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Abstract. This paper is devoted to the study of Morita equivalence for twisted
Poisson manifolds. We prove that integrable twisted Poisson manifolds which are
gauge equivalent are Morita equivalent. Moreover, we introduce the notion of
weak Morita equivalence and show that there exists a one-to-one correspondence
between their twisted symplectic leaves if two twisted Poisson manifolds are weak
Morita equivalent.

1. Introduction

Geometric Morita theory is one of the interesting topics in Poisson geometry.

The geometric notion of Morita equivalence was introduced by Xu, P. ([20],[21]

and [22]) on the basis of algebraic Morita equivalence. Morita equivalence is first

introduced by Morita, K. in [13]. He gave a necessary and sufficient condition for

representation categories of two rings to be equivalent: two rings have equiva-

lent categories of left modules if and only if there exists an equivalence bimodule

for rings. Ring theoretical Morita equivalence is generalized to the theory of

C∗-algebras by Rieffel, M. [17],[18]. Morita equivalence of C∗-algebra is useful

in studying some C∗-algebras. Also, Morita equivalent C∗-algebras share many

properties, such as equivalent categories of Hermitian left modules, isomorphic

K-group, and so on. C∗-algebras are the quantum objects; in contrast, Poisson

manifolds are the classical one. Morita equivalence for integrable Poisson man-

ifolds and (quasi-) symplectic groupoids ware introduced by Xu as the classical

analogue of this equivalence relation. Geometric Morita equivalence plays an

important role in Poisson geometry as Morita equivalence of C∗-algebras does.

There exist some invariants under Morita equivalence such as the representation

categories of symplectic realizations, fundamental groups and the first Poisson

cohomology groups (see Ginzburg, V. L. and Lu, J.-H. [8] and [21]). And further-

more, the theory of geometric Morita equivalence is related to momentum map
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theory. Since Morita equivalence establishes an equivalence of representation

categories, we are provided with the notion of equivalence for momentum map

theories. It is shown that some known correspondence of momentum map the-

ories can be described by Morita equivalences [22]. On the basis of Xu’s work,

the author introduced the notion of Morita equivalence for integrable twisted

Poisson manifolds [9], [10]. As for Poisson manifolds, Morita equivalent twisted

Poisson manifolds have isomorphic fundamental groups, isomorphic first coho-

mology groups and equivalent categories of modules. Morita equivalence is ap-

plied only for integrable (twisted) Poisson manifolds. To remedy this defect, we

will introduce refined version of Morita equivalence and discuss it in this paper.

The paper is organized as follows: In Section 2 we study the basic properties of

twisted Poisson manifolds and discuss the relation with Lie algebroids. Section 3

begins with the review of Morita equivalence discussed in [9] and [10]. The latter

part of this section deals with Dirac structures and a gauge transformation.

After that, we will prove that gauge equivalence of integrable twisted Poisson

manifolds implies Morita equivalence. In Section 4, we introduce the notion of

weak Morita equivalence of (twisted) Poisson manifolds and show that Morita

equivalence implies weak Morita equivalence. Furthermore, we define a bijective

correspondence between the twisted symplectic leaves of P1 and those of P2 when

twisted Poisson manifolds P1 and P2 are weak Morita equivalent.

Finally, we note that smooth manifolds appeared in this paper are assumed

to be connected. We denote by Γ (E) the set of smooth sections of a vector

bundle E → M .

2. Preliminaries

2.1 Twisted Poisson manifolds

Twisted Poisson manifolds first appeared in the study of string theory by

Park. J.-S. [15] and Klimč́ık, C. and Strobl, T. [11], and treated mathematically

by Ševera, P. and Weinstein, A. [19]. We start by recalling the definition of a

twisted Poisson manifold.

A twisted Poisson manifold is a smooth manifold P equipped with a bivector

field Π and a closed 3-form φ on P which satisfy the following equation:

1

2
[Π, Π] = ∧3Π](φ), (2. 1)

where, [·, ·] means a Schouten-Nijenhuis bracket and ∧3Π](φ) is a linear map from

Γ (∧3T ∗P ) to Γ (∧3TP ) induced from the natural homomorphism Π] : T ∗M →
TM given by β

(
Π](α)

)
= 〈Π, β∧α〉. Namely, for any α, β, γ ∈ Γ (T ∗P ), ∧3Π](φ)
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is defined as

∧3Π](φ)(α, β, γ) := φ
(
Π](α), Π](β), Π](γ)

)
.

