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Abstract. Let E be an arbitrary Banach space and let T : E → CB(E) be a
uniformly hemi-contractive set-valued mapping, where CB(E) is the set of non-
empty closed and bounded subsets of E. For T, we consider an iterative scheme
{fn(T, ·, ·)}n which is defined as follows: For a sequence {vn} in E, any n ≥ 0
and any x ∈ E,

fn(T, vn, x) = tnTvn + (1− tn)x + un,

where {tn} is a coefficient sequence in [0, 1] and {un} is an error term sequence
in E. In the present paper, we prove almost stability of the iterative scheme
{fn(T, vn, ·)}n, and show this result implies strong convergence theorems of gen-
eralized Mann and Ishikawa iterative schemes for the set-valued mapping.

1. Introduction

Let E be an arbitrary Banach space with a norm ‖·‖ and let T : E → E be

a mapping such that the set F (T ) of fixed points of T is nonempty. A family

{fn(T, ·)}n is said to be an iterative scheme when {fn(T, ·)}n is considered as

a procedure which yields a sequence of points {xn} ⊂ E defined by xn+1 =

fn(T, xn) for n ≥ 1, where x1 ∈ E is given. The notation of xn → p means that

the sequence {xn} converges strongly to p. If limn→∞ ‖yn+1 − fn(T, yn)‖ = 0

implies yn → p ∈ F (T ), then the iterative scheme {fn(T, ·)}n is said to be stable

with respect to T (see [4]). We say that the iterative scheme {fn(T, ·)}n is almost

stable with respect to T if
∞∑

n=1

‖yn+1 − fn(T, yn)‖ < ∞ implies yn → p ∈ F (T )

(cf.[10], [15]). Clearly, the iterative scheme {fn(T, ·)}n which is stable is almost

stable. In [10] Osilike gave an example of iterative scheme which is almost stable,

but not stable. In [4], Harder and Hicks pointed out the importance of the

stability of iterative schemes from the view point of practical use of iterations, and
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gave some results. Recently, the stability of the iterative schemes for nonlinear

mappings has been investigated by several authors (cf. [8], [9], [10], [11], [12],

[13], [15], [16], [17], [18]). In [18], an iterative scheme {fn(T, ·, ·)} with a sequence

{vn} in E was defined as follows: For any x0 ∈ E and n ≥ 0,

xn+1 = fn(T, vn, xn) = tnTvn + (1− tn)xn + un,

where {tn} and {un} are a coefficient sequence in [0, 1] and an error term sequence

in E, respectively. The result of almost stability of {fn(T, vn, ·)} was proved.

In this paper, we treat iterative schemes involving a set-valued mapping T :

D(T ) ⊂ E → CB(E), where CB(E) is the set of non-empty closed and bounded

subsets of E. Let J denote the normalized duality mapping from E into 2E∗ given

by

J(x) = {f ∈ E∗ : 〈x, f〉 = ‖x‖2 = ‖f‖2
∗},

where E∗ denotes the dual space of E with a norm ‖·‖∗ and 〈·, ·〉 denotes the

duality pairing on E × E∗. Let Ω = {ψ : [0,∞) → [0,∞) : strictly increasing

with ψ(0) = 0}. A mapping T : D(T ) ⊂ E → CB(E) is called a uniform pseudo-

contraction with ψ ∈ Ω if for all x, y ∈ D(T ) there exists j(x − y) ∈ J(x − y)

such that for any θx ∈ Tx, θy ∈ Ty,

〈θx − θy, j(x− y)〉 ≤ ‖x− y‖2 − ψ(‖x− y‖).

As well-known, if ψ(t) = kt2 for some k ∈ (0, 1), then T is strongly pseudo-

contractive. If ψ(t) = φ(t)t for some φ ∈ Ω, then T is said to be φ-strongly

pseudo-contractive. For the uniform pseudo-contraction T with ψ ∈ Ω, let ω(t) =

min{ψ(t), t2} on [0,∞). Then the following inequality holds: For any x, y ∈ D(T )

and θx ∈ Tx, θy ∈ Ty,

〈θx − θy, j(x− y)〉 ≤ ‖x− y‖2 − ψ(‖x− y‖)
≤ ‖x− y‖2 − ω(‖x− y‖).

