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Abstract. A A-graph system £ is a generalization of a finite labeled graph
and presents a subshift. We will prove that the topological dynamical systems
(Xg,,0¢,) and (Xg,,0¢,) for A-graph systems £; and £; are continuously orbit
equivalent if and only if there exists an isomorphism between the associated C*-
algebras Og, and Og, keeping their commutative C*-subalgebras C'(Xg,) and
C(Xg,). It is also equivalent to the condition that there exists a homeomorphism
from Xg¢, to Xg, intertwining their topological full inverse semigroups. In par-
ticular, one-sided subshifts X, and X\, are A-continuously orbit equivalent if
and only if there exists an isomorphism between the associated C*-algebras Oy,
and Oy, keeping their commutative C*-subalgebras C'(Xy,) and C(Xj,).

1. Introduction

H. Dye has initiated to study of orbit equivalence of ergodic finite measure
preserving transformations, who proved that any two such transformations are
orbit equivalent ([13], [14]). W. Krieger [21] has proved that two ergodic non-
singular transformations are orbit equivalent if and only if the associated von
Neumann crossed produtcs are isomorphic. In topological setting, Giordano-
Putnam-Skau [15], [16] (cf. [19]) have proved that two Cantor minimal systems
are strong orbit equivalent if and only if the associated C*-crossed products
are isomorphic. In more general setting, J. Tomiyama [34] (cf. [2], [35]) has
proved that two topological free homeomorphisms (X, ¢) and (Y1) on compact
Hausdorff spaces are continuously orbit equivalent if and only if there exists an
isomorphism between the associated C*-crossed products keeping their commu-
tative C*-subalgebras C'(X) and C'(Y'). He also proved that it is equivalent to the
condition that there exists a homeomorphism h : X — Y such that h preserves
their topological full groups. Orbit equivalence of continuous maps on compact
Hausdorff spaces that are not homeomorphisms are not covered by the above
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Tomiyama’s setting. The class of one-sided subshifts is an important class of
topological dynamical systems on Cantor sets with continuous surjections that
are not homeomorphisms. The one-sided topological Markov shifts is a subclass
of the class. The associated C*-algebras to the topological Markov shifts are
known to be the Cuntz-Krieger algebras. In the recent paper [30], the author
has shown that similar results to the Tomiyama’s results hold for one-sided topo-
logical Markov shifts. He has proved that one-sided topological Markov shifts
(Xa,04) and (Xp,0p) for matrices A and B with entries in {0, 1} are contin-
uously orbit equivalent if and only if there exists an isomorphism between the
Cuntz-Krieger algebras O4 and Op keeping their commutative C*-subalgebras
C(X4) and C(Xp) ( Note that the term “topological ”orbit equivalence has been
used in [30] instead of “continuous ”orbit equivalence). It is also equivalent to
the condition that there exists a homeomorphism from X, to Xpg intertwining
their topological full groups [04]. and [og]..

In this paper we will extend the above results for one-sided topological Markov
shifts to the class of general one-sided subshifts. A A-graph system £ is a gener-
alization of a finite labeled graph and presents a subshift. It yields a topological
dynamical system (Xg,0¢) of a zero-dimensional compact Hausdorff space Xg¢
with shift transformation o¢, that is a continuous surjection and not a homeomor-
phism. The C*-algebra Oy is associated with the dynamical system (Xg, 0¢) such
that C'(X¢) is naturally embedded into Og¢ as a diagonal algebra of the canon-
ical AF-algebra Fg inside of Og. We will prove that the topological dynamical
systems (Xg,,0¢,) and (Xg,,0¢,) for A-graph systems £, and £, are continu-
ously orbit equivalent if and only if there exists an isomorphism between the
associated C*-algebras Og, and Og, keeping their commutative C*-subalgebras
C(Xg,) and C(Xg,). It is also equivalent to the condition that there exists a
homeomorphism from Xg, to X¢, intertwining their topological full inverse semi-
groups [og,]sc and [og,|s.. Let X, and Xy, be the right one-sided subshifts for
two-sided subshifts A; and A, respectively. We in particular show that two one-
sided subshifts X,, and X, are A-continuously orbit equivalent if and only if
there exists an isomorphism between the associated C*-algebras O, and Oy,
keeping their commutative C*-subalgebras C'(X,,) and C(X,,), where Oy, and
O, are the C*-algebras associated with subshifts ([25], cf. [3]).

Let [og]. be the topological full group of (Xg, o) whose elements consist of
homeomorphisms 7 on Xg¢ such that 7(x) is contained in the orbit orb,,(z) of
x under ge for x € Xg, and its orbit cocycles are continuous. If £ comes from
a finite directed graph and hence Xg is a topological Markov shift, then the
topological full group is large enough to cover orbits of x € Xga. However if £
does not come from a finite graph, the topological full group is not necessarily
large enough to cover orbits of Xg. To obtain enough informations of orbit
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structure of (Xg,0¢), we need to enlarge [o¢]. to topological inverse semigroup
[0¢]se whose elements consist of partial homeomorphisms 7 on X such that 7(z)
is contained in orb,,.(x) for each x in the domain of 7. Let us denote by Dg
the commutative C*-subalgebra C'(X¢) of Og. The corresponding object to the
inverse semigroup [ogls. is the normalizer semigroup Ny(Og,Dge) of Dg in Og
whose elements consist of partial isometries v of Qg such that vDev* C Dge and
v*Dgav C De. Then we will show that the exact sequence

1 — U(Dg) — NS(O/Q,DQ) h— [Uﬂ]sc — 1
of semigroups holds so that the following theorem will be proved:

THEOREM 1.1. (Theorem 5.7) Let £ and £y be \-graph systems satisfying
condition (I). The following are equivalent:

(1) There exists an isomorphism ¥ : Og, — Og, such that V(Dg,) = Deg,.
(2) (Xe,,0¢,) and (Xg,,0¢,) are continuously orbit equivalent.
(3) There exists a homeomorphism h : Xg, — Xg, such that ho[og,|scoh™ =

[0¢,]se-

Let A be the subshift presented by a A-graph system £ and (X, 0,) the right
one-sided subshift for A. There exists a natural factor map 7§ : (Xg,00) —
(Xa,oa). It induces an inclusion C'(X,) — C(Xe). We regard the algebra C(X,)
as a subalgebra D, of Dg and of O¢. We say that two factor maps Wﬁi and ij are
continuously orbit equivalent if there exist homeomorphisms he : Xg, — X,
and hp : X), — Xy, such that 7r§2 ohg = hpo 7r§1 and there exist continuous

functions ky,l; : Xe, — Z4 and ko, ly : Xe, — 7Z such that

Ug;(m)(hﬁ o00g, (x)) — Ug(w)<h2<l’)>, e XSU

2

k _ lo(z) /7 —
0wV (hg' 0 oe,(y) = 0" (hg' ), v € Xe,.
Then we will prove

THEOREM 1.2. (Theorem 6.6) Let £ and £y be A-graph systems satisfying
condition (I) and Ay and Ay their respect subshifts. The following are equivalent:

(1) There exists an isomorphism V : Og, — Og, such that V(D) = Dy,.
(2) The factor maps 7T/£\i and ﬂfz are continuously orbit equivalent.
(3) There exist homeomorphisms he : Xo, — Xg, and hy : Xy, — Xa, such
that sz ohg =hyo wfi and hg o [0g,]sc 0 hg' = [0g,]se-
Let £% be the canonical A-graph system for A (see [26]). Then the C*-
algebra O, coincides with the algebra Oga. The natural inclusion ¢ : Xy — Xgaa
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induces a new topology on X,. The topological space is denoted by X,. Two
subshifts (X, 04,) and (Xy,, 0,,) are said to be A-continuously orbit equivalent
if there exist a homeomorphism h : X, — X,,, and continuous functions
ki,lq : )?Al — Z, and ko, 15 : )?AQ — 7, such that h is also homeomorphic
from X A, onto X A, such that

ki(a li(a
D hooy (a) = oL (h(a)),  a€ X,
O (W o oy, (1) = 2O (hTIB)), b X,

Then we will prove

THEOREM 1.3. (Theorem 7.5) Let Ay and Ay be subshifts satisfying condition
(1). The following are equivalent:

(1) There exists an isomorphism W : Og, — Op, such that V(D) = Dy, .
(2) The subshifts (Xp,,on,) and (Xp,,0n,) are A-continuously orbit equivalent.

The theorem is a generalization of a result in [30] for topological Markov
shifts. Throughout the paper, we denote by Z, and N the set of nonnegative
integers and the set of positive integers respectively.

2. Preliminaries

Let £ = (V,E, A, ) be a A-graph system over > with vertex set V = Uz, V]
and edge set ' = Uz, Fj 41 that is labeled with symbols in ¥ by a map A :
E — ¥, and that is supplied with surjective maps ¢(= ¢ 441) @ Vi1 — V; for
l € Zy. Here the vertex sets V;,l € Z, are finite disjoint sets. Also Ej ;11,1 € Zy
are finite disjoint sets. An edge e in Ej;;; has its source vertex s(e) in V; and its
terminal vertex t(e) in Vjy; respectively. Every vertex in V' has a successor and
every vertex in V; for [ € N has a predecessor. It is then required that there exists
an edge in Ej ;4 with label o and its terminal is v € V;4; if and only if there
exists an edge in Ej_;,; with label a and its terminal is «(v) € V}. For v € V4
and v € Vi1, put

E‘(u,v) ={e € B4 | tle) =v,u(s(e)) = u},
E,(u,v) ={e € Ej_1, | s(e) = u,t(e) = 1(v)}.

Then we require a bijective correspondence between E*‘(u,v) and E,(u,v) that
preserves labels for each pair of vertices u,v. We call this property the local
property of £. We henceforth assume that £ is left-resolving, which means that
t(e) # t(f) whenever A(e) = A(f) fore, f € E.
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Let Qg be the compact Hausdorff space of the projective limit of the system
L1 Vigr — Vi, L € Zy, that is defined by

Qe = {(V)iez, € H Vi | ugn (V) =0 1 e Z4 )
leZy
An element v in Qg is called an ¢-orbit or also a vertex. Let Eg be the set of all
triplets (u, a,v) € Qg x ¥ x Qg, where u = (u')1ez, ,v = (v')iez, € Qg such that
for each [ € Z., there exists ;41 € £ ;41 satisfying

ul = s(eri1), - tleriv1) and o= Aey1)-

Then the set Eq C Q¢ X ¥ X Qg is a zero-dimensional continuous graph in the
sense of Deaconu ([28, Proposition 2.1], [9], [10], [11], [12]). It has been also
studied in [23] as a Shannon graph. Following Deaconu [10] and Krieger [22], we
consider the set X of all one-sided paths of Eg:

Xe = {(n, Up)nen € H(E X Q¢) | (tn, py1,Uns1) € Ee for all n € N
neN
and (ug, a1, u1) € Eg for some uy € Qg}.

The set X¢ becomes a zero-dimensional compact Hausdorff space under the rela-
tive topology from the infinite product topology of ¥ x Qga. For & = (v, ) nen €
Xeg, the vertex ug € Qg satisfying (ug, a1, u;) € Eg is unique because £ is left-
resolving. We denote it by wug(x). The shift map og : (@, up)nen € Xe —
(Qns1, Unt1)neny € Xe is a local homeomorphism by [28, Lemma 2.2]. We have a
topological dynamical system (Xg,0¢) of a compact Hausdorff space X¢ with a
continuous surjection og. The set

Xp = {(an)nen € =N | (Qny Un)nen € Xe}

becomes the right one-sided subshift for the subshift A presented by £ with shift
transformation o, defined by

oa((n)nen) = (n+1)nen, (an)nen € Xa-
The factor map
T3 (s n)nen € Xg — (@n)nen € Xa
is a continuous surjective map satisfying

TX 0 0g = 0p 0T}

A word p = py---pg for p; € X is said to be admissible for X, if pu appears
in somewhere in some element a in X,. We denote by By(X,) the set of all
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admissible words of length k& € Z,, where By(X,) means the empty word (.
We set B.(Xy) = U2 Bir(Xa). For a = (an)neny € Xa and positive integers
k,l with k& < [, we put the word apy = (ar, Grt1,..., @) € Bipy1(Xa) and
the right infinite sequence ap o) = (@i, @g1,-..) € Xa. Similarly we use the
notations By (X¢) defined by the set {(c,, un)E_; | (q, Un)nen € Xe} and zpy =
(g ... @) for & = (2)nen € Xe.

Let us now briefly review the C*-algebra O¢ associated with A-graph system
£. The C*-algebras Qg are generalization of the C*-algebras associated with
subshifts ([28], cf. [3]). We denote by {v!,... ,vfn(l)} the vertex set V;. Define
the transition matrices A1, I ;41 of £ by setting for i = 1,2,...,m(l), j =
L,2,...,m(l+1), a € X,

1 if s(e) = v, Ae) = a,t(e) = vé“ for some e € Ej 41,

Az,l+1(i, «, j) = {

0 otherwise,

1 if Llyl+1(1}§-+l) = Ull-,

Iy (iyg) = {

0 otherwise.

The C*-algebra Og is realized as the universal unital C'*-algebra generated by
partial isometries S,,, a € ¥ and projections E',i = 1,2,...,m(l),l € Z, subject
to the following operator relations called (£):

> SaSi=1, (2.1)

aEX
m(l) m(l4+1)
Y Ei=1, Bi= ) IuaG)E, (2.2)
=1 j=1
SsSEE; = E1S3S5, (2.3)
m(l+1)
SEELSs = > Apa(i, B 5)E, (2.4)
j=1

for pe X, i=1,2,...,m(l),l € Z,. Tt is nuclear (|28, Proposition 5.6]). For a
word p1 = py - pu, € Br(Xa), we set S, = Sy, -+ Sy, The algebra of all finite
linear combinations of the elements of the form

S,ELS:  for p,v€ BJ(Xy), i=1,....m(), l€Z,

is a dense *-subalgebra of Og. Let us denote by Ag the C*-subalgebra of Og
generated by the projections E!,i = 1,...,m(l),l € Z,. By the universal-
ity of the algebra Og the algebra Ag is isomorphic to the commutative C*-
algebra C'(Qg) of all complex valued continuous functions on Qe. We define
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C*-subalgebra F\. with k < [, that is a finite dimensional algebra generated by
S ELS v € Bp(Xa),i =1,...,m(l). Denote by Fg the AF-subalgebra of Og