The bivector field Π is called a twisted Poisson bivector. We give typical

examples of twisted Poisson manifolds:

EXAMPLE 2.1. (Poisson manifolds) Let (P, Π) be a Poisson manifold. For a

closed 3-form φ on P such that ∧3Π](φ) = 0, it holds that [Π, Π] = 0 = ∧3Π](φ).

Therefore, (P, Π, φ) is a twisted Poisson manifold.

EXAMPLE 2.2. Let A be the set of elements {x1, x2, x3, x4} ⊂ R4 which satisfy

x1 = 0 or x3 = 0. The closed 3-form φ =
(
(1/x2

3)dx2− (1/x2
1)dx4

)∧ dx1 ∧ dx3 on

R4 \A and the bivector Π = x3(∂/∂x1)∧ (∂/∂x2) + x1(∂/∂x3)∧ (∂/∂x4) satisfy

the condition (2. 1). In other words, (R4 \A, π, φ) is a twisted Poisson manifold.

Given a φ-twisted Poisson manifold (P, Π), one can define a bilinear skew-

symmetric map {·, ·} on C∞(P ) and a vector field on P by

{f, g} := 〈Π, df ∧ dg〉, Hf := Π](df),
(∀f, g ∈ C∞(P )

)
.

The vector field Hf determined by f ∈ C∞(P ) is called the Hamiltonian vector

field of f . It is easy to verify that the map {·, ·} satisfies the Leibniz identity.

By using the bracket and the Hamiltonian vector fields, the formula (2. 1) can

be written as

{{f, g}, h
}

+
{{g, h}, f

}
+

{{h, f}, g
}

+ φ(Hf , Hg, Hh) = 0. (2. 2)

Conversely, if a bilinear skew-symmetric map {·, ·} : C∞(P ) × C∞(P ) →
C∞(P ) and a closed 3-form φ ∈ Γ (∧3T ∗P ) satisfy the Leibniz identity and

{{f, g}, h} + {{g, h}, f} + {{h, f}, g} =
〈{f, ·} ∧ {g, ·} ∧ {h, ·}, φ

〉
, (2. 3)

then {·, ·} arises from a 2-vector field Π given by

〈Π, df ∧ dg〉 = {f, g}, (∀f, g ∈ C∞(P )).

Furthermore, it can be verified that Π and φ satisfy the formula (2. 1). In con-

sequence, we can define a twisted Poisson manifold as a smooth manifold P

together with a closed 3-form φ ∈ Γ (∧3T ∗P ) and a bilinear skew-symmetric map

{·, ·} : C∞(P ) × C∞(P ) → C∞(P ) satisfy the equation (2. 3) and the Leibniz

identity.
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DEFINITION 2.1. For a closed 3-form ψ on a smooth manifold S, ψ-twisted

symplectic form is a non-degenerate 2-form ω ∈ Γ (∧2T ∗S) such that dω = ψ. A

smooth manifold equipped with a ψ-twisted symplectic form is called a ψ-twisted

symplectic manifold.

The non-degeneracy of a ψ-twisted symplectic form ω implies that the natural

homomorphism ω[ : TS → T ∗S, X 7→ iXω is an isomorphism, where iXω

means the contraction of ω by X. Therefore, given a smooth function f on S,

we can define its Hamiltonian vector field Hf by iHf
ω = df . Moreover, as for

symplectic manifolds, we can define a bracket on S as {f, g} := ω(Hf , Hg). Then

it is verified that the bracket {·, ·} obtained from ω and ψ satisfy the equation

(2. 2) and the Leibniz identity. That is, a twisted symplectic manifold is a twisted

Poisson manifold.

Let (Pi, Πi, φi) (i = 1, 2) be twisted Poisson manifolds and J : P1 → P2 a

smooth map. The smooth map J is called a twisted Poisson map if, for any

x ∈ P1, the following formula holds:

(Π]
2)J(x) = (dJ)x ◦ Π]

1 ◦ (dJ)∗x. (2. 4)

By using the bracket, a twisted Poisson map J : P1 → P2 can be written as

{f, g}2 ◦ J = {J∗f, J∗g}1,
(∀f, g ∈ C∞(P2)

)
, (2. 5)

where {·, ·}i (i = 1, 2) mean the brackets induced from Πi.