Thus, we can assume that ψ(t) ≤ t2 on [0,∞) when T is uniformly pseudo-

contractive with ψ ∈ Ω, without any loss of generality. The class of uniform

pseudo-contraction seems to have been first introduced by Alber in [1] under the

name “weakly contractive” mappings, and C. E. Chidume and C. O. Chidume

also called it a “generalized Φ-pseudo-contractive” mapping in [3]. A mapping

T : D(T ) ⊂ E → CB(E) is called uniformly hemi-contractive with ω ∈ Ω if

F (T ) = {p : p ∈ Tp} 6= ∅ and for any x ∈ D(T ) and any p ∈ F (T ), there exists

j(x− p) ∈ J(x− p) such that for any θx ∈ Tx and θp ∈ Tp,

〈θx − θp, j(x− p)〉 ≤ ‖x− p‖2 − ω(‖x− p‖).
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Since we have that for p, q ∈ F (T ),

‖p− q‖2 = 〈p− q, j(p− q)〉 ≤ ‖p− q‖2 − ω(‖p− q‖),

the uniformly hemi-contractive mapping T can have at most one fixed point p.

For the set-valued mapping T, we consider an iterative scheme {fn(T, ·, ·)}n with

a coefficient sequence {tn} in [0, 1] and an error term sequence {un} in E as

follows: For a sequence {vn} in E, any n ≥ 0 and any x ∈ E,

(1. 1) fn(T, vn, x) = tnTvn + (1− tn)x + un.

This iterative scheme gives generalized Mann iterative sequence {xn} by tak-

ing xn+1 ∈ fn(T, xn, xn) for x0 ∈ E and any n ≥ 0, and also generalized

Ishikawa iterative sequence {wn} by taking wn+1 ∈ fn(T, w
(1)
n , wn) with w

(1)
n ∈

t
(1)
n Twn + (1 − t

(1)
n )wn + u

(1)
n for w0 ∈ E any n ≥ 0, where {t(1)

n } and {u(1)
n }

are a coefficient sequence in [0, 1] and an error term sequence in E, respectively.

C. E. Chidume and C. O. Chidume [2] showed strong convergence theorems

of generalized Mann iterative sequence involving a generalized Lipschitz con-

tinuous and uniformly hemi-contractive set-valued mapping T in a uniformly

smooth Banach space. Moore and Nnouli [7] showed a strong convergence the-

orem of generalized Ishikawa iterative sequence involving a uniformly contin-

uous and uniformly hemi-contractive set-valued mapping T in a real normed

space. For y ∈ fn(T, vn, x) defined by (1. 1), there exist θn ∈ Tvn such that

y = fn(T, vn, x)(θn), which is denoted by

(1. 2) fn(T, vn, x)(θn) = tnθn + (1− tn)x + un.

Then, we give the definition that an iterative scheme {fn(T, vn, ·)}n involving a

set-valued mapping T is called almost stable if a sequence {yn}, which satisfies∑
n≥1

‖yn+1 − fn(T, vn, yn)(θn)‖ < ∞ for some {θn} with θn ∈ Tvn for n ≥ 1, con-

verges strongly to p ∈ F (T ), and prove the theorem of almost stability of the

{fn(T, vn, ·)}n defined by (1. 1) for a sequence {vn} and the set-valued mapping

T which is uniformly continuous and uniformly hemi-contractive in an arbitrary

Banach space. This result concerning almost stability implies the strong con-

vergence theorems of generalized Mann and Ishikawa iterative sequences with

weaker assumptions than that in [2] and [7].

2. Preliminaries

We shall show some crucial lemmas in order to present our statements and

to prove the main theorem.
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LEMMA 1. ([6]) Let {an}, {bn} and {cn} be non-negative real number sequences

satisfying the difference inequality

(2. 1) an+1 ≤ (1− tn)an + bn + cn.

Suppose

{tn} ⊆ [0, 1],
∞∑

n=1

tn = ∞, bn = o(tn) and
∞∑

n=1

cn < ∞ .

Then

lim
n→∞

an = 0.

LEMMA 2. ([17]) Let {an}, {bn} and {cn} be non-negative real number sequences

satisfying the difference inequality (2. 1). Suppose {tn} ⊆ [0, 1],
∑∞

n=1 tn = ∞,

bn = Ktn for some K, and
∑∞

n=1 cn < ∞. Then {an} is bounded.

