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Abstract. A λ-graph system L is a generalization of a finite labeled graph
and presents a subshift. We will prove that the topological dynamical systems
(XL1 , σL1) and (XL2 , σL2) for λ-graph systems L1 and L2 are continuously orbit
equivalent if and only if there exists an isomorphism between the associated C∗-
algebras OL1 and OL2 keeping their commutative C∗-subalgebras C(XL1) and
C(XL2). It is also equivalent to the condition that there exists a homeomorphism
from XL1 to XL2 intertwining their topological full inverse semigroups. In par-
ticular, one-sided subshifts XΛ1 and XΛ2 are λ-continuously orbit equivalent if
and only if there exists an isomorphism between the associated C∗-algebras OΛ1

and OΛ2 keeping their commutative C∗-subalgebras C(XΛ1) and C(XΛ2).

1. Introduction

H. Dye has initiated to study of orbit equivalence of ergodic finite measure

preserving transformations, who proved that any two such transformations are

orbit equivalent ([13], [14]). W. Krieger [21] has proved that two ergodic non-

singular transformations are orbit equivalent if and only if the associated von

Neumann crossed produtcs are isomorphic. In topological setting, Giordano-

Putnam-Skau [15], [16] (cf. [19]) have proved that two Cantor minimal systems

are strong orbit equivalent if and only if the associated C∗-crossed products

are isomorphic. In more general setting, J. Tomiyama [34] (cf. [2], [35]) has

proved that two topological free homeomorphisms (X, φ) and (Y, ψ) on compact

Hausdorff spaces are continuously orbit equivalent if and only if there exists an

isomorphism between the associated C∗-crossed products keeping their commu-

tative C∗-subalgebras C(X) and C(Y ). He also proved that it is equivalent to the

condition that there exists a homeomorphism h : X → Y such that h preserves

their topological full groups. Orbit equivalence of continuous maps on compact

Hausdorff spaces that are not homeomorphisms are not covered by the above
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Tomiyama’s setting. The class of one-sided subshifts is an important class of

topological dynamical systems on Cantor sets with continuous surjections that

are not homeomorphisms. The one-sided topological Markov shifts is a subclass

of the class. The associated C∗-algebras to the topological Markov shifts are

known to be the Cuntz-Krieger algebras. In the recent paper [30], the author

has shown that similar results to the Tomiyama’s results hold for one-sided topo-

logical Markov shifts. He has proved that one-sided topological Markov shifts

(XA, σA) and (XB, σB) for matrices A and B with entries in {0, 1} are contin-

uously orbit equivalent if and only if there exists an isomorphism between the

Cuntz-Krieger algebras OA and OB keeping their commutative C∗-subalgebras

C(XA) and C(XB) ( Note that the term “topological ”orbit equivalence has been

used in [30] instead of “continuous ”orbit equivalence). It is also equivalent to

the condition that there exists a homeomorphism from XA to XB intertwining

their topological full groups [σA]c and [σB]c.

In this paper we will extend the above results for one-sided topological Markov

shifts to the class of general one-sided subshifts. A λ-graph system L is a gener-

alization of a finite labeled graph and presents a subshift. It yields a topological

dynamical system (XL, σL) of a zero-dimensional compact Hausdorff space XL

with shift transformation σL, that is a continuous surjection and not a homeomor-

phism. The C∗-algebraOL is associated with the dynamical system (XL, σL) such

that C(XL) is naturally embedded into OL as a diagonal algebra of the canon-

ical AF-algebra FL inside of OL. We will prove that the topological dynamical

systems (XL1 , σL1) and (XL2 , σL2) for λ-graph systems L1 and L2 are continu-

ously orbit equivalent if and only if there exists an isomorphism between the

associated C∗-algebras OL1 and OL2 keeping their commutative C∗-subalgebras

C(XL1) and C(XL2). It is also equivalent to the condition that there exists a

homeomorphism from XL1 to XL2 intertwining their topological full inverse semi-

groups [σL1 ]sc and [σL1 ]sc. Let XΛ1 and XΛ2 be the right one-sided subshifts for

two-sided subshifts Λ1 and Λ2 respectively. We in particular show that two one-

sided subshifts XΛ1 and XΛ2 are λ-continuously orbit equivalent if and only if

there exists an isomorphism between the associated C∗-algebras OΛ1 and OΛ2

keeping their commutative C∗-subalgebras C(XΛ1) and C(XΛ2), where OΛ1 and

OΛ2 are the C∗-algebras associated with subshifts ([25], cf. [3]).

Let [σL]c be the topological full group of (XL, σL) whose elements consist of

homeomorphisms τ on XL such that τ(x) is contained in the orbit orbσL
(x) of

x under σL for x ∈ XL, and its orbit cocycles are continuous. If L comes from

a finite directed graph and hence XL is a topological Markov shift, then the

topological full group is large enough to cover orbits of x ∈ XL. However if L

does not come from a finite graph, the topological full group is not necessarily

large enough to cover orbits of XL. To obtain enough informations of orbit
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structure of (XL, σL), we need to enlarge [σL]c to topological inverse semigroup

[σL]sc whose elements consist of partial homeomorphisms τ on XL such that τ(x)

is contained in orbσL
(x) for each x in the domain of τ . Let us denote by DL

the commutative C∗-subalgebra C(XL) of OL. The corresponding object to the

inverse semigroup [σL]sc is the normalizer semigroup Ns(OL,DL) of DL in OL

whose elements consist of partial isometries v of OL such that vDLv∗ ⊂ DL and

v∗DLv ⊂ DL. Then we will show that the exact sequence

1 −→ U(DL) −→ Ns(OL,DL) −→ [σL]sc −→ 1

of semigroups holds so that the following theorem will be proved:

THEOREM 1.1. (Theorem 5.7) Let L1 and L2 be λ-graph systems satisfying

condition (I). The following are equivalent:

(1) There exists an isomorphism Ψ : OL1 → OL2 such that Ψ(DL1) = DL2.

(2) (XL1 , σL1) and (XL2 , σL2) are continuously orbit equivalent.

(3) There exists a homeomorphism h : XL1 → XL2 such that h ◦ [σL1 ]sc ◦ h−1 =

[σL2 ]sc.

Let Λ be the subshift presented by a λ-graph system L and (XΛ, σΛ) the right

one-sided subshift for Λ. There exists a natural factor map πL
Λ : (XL, σL) −→

(XΛ, σΛ). It induces an inclusion C(XΛ) ↪→ C(XL). We regard the algebra C(XΛ)

as a subalgebra DΛ of DL and ofOL. We say that two factor maps πL1
Λ1

and πL2
Λ2

are

continuously orbit equivalent if there exist homeomorphisms hL : XL1 −→ XL2

and hΛ : XΛ1 −→ XΛ2 such that πL2
Λ2
◦ hL = hΛ ◦ πL1

Λ1
and there exist continuous

functions k1, l1 : XL1 −→ Z+ and k2, l2 : XL2 −→ Z+ such that

σ
k1(x)
L2

(hL ◦ σL1(x)) = σ
l1(x)
L2

(hL(x)), x ∈ XL1 ,

σ
k2(y)
L1

(h−1
L ◦ σL2(y)) = σ

l2(x)
L1

(h−1
L (y)), y ∈ XL2 .

Then we will prove

THEOREM 1.2. (Theorem 6.6) Let L1 and L2 be λ-graph systems satisfying

condition (I) and Λ1 and Λ2 their respect subshifts. The following are equivalent:

(1) There exists an isomorphism Ψ : OL1 −→ OL2 such that Ψ(DΛ1) = DΛ2.

(2) The factor maps πL1
Λ1

and πL2
Λ2

are continuously orbit equivalent.

(3) There exist homeomorphisms hL : XL1 −→ XL2 and hΛ : XΛ1 −→ XΛ2 such

that πL2
Λ2
◦ hL = hΛ ◦ πL1

Λ1
and hL ◦ [σL1 ]sc ◦ h−1

L = [σL2 ]sc.

Let LΛ be the canonical λ-graph system for Λ (see [26]). Then the C∗-
algebra OΛ coincides with the algebra OLΛ . The natural inclusion ι : XΛ ↪→ XLΛ



62 K. MATSUMOTO

induces a new topology on XΛ. The topological space is denoted by X̃Λ. Two

subshifts (XΛ1 , σΛ1) and (XΛ2 , σΛ2) are said to be λ-continuously orbit equivalent

if there exist a homeomorphism h : XΛ1 −→ XΛ2 , and continuous functions

k1, l1 : X̃Λ1 −→ Z+ and k2, l2 : X̃Λ2 −→ Z+ such that h is also homeomorphic

from X̃Λ1 onto X̃Λ2 such that

σ
k1(a)
Λ2

(h ◦ σΛ1(a)) = σ
l1(a)
Λ2

(h(a)), a ∈ XΛ1 ,

σ
k2(b)
Λ1

(h−1 ◦ σΛ2(b)) = σ
l2(b)
Λ1

(h−1(b)), b ∈ XΛ2 .