DEFINITION 2.2. A twisted symplectic realization (t.s.realization for short) of

a twisted Poisson manifold P is a twisted symplectic manifold S together with

a twisted Poisson map J : S → P .

Analogously, we define an anti-twisted symplectic realization (anti-t.s.realiza-

tion, for short) of a twisted Poisson manifold (P, Π, φ) as a twisted symplectic

manifold S together with a twisted Poisson map J ′ : S → P , where P means a

twisted Poisson manifold (P, −Π, −φ).

2.2 Lie algebroids of twisted Poisson manifolds

If (P, Π, φ) is a twisted Poisson manifold, then the cotangent bundle T ∗P →
P carries a Lie algebroid structure whose anchor map is the natural anchor map

Π] : T ∗P → TP, β(Π]α) = 〈Π, β ∧ α〉 and whose Lie bracket is

[α, β]φ := L]αβ − L]βα + d
(
Π(α, β)

) − φ(]α, ]β, · ) (2. 6)

where we denote by LXω the Lie derivative of ω by X.
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DEFINITION 2.3. Let A → M be a Lie algebroid with anchor map ] : A →
TM . A left(right) action of A on a smooth manifold N consists of a smooth map

J : N → M called the moment map, and a Lie algebra (anti)homomorphism

%N : Γ (A) → Γ (TN) which satisfy the following conditions:

(1) dJ ◦ %N(α) = ]α;

(2) %N(fα) = (J∗f)%N(α),

for any f ∈ C∞(M) and α ∈ Γ (A).

If (P, ΠP , φP ), (Q, ΠQ, φQ) are twisted Poisson manifolds, then we can easily

show that any twisted Poisson map J : Q → P induces a Lie algebroid action of

T ∗P on Q by

%Q : Γ (T ∗P ) −→ Γ (TQ), α 7−→ Π]
Q(J∗α).

As is well known, given a Lie groupoid Γ ⇒ M , one can construct the Lie

algebroid over M denoted by A(Γ ). For a full discussion of the Lie algebroid

of the Lie groupoid, we refer to Crainic, M. and Fernandes, R.-L. [7]. A Lie

algebroid A → M is said to be integrable if there exists a Lie groupoid Γ ⇒ M

such that A(Γ ) is isomorphic to A.

DEFINITION 2.4. A twisted Poisson manifold is said to be integrable if its

cotangent bundle is integrable as Lie algebroid.

The integrability problem of Lie algebroids was studied by many people, for

instance, Pradines, J. [16], Mackenzie, K. [12] and Crainic, M. and Fernandes,

R.-L. [6]. The solution of integrability problem of twisted Poisson manifolds was

given by Cattaneo, A. and Xu, P. ([5]). They proved the following result:

THEOREM 2.5. (Cattaneo,A. andXu,P.)There is a bijection between integrable

twisted Poisson structures and twisted symplectic groupoids which are source-

simply connected.

That is, twisted Poisson manifolds may be integrated to twisted symplectic

groupoids. For an integrable twisted Poisson manifold P , we denote by G(P ) the

twisted symplectic groupoid associated with P in the above theorem. We refer

to Definition 2.1 in [5] for a twisted symplectic groupoid.
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3. Geometric Morita equivalence

3.1 Morita invariants

First, we will review the notion of Morita equivalence of twisted Poisson

manifolds and exhibit some examples.

DEFINITION 3.1. ([9],[10]) Let Pi be integrable φi-twisted Poisson manifolds

(i=1, 2). P1 and P2 are said to be (strong) Morita equivalent if there exist a

smooth manifold S equipped with a non-degenerate 2-form ωS and surjective

submersions Ji : S → Pi such that

(1) (S, ωS) is a (J∗1φ1 − J∗2φ2)-twisted symplectic manifold;

(2) J1 is a complete t.s.realization, and J2 is a complete anti-t.s.realization;

(3) Each Ji-fiber (i = 1, 2) is connected, and simply-connected;

(4) The subspaces ker(dJ1)x, ker(dJ2)x of TxS (∀x ∈ S) are symplectically or-

thogonal to one another:

(
ker(dJ1)x

)⊥
= ker(dJ2)x and

(
ker(dJ2)x

)⊥
= ker(dJ1)x,

where

(
ker(dJi)x

)⊥
=

{
u ∈ TxS

∣∣ ωS(u, v) = 0
(∀v ∈ ker(dJi)x

) }
, (i = 1, 2).

