almost the same way as Proof of Theorem 2.1 (when using the map β_{k} for $i x_{k}$, we have to use $\beta_{k}\left(\frac{x_{k}}{\left|x_{k}\right|}\right)$ not $\left.\beta_{k}\left(\frac{i x_{k}}{\left|i x_{k}\right|}\right) \notin \operatorname{Spin}(8), k=1,2,3\right)$, we obtain the following theorem.

THEOREM 3.1. An element X of \mathfrak{J}_{1} can be uniquely transformed to the following form by some element α of the group $\operatorname{Spin}(9)$ (the $(1,1)$-entry ξ_{1} of X is invariant).
(1) Case $\delta(X) \neq 0 . \quad \alpha X=\left(\begin{array}{ccc}\xi_{1} & i s_{3} & i s_{2} \\ i s_{3} & r_{2} & 0 \\ i s_{2} & 0 & r_{3}\end{array}\right), \quad \begin{aligned} & r_{2}, r_{3}, s_{2}, s_{3} \in \boldsymbol{R}, \\ & r_{2}>r_{3}, s_{2} \geq 0, s_{3} \geq 0 .\end{aligned}$
(2) Case $\delta(X)=0 . \quad \alpha X=\left(\begin{array}{ccc}\xi_{1} & 0 & i s_{2} \\ 0 & r_{2} & 0 \\ i s_{2} & 0 & r_{2}\end{array}\right), \quad \begin{aligned} & r_{2}, s_{2} \in \boldsymbol{R}, \\ & s_{2} \geq 0 .\end{aligned}$

All these orbits are distinct, and the union of all these orbits is the whole space \mathfrak{J}_{1}.

References

[1] H. Freudenthal, Oktaven, Ausnahmegruppen und Oktavengeometry, Math. Inst. Rijkuniv. te Utrecht, 1951.
[2] A. Nishio, The Freudenthal product and orbits in the Jordan algebra over the exceptional Lie group of type $F_{4(-20)}$, in preparation.
[3] I. Yokota, Realization of involutive automorphisms σ of exceptional Lie groups G, Part I, $G=G_{2}, F_{4}$ and E_{6}, Tsukuba J. Math. 14 (1990), 185-223.
[4] I. Yokota, On a non compact simple Lie group $F_{4,1}$ of type F_{4}, J. Fac. Sci, Shinshu univ. 10-2 (1975), 71-80.
[5] I. Yokota, Exceptional Lie groups, arXiv:0902.0431.

Takashi Miyasaka 7448-313 Mihara, Ina, 396-0113, Japan E-mail: coolkai774@gmail.com
Osamu Shukuzawa
12-8 Takeda 2-chome, Kofu, 400-0016, Japan
E-mail: oshuku@jade.plala.or.jp
Ichiro Yokota
339-5, Okada-Matsuoka, Matsumoto, 390-0312, Japan

[^0]: 2010 Mathematics Subject Classification: 57S20, 57S25, 81R05
 Key words and phrases: Cayley number, canonical form, exceptional Lie group, Jordan algebra, maximal rank, maximal subgroup, orbit, spinor group.