1~

generated by Uk,lfii- For a vertex vﬁ €V, put
I (v)) = {(a1,0q,...,) € BV | there exists an edge €11 € Eypny1 for n > 1
such that v} = s(eri+1),  tennt1) = s(€nt1n+2); MEnnt1) = Qnoit1}
the set of all label sequences in £ starting at v!. We say that £ satisfies condition
(I) if for each v} € V, the set T'"(v!) contains at least two distinct sequences.
Under the condition (I), the algebra Og can be realized as the unique C*-algebra
subject to the relations (£) ([28, Theorem 4.3]). A A-graph system £ is said
to be irreducible if for a vertex v € V; and an t-orbit x = (2;);cz, € Qg, there
exists a A-path starting at v and terminating at x;, y for some N € N. If £ is
irreducible with condition (I), the C*-algebra Og is simple ([28, Theorem 4.7]).
Let D¢ be the C*-subalgebra of Fe generated by S“EfS:, € Bo(Xyp),i=
L...,m(l),l € Z; and D, the C*-subalgebra of Dg generated by S,S;, u €
B.(X4). For p = py -+ -y, € Br(X,) and v! € Vj, we set the cylinder set

UIMU% = {(anaun) € X£ | ap = H1,...,00 = Mk)ui; = Uf}
of X¢ where u;, = (Ui)lem € Qg¢. Let xy , denote the chracteristic function
v

on Xg for the cylinder set U, .. Then the éorrespondence S.E!S, € Dg «—
Xu, . € C(Xg¢) yields an isomorphism between Dg and C(Xg). Similarly let
U, — {(an)nen € X | @1 = p1,...,ax = ug} be the cylinder set of X,. The
correspondence 5,5, € Dy «— x, € C (X4) yields an isomorphism between D,
and C(X,).

By the universality for the relations (£), the correspondence S, — eVItS,
a€X, El — ElLi=1,....,m(),l € Z, for eV € T = {1 | t € [0,27]}
gives rise to an action p : T — Aut(Og) called gauge action. The fixed point
algebra of Og under p is the AF-algebra Fg. We denote by E : Og — Fg the
conditional expectation defined by E(a) = [, p(a)dt for a € Os.

The following lemma is basic in our further discussions.

LEMMA 2.1. ([27, Proposition 3.3], cf.[8, Remark 2.18]) Suppose that £ satis-
fies condition (I). Then we have ®\ N O¢ = D¢ and hence Dy N Og = Deg.

This means that the algebra Dg is maximal abelian in Og.

Proof. The proof of ) N Og¢ = Dg is completely similar to the proof of [27,
Proposition 3.3]. Since Dg C Dy N O C Dy N Og, we have Dy N Op = De. O

In [30], a representation of the Cuntz-Krieger algebra O, on a Hilbert space
having the shift space X4 as a complete orthonormal basis has been used. Let
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us generalize the representation to the C*-algebras Og¢ as in the following way.
Let $H¢ be the Hilbert space with its complete orthonormal system e,z € Xag.
The Hilbert space is not separable. Consider the partial isometries T,, : ¢ —
e, a € ¥ and projections P! : ¢ — He,i=1,...,m(l) defined by

Taex =

e, if there exists an t-orbit u_y € Qg; (u_1, a, up(z)) € Eq,
0  otherwise

where y = ((a, ug(x)), (a1, u1), (2, u2),...) € Xg for x = ((a,u1), (2, us),...)
c XE and

Ple, =

(2

{ew if ug(z)! = !,

0 otherwise

where ug(z) = (uo(2)")1ez, € Q.

LEMMA 2.2. The partial isometries T, o0 € X and the projections Pl,i =
1,...,m(l) on the Hilbert space $Hg satisfy the relation (£). Hence if £ satis-
fies condition (I), the correspondence S, — T, and E! — P! gives rise to a

faithful representation of the C*-algebra Og on He.

We call it the universal shift representation of O¢ on $He. In what follows, we
assume that £ satisfies condition (I) and regard the algebra O¢ as the C*-algebra
generated by T, € ¥ and P!,i = 1,...,m(l) on the Hilbert space .

3. Topological full inverse semigroups

For o = (z,)nen € Xe, the orbit orb,,(x) of x is defined by

0rboy () = UpZg Uy 05" (0 (7)) C Xe.

Hence y = (Yn)nen € X¢ belongs to orb,, (x) if and only if there exists a a finite
sequence 2 - -z € Bi(Xg) such that

Y=1(21, 2k Tis1, Tyso, ... ) for some k,l € Z, .

We denote by Homeo(X¢) the group of all homeomorphisms on Xe. We define
the full group [oe] and the topological full group [og]. for (Xg,0¢) as in the
following way.

DEFINITION. Let [og] be the set of all homeomorphism 7 € Homeo(X¢) such
that 7(z) € orb,.(x) for all x € Xeo. We call [og] the full group of (Xg,o¢).
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Let [o¢]. be the set of all 7 in [og¢] such that there exist continuous functions
k,l: X¢ — Z, such that

ot (r(2)) = o (w) forall z € X, (3.1)

We call [o¢]. the topological full group for (Xg,0e).

If a subshift is not a sofic shift, the full groups are not necessarily large
enough to cover the orbit structure. Hence to study of orbit structure of general
subshifts, we will extend the notion of full groups to full inverse semigroups
as in the following way. Let 7 : U — V be a homeomorphism from a clopen
set U C Xg onto a clopen set V' C Xg. We call 7 a partial homeomorphism.
Let us denote by X, and Y, the clopen sets U and V respectively. We denote
by PH(X¢) the set of all partial homeomorphisms of Xg. Then PH(Xg) has
a natural structure of inverse semigroup (cf. [31]). We define the full inverse
semigroup [oe|s and the topological full inverse semigroup [o¢]s. for (Xg,o0) as
in the following way.

DEFINITION. Let [0, be the set of all partial homeomorphisms 7 € PH(Xg)
such that 7(z) € orb,,(x) for all x € X,. We call [og|s the full inverse semigroup
of (Xg,0¢). Let [0¢g]se be the set of all 7 in [og]s such that there exist continuous
functions k,[ : X, — Z, such that

gg(“)(r(x)) = agx) () forall z € X,. (3.2)

We call [o¢]s. the topological full inverse semigroup for (Xg,o¢). The maps k, [
above are called orbit cocycles for 7, and sometimes written as k,, [, respectively.
We remark that the orbit cocyles are not necessarily uniquely determined for 7.
It is clear that [og¢]s is a subsemigroup of PH(X¢) and [0¢]s is a subsemigroup
of [og].. Although ¢ does not belong to [0¢]s., the following lemma shows that
og locally belongs to [0¢]s., and that [o¢]s. is not trivial in any case.