A twisted symplectic manifold S in Definition 3.1 is called a(P1, P2)-equivalence

bimodule (or an equivalence bimodule for short), and denoted by P1
J1← S

J2→ P2.

The following examples may help us understand Morita equivalence for inte-

grable twisted Poisson manifolds:

EXAMPLE 3.1. An integrable twisted Poisson manifold is Morita equivalent to

itself with an equivalence bimodule G(P ).

EXAMPLE 3.2. (Example 2.1 in [21]) Let S be a connected and simply-

connected symplectic manifold, and M a connected smooth manifold with a

trivial Poisson structure:{·, ·} ≡ 0. Then, S×M is Morita equivalent to M with

a equivalence bimodule S × T ∗M .

EXAMPLE 3.3. Let Pi and Qi be twisted Poisson manifolds (i = 1, 2). Assume

that P1 and Q1 are Morita equivalent to P2 and Q2 respectively, with equivalence

bimodules P1
J1← X

J2→ P2 and Q1

J ′1← Y
J ′2→ Q2. Then, P1 × Q1 and P2 × Q2 are

Morita equivalent: P1 ×Q1

J1×J ′1←− X × Y
J2×J ′2−→ P2 ×Q2.
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EXAMPLE 3.4. Two simply-connected twisted symplectic manifolds (Si, ωi, ψi)

(i = 1, 2) are Morita equivalent with a equivalence bimodule S1 × S2.

Morita equivalence is indeed an equivalence relation among twisted Poisson

manifolds: As for the transitivity, suppose that (S1, ω1) is a (P1, P2)-equivalence

bimodule with moment maps P1
J1← S1

J2→ P2 and (S2, ω2) is a (P2, P3)-equivalence

bimodule with moment maps P2

J ′2← S2
J3→ P3. We define a smooth manifold

S1 ⊗ S2 to be the quotient of the fiber product by its characteristic foliation:

S1 ⊗ S2 = (S1 ×J2,J ′2
P2

S2)
/

ker
(
ι∗(ω1 ⊕ ω2)

)
, (3. 1)

where ι : S1 ×J2,J ′2
P2

S2 ↪→ S1 × S2 is the canonical embedding map. In addition,

we define a non-degenerate 2-form ω̃ on S1 ⊗ S2 by

ω̃π(p)(π∗u, π∗v) = (ω1 ⊕ ω2)p(ι∗u, ι∗v),

where π : S1 ×J2,J ′2
P2

S2 → S1 ⊗ S2 is the natural projection. It is verified that

the 2-form ω̃ is well-defined in a way similar to [22]. Then (S1 ⊗ S2, ω̃) is a

(P1, P3)-equivalence bimodule with the moment maps J̃1 : S1⊗S2 → P1 and J̃3 :

S1 ⊗ S2 → P3 given by J̃1([x, y]) := J1(x) and J̃3([x, y]) := J3(y), respectively.

Remark. We note that the tensor product in (3. 1) is not associative, but just

associative up to a bimodule isomorphism. For any integrable twisted Poisson

manifolds P1 and P2, we denote by B(P1, P2) the set of all (P1, P2)-equivalence

bimodules. It is verified that B(P1, P2) forms a category whose morphisms are

complete twisted Poisson maps f between equivalence bimodules P1
J1← S1

J2→ P2

and P1
K1← S2

K2→ P2 which satisfies J1 = K1 ◦ f and J2 = K2 ◦ f . Then, we have

the bicategory twPoiss which has integrable twisted Poisson manifolds as 0-cells,

equivalence bimodules as 1-cells and the tensor product as compositions. Two

integrable twisted Poisson manifolds are Morita equivalent if and only if they are

isomorphic object in twPoiss. For the definition of a bicategory, we refer to [1].