Then we will prove

THEOREM 1.3. (Theorem 7.5) Let Λ1 and Λ2 be subshifts satisfying condition

(I). The following are equivalent:

(1) There exists an isomorphism Ψ : OL1 −→ OΛ2 such that Ψ(DΛ1) = DΛ2.

(2) The subshifts (XΛ1 , σΛ1) and (XΛ2 , σΛ2) are λ-continuously orbit equivalent.

The theorem is a generalization of a result in [30] for topological Markov

shifts. Throughout the paper, we denote by Z+ and N the set of nonnegative

integers and the set of positive integers respectively.

2. Preliminaries

Let L = (V,E, λ, ι) be a λ-graph system over Σ with vertex set V = ∪l∈Z+Vl

and edge set E = ∪l∈Z+El,l+1 that is labeled with symbols in Σ by a map λ :

E → Σ, and that is supplied with surjective maps ι(= ιl,l+1) : Vl+1 → Vl for

l ∈ Z+. Here the vertex sets Vl, l ∈ Z+ are finite disjoint sets. Also El,l+1, l ∈ Z+

are finite disjoint sets. An edge e in El,l+1 has its source vertex s(e) in Vl and its

terminal vertex t(e) in Vl+1 respectively. Every vertex in V has a successor and

every vertex in Vl for l ∈ N has a predecessor. It is then required that there exists

an edge in El,l+1 with label α and its terminal is v ∈ Vl+1 if and only if there

exists an edge in El−1,l with label α and its terminal is ι(v) ∈ Vl. For u ∈ Vl−1

and v ∈ Vl+1, put

Eι(u, v) = {e ∈ El,l+1 | t(e) = v, ι(s(e)) = u},
Eι(u, v) = {e ∈ El−1,l | s(e) = u, t(e) = ι(v)}.

Then we require a bijective correspondence between Eι(u, v) and Eι(u, v) that

preserves labels for each pair of vertices u, v. We call this property the local

property of L. We henceforth assume that L is left-resolving, which means that

t(e) 6= t(f) whenever λ(e) = λ(f) for e, f ∈ E.
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Let ΩL be the compact Hausdorff space of the projective limit of the system

ιl,l+1 : Vl+1 → Vl, l ∈ Z+, that is defined by

ΩL = {(vl)l∈Z+ ∈
∏

l∈Z+

Vl | ιl,l+1(v
l+1) = vl, l ∈ Z+}.

An element v in ΩL is called an ι-orbit or also a vertex. Let EL be the set of all

triplets (u, α, v) ∈ ΩL ×Σ×ΩL, where u = (ul)l∈Z+ , v = (vl)l∈Z+ ∈ ΩL such that

for each l ∈ Z+, there exists el,l+1 ∈ El,l+1 satisfying

ul = s(el,l+1), vl+1 = t(el,l+1) and α = λ(el,l+1).

Then the set EL ⊂ ΩL × Σ × ΩL is a zero-dimensional continuous graph in the

sense of Deaconu ([28, Proposition 2.1], [9], [10], [11], [12]). It has been also

studied in [23] as a Shannon graph. Following Deaconu [10] and Krieger [22], we

consider the set XL of all one-sided paths of EL:

XL = {(αn, un)n∈N ∈
∏

n∈N
(Σ× ΩL) | (un, αn+1, un+1) ∈ EL for all n ∈ N

and (u0, α1, u1) ∈ EL for some u0 ∈ ΩL}.
The set XL becomes a zero-dimensional compact Hausdorff space under the rela-

tive topology from the infinite product topology of Σ×ΩL. For x = (αn, un)n∈N ∈
XL, the vertex u0 ∈ ΩL satisfying (u0, α1, u1) ∈ EL is unique because L is left-

resolving. We denote it by u0(x). The shift map σL : (αn, un)n∈N ∈ XL →
(αn+1, un+1)n∈N ∈ XL is a local homeomorphism by [28, Lemma 2.2]. We have a

topological dynamical system (XL, σL) of a compact Hausdorff space XL with a

continuous surjection σL. The set

XΛ = {(αn)n∈N ∈ ΣN | (αn, un)n∈N ∈ XL}
becomes the right one-sided subshift for the subshift Λ presented by L with shift

transformation σΛ defined by

σΛ((αn)n∈N) = (αn+1)n∈N, (αn)n∈N ∈ XΛ.

The factor map

πL
Λ : (αn, un)n∈N ∈ XL → (αn)n∈N ∈ XΛ

is a continuous surjective map satisfying

πL
Λ ◦ σL = σΛ ◦ πL

Λ.

A word µ = µ1 · · ·µk for µi ∈ Σ is said to be admissible for XΛ if µ appears

in somewhere in some element a in XΛ. We denote by Bk(XΛ) the set of all
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admissible words of length k ∈ Z+, where B0(XΛ) means the empty word ∅.
We set B∗(XΛ) = ∪∞k=0Bk(XΛ). For a = (an)n∈N ∈ XΛ and positive integers

k, l with k ≤ l, we put the word a[k,l] = (ak, ak+1, . . . , al) ∈ Bl−k+1(XΛ) and

the right infinite sequence a[k,∞) = (ak, ak+1, . . . ) ∈ XΛ. Similarly we use the

notations Bk(XL) defined by the set {(αn, un)k
n=1 | (αn, un)n∈N ∈ XL} and x[k,l] =

(xk, . . . , xl) for x = (xn)n∈N ∈ XL.

Let us now briefly review the C∗-algebra OL associated with λ-graph system

L. The C∗-algebras OL are generalization of the C∗-algebras associated with

subshifts ([28], cf. [3]). We denote by {vl
1, . . . , v

l
m(l)} the vertex set Vl. Define

the transition matrices Al,l+1, Il,l+1 of L by setting for i = 1, 2, . . . , m(l), j =

1, 2, . . . , m(l + 1), α ∈ Σ,

Al,l+1(i, α, j) =

{
1 if s(e) = vl

i, λ(e) = α, t(e) = vl+1
j for some e ∈ El,l+1,

0 otherwise,

Il,l+1(i, j) =

{
1 if ιl,l+1(v

l+1
j ) = vl

i,

0 otherwise.

The C∗-algebra OL is realized as the universal unital C∗-algebra generated by

partial isometries Sα, α ∈ Σ and projections El
i, i = 1, 2, . . . , m(l), l ∈ Z+ subject

to the following operator relations called (L):

∑
α∈Σ

SαS∗α = 1, (2. 1)

m(l)∑
i=1

El
i = 1, El

i =

m(l+1)∑
j=1

Il,l+1(i, j)E
l+1
j , (2. 2)

SβS∗βEl
i = El

iSβS∗β, (2. 3)

S∗βEl
iSβ =

m(l+1)∑
j=1

Al,l+1(i, β, j)El+1
j , (2. 4)

for β ∈ Σ, i = 1, 2, . . . , m(l), l ∈ Z+. It is nuclear ([28, Proposition 5.6]). For a

word µ = µ1 · · ·µk ∈ Bk(XΛ), we set Sµ = Sµ1 · · ·Sµk
. The algebra of all finite

linear combinations of the elements of the form

SµE
l
iS
∗
ν for µ, ν ∈ B∗(XΛ), i = 1, . . . ,m(l), l ∈ Z+

is a dense ∗-subalgebra of OL. Let us denote by AL the C∗-subalgebra of OL

generated by the projections El
i, i = 1, . . . , m(l), l ∈ Z+. By the universal-

ity of the algebra OL the algebra AL is isomorphic to the commutative C∗-
algebra C(ΩL) of all complex valued continuous functions on ΩL. We define
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C∗-subalgebra F l
k with k ≤ l, that is a finite dimensional algebra generated by

SµE
l
iS
∗
ν , µ, ν ∈ Bk(XΛ), i = 1, . . . , m(l). Denote by FL the AF-subalgebra of OL

generated by ∪k,lF l
k. For a vertex vl

i ∈ Vl, put

Γ+(vl
i) = {(α1, α2, . . . , ) ∈ ΣN | there exists an edge en,n+1 ∈ En,n+1 for n ≥ l

such that vl
i = s(el,l+1), t(en,n+1) = s(en+1,n+2), λ(en,n+1) = αn−l+1}

the set of all label sequences in L starting at vl
i. We say that L satisfies condition

(I) if for each vl
i ∈ V, the set Γ+(vl

i) contains at least two distinct sequences.

Under the condition (I), the algebra OL can be realized as the unique C∗-algebra

subject to the relations (L) ([28, Theorem 4.3]). A λ-graph system L is said

to be irreducible if for a vertex v ∈ Vl and an ι-orbit x = (xi)i∈Z+ ∈ ΩL, there

exists a λ-path starting at v and terminating at xl+N for some N ∈ N. If L is

irreducible with condition (I), the C∗-algebra OL is simple ([28, Theorem 4.7]).

