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Abstract. Let N ≥ 2 and D ⊂ RN−1 be a bounded domain with smooth
boundary. In this paper, we consider the existence of homoclinic solutions for
nonlinear elliptic problem

{
∆u + g(x, u) = 0 in R×D,

∂u
∂ν = 0 on ∂(R×D),

where ν(x) is the outward pointing normal derivative to ∂D and g ∈ C1((R ×
D × R,R) has a spacial periodicity.

1. Introduction

Let N ≥ 2 and Ω ⊂ RN be a cylindrical domain, i.e., Ω = R × D, where

D ⊂ RN−1 is a bounded open domain with a smooth boundary. In the present

paper, we consider the existence of homoclinic solutions of a boundary value

problem

(P)

{
∆u + g(x, u) = 0 in Ω,

∂u
∂ν

= 0 on ∂Ω,

where g ∈ C1(Ω × R,R) and ν = ν(y) denotes the outward pointing normal

derivative to ∂(D × R). For x ∈ Ω we set x = (x1, y), where x1 ∈ R and y ∈ D.

We impose the following conditions on g:

g(x, z) ∈ C1(Ω× R,R) and is 1-periodic with respect to x1;(g1)

G(x, z) =

∫ z

0

g(x, τ)dτ is 1-periodic with respect to z.(g2)
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In [1], Rabinowitz considered the existence of spacially heteroclinic solutions

of problem (P) under the assumptions (g1), (g2) and an additional condition

(g3) g(x, z) is even with respect to x1 ∈ R.

In [2] and [4], the existence of the heteroclinic solutions of (P) was established

without the evenness condition (g3). Recently, using the results in these papers,

the existence of homoclinic solutions of (P) was established in [3]. The purpose

of this paper is to investigate the existence of ordered homoclinic solutions of

(P) and give sharper characterizations of the solutions. Homoclinic solutions

established in [3] are not ordered. We will show that there is a sequence of

homoclinic solutions of (P) such that each solution is given as a local minimal of

corresponding functional to (P).

2. Preliminaries and Statements of Main Result

Throughout the rest of this paper, we assume that N ≥ 2, and conditions

(g1) and (g2) hold. For x, y ∈ RN , we denote by x · y the inner product of

x and y. For each bounded open set U ⊂ RN , we denote by ‖ · ‖H1(U) and

‖ ·‖L2(U) the norm of H1(U) and L2(U) defined by ‖u‖2
H1(U) =

∫
U
(|u|2 + |∇u|2)dx

and ‖v‖2
L2(U) =

∫
U
|v|2dx for each u ∈ H1(U) and v ∈ L2(U), respectively. We

denoted by 〈·, ·〉U the inner product of H1(U). Put Ωi = [i, i + 1] × D for each

i ∈ Z. For each function u ∈ H1
loc(Ω) and j ∈ Z. we denote by τjv the function

denoted by

τjv(x1, y) = v(x1 − j, y) for all (x1, y) ∈ R×D.

We set

L(u)(x) =
1

2
|∇u(x)|2 −G(x, u) for u ∈ H1

loc(Ω) and x ∈ Ω.

Put

Ii(u) =

∫

Ωi

L(u)dx for i ∈ Z and u ∈ H1(Ωi)

and

E =
{
u ∈ H1(Ω0) : u is 1−periodic in x1

}
.

We put

c0 = inf
u∈E

I0(u) and M0 = {u ∈ E : I0(u) = c0}.
Then the following is known.
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PROPOSITION 1. ([2]) M0 6= ∅ and M0 is an ordered set, i.e. for each u, v ∈
M0 with u 6= v, u < v on Ω0 or u > v on Ω0 holds.

Here we put

aj(u) =

∫

Ωj

L(u)dx− c0 for j ∈ Z and u ∈ H1(Ωj),

and

Jl,m(u) =
m∑

j=l

aj(u) for l,m ∈ Z with l ≥ m.

We also put

J(u) = lim inf
l→−∞

Jl,0 + lim inf
m→∞

J1,m(u) for u ∈ H1
loc(Ω),

J−∞,m(u) = lim inf
l→−∞

Jl,0 + J1,m(u) for u ∈ H1
loc(Ω) and m ≥ 1,

Jm,∞(u) = Jm,0(u) + lim inf
l→∞

J1,l(u) for u ∈ H1
loc(Ω) and m ≥ 0.

For each v, w ∈ M0 with v < w, we set

[v, w] =
{
u ∈ H1

loc(Ω) : v ≤ u ≤ w
}

, [v, w]m = {u|Ωm : u ∈ [v, w]} ,

Γ−(z) =

{
u ∈ [v, w] : J(u) < ∞, lim

j→−∞
‖u− z‖L2(Ωj) = 0

}
for z ∈ {u,w},

Γ+(z) =

{
u ∈ [v, w] : J(u) < ∞, lim

j→∞
‖u− z‖L2(Ωj) = 0

}
for z ∈ {v, w},

and

Γ(z1, z2) = Γ−(z1) ∩ Γ+(z2) for z1, z2 ∈ {v, w}.
Then we have

PROPOSITION 2. (cf.[3, 4]) For each v, w ∈ M0 and u ∈ Γ(v, w),

liml→−∞ Jl,0(u) and limm→∞ J1,m(u) exist.