3.2 Gauge equivalence

Let φ be a closed 3-form on a smooth manifold M . A φ-twisted Dirac struc-

ture on M is a subbundle LM ⊂ TM := TM ⊕ T ∗M which is maximal isotropic

with respect to the symmetric paring 〈·, ·〉 and whose the set of sections Γ (LM)

is closed under the bracket [[·, ·]], where 〈·, ·〉 and [[·, ·]] are defined as follows:

(1) 〈·, ·〉 : Γ (TM)× Γ (TM) → C∞(M), 〈(X, ξ), (Y, η)〉 := η(X) + ξ(Y );

(2) [[·, ·]] : Γ (TM)×Γ (TM) → Γ (TM), [[(X, ξ), (Y, η)]] :=
(
[X, Y ], LXη−

iY dξ + iXiY φ
)
.
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For a full discussion of Dirac structures, we refer to [2], [3] and Bursztyn, H. and

Radko, O. [4].

EXAMPLE 3.5. (Twisted Poisson manifolds) Let φ be a closed 3-form on a

smooth manifold P ,and Π a bivector on P . The graph LΠ of Π] : T ∗P → TP

is a φ-twisted Dirac structure if and only if Π and φ satisfy the formula (2. 1) ,

that is, P is a φ-twisted Poisson manifold.

EXAMPLE 3.6. (Twisted symplectic manifolds) If ω is a non-degenerate 2-

form on S, then the graph Lω of ω[ : TS → T ∗S is a ψ-twisted Dirac structure

if and only if ω is a ψ-twisted symplectic form.

Let (M, LM , φM) and (N, LN , φN) be twisted Dirac manifolds. A smooth

map J : M → N is said to be a forward Dirac map if

(LN)J(x) =
{(

(dJ)xV, α
) | V ∈ TxM, α ∈ TJ(x)N, (V, (dJ)∗xα) ∈ (LM)x

}

for all x ∈ M . We write
(
F(J)

)
(LM) for the right-hand side in the above formula.

As verified easily, if LM and LN are associated with twisted Poisson structures,

then a forward Dirac map is equivalent to a twisted Poisson map.

Now we recall gauge transformations on (φ-)twisted Dirac structures. Let

LM be a φ-twisted Dirac structure on M and B ∈ Γ (∧2T ∗M). We set

τB(LM) :=
{(

X, ξ + B[(X)
) ∣∣ (X, ξ) ∈ LM

}
.

The subbundle τB(LM) defines a (φ − dB)-twisted Dirac structure on M . The

operation LM 7→ τB(LM) is called a gauge transformation of LM associated with

B. Especially, if LΠ is a φ-Dirac structure associated with a twisted Poisson

manifold P , the gauge transformation associated with B is given by

LΠ 7−→ τB(LΠ) =
{(

Π](α), α + B[(Π](α))
) ∣∣ α ∈ T ∗P

}
.

As discussed in [19], τB(LΠ) may fail to be induced from a twisted Poisson

bivector. τB(LΠ) is associated with a (φ − dB)-twisted Poisson manifold if and

only if 1 + B[Π] : T ∗P → T ∗P is invertible. Two twisted Poisson manifold

(P, Π, φ) and (P, Π′, φ′) are said to be gauge equivalent if there exists a 2-form

B on P such that

Π′ = Π ◦ (1 + B[Π])−1 and φ− φ′ = dB.

For a twisted Poisson bivector which is gauge equivalent to P with respect to B,

we write τB(Π).
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THEOREM 3.2. Let (P, Π, φ) be an integrable twisted Poisson manifold and

(G(P ), ω) the associated twisted symplectic groupoid. Then, for any 2-form B ∈
Γ (∧2T ∗P ) such that (1 + B[Π]) is invertible, (P, Π, φ) and (P, τB(Π), φ− dB)

are Morita equivalent with a equivalence bimodule (G(P ), ω̂), where ω̂ := ω−s∗B.

Proof. For any x ∈ G(P ), we set V = Tx

(G(P )
)
, W = Ts(x)P . We define H1 and

H2 by

H1 := τs∗B(Lω) = { (v, iv(ω + s∗B)) | v ∈ V },
H2 :=

(
F(s)

)
(Lω) = { (s∗v, η) | v ∈ V, η ∈ W ∗, η ◦ s = ivω }.