LEMMA 3. ([17]) Let {an}, {bn}, {tn}, {δn} and {ρn} be non-negative real num-

ber sequences satisfying the following conditions :

(a) an+1 ≤
(

1− tn
f1(bn)

f2(bn)

)
an + tnδn + ρn,

where f1 and f2 are non-negative increasing functions on [0,∞) and f2(0) > 0,

(b) {tn} ⊂ [0, 1] and lim
n→∞

tn = 0,

(c) lim
n→∞

δn = 0,

(d)
∞∑

n=1

ρn < ∞,

(e) {an} is bounded and lim inf
n→∞

an = 0,

(f) lim
n→∞

(an+1 − an) = 0,

(g) lim
n→∞

(an − bn) = 0.

Then

lim
n→∞

an = 0.
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LEMMA 4. Let E be a Banach space and let T : E → CB(E) be uniformly

hemi-contractive with ω ∈ Ω satisfying ω(t) ≤ t2on [0,∞). Suppose that p

denotes a unique fixed point of T . Then we obtain for any x ∈ E and any

θx ∈ Tx,

‖x− p‖ ≤ ‖x− p + α{(1− γx)(x− p)− (θx − p)}‖ for any α > 0,

where

γx =
ω(‖x− p‖)
‖x− p‖2 + 1

.

Proof. Since T is a uniformly hemi-contractive mapping with ω ∈ Ω, we have

for any x ∈ E and any θx ∈ Tx,

〈θx − p, j(x− p)〉 ≤ ‖x− p‖2 − ω(‖x− p‖),

and we have

〈(x− p)− (θx − p), j(x− p)〉 − ω(‖x− p‖) ≥ 0.

Moreover, since we have from the definition of γx

γx 〈x− p, j(x− p)〉 = ω(‖x− p‖)〈x− p, j(x− p)〉
‖x− p‖2 + 1

≤ ω(‖x− p‖),

we have

〈(x− p)− (θx − p)− γx(x− p), j(x− p)〉
= 〈(x− p)− (θx − p), j(x− p)〉 − γx 〈(x− p), j(x− p)〉
≥ 〈(x− p)− (θx − p), j(x− p)〉 − ω(‖x− p‖)
≥ 0.

By Kato’s Lemma [5], we obtain

‖x− p‖ ≤ ‖x− p + α{(1− γx)(x− p)− (θx − p)}‖

for any α > 0.

LEMMA 5. Let E be a Banach space and let T : E → CB(E) be uniformly

hemi-contractive with ω ∈ Ω satisfying ω(t) ≤ t2 on [0,∞). Denote by p the

unique fixed point of T . For u, v and y ∈ E, let y∗ be defined as

y∗ = tθ + (1− t)y + u,
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where θ ∈ Tv and t ∈ [0, 1]. Then we obtain the following inequality for any

η ∈ Ty∗,

‖y∗ − p‖ ≤ 1 + t(1− γ∗)
1 + t

‖y − p‖+
t2(2− γ∗)

1 + t
‖y − θ‖

+
t

1 + t
‖η − θ‖+

1 + t(2− γ∗)
1 + t

‖u‖ ,

where

γ∗ = γy∗ =
ω(‖y∗ − p‖)
‖y∗ − p‖2 + 1

.

Proof. For any real number γ and any η ∈ Ty∗,

y = (1 + t)y∗ + t(1− γ)y∗ − tη + tη + tγy∗ − 2ty∗ − y∗ + y.

Set A = (1 + t)y∗ + t(1− γ)y∗ − tη, and we have

y = A + tη + {t(γ − 2)− 1}y∗ + y

= A + tη + {t(γ − 2)− 1}{tθ + (1− t)y + u}+ y

= A + tη + t2(γ − 2)(θ − y) + t(γ − 2)(y + u)

− tθ + ty − u

= A + t(η − θ) + t2(γ − 2)(θ − y) + t(γ − 2)y

+ t(γ − 2)u + ty − u

= A + t2(γ − 2)(θ − y) + t(η − θ)

+ t{(γ − 2) + 1}y + {t(γ − 2)− 1}u
= A + t2(2− γ)(y − θ) + t(η − θ)

+ t(γ − 1)y + {t(γ − 2)− 1}u.