Let DL be the C∗-subalgebra of FL generated by SµE
l
iS
∗
µ, µ ∈ B∗(XΛ), i =

1, . . . , m(l), l ∈ Z+ and DΛ the C∗-subalgebra of DL generated by SµS
∗
µ, µ ∈

B∗(XΛ). For µ = µ1 · · ·µk ∈ Bk(XΛ) and vl
i ∈ Vl, we set the cylinder set

Uµ,vl
i
= {(αn, un) ∈ XL | α1 = µ1, . . . , α1 = µk, u

l
k = vl

i}
of XL where uk = (ul

k)l∈Z+ ∈ ΩL. Let χU
µ,vl

i

denote the chracteristic function

on XL for the cylinder set Uµ,vl
i
. Then the correspondence SµE

l
iS
∗
µ ∈ DL ←→

χU
µ,vl

i

∈ C(XL) yields an isomorphism between DL and C(XL). Similarly let

Uµ = {(an)n∈N ∈ XΛ | a1 = µ1, . . . , ak = µk} be the cylinder set of XΛ. The

correspondence SµS
∗
µ ∈ DΛ ←→ χµ ∈ C(XΛ) yields an isomorphism between DΛ

and C(XΛ).

By the universality for the relations (L), the correspondence Sα −→ e
√−1tSα,

α ∈ Σ, El
i −→ El

i, i = 1, . . . , m(l), l ∈ Z+ for e
√−1t ∈ T = {e

√−1t | t ∈ [0, 2π]}
gives rise to an action ρ : T → Aut(OL) called gauge action. The fixed point

algebra of OL under ρ is the AF-algebra FL. We denote by E : OL → FL the

conditional expectation defined by E(a) =
∫
T ρt(a)dt for a ∈ OL.

The following lemma is basic in our further discussions.

LEMMA 2.1. ([27, Proposition 3.3], cf.[8, Remark 2.18]) Suppose that L satis-

fies condition (I). Then we have D′
Λ ∩ OL = DL and hence D′

L ∩ OL = DL.

This means that the algebra DL is maximal abelian in OL.

Proof. The proof of D′
Λ ∩ OL = DL is completely similar to the proof of [27,

Proposition 3.3]. Since DL ⊂ D′
L ∩ OL ⊂ DΛ ∩ OL, we have D′

L ∩ OL = DL.

In [30], a representation of the Cuntz-Krieger algebra OA on a Hilbert space

having the shift space XA as a complete orthonormal basis has been used. Let
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us generalize the representation to the C∗-algebras OL as in the following way.

Let HL be the Hilbert space with its complete orthonormal system ex, x ∈ XL.

The Hilbert space is not separable. Consider the partial isometries Tα : HL →
HL, α ∈ Σ and projections P l

i : HL → HL, i = 1, . . . , m(l) defined by

Tαex =

{
ey if there exists an ι-orbit u−1 ∈ ΩL; (u−1, α, u0(x)) ∈ EL,

0 otherwise

where y = ((α, u0(x)), (α1, u1), (α2, u2), . . . )∈XL for x = ((α1, u1), (α2, u2), . . . )

∈ XL and

P l
i ex =

{
ex if u0(x)l = vl

i,

0 otherwise

where u0(x) = (u0(x)l)l∈Z+ ∈ ΩL.

LEMMA 2.2. The partial isometries Tα, α ∈ Σ and the projections P l
i , i =

1, . . . , m(l) on the Hilbert space HL satisfy the relation (L). Hence if L satis-

fies condition (I), the correspondence Sα → Tα and El
i → P l

i gives rise to a

faithful representation of the C∗-algebra OL on HL.

We call it the universal shift representation of OL on HL. In what follows, we

assume that L satisfies condition (I) and regard the algebra OL as the C∗-algebra

generated by Tα, α ∈ Σ and P l
i , i = 1, . . . , m(l) on the Hilbert space HL.

3. Topological full inverse semigroups

For x = (xn)n∈N ∈ XL, the orbit orbσL
(x) of x is defined by

orbσL
(x) = ∪∞k=0 ∪∞l=0 σ−k

L (σl
L(x)) ⊂ XL.

Hence y = (yn)n∈N ∈ XL belongs to orbσL
(x) if and only if there exists a a finite

sequence z1 · · · zk ∈ Bk(XL) such that

y = (z1, . . . , zk, xl+1, xl+2, . . . ) for some k, l ∈ Z+.

We denote by Homeo(XL) the group of all homeomorphisms on XL. We define

the full group [σL] and the topological full group [σL]c for (XL, σL) as in the

following way.

DEFINITION. Let [σL] be the set of all homeomorphism τ ∈ Homeo(XL) such

that τ(x) ∈ orbσL
(x) for all x ∈ XL. We call [σL] the full group of (XL, σL).
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Let [σL]c be the set of all τ in [σL] such that there exist continuous functions

k, l : XL → Z+ such that

σ
k(x)
L (τ(x)) = σ

l(x)
L (x) for all x ∈ XL. (3. 1)

We call [σL]c the topological full group for (XL, σL).

If a subshift is not a sofic shift, the full groups are not necessarily large

enough to cover the orbit structure. Hence to study of orbit structure of general

subshifts, we will extend the notion of full groups to full inverse semigroups

as in the following way. Let τ : U → V be a homeomorphism from a clopen

set U ⊂ XL onto a clopen set V ⊂ XL. We call τ a partial homeomorphism.

Let us denote by Xτ and Yτ the clopen sets U and V respectively. We denote

by PH(XL) the set of all partial homeomorphisms of XL. Then PH(XL) has

a natural structure of inverse semigroup (cf. [31]). We define the full inverse

semigroup [σL]s and the topological full inverse semigroup [σL]sc for (XL, σL) as

in the following way.

DEFINITION. Let [σL]s be the set of all partial homeomorphisms τ ∈ PH(XL)

such that τ(x) ∈ orbσL
(x) for all x ∈ Xτ . We call [σL]s the full inverse semigroup

of (XL, σL). Let [σL]sc be the set of all τ in [σL]s such that there exist continuous

functions k, l : Xτ → Z+ such that

σ
k(x)
L (τ(x)) = σ

l(x)
L (x) for all x ∈ Xτ . (3. 2)

We call [σL]sc the topological full inverse semigroup for (XL, σL). The maps k, l

above are called orbit cocycles for τ , and sometimes written as kτ , lτ respectively.

We remark that the orbit cocyles are not necessarily uniquely determined for τ .

It is clear that [σL]s is a subsemigroup of PH(XL) and [σL]sc is a subsemigroup

of [σL]c. Although σL does not belong to [σL]sc, the following lemma shows that

σL locally belongs to [σL]sc, and that [σL]sc is not trivial in any case.

LEMMA 3.1. For any µ = (µ1, . . . , µk) ∈ Bk(XΛ) and vl
i ∈ Vl with 2 ≤ k ≤ l

and Uµ,vl
i
6= ∅, there exists τµ,vl

i
∈ [σL]sc such that

τµ,vl
i
(x) = σL(x) for x ∈ Uµ,vl

i
. (3. 3)

Proof. Put ν = (µ2, . . . , µk) ∈ Bk−1(XΛ). Then the map τµ,vl
i

: Uµ,vl
i
−→ Uν,vl

i

defined by τµ,vl
i
(x) = σL(x) for x ∈ Uµ,vl

i
is a partial homeomorphism, and it

belongs to [σL]sc.

LEMMA 3.2. For x = (xn)n∈N ∈ XL with xn = (αn, un), n ∈ N, put u0 =

u0(x) ∈ ΩL. Let α0 ∈ Σ be a symbol such that (αn−1, un−1)n∈N ∈ XL. Then

there exists τ ∈ [σL]sc with a clopen set Xτ ⊂ XL such that x ∈ Xτ and τ(y) =

(yn−1)n∈N for all y = (yn)n∈N ∈ Xτ , where y0 = (α0, u0(y)).
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Proof. Let Xτ be the clopen set Uµ,vl
i
for µ = α1α2 ∈ B2(XΛ) and v2

i = u2
2 ∈ V2,

where u2 = (ul
2)l∈Z+ ∈ ΩL, so that x belongs to Xτ . One has (yn−1)n∈N ∈ XL

for (yn)n∈N ∈ Xτ , where y0 = (α0, u0(y)). By setting τ(y) = (yn−1)n∈N for

y = (yn)n∈N ∈ XL, we have σL(τ(y)) = y for y ∈ Xτ so that τ ∈ [σL]sc.

For x ∈ XL, put [σL]sc(x) = {τ(x) ∈ XL | τ ∈ [σL]sc with Xτ 3 x}.

LEMMA 3.3. [σL]sc(x) = orbσL
(x).