LEMMA 3.1. For any p = (pi1,- .., px) € Be(Xa) and vl € Vi with 2 < k <1
and U, 1 # 0, there exists 7,1 € [0¢]sc such that

T vﬁ(a:) = o¢(x) forz € Uy, . (3.3)

1,
Proof. Put v = (ua, ..., ) € Br_1(Xa). Then the map 7, : U, 0 — U,

K,
defined by 7, (z) = o¢(x) for x € U, is a partial homeomorphism, and it

belongs to [og]s.. O

LEMMA 3.2. For © = (xy)neny € Xg with x, = (ap,u,),n € N, put vy =
up(z) € Qe. Let ag € X be a symbol such that (c,—1,Un_1)neny € Xe. Then
there exists T € [0g|se with a clopen set X, C Xe such that x € X, and 7(y) =
(Yn—1)nen for all y = (yn)nen € X,, where yo = (o, uo(y)).
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Proof. Let X, be the clopen set U, for 1 = ajay € By(Xy) and v? = ul € Vs,
where uy = (ué)leZJr € Qg, so that x belongs to X,. One has (y,_1)neny € Xeo

for (yn)nen € X, where yo = (ao,uo(y)). By setting 7(y) = (yn—1)nen for
Y = (Yn)nen € Xe, we have o¢(7(y)) =y for y € X, so that 7 € [og]se. U

For z € Xg, put [og]sc(x) = {7(2) € Xg | T € [0¢g]sc With X, > z}.
LEMMA 3.3. [0¢g|sc(z) = orb,, (z).

Proof. For any 7 € [og]s. with X; > x, one sees 7(z) € orb,,(r) and hence
[0g]se(x) C orby,(z). For the other inclusion relation, by the previous lemmas,
for = (xn)nen € Xe and zg = (o, uo(x)) € X x Qg, there exist 7,7 € [0g]se
such that

T1(2) = (Tn_1)nen, 72(7) = (Tpy1)nen € Xe

so that both (z,_1)nen and (2,11)nen belong to [oe]s.(z). Since [oglse is a semi-
group, one sees that

[Uﬂ]sc(x) =) (I—k, sy X1, L0, Li415 142, - - )

for all k,1 € Z, with (z_g,...,x_1,%0, 141, Tis2,...) € Xe. Hence [og]s(z) D
orb,, (). O

4. Full inverse semigroups and normalizers

Let us denote by U(Og) the group of unitaries of O¢ and U(Dg) the group
of unitaries of Dg respectively. As in [30], the topological full group [og]. will
correspond to the normalizer N(QOg, Dg) of De in Og defined by

N(OQ,DQ) = {U S U(Og) | ’UDQU* = Dg}

For the topological full inverse semigroup [ogls., we will define the normalizer
Ns(Og, Dg) of partial isometries as in the following way:

Ny(Og,De) = {v € Og | v is a partial isometry; vDgv* C Dg,v*Dev C De}.

It is easy to see that Ny(Og, De) has a natural structure of inverse semigroup.
We will identify the subalgebra Dg of Og with the algebra C'(X¢). For a partial
isometry v € Og, put Ad(v)(z) = vav* for € Og. The following proposition
holds.
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PROPOSITION 4.1. For T € [0g]s, there exists a partial isometry
U, € Ng(Og,Dg) such that

Ad(u;)(f) = for™  for feC(X;),  Ad(u;)(g)=goT forge C(Yr),

and the correspondence T € [0glse — ur € Ng(Og, De) is a homomorphism of
inverse semigroup. If in particular T € [ogl., the partial isometry u, is a unitary
so that u; € N(Og, Dg).

Proof. Let the C*-algebra O¢ be represented on the Hilbert space $¢ with com-
plete orthonormal basis {e, | * € X¢}. Put the subspaces

Hx. =span{e, |z € X, }, 9y, = span{e, | x € Y, }.

Since 7 : X; — Y, is a homeomorphism, the operator u, : Hx. — $y, defined
by u;(e;) = ey for v € X yields a partial isometry on $¢. By a similar manner
to the proof of [30, Proposition 4.1], one knows that u, belongs to Ny(Og, Dg).
O

For v € Ng(Og, Dg), put the projections p, = v*v,q, = vv* in Dg, and the
clopen subsets X, = supp(p,), Y, = supp(q,) of Xe. Then Ad(v) : Dep, —
Deq, is an isomorphism and induces a partial homeomorphism 7, : X, — Y,
such that

Ad@)(f) = for," for fEC(X,),  AdWw')(g)=gom forgeCY,).

We will prove that 7, gives rise to an element of [og]s.. Since the proof basically
follows a line of the proof of [30, Proposition 4.7], we will give a sketch of the
proof. Fix v € N4(Og, Dg) for a while.

LEMMA 4.2.

(i) There exists a family v,,,m € Z of partial isometries in Og such that all
but finitely many v,,, m € Z are zero, and

(1) v=">",,c0Vm : finite sum.

(2) v Um, vk are projections in De for m € 7.

(3) v Dev’, C De and v}, Dev,, C Dg for m € Z.

(4) vl U = vpvi, =0 form #m'.

(5) vy € Fag.

(ii) For a firzed n € N, there exist partial isometries v,,v_, € Fe for each
€ B, (X)) satisfying the following conditions:
(1) v, = ZueBn(XA) S,v, and v_,, = ZueBn(XA) VS
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(2) vivy, SuvuvySy, Suvt vo,S; and v, v* , are projections in Dg such

that
* _ * *
VU, = E O VU = E S U,ﬂ)u w
,U«EBn(XA) HEBy XA)
_ *
v v, = g S v, Sy, Vv, = E VU,
HEBR(XA) HEBn(X4A)

(3) vuvy =v* v, =0 for p,v € By(Xp) with p#v.
(4) The algebras UuDSUruU;DSUmU—uDEU*—u and Ui”DQU_'u are contained
m DQ.

Proof. (i) Put a partial isometry g(t) = v*p;(v) € Og for t € T. For f € Dg, it
follows that py(v)fpi(v)* = pi(vfo*) = fv and hence

g(t)f = v pi(v) foi(v)pi(v) = v v fo pi(v) = fg(t)

so that g(¢) commutes with each element of Dg. By Lemma 2.1, g(¢) belongs to
the algebra Dg. Since g(t)* = g(—t) and g(t + s) = g(t)g(s), by putting

Uy = /pt(v)e_“/jlmtdt, g(m) = /g(t)e_‘/jlmtdt for m € Z.
T T

one has v, = vg(m). By a similar argument to the proof of [30, Lemma 4.2],
one has the assertions (1),(2),(3), (4) and (5).
(ii) Put for p € B,(X¢),

v, = E(Sv), v_, = E(vS,).

By a similar argument to the proof of [30, Lemma 4.3], one has the assertions
(1),(2),(3) and (4). O

For u € N4(Og, Dg), let 7, : X, — Y, be the induced homeomorphism.