Since we also have

p = (1 + t)p− tp + t(1− γ)p− t(1− γ)p

= (1 + t)p + t(1− γ)p− tp + t(γ − 1)p,

we obtain

y − p = A− {(1 + t)p + t(1− γ)p− tp} − t(γ − 1)p

+ t2(2− γ)(y − θ) + t(η − θ) + t(γ − 1)y + {t(γ − 2)− 1}u
= {(1 + t)(y∗ − p) + t(1− γ)(y∗ − p)− t(η − p)}+ t2(2− γ)(y − θ)

+ t(η − θ) + t(γ − 1)(y − p) + {t(γ − 2)− 1}u.
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Since we have from Lemma 4

‖(1 + t)(y∗ − p) + t(1− γ∗)(y∗ − p)− t(η − p)‖

= (1 + t)

∥∥∥∥(y∗ − p) +
t

1 + t
{(1− γ∗)(y∗ − p)− (η − p)}

∥∥∥∥
≥ (1 + t) ‖y∗ − p‖ ,

thus we have, taking γ∗ instead of γ,

‖y − p‖ ≥ ‖(1 + t)(y∗ − p) + t(1− γ)(y∗ − p)− t(η − p)‖
−

∥∥t2(2− γ∗)(y − θ) + t(η − θ) + t(γ∗ − 1)(y − p) + (t(γ∗ − 2)− 1)u
∥∥

≥ (1 + t) ‖(y∗ − p)‖
−

∥∥t2(2− γ∗)(y − θ) + t(η − θ) + t(γ∗ − 1)(y − p) + (t(γ∗ − 2)− 1)u
∥∥

≥ (1 + t) ‖y∗ − p‖ − t2(2− γ∗) ‖y − θ‖ − t ‖η − θ‖
− t(1− γ∗) ‖y − p‖ − |t(2− γ∗)− 1| ‖u‖ .

This means that

‖y∗ − p‖ ≤ 1 + t(1− γ∗)
1 + t

‖y − p‖+
t2(2− γ∗)

1 + t
‖y − θ‖

+
t

1 + t
‖η − θ‖+

1 + t(2− γ∗)
1 + t

‖u‖ .

3. Main Results

A set-valued mapping T : D(T ) ⊂ E → CB(E) is said to be uniformly

continuous if for any ε > 0, there exists δ > 0 such that for any x, y ∈ E,

‖x− y‖ < δ implies H(Tx, Ty) < ε, where H(·, ·) is a Hausdorff metric on

CB(E), i.e., for any A,B ∈ CB(E),

(3. 1) H(A,B) = max{sup
x∈A

inf
y∈B

‖x− y‖ , sup
y∈B

inf
x∈A

‖x− y‖}.

We shall treat a iterative scheme {fn(T, ·, ·)} involving a uniformly continuous

and uniformly hemi-contractive set-valued mapping T . We shall prove the main

theorem by virtue of the previous lemmas.

THEOREM 1. Let E be a Banach space and let T : E → CB(E) be a uniformly

continuous and uniformly hemi-contractive set-valued mapping with a function
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ω ∈ Ω satisfying ω(t) ≤ t2 on [0,∞). Let p be the unique fixed point of T . Suppose

T has a bounded range (i.e., there exists M̃ such that sup{‖θ‖ : θ ∈ Tx, x ∈
E} ≤ M̃ < ∞ ). For T and a sequence {vn} in E, let an iterative scheme

{fn(T, vn, ·)}n be defined by (1. 1). Suppose that a coefficient sequence {tn} in

[0, 1] and an error term sequence {un} in E satisfy the following conditions :

(h)
∞∑

n=0

tn = ∞, (i) lim
n→∞

tn = 0, (j)
∞∑

n=0

||un|| < ∞ .

Then the following statements hold.

(I) If {yn} in E satisfies

lim
n→∞

||yn − vn|| = 0 and
∞∑

n=0

||yn+1 − fn(T, vn, yn)(θn)|| < ∞

for some {θn} with θn ∈ Tvn for n ≥ 0 as (1. 2), then yn → p.

(II) If {wn} in E converges strongly to p, then

lim
n→∞

||wn+1 − fn(T, vn, wn)(θn)|| = 0

for all {θn} with θn ∈ Tvn for n ≥ 0.

Proof. (I) Denote y∗n+1 = fn(T, vn, yn)(θn) for θn ∈ Tvn for any n ≥ 0, as (1. 2),

and then, from a property of Hausdorff metric (see [14]), there exists ηn ∈ Ty∗n+1

such that

(3. 2) ‖ηn − θn‖ ≤ 2H(Ty∗n+1, T vn).