Proof. For any τ ∈ [σL]sc with Xτ 3 x, one sees τ(x) ∈ orbσL
(x) and hence

[σL]sc(x) ⊂ orbσL
(x). For the other inclusion relation, by the previous lemmas,

for x = (xn)n∈N ∈ XL and x0 = (α0, u0(x)) ∈ Σ × ΩL, there exist τ1, τ2 ∈ [σL]sc
such that

τ1(x) = (xn−1)n∈N, τ2(x) = (xn+1)n∈N ∈ XL

so that both (xn−1)n∈N and (xn+1)n∈N belong to [σL]sc(x). Since [σL]sc is a semi-

group, one sees that

[σL]sc(x) 3 (x−k, . . . , x−1, x0, xl+1, xl+2, . . . )

for all k, l ∈ Z+ with (x−k, . . . , x−1, x0, xl+1, xl+2, . . . ) ∈ XL. Hence [σL]sc(x) ⊃
orbσL

(x).

4. Full inverse semigroups and normalizers

Let us denote by U(OL) the group of unitaries of OL and U(DL) the group

of unitaries of DL respectively. As in [30], the topological full group [σL]c will

correspond to the normalizer N(OL,DL) of DL in OL defined by

N(OL,DL) = {v ∈ U(OL) | vDLv∗ = DL}.

For the topological full inverse semigroup [σL]sc, we will define the normalizer

Ns(OL,DL) of partial isometries as in the following way:

Ns(OL,DL) = {v ∈ OL | v is a partial isometry; vDLv∗ ⊂ DL, v∗DLv ⊂ DL}.

It is easy to see that Ns(OL,DL) has a natural structure of inverse semigroup.

We will identify the subalgebra DL of OL with the algebra C(XL). For a partial

isometry v ∈ OL, put Ad(v)(x) = vxv∗ for x ∈ OL. The following proposition

holds.
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PROPOSITION 4.1. For τ ∈ [σL]sc, there exists a partial isometry

uτ ∈ Ns(OL,DL) such that

Ad(uτ )(f) = f ◦ τ−1 for f ∈ C(Xτ ), Ad(u∗τ )(g) = g ◦ τ for g ∈ C(Yτ ),

and the correspondence τ ∈ [σL]sc −→ uτ ∈ Ns(OL,DL) is a homomorphism of

inverse semigroup. If in particular τ ∈ [σL]c, the partial isometry uτ is a unitary

so that uτ ∈ N(OL,DL).

Proof. Let the C∗-algebra OL be represented on the Hilbert space HL with com-

plete orthonormal basis {ex | x ∈ XL}. Put the subspaces

HXτ = span{ex | x ∈ Xτ}, HYτ = span{ex | x ∈ Yτ}.

Since τ : Xτ −→ Yτ is a homeomorphism, the operator uτ : HXτ −→ HYτ defined

by uτ (ex) = eτ(x) for x ∈ Xτ yields a partial isometry on HL. By a similar manner

to the proof of [30, Proposition 4.1], one knows that uτ belongs to Ns(OL,DL).

For v ∈ Ns(OL,DL), put the projections pv = v∗v, qv = vv∗ in DL, and the

clopen subsets Xv = supp(pv), Yv = supp(qv) of XL. Then Ad(v) : DLpv −→
DLqv is an isomorphism and induces a partial homeomorphism τv : Xv −→ Yv

such that

Ad(v)(f) = f ◦ τ−1
v for f ∈ C(Xv), Ad(v∗)(g) = g ◦ τv for g ∈ C(Yv).

We will prove that τv gives rise to an element of [σL]sc. Since the proof basically

follows a line of the proof of [30, Proposition 4.7], we will give a sketch of the

proof. Fix v ∈ Ns(OL,DL) for a while.

LEMMA 4.2.

(i) There exists a family vm,m ∈ Z of partial isometries in OL such that all

but finitely many vm,m ∈ Z are zero, and

(1) v =
∑

m∈Z vm : finite sum.

(2) v∗mvm, vmv∗m are projections in DL for m ∈ Z.

(3) vmDLv∗m ⊂ DL and v∗mDLvm ⊂ DL for m ∈ Z.

(4) v∗mvm′ = vmv∗m′ = 0 for m 6= m′.

(5) v0 ∈ FL.

(ii) For a fixed n ∈ N, there exist partial isometries vµ, v−µ ∈ FL for each

µ ∈ Bn(XΛ) satisfying the following conditions:

(1) vn =
∑

µ∈Bn(XΛ) Sµvµ and v−n =
∑

µ∈Bn(XΛ) v−µS
∗
µ.
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(2) v∗µvµ, Sµvµv
∗
µS

∗
µ, Sµv

∗
−µv−µS

∗
µ and v−µv

∗
−µ are projections in DL such

that

v∗nvn =
∑

µ∈Bn(XΛ)

v∗µvµ, vnv
∗
n =

∑

µ∈Bn(XΛ)

Sµvµv
∗
µS

∗
µ,

v∗−nv−n =
∑

µ∈Bn(XΛ)

Sµv
∗
−µv−µS

∗
µ, v−nv∗−n =

∑

µ∈Bn(XΛ)

v−µv
∗
−µ.

(3) vµv
∗
ν = v∗−µv−ν = 0 for µ, ν ∈ Bn(XΛ) with µ 6= ν.

(4) The algebras vµDLv∗µ, v
∗
µDLvµ, v−µDLv∗−µ and v∗−µDLv−µ are contained

in DL.

Proof. (i) Put a partial isometry g(t) = v∗ρt(v) ∈ OL for t ∈ T. For f ∈ DL, it

follows that ρt(v)fρt(v)∗ = ρt(vfv∗) = vfv∗ and hence

g(t)f = v∗ρt(v)fρt(v
∗)ρt(v) = v∗vfv∗ρt(v) = fg(t)

so that g(t) commutes with each element of DL. By Lemma 2.1, g(t) belongs to

the algebra DL. Since g(t)∗ = g(−t) and g(t + s) = g(t)g(s), by putting

vm =

∫

T
ρt(v)e−

√−1mtdt, ĝ(m) =

∫

T
g(t)e−

√−1mtdt for m ∈ Z.

one has vm = vĝ(m). By a similar argument to the proof of [30, Lemma 4.2],

one has the assertions (1),(2),(3), (4) and (5).

(ii) Put for µ ∈ Bn(XL),

vµ = E(S∗µv), v−µ = E(vSµ).

By a similar argument to the proof of [30, Lemma 4.3], one has the assertions

(1),(2),(3) and (4).

For u ∈ Ns(OL,DL), let τu : Xu → Yu be the induced homeomorphism.

LEMMA 4.3. Keep the above notation. For x = (xn)n∈N ∈ Xu with xn =

(αn, un(x)), un(x) = (ul
n(x))l∈Z+, put y = (yn)n∈N = τu(x) ∈ Yu, where yn =

(βn, un(y)), un(y) = (ul
n(y))l∈Z+. For a fixed integer l ∈ Z+, take i(xn) ∈

{1, . . . , m(l)} and i(yn) ∈ {1, . . . , m(l)} such that vl
i(xn) = ul

n(x) and vl
i(yn) =

ul
n(y) respectively. Then we have

‖El
i(yn)S

∗
β1···βn

uSα1···αnEl
i(xn)‖ = 1 for all n ∈ N.
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Proof. It suffices to show that El
i(yn)S

∗
β1···βn

uSα1···αnEl
i(xn) 6= 0. Since vl

i(yn) =

ul
n(y), one sees that El

i(yn)eσL
n(y) = eσL

n(y) so that

(El
i(yn)S

∗
β1···βn

uSα1···αnEl
i(xn)S

∗
α1···αn

u∗Sβ1···βnEl
i(yn)eσL

n(y) | eσL
n(y))

= (Ad(u)(Sα1···αnEl
i(xn)S

∗
α1···αn

)Sβ1···βneσL
n(y) | Sβ1···βneσL

n(y))

= (Ad(u)(Sα1···αnEl
i(xn)S

∗
α1···αn

)ey | ey).

Consider the cylinder set

Uα1···αn,vl
i(xn)

= {(γm, um)m∈N ∈ XL | γ1 = α1, . . . , γn = αn, ul
n = vl

i(xn)}

of XL. As Sα1···αnEl
i(xn)S

∗
α1···αn

= χU
α1···αn,vl

i(xn)

and

Ad(u)(χU
α1···αn,vl

i(xn)

)ey

= (χU
α1···αn,vl

i(xn)

◦ τ−1
u )(y)ey = χU

α1···αn,vl
i(xn)

(x)ey = ey,

we have

(El
i(yn)S

∗
β1···βn

uSα1···αnEl
i(xn)S

∗
α1···αn

u∗Sβ1···βnEl
i(yn)eσL

n(y) | eσL
n(y))

= (ey | ey) = 1

so that El
i(yn)S

∗
β1···βn

uSα1···αnEl
i(xn) 6= 0.

LEMMA 4.4. Keep the above situation. Assume in particular that u ∈ FL.

Then there exists k ∈ N such that for all x = (xn)n∈N ∈ Xu

τu(x)n = xn for all n > k

where τu(x) = (τu(x)n)n∈N.