LEMMA 4.3. Keep the above notation. For x = (zp)peny € X, with x, =
(an,un(:v)), Un(l’) = (uiz(x))lel+; pUt Yy = (yn)nEN = Tu(x) € YU7 where Yn =
(B, un(y)), un(y) = (u%(y))leZJr. For a fized integer | € Z., take i(x,) €
{1,....m()} and i(y,) € {1,...,m(l)} such that Uf(xn) = ul(x) and v}, | =

! Z(yn) -

w,, (y) respectively. Then we have

|| (yn)Sﬂl ,3 uSO‘l anEl(gjn)H == 1 fOT all n E N
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Proof. It suffices to show that El ) B3, WS e anEle ) # 0. Since v( Y =

ul (), one sees that Ef(yn)emQ n(y) = 602 (y) SO that

n

<E (yn) Sﬁ1 -Bn uSal anEl S:zl an U Sﬁl ﬂn (yn)eUL"(ZJ) | 602"(9)>
(A ( )( al"'anEl(xn)Sal an)Sﬂl ﬁneﬂsn(y) | Sﬁl BnCogn ())
= (Ad(t)(Sayan B,y Sy an)ey | €4)-

Consider the cylinder set

Uar--an,vﬁ(ln) = {(ﬁym’ um)WEN € ng ‘ T =01, Y = Qp, uﬁz = vf(xn)}

of X¢. As Sy, anEl S;l o, = XU ) and
oyl
Ad(u)(xu, i, ))ey
= (x 0Ty 1)<y)€y =X ] (z)ey = ey,

we have

(Bt S5y 0Soncin Ei(n) Senron @ S818 By €oen(y) | €oeniy))
= (ey | ey) =1

1 x t
so that E;, \SF .5, WSay-a, Ej,,) # 0. O

LEMMA 4.4. Keep the above situation. Assume in particular that u € Fg.
Then there exists k € N such that for all = (z,)nen € X

Tu(T)n = T, for alln > k

where 7,(z) = (Tu(T)n ) nen-

Proof. Suppose that for any & € N there exist + € X, and N > k such that
T(T)N # zn. Put y, = 7(2)n,n € N. II\IOW u € Fg so that take ug € .7:;30

for some ky < [y such that ||u — ug|| < 5. Take z € X, and Ny > ko such

as Yn, # Tn,. Since xy, = (O‘NoauNo@:))’yNo = (6N07uNo(y)) and uN0<x> -
(uly, ())iew, ung (y) = (U, (¥))ien € Qe, one has an, # Bu, or there exists [y
such that uly (x) # uly (y) fo all 1 > 1;. As uly (z) = vf(xN Y Juby, (y) = vﬁ(yNO), the

later condition is equivalent to the condition that E 7é E fo all { > [y.

Now ug € FrFo  FNo=1 where Il =g+ No — 1 — k:o, 1t is wrltten as
lo A 0

Uy = Z Ce.j, 77S{EOS"‘ € ]:NO ' for some ¢, € C.
éﬂ']EBNO—l(XA)aj:17"'7m(ll)
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Hence we have

SEI"'ﬁNOfluOSOél"'O‘NO—l
m(ip) .
= Z Cﬁl"’ﬁNOfl,jyal’“aNoflS;y-ﬁNO_1Sﬂl"'/BNoflEjOS:zy--OtNo_lSal"'OéNOfl'
j=1
Take an integer [} such that [; > max{l;,[{} and hence the condition ay, # B,

or E?ll . E?ll = 0 holds. It follows that
Z(wN()) Z(yN())

1 * 1 _
Ei(yNo)Sﬁl"ﬂNo uOSalmaNO i(zng)

ey I It I
Zcﬁl"ﬂNO—l,j,Oﬂ"-aNo—lEi(lyNO)S;1~~ﬁ1\r(§ﬁ1--ﬂzvo—1EjOS;maNO_lSal---OéNOEi(lchO)'
j=1
. . I o
Since Sﬂl"'ﬁNoflSﬁl'“ﬁNo—lEjOSal"‘Q’NO—lSal“'OCN()—l belongs to Dg, one has

1 % 1 s 1 . . /
EiEyNo)Sﬁl”ﬂNo Sﬁl"'ﬁNOflEjOSOq---aNO—lSal"'aNo Ei(la:No) = O, J = 1, e ,m(lo)

l l
1 NN D
because ay, # Oy, 0 i(ng) * Lilyng)

= (0. This implies that

i
E'l

* ll -
Z(yzvo)S,61~ﬂN0UOSOQ‘..QNOE.l =0

z(xNO)

so that

lll * l/ .
i(yNO)Sﬁl“'ﬁNoUSal“'aNo EiExNO) =0

a contradiction to the preceding lemma. [
Thus we have

LEMMA 4.5. For a partial isometry u € Fe satisfying
UDQU* C Dg, U*Dgu C DQ,

let 7, : supp(u*u) — supp(uu*) be the homeomorphism defined by Ad(u)(g) =
goT, ! for g € Deu*u. Then there exists k, € N such that

ot (r,(x)) = ob(x) for x € supp(u*u).

Therefore by Lemma 4.2 and Lemma 4.5 we have

PROPOSITION 4.6. For any v € Ny(Og,Dg), the partial homomorphism T,
induced by Ad(v) on Dge gives rise to an element of the topological full inverse
semigroup |oglse. If in particular v belongs to N(Og, De), then 1, belongs to

[O’g]c.
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Proof. The argument of the proof is the same as that of [30, Proposition 4.7]. O

The unitaries U(Dg) are naturally embedded into Ng(Og, De). We denote
the embedding by id. For v € N,(Og, D), the induced partial homemorphism
T, on Xg gives rise to an element of [og]s. by the above proposition. We then
have

THEOREM 4.7. The diagrams

1 —— UDs) —% N(Og,Ds) —— [og]e —— 1

| |
1 —— UDs) —% N,(Og,Ds) —— [0g]se —— 1.

are all commutative, where two vertical arrows denoted by v are inclusions. The
first row sequence is exact and splits as group, and the second row sequence is
exact and splits as inverse semigroup.

Proof. By Proposition 4.6, the map 7 : v € Ny(Og,Dg) — 7, € [0g]sc defines a
homomorphism as inverse semigroup such that 7(N(Og, Dge)) = [0g].. It is sur-
jective by Proposition 4.1. Suppose that 7, = id on X¢ for some v € Ny(Og, Dq).
This means that Ad(v) = id on Dg. Hence v commutes with all of elements of
Dge. By Lemma 2.1, v belongs to De. Therefore the second row sequence is ex-
act. Similarly, the first row sequence is exact. As in Proposition 4.1, the partial
isometry wu, for 7 € [0¢s defined by u,e, = ey, v € X, C X¢ gives rise to
sections of the both exact sequences. Hence the both row sequences split. The
commutativity of the diagrams is clear. [J

5. Orbit equivalence of (Xg¢,0¢)

In this section, we will study orbit equivalence between two dynamical sys-
tems (Xg,,0¢,) and (Xg,, 0g,) defined by A-graph systems £, and £, respectively.

DEFINITION. For A-graph systems £; and £o, if there exists a homeomor-
phism h : X¢, — Xe, such that h(orb,, (v)) = orbs,, (h(z)) for x € Xg,, then
(Xe,,0¢,) and (Xg,,0g,) are said to be topologically orbit equivalent. In this
case, there exist functions ki, l; : Xe, — Z, and ko, lo 1 Xe, — Z, satisfying

{ﬂﬁWmmmz ol (h(x))  for z € X, (5.1)

oD (Y og, (1) = oEW(h () fory € X,
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We say that (Xe,,0¢,) and (Xg,,0¢,) are continuously orbit equivalent if there
exist continuous functions £y, l; : X¢, — Zy and ko, Iy : Xe, — Z, satisfying
the equalities (5.1).

The following lemma is straightforward.

LEMMA 5.1. If h: Xo, — Xg, is a homeomorphism satisfying O'ggx)(h(0'21<l‘>))

= a;(:)(h(x)),:c € Xg, for some functions k,l : X¢, — Z, then by putting

—_
—_

F) = Skl @), @)= S Uk @),  neN

7

n—

Il
=)
.