Then,

(
F(s)

)
(H1) = { (ds(v), η) | v ∈ V, η ∈ W ∗, η ◦ s = iv(ω + s∗B) }

τB(H2) = { (ds(v), ξ + is∗vB) | v ∈ V, ξ ∈ W ∗, s∗ξ = ivω }
= { (ds(v), η) | v ∈ V, η ∈ W ∗, s∗(η − is∗vB) = ivω }.

Since iv(s
∗B) = s∗

(
is∗vB

)
, we have s∗η = iv(ω + s∗B). Therefore,

(
F(s)

)
(H1) =

τB(H2). From the fact that s : G(P ) → (P, −Π) is a twisted Poisson map ([5]),

it follows that
(
F(s)

)
(H1) = τB(−Π), that is, s : (G(P ), ω̂) → (P, τB(Π)) is

an anti-t.s.realization. It also can be shown that t : (G(P ), ω̂) → (P, Π) is a

t.s.realization in a similar way. Moreover, using (ker ds)ω = ker dt, we have

(ker ds)bω = { v ∈ V | ω̂(v, w) = 0 (∀w ∈ ker ds) }
= { v ∈ V | ω(v, w) = 0 (∀w ∈ ker ds) } = (ker ds)ω

= ker dt.

Similarly, we can prove (ker dt)bω = ker ds.

In what follows, we prove that t and s are complete. Let Ĥ• and X̂• denote

the Hamiltonian vector field with regard to ω̂ and ω′, respectively. Then, from

assumption we have s∗B(Ht∗f ) = 0 (f ∈ C∞(P )). Therefore, ω̂(Ht∗f , ·) =

ω(Ht∗f , ·) = d(t∗f)(·). This implies that Ĥt∗f = H∗
t f . From the completeness

of t : (G(P ), ω) → P , we can conclude that t : (G(P ), ω̂) → P is complete. The

completeness of s can be proved similarly (see [4]).

4. Weak Morita equivalence

Let Ai → Mi (i = 1, 2) be Lie algebroids. Assume that A1 and A2 act

on X from the left and right, respectively. If the actions %1, %2 commute i.e.,

[%1(ξ), %2(η)] = 0 for any ξ ∈ Γ (A1), η ∈ Γ (A2), and the moment maps are

surjective submersions, then we call X an (A1, A2)-algebroid bimodule.
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DEFINITION 4.1. Let (Pi, Πi, φi) (i = 1, 2) be twisted Poisson manifolds. P1

and P2 are said to be (weak) Morita equivalent if there exists a (T ∗P1, T ∗P2)-

algebroid bimodule P1
J1← M

J2→ P2 which satisfies

(1) Each Ji-fiber (i = 1, 2) is connected and simply-connected;

(2) For any x ∈ M ,

Tx

(
J−1

1 (J1(x))
)

=
{

%2(η)x

∣∣ η ∈ Γ (T ∗P2)
}

and

Tx

(
J−1

2 (J2(x))
)

=
{

%1(ξ)x

∣∣ ξ ∈ Γ (T ∗P1)
}

,

where %1 : Γ (T ∗P1) → Γ (TM) and %2 : Γ (T ∗P2) → Γ (TM) mean the Lie

algebroid actions of T ∗P1 and T ∗P2, respectively.

THEOREM 4.2. Weak Morita equivalence is an equivalence relation for

(twisted) Poisson manifolds.

Proof. First, we verify the reflectivity. If P is a twisted Poisson manifold, its

cotangent bundle T ∗P
π→ P is a (T ∗P, T ∗P )-algebroid bimodule under the left

action %L : Γ (T ∗P ) → Γ
(
T (T ∗P )

)
, α 7→ Π]

C(π∗α) and the right action %R :

Γ (T ∗P ) → Γ
(
T (T ∗P )

)
, α 7→ −ΠC(π∗α), where ΠC means a Poisson bivector

induced from a canonical symplectic structure on T ∗P . From π∗Π
]
C(π∗α) = 0, we

have Tu

(
π−1(π(u))

)
= ρL

(
Γ (T ∗P )

)
u

= ρR

(
Γ (T ∗P )

)
u

(∀u ∈ T ∗P ). Therefore, P

is weak Morita equivalent to itself.