Proof. Suppose that for any k ∈ N there exist x ∈ Xu and N > k such that

τu(x)N 6= xN . Put yn = τu(x)n, n ∈ N. Now u ∈ FL so that take u0 ∈ Fk0
l0

for some k0 ≤ l0 such that ‖u − u0‖ < 1
2
. Take x ∈ Xu and N0 > k0 such

as yN0 6= xN0 . Since xN0 = (αN0 , uN0(x)), yN0 = (βN0 , uN0(y)) and uN0(x) =

(ul
N0

(x))l∈N, uN0(y) = (ul
N0

(y))l∈N ∈ ΩL, one has αN0 6= βN0 or there exists l1
such that ul

N0
(x) 6= ul

N0
(y) fo all l ≥ l1. As ul

N0
(x) = vl

i(xN0
), u

l
N0

(y) = vl
i(yN0

), the

later condition is equivalent to the condition that El
i(xN0

) 6= El
i(yN0

) fo all l ≥ l1.

Now u0 ∈ Fk0
l0
⊂ FN0−1

l′0
, where l′0 = l0 + N0 − 1− k0, it is written as

u0 =
∑

ξ,η∈BN0−1(XΛ),j=1,...,m(l′0)

cξ,j,ηSξE
l′0
j S∗η ∈ FN0−1

l′0
for some cξ,j,η ∈ C.
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Hence we have

S∗β1···βN0−1
u0Sα1···αN0−1

=

m(l′0)∑
j=1

cβ1···βN0−1,j,α1···αN0−1
S∗β1···βN0−1

Sβ1···βN0−1
E

l′0
j S∗α1···αN0−1

Sα1···αN0−1
.

Take an integer l′1 such that l′1 ≥ max{l1, l′0} and hence the condition αN0 6= βN0

or E
l′1
i(xN0

) · E
l′1
i(yN0

) = 0 holds. It follows that

E
l′1
i(yN0

)S
∗
β1···βN0

u0Sα1···αN0
E

l′1
i(xN0

) =

m(l′0)∑
j=1

cβ1···βN0−1,j,α1···αN0−1
E

l′1
i(yN0

)S
∗
β1···βN0

Sβ1···βN0−1
E

l′0
j S∗α1···αN0−1

Sα1···αN0
E

l′1
i(xN0

).

Since S∗β1···βN0−1
Sβ1···βN0−1

E
l′0
j S∗α1···αN0−1

Sα1···αN0−1
belongs to DL, one has

E
l′1
i(yN0

)S
∗
β1···βN0

Sβ1···βN0−1
E

l′0
j S∗α1···αN0−1

Sα1···αN0
E

l′1
i(xN0

) = 0, j = 1, . . . ,m(l′0)

because αN0 6= βN0 or E
l′1
i(xn0) · E

l′1
i(yn0 ) = 0. This implies that

E
l′1
i(yN0

)S
∗
β1···βN0

u0Sα1···αN0
E

l′1
i(xN0

) = 0

so that

E
l′1
i(yN0

)S
∗
β1···βN0

uSα1···αN0
E

l′1
i(xN0

) = 0

a contradiction to the preceding lemma.

Thus we have

LEMMA 4.5. For a partial isometry u ∈ FL satisfying

uDLu∗ ⊂ DL, u∗DLu ⊂ DL,

let τu : supp(u∗u) → supp(uu∗) be the homeomorphism defined by Ad(u)(g) =

g ◦ τ−1
u for g ∈ DLu∗u. Then there exists ku ∈ N such that

σku
L (τu(x)) = σku

L (x) for x ∈ supp(u∗u).

Therefore by Lemma 4.2 and Lemma 4.5 we have

PROPOSITION 4.6. For any v ∈ Ns(OL,DL), the partial homomorphism τv

induced by Ad(v) on DL gives rise to an element of the topological full inverse

semigroup [σL]sc. If in particular v belongs to N(OL,DL), then τv belongs to

[σL]c.
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Proof. The argument of the proof is the same as that of [30, Proposition 4.7].

The unitaries U(DL) are naturally embedded into Ns(OL,DL). We denote

the embedding by id. For v ∈ Ns(OL,DL), the induced partial homemorphism

τv on XL gives rise to an element of [σL]sc by the above proposition. We then

have

THEOREM 4.7. The diagrams

1 −−−→ U(DL)
id−−−→ N(OL,DL)

τ−−−→ [σL]c −−−→ 1∥∥∥
yι

yι

1 −−−→ U(DL)
id−−−→ Ns(OL,DL)

τ−−−→ [σL]sc −−−→ 1.

are all commutative, where two vertical arrows denoted by ι are inclusions. The

first row sequence is exact and splits as group, and the second row sequence is

exact and splits as inverse semigroup.

Proof. By Proposition 4.6, the map τ : v ∈ Ns(OL,DL) −→ τv ∈ [σL]sc defines a

homomorphism as inverse semigroup such that τ(N(OL,DL)) = [σL]c. It is sur-

jective by Proposition 4.1. Suppose that τv = id on XL for some v ∈ Ns(OL,DL).

This means that Ad(v) = id on DL. Hence v commutes with all of elements of

DL. By Lemma 2.1, v belongs to DL. Therefore the second row sequence is ex-

act. Similarly, the first row sequence is exact. As in Proposition 4.1, the partial

isometry uτ for τ ∈ [σL]sc defined by uτex = eτ(x), x ∈ Xτ ⊂ XL gives rise to

sections of the both exact sequences. Hence the both row sequences split. The

commutativity of the diagrams is clear.

5. Orbit equivalence of (XL, σL)

In this section, we will study orbit equivalence between two dynamical sys-

tems (XL1 , σL1) and (XL1 , σL1) defined by λ-graph systems L1 and L2 respectively.

DEFINITION. For λ-graph systems L1 and L2, if there exists a homeomor-

phism h : XL1 → XL2 such that h(orbσL1
(x)) = orbσL2

(h(x)) for x ∈ XL1 , then

(XL1 , σL1) and (XL2 , σL2) are said to be topologically orbit equivalent. In this

case, there exist functions k1, l1 : XL1 → Z+ and k2, l2 : XL2 → Z+ satisfying

{
σ

k1(x)
L2

(h(σL1(x))) = σ
l1(x)
L2

(h(x)) for x ∈ XL1 ,

σ
k2(y)
L1

(h−1(σL2(y))) = σ
l2(y)
L1

(h−1(y)) for y ∈ XL2 .
(5. 1)
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We say that (XL1 , σL1) and (XL2 , σL2) are continuously orbit equivalent if there

exist continuous functions k1, l1 : XL1 → Z+ and k2, l2 : XL2 → Z+ satisfying

the equalities (5.1).

The following lemma is straightforward.

LEMMA 5.1. If h : XL1→XL2 is a homeomorphism satisfying σ
k(x)
L2

(h(σL1(x)))

= σ
l(x)
L2

(h(x)), x ∈ XL1 for some functions k, l : XL1 → Z+, then by putting

kn(x) =
n−1∑
i=0

k(σi
L1

(x)), ln(x) =
n−1∑
i=0

l(σi
L1

(x)), n ∈ N

we have

σ
kn(x)
L2

(h(σn
L1

(x))) = σ
ln(x)
L2

(h(x)), x ∈ XL1 .

LEMMA 5.2. If h : XL1 → XL2 is a homeomorphism satisfying (5.1), then it

satisfies

h(orbσL1
(x)) = orbσL2

(h(x)) for x ∈ XL1 .

Hence continuous orbit equivalence implies topological orbit equivalence.

Proof. By the preceding lemma, one has

h(σn
L1

(x)) ⊂ σ
−kn(x)
L2

(σ
ln(x)
L2

(h(x))), x ∈ XL1 , n ∈ N

so that h(σn
L1

(x)) ⊂ orbσL2
(h(x)). For (z1, . . . , zm, x1, x2, . . . ) ∈ σ−m

L1
(x), where

x = (xn)n∈N, one has σm(z1, . . . , zm, x1, x2, . . . ) = x and hence h(z1, . . . , zm, x1,

x2, . . . ) ∈ σ
−lm1 (x)
L2

σ
−km

1 (x)
L2

(h(x)). This implies that h(orbσL1
(x)) ⊂ orbσL2

(h(x)).

One similarly has the inclusion relation h−1(orbσL2
(y)) ⊂ orbσL1

(h−1(y)) for

y ∈ XL2 by considering h−1 as h in the above discussion. This implies that

orbσL2
(h(x)) ⊂ h(orbσL1

(x)) for x ∈ XL1 so that h(orbσL1
(x)) = orbσL2

(h(x)).

PROPOSITION 5.3. If there exists a homeomorphism h : XL1 −→ XL2 such

that h ◦ [σL1 ]sc ◦ h−1 = [σL2 ]sc, then (XL1 , σL1) and (XL2 , σL2) are continuously

orbit equivalent.