Il
)

we have

oo (h(o%, (2)) = 0p D (h(z),  x€ X,

LEMMA 5.2. If h : Xg, — Xg, is a homeomorphism satisfying (5.1), then it
satisfies

h(orbg, (7)) = orbs, (h(z)) forz e Xg,.
Hence continuous orbit equivalence implies topological orbit equivalence.

Proof. By the preceding lemma, one has

h(og () C og” D (0e P (h(x))), x€Xe,neN

so that h(og (7)) C orbs,, (h(x)). For (21,...,2m,%1,22,...) € 0" (), where
T = (Tp)nen, one has a™(z1, ..., 2Zm, T1, T2, ... ) = x and hence h(zy, ..., zm, T1,
Tog,...) € agfn(x)agfmm)(h(x)). This implies that h(orby, (7)) C orby, (h(z)).

One similarly has the inclusion relation h="'(orbs,, (y)) C orbs, (h™"(y)) for
y € Xg, by considering h~! as h in the above discussion. This implies that
0rby,, (h(x)) C h(orby, (x)) for x € Xg, so that h(orbs, (x)) = orbs,, (h(z)). D

PROPOSITION 5.3. If there exists a homeomorphism h : Xeo, — Xge, such
that h o [og,]sc 0 B! = [0g,]se, then (Xg,,00,) and (Xg,,0¢,) are continuously
orbit equivalent.

Proof. Let us denote by {vf,...,v2 )} the vertex set V5. Fori = 1,...,m(2),

let By(v?) be the set of all admissible words of length 2 terminating at v?. That
is

By (v?) = { (1, t2) € Ba(Xy) |there exist e; € Ey1,e2 € By 9;
Aer) = pr,Aea) = pa, t(er) = s(ea), t(ez) = v7 }.
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For 1 € By(v?), by Lemma 3.1, there exists 7, € [0g,]s such that 7,(z) = og(x)
for z € U, 2. Put 7 = hor,0h™" € hologewoh™ = [0g,]s. There exist
: (U, ,2) — Z, such that

continuous functions k, 1 2

Th,p

kr (y) lry (y)
oo, " (M) =0, (W), y € h(U,.2)-

For x € U, 2, one has 7, ,(h(z)) = ho7,(x) = hoog, (x) so that

TR
k- h(z lr h(x
oo (hoge, (@) = o "V (h(@)),  z U,
Since Xg, is a disjoint union U:-i(f ) UneBa(e?) Upe2, by putting

ki(x) = k‘rw(h(ﬂﬁ)), li(x) = lTh,M(h(x)) for x € UW}%,
we have continuous functions ki, [y : X¢, — Z, satisfying
ooy (hoog, (1)) = od 7 (h(x). = € Xe,.
We similarly have continuous functions ks, [y : Xe, — Z, satisfying

o2W(h o ag,(y)) = o2 (hH(y), ye Xe,.

Hence (Xg¢,,0¢,) and (Xg,,0¢,) are continuously orbit equivalent. [J
Conversely we have

PROPOSITION 5.4. If (X¢,,0¢,) and (Xg,,0¢,) are continuously orbit equiv-
alent, then there exists a homeomorphism h : Xg, — Xe, such that ho [og,|sc 0
ht = [og,)s-

Proof. Suppose that there exist a homeomorphism h : X¢, — Xe, and contin-
uous functions ky, 1 : Xe, — Zy and ko, ly : Xg, — Z, satisfying (5.1). For
n €N, let k7,17 : Xe, — Z, and k3,13 : Xe, — Z, be continuous functions
as in Lemma 5.1 such that

e n I (a Ky 1/ .n i _
oo (g, () = oL (h(@)), oE V(N o8,y) = i (') (5.2)
for v € X, and y € Xg,. For any 7 € [0g,|s, there exist continuous functions:

ky,l;: X, — Z, such that

oy r(@)) =05 (@), weX,. (5.3)

1

For y € h(X;), set x = h™'(y) € X,. Put m = k.(z). By (5.2) and (5.3), one
has

7 (r(z kT (T (x m kT (T(x (z
o, " (h(r(2) = ol " (h(0F ((x) = okl T (b0 ()
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(

Put n = [.(z) € N. By applying oM@ 6 the above equalities, one has by (5.2
Lo

kp (2) +H7 (7(2))
ot T (7 ()
k™ (r(z)) kM (z n Em(r(z)) 17 (x) kM (1 ()7 (2)
— o TGO (h(op (2))) = o T GE O (R(2)) = ok Y (h(a))

and hence

Ugg(m)‘*‘lT(T(x))(h 0T o0 h_l(y)) _ 0_512"(7(35))+l?($)(y)‘

By setting for y € h(X,),

Ki(y) = k(@) + 00 (r(2) = KO (0 ) + 85T O (2 (0 (y))),
U(y) = k(7 () + () = KOO (0 () + 80T (a7 ),
one has

h h
U&@)(h oToO h*1<y)) _ ag;w(y) for y € h(XT)

so that ho7oh™! € [0g,]sc and hence h o [og,|sc 0 B! C [0g,]se. Similarly one
has h™' o [0g,]sc 0 h C [0g,]se and concludes h o [og,|sc0 h™! = [0g,]s. O

PROPOSITION 5.5. If there exists an isomorphism ¥ : Og, — Og, such that
U(Dg,) = Dg,, then there exists a homeomorphism h : Xe, — Xg, such that
holog]seoh™ = [0g,]se-

Proof. Suppose that there exists an isomorphism ¥ : Og, — g, such that
U(Dg,) = Dg,. By the split exact sequences

I — U(DQJ - NS<O£i7D2¢) I [O-Si]sc — 1, 1=1,2
of inverse semigroups, one may find an isomorphism U [0¢,]se — [08y]se Of

inverse semigroup such that the following diagrams are commutative:

T

l — U(Dﬂl) L) NS(O£17D£1) - [021]80 — 1

l‘l/h,{(bgl) l\lf l\f

1 —— U(Dg,) —— Ny(Os,,Ds,) —— [00,]se — 1.

Let h : Xg, — Xg, be the homeomorphism satisfying U(f) = foh™! for f €
C(Xg,). For v € Ny(Og,,Dg,), take the partial homeomorphism 7, : X, — Y,
satisfying Ad(v)(f) = for, ! for f € C(X,). For g € C(h(X,)), we have

Vo Ad(w)oW Hg)=gohor,'oh ™, and Ad(¥(v))(g)=go T\Ij(lv).
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By the identity ¥ o Ad(v) o ¥~! = Ad(¥(v)), one has

gohor toh™l =g OT\IT(lv)) for g € C(h(X,)).

Hence hot,0h™ = Ty(. As [0g,]sc = {7 | v € Ny(Og,, Dg,)}, i = 1,2, one sees
that ho[og,]sc0h™! = [0g,]se. O

PROPOSITION 5.6. If (Xg,,0¢,) and (Xe,,0¢,) are continuously orbit equiva-
lent, then there exists an isomorphism V : Og, — Og, such that V(Dg,) = Dag,.

Proof. The proof is essentially same as the proof of Proposition 4.1 and [30,
Proposition 5.5]. We omit its proof. O

Therefore we have

THEOREM 5.7. Let £1 and £5 be A-graph systems satisfying condition (I). The
following are equivalent:

(1) There exists an isomorphism W : Og, — Og, such that V(Dg,) = Dag,.