As for the symmetry, we suppose that P1 is weak Morita equivalent to P2 with

an algebroid bimodule P1
J1← M

J2→ P2. Then, a smooth manifold P2
J2← M

J1→ P1

with the reversed actions %′L := −%R, %′R := −%L is a (T ∗P2, T ∗P1)-algebroid

bimodule. It follows that P2 is weak Morita equivalent to P1.

The transitivity will be shown in what follows. Suppose that P1
J1← M

J2→ P2

is a (T ∗P1, T ∗P2)-algebroid bimodule and P2

J ′2← N
J3→ P3 is a (T ∗P2, T ∗P3)-

algebroid bimodule. We define the left and right actions on the fiber product

L := M ×J2,J ′2
P2

N by

%̃1 : Γ (T ∗P1) → Γ (TL), α 7→ (
%1(α), 0

)
and

%̃3 : Γ (T ∗P3) → Γ (TL), β 7→ (
0, %3(β)

)
,

respectively. Then, L is a (T ∗P1, T ∗P3)-algebroid bimodule with the moment

maps P1
ρ← L

σ→ P3, where ρ(m, n) := J1(m) and σ(m. n) := J3(n). From

assumption, we have

T(m,n)

(
σ−1

(
σ(m, n)

))
= T(m.n)

(
J−1

2

(
J ′2(n)

)× {n}) = %̃1

(
Γ (T ∗P1)

)
(m,n)

.

Similarly, T(m,n)

(
ρ−1

(
ρ(m, n)

))
= %̃3

(
Γ (T ∗P3)

)
(m,n)

. Obviously, each fiber is

connected and simply-connected. Hence, P1 and P3 is weak Morita equivalent.
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PROPOSITION 4.3. Strong Morita equivalence implies weak Morita equivalence.

Proof. Assume that integrable twisted Poisson manifolds P1 and P2 are strong

Morita equivalent with an equivalence bimodule P1
J1← (S, ωS)

J2→ P2. As dis-

cussed in Section 2, the moment maps J1 and J2 induce Lie algebroid actions

%1(α) := Π]
S(J∗1α) and %2(β) := Π]

S(J∗2β), respectively, where ΠS means the

bivector field induced from ωS. Using (2. 2), we have [%1(α), %2(β)] = 0 for any

α ∈ Γ (T ∗P1), β ∈ Γ (T ∗P2). This implies that S is a (T ∗P1, T ∗P2)-algebroid

bimodule. From assumption, it follows that, for any x ∈ S,

Tx

(
J−1

1

(
J1(x)

))
= ker(dJ1)x =

(
ker(dJ2)x

)⊥
=Π]

S

(
ker(dJ2)

◦
x

)
= %2

(
Γ (T ∗P2)

)
x
,

where ker(dJ2)
◦
x denotes the annihilator of ker(dJ2)x.

Analogously, we have Tx

(
J−1

2

(
J2(x)

))
= %1

(
Γ (T ∗P1)

)
x
. Therefore, P1 and P2

are weak Morita equivalent.

Weak Morita equivalence induces one-to-one correspondence between twisted

symplectic leaves. The following theorem can be shown in a way similar to

Theorem 11.1.9 in Ortega, J. and Ratiu, T. [14].

THEOREM 4.4. Suppose that P1 and P2 are weak Morita equivalent with a al-

gebroid bimodule P1
J1← M

J2→ P2. Let M/D be the leaf space of the distribution

D defined by Dm := ker(dJ1)m + ker(dJ2)m (∀m ∈ M) and L(Pi) (i = 1, 2) the

spaces of twisted symplectic leaves of Pi, respectively. Then,

(1) The distribution D = ker(dJ1) + ker(dJ2) is integrable.

(2) M/D → L(Pi) (i = 1, 2) are bijections. In particular, the map L(P1) →
L(P2), L 7→ J2

(
J−1

1 (L)
)

is the bijective correspondence between the leaves

of P1 and the leaves of P2.

Proof. (1) From assumption, ker(dJ1) and ker(dJ2) can be considered as the

distributions

V1 = { %2(β) | β ∈ Γ (T ∗P2) } and V2 = { %1(α) |α ∈ Γ (T ∗P1) },
respectively. The distribution D is spanned by V = V1∪V2. Let θt and ηt be the

flows of %1(α) and %2(β), respectively. We will show that

(dθt)m

(
%2(β)m

) ∈ D(
θt(m)

)
and (dηt)m

(
%1(α)m

) ∈ D(
ηt(m)

)
.