Proof. Let us denote by {v2
1, . . . , v

2
m(2)} the vertex set V2. For i = 1, . . . , m(2),

let B2(v
2
i ) be the set of all admissible words of length 2 terminating at v2

i . That

is

B2(v
2
i ) = {(µ1, µ2) ∈ B2(XΛ) |there exist e1 ∈ E0,1, e2 ∈ E1,2;

λ(e1) = µ1,λ(e2) = µ2, t(e1) = s(e2), t(e2) = v2
i }.
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For µ ∈ B2(v
2
i ), by Lemma 3.1, there exists τµ ∈ [σL1 ]sc such that τµ(x) = σL(x)

for x ∈ Uµ,v2
i
. Put τh,µ = h ◦ τµ ◦ h−1 ∈ h ◦ [σL1 ]sc ◦ h−1 = [σL2 ]sc. There exist

continuous functions kτh,µ
, lτh,µ

: h(Uµ,v2
i
) → Z+ such that

σ
kτh,µ

(y)

L2
(τh,µ(y)) = σ

lτh,µ
(y)

L2
(y), y ∈ h(Uµ,v2

i
).

For x ∈ Uµ,v2
i
, one has τh,µ(h(x)) = h ◦ τµ(x) = h ◦ σL1(x) so that

σ
kτh,µ

(h(x))

L2
(h ◦ σL1(x)) = σ

lτh,µ
(h(x))

L2
(h(x)), x ∈ Uµ,v2

i
.

Since XL1 is a disjoint union ∪m(2)
i=1 ∪µ∈B2(v2

i ) Uµ,v2
i
, by putting

k1(x) = kτh,µ
(h(x)), l1(x) = lτh,µ

(h(x)) for x ∈ Uµ,v2
i
,

we have continuous functions k1, l1 : XL1 −→ Z+ satisfying

σ
k1(x)
L2

(h ◦ σL1(x)) = σ
l1(x)
L2

(h(x)), x ∈ XL1 .

We similarly have continuous functions k2, l2 : XL2 −→ Z+ satisfying

σ
k2(y)
L1

(h−1 ◦ σL2(y)) = σ
l2(x)
L1

(h−1(y)), y ∈ XL2 .

Hence (XL1 , σL1) and (XL2 , σL2) are continuously orbit equivalent.

Conversely we have

PROPOSITION 5.4. If (XL1 , σL1) and (XL2 , σL2) are continuously orbit equiv-

alent, then there exists a homeomorphism h : XL1 −→ XL2 such that h ◦ [σL1 ]sc ◦
h−1 = [σL2 ]sc.

Proof. Suppose that there exist a homeomorphism h : XL1 → XL2 and contin-

uous functions k1, l1 : XL1 → Z+ and k2, l2 : XL2 → Z+ satisfying (5.1). For

n ∈ N, let kn
1 , ln1 : XL1 −→ Z+ and kn

2 , ln2 : XL2 −→ Z+ be continuous functions

as in Lemma 5.1 such that

σ
kn
1 (x)

L2
(h(σn

L1
(x)) = σ

ln1 (x)
L2

(h(x)), σ
kn
2 (y)

L1
(h−1(σn

L2
(y)) = σ

ln2 (y)
L1

(h−1(y)) (5. 2)

for x ∈ XL1 and y ∈ XL2 . For any τ ∈ [σL1 ]sc, there exist continuous functions:

kτ , lτ : Xτ −→ Z+ such that

σ
kτ (x)
L1

(τ(x)) = σ
lτ (x)
L1

(x), x ∈ Xτ . (5. 3)

For y ∈ h(Xτ ), set x = h−1(y) ∈ Xτ . Put m = kτ (x). By (5.2) and (5.3), one

has

σ
lm1 (τ(x))
L2

(h(τ(x)) = σ
km
1 (τ(x))

L2
(h(σm

L1
(τ(x))) = σ

km
1 (τ(x))

L2
(h(σ

lτ (x)
L1

(x))
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Put n = lτ (x) ∈ N. By applying σ
kn
1 (x)

L2
to the above equalities, one has by (5.2)

σ
kn
1 (x)+lm1 (τ(x))

L2
(h(τ(x))

= σ
km
1 (τ(x))

L2
σ

kn
1 (x)

L2
(h(σn

L1
(x))) = σ

km
1 (τ(x))

L2
σ

ln1 (x)
L2

(h(x)) = σ
km
1 (τ(x))+ln1 (x)

L2
(h(x))

and hence

σ
kn
1 (x)+lm1 (τ(x))

L2
(h ◦ τ ◦ h−1(y)) = σ

km
1 (τ(x))+ln1 (x)

L2
(y).

By setting for y ∈ h(Xτ ),

kh
τ (y) = kn

1 (x) + lm1 (τ(x)) = k
lτ (h−1(y))
1 (h−1(y)) + l

kτ (h−1(y))
1 (τ(h−1(y))),

lhτ (y) = km
1 (τ(x)) + ln1 (x) = k

kτ (h−1(y))
1 (τ(h−1(y))) + l

lτ (h−1(y))
1 (h−1(y)),

one has

σ
kh

τ (y)
L2

(h ◦ τ ◦ h−1(y)) = σ
lhτ (y)
L2

(y) for y ∈ h(Xτ )

so that h ◦ τ ◦ h−1 ∈ [σL2 ]sc and hence h ◦ [σL1 ]sc ◦ h−1 ⊂ [σL2 ]sc. Similarly one

has h−1 ◦ [σL2 ]sc ◦ h ⊂ [σL1 ]sc and concludes h ◦ [σL1 ]sc ◦ h−1 = [σL2 ]sc.

PROPOSITION 5.5. If there exists an isomorphism Ψ : OL1 −→ OL2 such that

Ψ(DL1) = DL2, then there exists a homeomorphism h : XL1 −→ XL2 such that

h ◦ [σL1 ]sc ◦ h−1 = [σL2 ]sc.

Proof. Suppose that there exists an isomorphism Ψ : OL1 −→ OL2 such that

Ψ(DL1) = DL2 . By the split exact sequences

1 −→ U(DLi
) −→ Ns(OLi

,DLi
) −→ [σLi

]sc −→ 1, i = 1, 2

of inverse semigroups, one may find an isomorphism Ψ̃ : [σL1 ]sc −→ [σL2 ]sc of

inverse semigroup such that the following diagrams are commutative:

1 −−−→ U(DL1)
id−−−→ Ns(OL1 ,DL1)

τ−−−→ [σL1 ]sc −−−→ 1yΨ|U(DL1
)

yΨ

yeΨ
1 −−−→ U(DL2)

id−−−→ Ns(OL2 ,DL2)
τ−−−→ [σL2 ]sc −−−→ 1.

Let h : XL1 −→ XL2 be the homeomorphism satisfying Ψ(f) = f ◦ h−1 for f ∈
C(XL1). For v ∈ Ns(OL1 ,DL1), take the partial homeomorphism τv : Xv −→ Yv

satisfying Ad(v)(f) = f ◦ τ−1
v for f ∈ C(Xv). For g ∈ C(h(Xv)), we have

Ψ ◦ Ad(v) ◦Ψ−1(g) = g ◦ h ◦ τ−1
v ◦ h−1, and Ad(Ψ(v))(g) = g ◦ τ−1

Ψ(v).
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By the identity Ψ ◦ Ad(v) ◦Ψ−1 = Ad(Ψ(v)), one has

g ◦ h ◦ τ−1
v ◦ h−1 = g ◦ τ−1

Ψ(v)) for g ∈ C(h(Xv)).

Hence h ◦ τv ◦ h−1 = τΨ(v). As [σLi
]sc = {τv | v ∈ Ns(OLi

,DLi
)}, i = 1, 2, one sees

that h ◦ [σL1 ]sc ◦ h−1 = [σL2 ]sc.

PROPOSITION 5.6. If (XL1 , σL1) and (XL2 , σL2) are continuously orbit equiva-

lent, then there exists an isomorphism Ψ : OL1 −→ OL2 such that Ψ(DL1) = DL2.

Proof. The proof is essentially same as the proof of Proposition 4.1 and [30,

Proposition 5.5]. We omit its proof.

Therefore we have

THEOREM 5.7. Let L1 and L2 be λ-graph systems satisfying condition (I). The

following are equivalent:

(1) There exists an isomorphism Ψ : OL1 → OL2 such that Ψ(DL1) = DL2.

(2) (XL1 , σL1) and (XL2 , σL2) are continuously orbit equivalent.

(3) There exists a homeomorphism h : XL1 → XL2 such that h ◦ [σL1 ]sc ◦ h−1 =

[σL2 ]sc.

EXAMPLE. Let G = (V,E) be a finite directed graph with V = {v1, v2} and

E = {e, f, g} such that

s(e) = t(e) = s(f) = t(g) = v1, t(f) = s(g) = v2.