(2) (Xg,,0¢,) and (Xg,,08,) are continuously orbit equivalent.

(3) There exists a homeomorphism h : Xe, — Xg, such that ho[og,|scoh™! =

[0¢,]se-

EXAMPLE. Let G = (V, E) be a finite directed graph with V' = {v;,v9} and
E ={e, f, g} such that

s(e) =t(e) = s(f) =t(g) = v, t(f) = s(g) = va.

Put the alphabet sets 3; = {1,2} and X3 = {«, 5}. Define two labeling maps
Ao B — 31 =1,2 by setting

Ale) = M(f) =1, Mi(g) =2, Aae) = a, Aa(f) = Aa(g) = 6.

Let us denote by G; the labeled graph (G, \;) over ¥; for i« = 1,2. Hence their
underlying directed graphs are both G. The labeled graphs G; and G, have its

1 1 a [

2 0|’ g 0
respectively. Let £; = (V®, E® A %) be the A-graph systems associated to
the labeled graphs G; for ¢ = 1, 2 respectively. They are defined by setting

adjacency matrices as

Ya=E A=)
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for all | € Z, and i = 1,2. We then have Q¢, = V = {v,v},i = 1,2. The
correspondence:

(171)1) - (aavl)a (177}2) - (67 02)7 (27U1) - (ﬂ?m)

yields a homeomorphism h : Xe, — X, that gives rise to a continuous orbit
equivalence between (Xg,,0¢,) and (Xg,,0¢,). One indeed sees that the C*-
algebras Og, and Opg, are both isomorphic to the Cuntz-Krieger algebra Op
where F' = [1}], although the subshift presented by the A-graph system £, is
the even shift that is not a Markov shift.

6. Orbit equivalence of the factor map 7y : Xg — X,

For a A-graph system £ over Y, let A be the subshift presented by £. Then
we have a factor map 73 : (Xg,00) — (Xa,04). In this section, we will study
orbit structure between two dynamical systems (Xg,0¢) and (X,,0,) through
the factor map 7}.

LEMMA 6.1. 75 (orb,,(z)) = orb,, (75(z)) for z € Xg.

Proof. Take an arbitrary element = (z,,)n,eny € Xe. For w € orb,,(x), we have
W= (21, 2k, Ts1, Ti2, . .. ) € Xg for some 21 -+ 2z € Br(Xe) and l € Z,. It
is easy to see that

i (w) € o3 (o) (X (2))) C orby, (mx(x)).

Conversely, put (o, )neny = 75 (). Each element a € orb,, (75(x)) has of the form
a = (M- Ve, i1, o, ... ) € Xy for some 71 -y € Bp(Xa) and [ € Z,.
Put vy = vg(oh(x)) € Qg. Since £ is left-resolving, there uniquely exists v_; € Qg

such that (v_1,7vk,v9) € Fe. Inductively there uniquely exist v_o,v_3,...,v_ €
Q¢ such that (v_;, Ve—(i—1),V—@-1)) € Ege for i = 1,2,... k. Put z_4_1) =
(Ve—(i=1), v—(i—1y) for i = 1,2,... k so that w = (z1,..., 2k, X141, Tiy2, ... ) € Xg

and 73 (w) = a. Since w € 05" (0h(x)) C orby, (), one has a € 75 (orby, (v)). O
For A\-graph systems £; and £,, let A; and Ay be the subshifts presented by
£, and £y respectively.

DEFINITION. Two factor maps Wﬁi and Wfi are said to be continuously orbit
equivalent if there exist homeomorphisms he : X¢, — Xe,, hp @ Xa, — Xy,
such that ﬂfi ohg =hyo Wfi and continuous functions ki, l; : Xe, — Z, and
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ko, ly » Xe, — 7 such that

75 (hg 0 og, (2)) = 02 (he(2)), =€ X, (6.
o2V (hgt 0 oe,(y)) = o2V (M5 (y)), v € Xe,. (6.

We note that the equalities (6.1) and (6.2) imply

S O
N =
~— ~—

he(orbs, (7)) = orb,,, (he(r)) for z € Xg,. (6.3)

LEMMA 6.2. Suppose that two factor maps ﬂii and Wi; are continuously orbit
equivalent and keep the above notation. Then we have
(1)
k1 (z) h £1 _ h(x) h £1 X
e ( AC TN, (7TA1 (.’L‘)) =0p, ( A(T‘—Al (l’)), T E Ag,
ka(y)

ox” (b 0 on () = ok (B (TR (), Y € X,
(i)
ha(orby, (a)) = orb,,, (ha(a)) fora e Xy,.
Proof. (i) follows from (6.1) and (6.2), and (ii) follows from (6.3). O

The following lemma is direct.

LEMMA 6.3. Two factor maps W/S\:i and Wfi are continuously orbit equivalent
if and only if there exists a homeomorphism he : X¢, — Xg, that yields a
continuously orbit equivalence between (Xg,,0¢,) and (Xg,,0¢,) and there exists
a homemorphism hy : Xp, — Xy, such that Wﬁi ohg = hypo ’/Tii

We note that the factor map 7% : X¢ — X, induces an embedding of
C(Xy) into C(Xg), that corresponds to the natural embedding of ©, into Dag.
Let Ns(Og,®5)be the set of all partial isometries v € Og such that vO v* C Dy
and v*D v C Dy,

LEMMA 6.4. N;(Og, D)) C Ny(Og,Dy).
Proof. For v € Ny(Og,®4), and x € De,a € Dy, we have
vrvta = vevFavv® = vvtavzv® = avzv”

so that vzv* € | N Og = De. Hence vDev* C Dg, and similarly v*Dev C Deg.
This implies that v € Ny(Og, D). O

Suppose that both A-graph systems £; and £, satisfy condition (I).
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LEMMA 6.5. If there exists an isomorphism U : Og, — Og, such that
\I[(QAl) = @Aw then \I/(Dgl) = DEQ.

Proof. Suppose that U(D,,) = D,,. For x € Dg, and b € D,,, take a € Dy,
such that WU(a) = b. It then follows that

U(z)b = V(za) = ¥(a)¥(x) = bV (x)
so that ¥(z) commutes with all elements of ©,,, and hence ¥(z) € Dg,. This

implies that ¥(Dg,) C Dg,. Similarly we have U~!(Dg,) C Dg, so that U(Dg,) =
Deg,. O

THEOREM 6.6. Let £ and £9 be \-graph systems satisfying condition (I). Let
Xp,
alent:

(1) There exists an isomorphism V : Og, — Og, such that V(D) = Dy,.
(2) The factor maps W/S\i and Wﬁ; are continuously orbit equivalent.
(3) There exist homeomorphisms he : Xo, — Xg, and hy : Xy, — Xa, such

and Xy, be their respect right one-sided subshifts. The following are equiv-

that sz ohg =hyo wfi and hg o [0g,]sc 0 ha' = [0g,]se-

Proof. (2)< (3): The equivalence between (2) and (3) comes from Lemma 6.3.

(1)=-(3): Suppose that there exists an isomorphism ¥ : Og, — Opg, such
that U(Dy,) = Dy,. By Lemma 6.5, one has ¥(Dg, ) = Dg,. Let he 1 Xo, — Xg,
be the homeomorphism induced by ¥ : Dg, — Dg, such that U(f) = foh™!
for f € Dg,. Then hg satisfies h o [0g,]|sc © B! = [0g,]sc by Proposition 5.5.
Since ¥(Dp,) = D,,, there exists a homeomorphism hy : X, — Xj, such
that hy o Wii = 71'/%; o hg.