Since θt is a diffeomorphism, we can define the pull-back of X ∈ Γ (TM) by

θ∗t X := (dθ−t) ◦X ◦ θt. Then, we have the following formula (see [14]):

d

dt
θ∗t

(
%2(β)

)
= θ∗t [%1(α), %2(β)].
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By assumption that the two Lie algebroid actions commute, the right-hand side

in the above formula is equal to 0. Therefore, θ∗t %2(β) = θ∗0%2(β) = %2(β). It

follows that

(dθt)m

(
%2(β)m

)
= (dθt)m ◦ (dθ−t)θt(m)

(
%2(β)

)
θt(m)

=
(
%2(β)

)
θt(m)

∈ D(
θt(m)

)
.

We can show that (dηt)m

(
%1(α)m

) ∈ D(
ηt(m)

)
in similar way.

(2) We will denote by ΦV , ΦV1 and ΦV2 the pseudogroups of local transforma-

tions generated by the flows of elements in V, V1 and V2, respectively. For full

discussion of pseudogroups, we refer to [14]. Let N ⊂ M be the integrable man-

ifold of D containing a given point m ∈ M . We note that L coincides with the

ΦV -orbit of m:

N = ΦV ·m = {ϕ(m) | ϕ ∈ ΦV }.
Since the two Lie algebroid actions commute, N can be written as

N = ΦV ·m = ΦV1

(
ΦV2 ·m

)
.

From assumption, the Ji-fibers (i = 1, 2) are preserved by the elements in ΦVi
,

respectively. Accordingly,

J1(N) = J1

(
ΦV1(ΦV2 ·m)

)
= J1(ΦV2 ·m).

Any element θ ∈ ΦV2 can be represented as θ = θ1
t1
◦ · · · ◦ θn

tn , where θj
tj (j =

1, · · · , n) mean the flows of a vector fields %1(dJ∗1fj), fj ∈ C∞(P1). Accordingly,

J1

(
θ(m)

)
= J1

(
(θ1

t1
◦ · · · ◦ θn

tn)(m)
)

=
(
ξ1
t1
◦ · · · ◦ ξn

tn

)(
J1(m)

)
,

where ξj
tj (j = 1, · · · , n) are the flows of Hamiltonian vector fields Hfj

. ξ1
t1
◦· · ·◦ξn

tn

is the element of the pseudogroup ΦH of local transformations generated by

the flows of Hamiltonian vector fields on P1. Moreover, the twisted symplectic

leaf of P1 is the maximal integral manifold of the distribution spanned by the

Hamiltonian vector fields on P1. Therefore, we have J1(N) = J1(ΦV2 · m) =

LJ1(m), where LJ1(m) means the leaf of P1 containing J1(m). Consequently, we

can define the map Ψ : M/D → L(P1) by

Ψ : M/D −→ L(P1), N = ΦV ·m 7−→ J1(N) = ΦH · J1(m).

To show the bijectivity of Ψ, we will prove that the map Ψ′ defined by J1(N) 7→
J−1

1

(
J1(N)

)
is an inverse of Ψ. From J1(N) = J1(ΦV2 ·m), it follows that

J−1
1

(
J1(N)

)
=

⋃

θ∈ΦV2

J−1
1

(
J1(θ(m))

)
.
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Here, since the elements in ΦV1 preserve each J1-fiber, we have J−1
1

(
J1(θ(m))

)
=

ΦV1 · θ(m) for any θ ∈ ΦV2 . Therefore,

J−1
1

(
J1(N)

)
=

⋃

θ∈ΦV2

ΦV1 · θ(m) = ΦV1 · (ΦV2 ·m) = ΦV ·m = N.

This leads us to the conclusion that Ψ is bijective. Similarly, we can construct

the map M/D → L(P2) and show that this map is bijective.
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[ 15 ] Park, J. -S., Topological open p-branes, Symplectic geometry and Mirror symmetry(Seoul

2000), World Sci. Publishing,311–384. River Edge, NJ, 2001.
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