Put the alphabet sets Σ1 = {1,2} and Σ2 = {α, β}. Define two labeling maps

λi : E −→ Σi, i = 1, 2 by setting

λ1(e) = λ1(f) = 1, λ1(g) = 2, λ2(e) = α, λ2(f) = λ2(g) = β.

Let us denote by Gi the labeled graph (G, λi) over Σi for i = 1, 2. Hence their

underlying directed graphs are both G. The labeled graphs G1 and G2 have its

adjacency matrices as
[
1 1

2 0

]
,

[
α β

β 0

]

respectively. Let Li = (V (i), E(i), λ(i), Σi) be the λ-graph systems associated to

the labeled graphs Gi for i = 1, 2 respectively. They are defined by setting

V
(i)
l,l+1 = V, E

(i)
l,l+1 = E, λ(i) = λi
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for all l ∈ Z+ and i = 1, 2. We then have ΩLi
= V = {v1, v2}, i = 1, 2. The

correspondence:

(1, v1) → (α, v1), (1, v2) → (β, v2), (2, v1) → (β, v1)

yields a homeomorphism h : XL1 −→ XL2 that gives rise to a continuous orbit

equivalence between (XL1 , σL1) and (XL2 , σL2). One indeed sees that the C∗-
algebras OL1 and OL2 are both isomorphic to the Cuntz-Krieger algebra OF

where F = [ 1 1
1 0 ], although the subshift presented by the λ-graph system L2 is

the even shift that is not a Markov shift.

6. Orbit equivalence of the factor map πL
Λ : XL −→ XΛ

For a λ-graph system L over Σ, let Λ be the subshift presented by L. Then

we have a factor map πL
Λ : (XL, σL) −→ (XΛ, σΛ). In this section, we will study

orbit structure between two dynamical systems (XL, σL) and (XΛ, σΛ) through

the factor map πL
Λ.

LEMMA 6.1. πL
Λ(orbσL

(x)) = orbσΛ
(πL

Λ(x)) for x ∈ XL.

Proof. Take an arbitrary element x = (xn)n∈N ∈ XL. For w ∈ orbσL
(x), we have

w = (z1, . . . , zk, xl+1, xl+2, . . . ) ∈ XL for some z1 · · · zk ∈ Bk(XL) and l ∈ Z+. It

is easy to see that

πL
Λ(w) ∈ σ−k

Λ (σl
Λ(πL

Λ(x))) ⊂ orbσΛ
(πL

Λ(x)).

Conversely, put (αn)n∈N = πL
Λ(x). Each element a ∈ orbσΛ

(πL
Λ(x)) has of the form

a = (γ1, . . . , γk, αl+1, αl+2, . . . ) ∈ XΛ for some γ1 · · · γk ∈ Bk(XΛ) and l ∈ Z+.

Put v0 = v0(σ
l
L(x)) ∈ ΩL. Since L is left-resolving, there uniquely exists v−1 ∈ ΩL

such that (v−1, γk, v0) ∈ EL. Inductively there uniquely exist v−2, v−3, . . . , v−k ∈
ΩL such that (v−i, γk−(i−1), v−(i−1)) ∈ EL for i = 1, 2, . . . , k. Put zk−(i−1) =

(γk−(i−1), v−(i−1)) for i = 1, 2, . . . , k so that w = (z1, . . . , zk, xl+1, xl+2, . . . ) ∈ XL

and πL
Λ(w) = a. Since w ∈ σ−k

L (σl
L(x)) ⊂ orbσL

(x), one has a ∈ πL
Λ(orbσL

(x)).

For λ-graph systems L1 and L2, let Λ1 and Λ2 be the subshifts presented by

L1 and L2 respectively.

DEFINITION. Two factor maps πL1
Λ1

and πL2
Λ2

are said to be continuously orbit

equivalent if there exist homeomorphisms hL : XL1 −→ XL2 , hΛ : XΛ1 −→ XΛ2

such that πL2
Λ2
◦ hL = hΛ ◦ πL1

Λ1
and continuous functions k1, l1 : XL1 −→ Z+ and
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k2, l2 : XL2 −→ Z+ such that

σ
k1(x)
L2

(hL ◦ σL1(x)) = σ
l1(x)
L2

(hL(x)), x ∈ XL1 , (6. 1)

σ
k2(y)
L1

(h−1
L ◦ σL2(y)) = σ

l2(x)
L1

(h−1
L (y)), y ∈ XL2 . (6. 2)

We note that the equalities (6.1) and (6.2) imply

hL(orbσL1
(x)) = orbσL2

(hL(x)) for x ∈ XL1 . (6. 3)

LEMMA 6.2. Suppose that two factor maps πL1
Λ1

and πL2
Λ2

are continuously orbit

equivalent and keep the above notation. Then we have

(i)

σ
k1(x)
Λ2

(hΛ ◦ σΛ1(π
L1
Λ1

(x)) = σ
l1(x)
Λ2

(hΛ(πL1
Λ1

(x)), x ∈ XL1 ,

σ
k2(y)
Λ1

(h−1
Λ ◦ σΛ2(π

L2
Λ2

(y)) = σ
l2(y)
Λ1

(h−1
Λ (πL2

Λ2
(y)), y ∈ XL2 .

(ii)

hΛ(orbσΛ1
(a)) = orbσΛ2

(hΛ(a)) for a ∈ XΛ1 .

Proof. (i) follows from (6.1) and (6.2), and (ii) follows from (6.3).

The following lemma is direct.

LEMMA 6.3. Two factor maps πL1
Λ1

and πL2
Λ2

are continuously orbit equivalent

if and only if there exists a homeomorphism hL : XL1 −→ XL2 that yields a

continuously orbit equivalence between (XL1 , σL1) and (XL2 , σL2) and there exists

a homemorphism hΛ : XΛ1 −→ XΛ2 such that πL2
Λ2
◦ hL = hΛ ◦ πL1

Λ1
.

We note that the factor map πL
Λ : XL −→ XΛ induces an embedding of

C(XΛ) into C(XL), that corresponds to the natural embedding of DΛ into DL.

Let Ns(OL, DΛ)be the set of all partial isometries v ∈ OL such that vDΛv∗ ⊂ DΛ

and v∗DΛv ⊂ DΛ.

LEMMA 6.4. Ns(OL,DΛ) ⊂ Ns(OL,DL).

Proof. For v ∈ Ns(OL,DΛ), and x ∈ DL, a ∈ DΛ, we have

vxv∗a = vxv∗avv∗ = vv∗avxv∗ = avxv∗

so that vxv∗ ∈ D′
Λ ∩ OL = DL. Hence vDLv∗ ⊂ DL, and similarly v∗DLv ⊂ DL.

This implies that v ∈ Ns(OL,DL).

Suppose that both λ-graph systems L1 and L2 satisfy condition (I).
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LEMMA 6.5. If there exists an isomorphism Ψ : OL1 −→ OL2 such that

Ψ(DΛ1) = DΛ2, then Ψ(DL1) = DL2.

Proof. Suppose that Ψ(DΛ1) = DΛ2 . For x ∈ DL1 and b ∈ DΛ2 , take a ∈ DΛ1

such that Ψ(a) = b. It then follows that

Ψ(x)b = Ψ(xa) = Ψ(a)Ψ(x) = bΨ(x)

so that Ψ(x) commutes with all elements of DΛ2 , and hence Ψ(x) ∈ DL2 . This

implies that Ψ(DL1) ⊂ DL2 . Similarly we have Ψ−1(DL2) ⊂ DL1 so that Ψ(DL1) =

DL2 .

THEOREM 6.6. Let L1 and L2 be λ-graph systems satisfying condition (I). Let

XΛ1 and XΛ2 be their respect right one-sided subshifts. The following are equiv-

alent:

(1) There exists an isomorphism Ψ : OL1 −→ OL2 such that Ψ(DΛ1) = DΛ2.

(2) The factor maps πL1
Λ1

and πL2
Λ2

are continuously orbit equivalent.

(3) There exist homeomorphisms hL : XL1 −→ XL2 and hΛ : XΛ1 −→ XΛ2 such

that πL2
Λ2
◦ hL = hΛ ◦ πL1

Λ1
and hL ◦ [σL1 ]sc ◦ h−1

L = [σL2 ]sc.

Proof. (2)⇔ (3): The equivalence between (2) and (3) comes from Lemma 6.3.

(1)⇒(3): Suppose that there exists an isomorphism Ψ : OL1 −→ OL2 such

that Ψ(DΛ1) = DΛ2 . By Lemma 6.5, one has Ψ(DL1) = DL2 . Let hL : XL1 → XL2

be the homeomorphism induced by Ψ : DL1 −→ DL2 such that Ψ(f) = f ◦ h−1

for f ∈ DL1 . Then hL satisfies h ◦ [σL1 ]sc ◦ h−1 = [σL2 ]sc by Proposition 5.5.

Since Ψ(DΛ1) = DΛ2 , there exists a homeomorphism hΛ : XΛ1 −→ XΛ2 such

that hΛ ◦ πL1
Λ1

= πL2
Λ2
◦ hL.