Suppose that εn = ||y∗n+1 − yn+1|| for any n ≥ 0 and that M0 = supn≥0 ‖θn − p‖
< ∞. Since we have

||yn+1 − p|| ≤
∥∥y∗n+1 − yn+1

∥∥ +
∥∥y∗n+1 − p

∥∥
= εn + ‖fn(T, vn, yn)(θn)− p‖
= εn + ||tnθn + (1− tn)yn + un − p||
≤ εn + tn ‖θn − p‖+ (1− tn) ‖yn − p‖+ ‖un‖
≤ tnM0 + (1− tn) ‖yn − p‖+ (εn + ‖un‖),

from Lemma 2, the {‖yn − p‖} is bounded. Let M = max{M0, supn ‖yn − p‖} <

∞. From Lemma 5, we obtain

∥∥y∗n+1 − p
∥∥ ≤ 1 + tn(1− γn)

(1 + tn)
‖yn − p‖+

t2n(2− γn)

(1 + tn)
‖yn − θn‖(3. 3)

+
tn

(1 + tn)
‖ηn − θn‖+

1 + tn(2− γn)

(1 + tn)
‖un‖ ,
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where γn = γy∗n+1
=

ω(‖y∗n+1−p‖)

‖y∗n+1−p‖2
+1
≤ 1. Noting the following inequality

1 + tn(1− γn)

(1 + tn)
≤ 1− tnγn + (tn)2,

we have from (3. 3)

‖yn+1 − p‖ ≤
∥∥y∗n+1 − p

∥∥ + εn

≤ (1− tnγn) ‖yn − p‖+ t2n(‖yn − p‖+ 2
1+tn

‖yn − θn‖)

+tn ‖ηn − θn‖+ {εn + (1 + 2tn) ‖un‖}

≤ (1− tnγn) ‖yn − p‖+ t2n(5M)

+tn ‖ηn − θn‖+ (εn + 3 ‖un‖)

≤ (1− tnγn) ‖yn − p‖+ (εn + 3 ‖un‖)

+tn (‖ηn − θn‖+ 5tnM) ,

that is,

‖yn+1 − p‖ ≤ (1− tnγn) ‖yn − p‖+ (εn + 3 ‖un‖)
+ tn (‖ηn − θn‖+ 5tnM) .(3. 4)

Now, from (3. 4) we shall prove

(3. 5) lim
n→∞

‖yn − p‖ = 0.

Since we have from assumptions

∥∥y∗n+1 − vn

∥∥ = ‖tnθn + (1− tn)yn + un − vn‖(3. 6)

≤ tn ‖θn − yn‖+ ‖yn − vn‖+ ‖un‖
≤ 2tnM + ‖yn − vn‖+ ‖un‖ → 0 as n →∞,

the inequality (3. 2) and the uniform continuity of T imply

(3. 7) lim
n→∞

‖ηn − θn‖ ≤ lim
n→∞

2H(Ty∗n+1, T vn) = 0.
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Set γ = lim infn→∞ γn, and we have γ > 0 or γ = 0. Suppose γ > 0. For any

δ ∈ (0, γ
2
) and sufficiently large n ≥ 1, we have γ− δ < γn. Then the inequality

(3. 4) implies

‖yn+1 − p‖ ≤ {1− tn(γ − δ)} ‖yn − p‖+ (εn + 3 ‖un‖)
+ tn (‖ηn − θn‖+ 5tnM) .

By Lemma 1, we obtain limn→∞ ‖yn − p‖ = 0. On the other hand, suppose

γ = 0. Since we have for sufficiently large n,

∥∥y∗n+1 − p
∥∥ = ‖tnθn − tnyn + yn − p + un‖
≤ tn ‖θn − yn‖+ ‖yn − p‖+ ‖un‖
≤ 4M,

we obtain

0 = lim inf
n→∞

γn = lim inf
n→∞

ω(
∥∥y∗n+1 − p

∥∥)∥∥y∗n+1 − p
∥∥2

+ 1
≥ lim inf

n→∞
ω(

∥∥y∗n+1 − p
∥∥)

16M2 + 1
≥ 0,

and so we have lim infn→∞
∥∥y∗n+1 − p

∥∥ = 0. Then we can apply Lemma 3 as

follows. Set

an = ‖yn − p‖ , bn =
∥∥y∗n+1 − p

∥∥ , δn = ‖ηn − θn‖ + 5tnM, ρn = εn + 3 ‖un‖
for n ≥ 1 and f1(t) = ω(t), f2(t) = t2 + 1 for t ∈ [0,∞). Then the inequality