(2)=-(1): Suppose that the factor maps Wfi and Wfi are continuously orbit
equivalent. Since (Xg,,0¢,) and (Xg,,0¢,) are continuously orbit equivalent,
by Proposition 5.6 there exists an isomorphism ¥ : Og, — Og, such that
U(Dg,) = Dg, and ¥(f) = fohg' for f € Dg,. For g € Dy,, one sees that
go Wfi € Dg, so that

L1\ £1 -1 _ -1 Lo
\If(gOWAl)—gowAIOhS =goh, omy:

This means that U(Dy,) C Dy,, and similarly $=1(D,,) C D,,. Therefore we
conclude that ¥(Dy,) = Dy,. O

7. Orbit equivalence of one-sided subshifts

Let A be a two-sided subshift over ¥ and X, its right one-sided subshift. The
canonical A-graph system £* for A is defined as in the following way ([26]). For
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a = (an)nen € Xp and | € Z,, denote by P,(a) the predecessor set of a of length
[, that is

Pa) ={(p1, ..., ) € Bi(Xa) | (111, -, 1, a1,0a9,...) € Xp}.

Two sequences a = (a,)neny and b = (by, )nen in X are said to be [-past equivalent
if P(a) = PF,(b), and written as a ~ b. The equivalence class of a in X A/ ~ is

denoted by [a];. The vertex set V, of the A-graph system is the set X / ~. We set

v'(a) = [a];. Then (v'(a))ez, defines an t-orbit of Q¢a, denoted by v(a ) An edge
labeled « from v'(a) to v!*1(b) is defined if a o (ct, by, b, ... ), where b = (b,)nen-

LEMMA 7.1. For a = (ay)nen € XA, (an,vn(a))nen defines an element of Xen.

Proof. Foreachn € Nand ! € Z,, there is a unique edge from [(a,, apny1,...)]; €
Vi to [(ant1, @ngo, - ))is1 € Vigr labeled a,,. Hence (v,_1(a),an,v,(a)) belongs
to Fea for all n € N so that (a,,v,(a))nen defines an element of Xea. O

We put the embedding of X, into Xga:
tp = (ap)neny € XA — (an, Un(a))pnen € Xea.
It is straightforward to see that the following lemma holds:

LEMMA 7.2. The map vy : Xpn — Xea is injective and 15(Xy) is dense in
X/QA.

We endow X with a new topology induced by the injection ¢y : Xy — Xaa,
which is the weakest topology for which ¢y is continuous. Denote by X, the
topological space X with the topology. If A is a topological Markov shift, the
induced topology of X, coincides with the original topology of Xj.

LEMMA 7.3. The topological space Xy is generated by the clopen sets of the
form U, N o (o4 (U,)) for p € Br(Xp),v € Bi(Xa) with k < 1. Hence the

L)) T OuSySuS,, yields an isomorphism between

correspondence XU, Mo ¥ (o
A A

C(X,) and Dga.

By the above lemma, we know that C/(X,) is isomorphic to C'(Xgn).
Let Ay and Ay be subshifts, and X, and X, their right one-sided subshifts.

DEFINITION. The subshifts (X,,, op,) and (Xa,, op,) are said to be
A-continuously orbit equivalent if there exists a homeomorphism A : X, — Xjy,,
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that is also homeomorphic from X A — X A, and there exist continuous func-
tions kq,l; : Xp, — Z4 and ko, ls : Xy, — Z, such that

@ (ho oy, (@) = M (h(a) fora€ X, (7.1)
P (Wt ooy, (b)) = a2V (R (b)) for b e X, (7.2)

We note that the conditions (7.1) and (7.2) imply that
h(orbgAl (a)) = 0rbg,y, (h(a)), h’l(orb(,AQ (b)) = 0rbg, (h1(b))
for a € Xy,,b € Xa,.

LEMMA 7.4. Let £ and £5 be the canonical A-graph systems for Ay and A
respectively. The following are equivalent:

1) The subshifts (Xa,,on,) and (Xa,,0n,) are A-continuously orbit equivalent.
1 1 2 2 y q
(2) The factor maps W/%i and Wfi are continuously orbit equivalent.

Proof. (2) = (1) is clear.
(1) = (2): It suffices to show the equalities

ki(x li(z
oM@ (h(oe, (1)) = 02 (h(x)), for z € Xe,,
oD (N oe,(y) = 02Y (W (y)),  for y € X,
For x € Xg,, put k = ki(x),l = l1(x). Since ky,l; : X¢, — Z, are continuous,

the set U = {z € Xg, | k1(2) = k,l1(2) =1} is a clopen set in Xg,. Since X}, is
dense in Xg, through ¢y,, one sees x € U with U N X, # () and the equality

Jgg(r)(hagl (x)) = USQ(Z)(h(a:)) for x € Xg,

holds because the equality holds for elements of X,,. We similarly have the
equality
B (g, (y) = 2D (WM () for y € Xo,.

1

Hence the factor maps Wﬁl

and Wfi are continuously orbit equivalent. [
Therefore we conclude:

THEOREM 7.5. Let Ay and Ay be subshifts satisfying condition (I). The follow-
ing are equivalent:

(1) There exists an isomorphism W : Oy, — Oy, such that U (Dy,) = Dy, .
(2) The subshifts (Xp,,on,) and (Xa,,0n,) are A-continuously orbit equivalent.
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Let A = [A(i,7)]N_, be an N x N matrix with entries in {0,1}. The

ij=1
Cuntz-Krieger algebra O, is generated by partial isometries Si,..., Sy satis-
fying 3200, ;85 = 1,858, = Y2 | A(i,)S;S5,i = 1,..., N. The C*-subalgebra

generated by projections Sy, -« -5} Sy, -+ Suys ps ooy pn € {1,..., N} is canon-
ically isomorphic to the commutative C*-algebra C'(X 4), that is denoted by D 4.

COROLLARY 7.6. ([30], cf. [29]) Let A and B be square matrices with entries
in {0, 1} satisfying condition (1) in [8]. Then the following are equivalent:

(1) There exists an isomorphism V : Oy — Op such that V(D ,) = Dp.
(2) (Xa,04) and (Xp,0p) are continuously orbit equivalent.

Proof. For a topological Markov shift (X4,04), the topology on X A coincides
with the original topology on X 4. Let A4 be the two-sided topological Markov
shift for the matrix A. Then X, = X4 and Op, = O4 so that the assertion
holds. O

Two one-sided subshifts (X,,, 0x,) and (Xy,, 0a,) are said to be topologically
conjugate if there exists a homeomorphism h : X, — X, such that oy, 0 h =
h o oy,, and the homeomorphism A is called a topological conjugacy. One can
prove that topological conjugacy gives rise to a A-continuous orbit equivalence.
Hence we have.

COROLLARY 7.7. ([27]) Suppose that both subshifts Ay and Ay satisfy con-
dition (I). Let h : (Xa,,06,) — (Xa,,06,) be a topological conjugacy of one-
sided subshifts. Then there exists an isomorphism VU : Op, — Op, such that
U(Dy,) =Dy,
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