(2)⇒(1): Suppose that the factor maps πL1
Λ1

and πL2
Λ2

are continuously orbit

equivalent. Since (XL1 , σL1) and (XL2 , σL2) are continuously orbit equivalent,

by Proposition 5.6 there exists an isomorphism Ψ : OL1 −→ OL2 such that

Ψ(DL1) = DL2 and Ψ(f) = f ◦ h−1
L for f ∈ DL1 . For g ∈ DΛ1 , one sees that

g ◦ πL1
Λ1
∈ DL1 so that

Ψ(g ◦ πL1
Λ1

) = g ◦ πL1
Λ1
◦ h−1

L = g ◦ h−1
Λ ◦ πL2

Λ2

This means that Ψ(DΛ1) ⊂ DΛ2 , and similarly Ψ−1(DΛ2) ⊂ DΛ1 . Therefore we

conclude that Ψ(DΛ1) = DΛ2 .

7. Orbit equivalence of one-sided subshifts

Let Λ be a two-sided subshift over Σ and XΛ its right one-sided subshift. The

canonical λ-graph system LΛ for Λ is defined as in the following way ([26]). For
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a = (an)n∈N ∈ XΛ and l ∈ Z+, denote by Pl(a) the predecessor set of a of length

l, that is

Pl(a) = {(µ1, . . . , µl) ∈ Bl(XΛ) | (µ1, . . . , µl, a1, a2, . . . ) ∈ XΛ}.

Two sequences a = (an)n∈N and b = (bn)n∈N in XΛ are said to be l-past equivalent

if Pl(a) = Pl(b), and written as a ∼
l

b. The equivalence class of a in XΛ/ ∼
l

is

denoted by [a]l. The vertex set Vl of the λ-graph system is the set XΛ/ ∼
l
. We set

vl(a) = [a]l. Then (vl(a))l∈Z+ defines an ι-orbit of ΩLΛ , denoted by v(a). An edge

labeled α from vl(a) to vl+1(b) is defined if a ∼
l

(α, b1, b2, . . . ), where b = (bn)n∈N.

LEMMA 7.1. For a = (an)n∈N ∈ XΛ, (an, vn(a))n∈N defines an element of XLΛ.

Proof. For each n ∈ N and l ∈ Z+, there is a unique edge from [(an, an+1, . . . )]l ∈
Vl to [(an+1, an+2, . . . )]l+1 ∈ Vl+1 labeled an. Hence (vn−1(a), an, vn(a)) belongs

to ELΛ for all n ∈ N, so that (an, vn(a))n∈N defines an element of XLΛ .

We put the embedding of XΛ into XLΛ :

ιΛ : a = (an)n∈N ∈ XΛ −→ (an, vn(a))n∈N ∈ XLΛ .

It is straightforward to see that the following lemma holds:

LEMMA 7.2. The map ιΛ : XΛ −→ XLΛ is injective and ιΛ(XΛ) is dense in

XLΛ.

We endow XΛ with a new topology induced by the injection ιΛ : XΛ −→ XLΛ ,

which is the weakest topology for which ιΛ is continuous. Denote by X̃Λ the

topological space XΛ with the topology. If Λ is a topological Markov shift, the

induced topology of X̃Λ coincides with the original topology of XΛ.

LEMMA 7.3. The topological space X̃Λ is generated by the clopen sets of the

form Uµ ∩ σ−k
Λ (σl

Λ(Uν)) for µ ∈ Bk(XΛ), ν ∈ Bl(XΛ) with k ≤ l. Hence the

correspondence χUµ∩σ−k
Λ (σl

Λ(Uν)) ←→ SµS
∗
νSνS

∗
µ yields an isomorphism between

C(X̃Λ) and DLΛ.

By the above lemma, we know that C(X̃Λ) is isomorphic to C(XLΛ).

Let Λ1 and Λ2 be subshifts, and XΛ1 and XΛ2 their right one-sided subshifts.

DEFINITION. The subshifts (XΛ1 , σΛ1) and (XΛ2 , σΛ2) are said to be

λ-continuously orbit equivalent if there exists a homeomorphism h : XΛ1 −→ XΛ2 ,
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that is also homeomorphic from X̃Λ1 −→ X̃Λ2 and there exist continuous func-

tions k1, l1 : X̃Λ1 −→ Z+ and k2, l2 : X̃Λ2 −→ Z+ such that

σ
k1(a)
Λ2

(h ◦ σΛ1(a)) = σ
l1(a)
Λ2

(h(a)) for a ∈ XΛ1 , (7. 1)

σ
k2(b)
Λ1

(h−1 ◦ σΛ2(b)) = σ
l2(b)
Λ1

(h−1(b)) for b ∈ XΛ2 . (7. 2)

We note that the conditions (7.1) and (7.2) imply that

h(orbσΛ1
(a)) = orbσΛ2

(h(a)), h−1(orbσΛ2
(b)) = orbσΛ1

(h−1(b))

for a ∈ XΛ1 , b ∈ XΛ2 .

LEMMA 7.4. Let L1 and L2 be the canonical λ-graph systems for Λ1 and Λ2

respectively. The following are equivalent:

(1) The subshifts (XΛ1 , σΛ1) and (XΛ2 , σΛ2) are λ-continuously orbit equivalent.

(2) The factor maps πL1
Λ1

and πL2
Λ2

are continuously orbit equivalent.

Proof. (2) ⇒ (1) is clear.

(1) ⇒ (2): It suffices to show the equalities

σ
k1(x)
L2

(h(σL1(x))) = σ
l1(x)
L2

(h(x)), for x ∈ XL1 ,

σ
k2(y)
L1

(h−1(σL2(y))) = σ
l2(y)
L1

(h−1(y)), for y ∈ XL2 .

For x ∈ XL1 , put k = k1(x), l = l1(x). Since k1, l1 : XL1 −→ Z+ are continuous,

the set U = {z ∈ XL1 | k1(z) = k, l1(z) = l} is a clopen set in XL1 . Since XΛ1 is

dense in XL1 through ιΛ1 , one sees x ∈ U with U ∩XΛ1 6= ∅ and the equality

σ
k1(x)
L2

(hσL1(x)) = σ
l1(x)
L2

(h(x)) for x ∈ XL1

holds because the equality holds for elements of XΛ1 . We similarly have the

equality

σ
k2(y)
L1

(h−1σL2(y)) = σ
l2(y)
L1

(h−1(y)) for y ∈ XL2 .

Hence the factor maps πL1
Λ1

and πL2
Λ2

are continuously orbit equivalent.

Therefore we conclude:

THEOREM 7.5. Let Λ1 and Λ2 be subshifts satisfying condition (I). The follow-

ing are equivalent:

(1) There exists an isomorphism Ψ : OΛ1 −→ OΛ2 such that Ψ(DΛ1) = DΛ2.

(2) The subshifts (XΛ1 , σΛ1) and (XΛ2 , σΛ2) are λ-continuously orbit equivalent.
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Let A = [A(i, j)]Ni,j=1 be an N × N matrix with entries in {0, 1}. The

Cuntz-Krieger algebra OA is generated by partial isometries S1, . . . , SN satis-

fying
∑N

j=1 SjS
∗
j = 1, S∗i Si =

∑N
j=1 A(i, j)SjS

∗
j , i = 1, . . . , N. The C∗-subalgebra

generated by projections S∗µn
· · ·S∗µ1

Sµ1 · · ·Sµn , µ1, . . . , µn ∈ {1, . . . , N} is canon-

ically isomorphic to the commutative C∗-algebra C(XA), that is denoted by DA.

COROLLARY 7.6. ([30], cf. [29]) Let A and B be square matrices with entries

in {0, 1} satisfying condition (I) in [8]. Then the following are equivalent:

(1) There exists an isomorphism Ψ : OA → OB such that Ψ(DA) = DB.

(2) (XA, σA) and (XB, σB) are continuously orbit equivalent.

Proof. For a topological Markov shift (XA, σA), the topology on X̃A coincides

with the original topology on XA. Let ΛA be the two-sided topological Markov

shift for the matrix A. Then XΛA
= XA and OΛA

= OA so that the assertion

holds.

Two one-sided subshifts (XΛ1 , σΛ1) and (XΛ2 , σΛ2) are said to be topologically

conjugate if there exists a homeomorphism h : XΛ1 −→ XΛ2 such that σΛ2 ◦ h =

h ◦ σΛ1 , and the homeomorphism h is called a topological conjugacy. One can

prove that topological conjugacy gives rise to a λ-continuous orbit equivalence.

Hence we have.

COROLLARY 7.7. ([27]) Suppose that both subshifts Λ1 and Λ2 satisfy con-

dition (I). Let h : (XΛ1 , σΛ1) → (XΛ2 , σΛ2) be a topological conjugacy of one-

sided subshifts. Then there exists an isomorphism Ψ : OΛ1 → OΛ2 such that

Ψ(DΛ1) = DΛ2.
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