(3. 4) implies that the conditions (a) and (b) of Lemma 3 are satisfied. From the

selection of ηn ∈ Ty∗n+1 and the uniform continuity of T, the (3. 4) implies the

(c). From the assumptions of {εn} and {un}, the (d) is satisfied. From the (3. 6)

we have lim infn→∞
∥∥y∗n+1 − p

∥∥ = lim infn→∞ bn = 0, and

an = bn + (an − bn),

|an − bn| ≤
∥∥yn − y∗n+1

∥∥
≤ tn ‖θn − p‖+ tn ‖yn − p‖+ ‖un‖
≤ 2tnM + ‖un‖ ,

thus the conditions (e) and (g) are satisfied. Moreover,

an+1 − an ≤ ‖yn − yn+1‖
≤ εn +

∥∥yn − y∗n+1

∥∥
≤ εn + 2tnM + ‖un‖

implies the condition (f). Therefore we obtain from Lemma 3,

lim
n→∞

‖yn − p‖ = lim
n→∞

an = 0.
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The (I) is proved completely.

(II) Suppose wn → p. Then, take any {θn} satisfying θn ∈ Tvn for n ≥ 1,

and we have

||wn+1 − fn(T, vn, wn)(θn)|| = ‖wn+1 − tnθn − (1− tn)wn − un‖

≤ ‖wn+1 − p‖+ tn ‖θn − p‖+ (1− tn) ‖wn − p‖+ ‖un‖ → 0 as n →∞
Therefore the statement (II) follows.

Next we consider generalized Mann and Ishikawa iterative sequences involving

the above set-valued mapping T by using the iterative scheme {fn(T, ·, ·)}. A

generalized Mann iterative sequence is defined as follows: For any n ≥ 0,

(3. 8)





x0 ∈ E,

xn+1 ∈ fn(T, xn, xn)

= tnTxn + (1− tn)xn + un.

Similarly, a generalized Ishikawa iterative sequence is defined as follows: For any

n ≥ 0,

(3. 9)





w0 ∈ E,

wn+1 ∈ fn(T, w
(1)
n , wn)

= tnTw
(1)
n + (1− tn)wn + un,

where w
(1)
n ∈ t

(1)
n Twn + (1 − t

(1)
n )wn + u

(1)
n for any n ≥ 0, and {t(1)

n } and {u(1)
n }

are a coefficient sequence in [0, 1] and a error term sequence in E, respectively.

By virtue of Theorem 1 we can obtain strong convergence theorems with re-

spect to the generalized Mann and Ishikawa iterative sequences as the following

corollaries.

COROLLARY 1. Let E be a Banach space, and let T : E → CB(E) be a

uniformly continuous and uniformly hemi-contrative set-valued mapping with a

function ω ∈ Ω satisfying ω(t) ≤ t2 on [0,∞). Suppose T has a bounded range.

Let {xn} be generalized Mann iterative sequence involving T defined by (3. 8),

and assume that {tn} and {un} satisfy the conditions (h) − (j) in Theorem 1 .

Then {xn} converges strongly to a unique fixed point p of T.

Proof. By the iterative scheme {fn(T, ·, ·)}, the generalized Mann sequence {xn}
is represented as follows: For x0 ∈ E and any n ≥ 0,

xn+1 ∈ fn(T, xn, xn) = tnTxn + (1− tn)xn + un.
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Putting vn = xn for any n ≥ 0, Theorem 1 implies strong convergence to p with

respect to {xn}.

COROLLARY 2. Let E be a Banach space, and let T : E → CB(E) be a

uniformly continuous and uniformly hemi-contrative set-valued mapping with a

function ω ∈ Ω satisfying ω(t) ≤ t2 on [0,∞). Suppose T has a bounded range.

Let {wn} be generalized Ishikawa iterative sequence involving T defined by (3. 9),

and assume that {tn} and {un} satisfy the conditions (h) − (j) in Theorem 1,

and additionary, limn→∞ t
(1)
n = 0 and limn→∞

∥∥∥u
(1)
n

∥∥∥ = 0. Then {wn} converges

strongly to a unique fixed point p of T.

Proof. Similarly as Corollary 1, the generalized Ishikawa iterative sequence {wn}
is defined as follows: For x0 ∈ E and any n ≥ 0,

wn+1 ∈ fn(T,w(1)
n , wn), with w(1)

n ∈ t(1)
n Twn + (1− t(1)

n )wn + u(1)
n .

Since limn→∞
∥∥∥w

(1)
n − wn

∥∥∥ = 0 from the assumptions of T , {t(1)
n } and {u(1)

n }, we

can apply Theorem 1 in order to obtain strong convergence to p of {wn}.
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