REMARK 1. From Proposition 2, it follows that for each u ∈ Γ−(v),

J−∞,m(u) = lim
l→−∞

Jl,0(u) + J1,m(u) for m ≥ 1.

Similarly, we have for each u ∈ Γ+(w),

Jm,∞(u) = Jm,0(u) + lim
l→∞

J1,l(u) for m ≤ 0.
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Let v, w ∈ M0 and v < w. We assume v, w are adjacent in M0, that is

there are no other elements u0 ∈ M0 with v < u0 < w. We call u ∈ H1
loc(Ω) a

heteroclinic solution of (P) in [v, w] if u ∈ Γ(v, w) ∪ Γ(w, u) and u is a solution

of (P). A solution u ∈ H1
loc(Ω) of (P) is called a homoclinic solution in [v, w] if

u ∈ Γ(v, v) ∪ Γ(w,w).

We put

c(v, w) = inf
u∈Γ(v,w)

J(u) for v, w ∈ M0

and

M(v, w) = {u ∈ Γ(v, w) : J(u) = c(v, w)} for v, w ∈ M0.

Then we have

PROPOSITION 3. ([1]) For each v, w ∈ M0 which are adjacent and v < w,

M(v, w) is a nonempty ordered set.

Let v1, v2 ∈ M(v, w) and v1 < v2. If v1, v2 are adjacent in M(v, w), then

there are no other elements v0 ∈ M(v, w) with v1 < v0 < v2. We will consider

the existence of homoclinic solution of (P) under the following conditions:

(∗) v, w ∈ M0 are adjacent with v < w.

(∗∗) v1, v2 ∈ M(v, w) are adjacent with v1 < v2 and w1, w2 ∈ M(w, v) are

adjacent with w1 < w2.

(C) inf
{
I0(v) : v ∈ H1(Ω0)

}
= c0.

We call u ∈ Γ(v, v) a local minimal of J in Γ(v, v) if J(u + ϕ) ≥ J(u)

for all ϕ ∈ H1(Ω) with ‖ϕ‖H1(Ω) sufficiently small. We will find a sequence

{un} ⊂ Γ(v, v) of homoclinic solutions of (P) such that each un is a local minimal

of J in Γ(v, v). We can now state our main results:

THEOREM 1. Assume that (g1), (g2), (∗), (∗∗) and (C) hold. Then there exist

sequences {in}, {jn} ⊂ N and {un} ⊂ Γ(v, v) of homoclinic solutions of (P ) such

that

(1) each un is a local minimal of J in Γ(v, v);

(2) un ≤ un+1 for each n ≥ 1;

(3) for each n ≥ 1, τ−inv1 ≤ un ≤ τ−in−1 on (−∞, p]×D for some p ∈ N;

(4) for each n ≥ 1, τjnw1 ≤ un ≤ τjn+1w2 on [q,∞) × D for some q ∈ N with

q >p;

(5) limn→∞ J(un) = c(v, w) + c(w, v).
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REMARK 2. The analogous result holds for Γ(w, w).

REMARK 3. In [3], the existence of homoclinic solutions of (P) was established

without assuming the condition (C). Assuming (C), we can get sharper charac-

terizations (2), (3) and (4) for the solutions of (P). The condition (C) is satisfied

if the functions satisfy (g3) (cf. [1]).

3. Proof of Theorem 1.

Throughout the rest of this paper, we assume that (g1), (g2), (∗), (∗∗) and

(C) hold. We put

Mm(v, w) = {u[m]2 ∈ C(Ωm) : u ∈M(v, w)} for m ∈ Z.

Then since M(v, w) is an ordered set, Mm(v, w) is also an ordered set. Since

v1, v2 ∈ M(v, w) are adjacent, we have that v1[m] and v2[m] are adjacent in

Mm(v, w). One can see

(τnv1)[m] < (τnv2)[m] ≤ (τn−1v1)[m](3. 1)

< (τn−1v2)[m] ≤ (τn−2v1)[m] < (τn−2v2)[m]

for m,n ∈ Z. Similarly, we have

(τnw1)[m] < (τnw2)[m] ≤ (τn+1w1)[m](3. 2)

< (τn+1w2)[m] ≤ (τn+2w1)[m] < (τn+2w2)[m]

for m,n ∈ Z. We put

W0(m) =
{
u ∈ L2(Ω0) : (τ−mv2)[0] ≤ u ≤ (τ−m−1v1)[0]

}
for each m ∈ Z.

Then we find that for each m ∈ Z,

u1 < u2 for all u1 ∈ W0(m) and u2 ∈ W0(m + 1).

We put

U0(m)(3. 3)

= [W0(m) + Brm(0)] ∩ {u ∈ [v, w]0 : (τ−mv1)[0] ≤ u ≤ (τ−m−1v2)[0]} ,

where Br(0) is an open ball in L2(Ω0) centered at 0 with radius r > 0 and Br(0)

stands for the closure of Br(0) with respect to the norm of L2(Ω0), and rm is a
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positive number. Then U0(m) is a closed convex set in H1(Ω0). If we choose rm

sufficiently small then

(3. 4) U0(m) ∩ U0(n) = ∅ for m,n ∈ Z with m 6= n.

For each m ∈ Z, we denote by ∂U0(m) the set

∂U0(m) = {z ∈ U0(m) : d(z, W0(m)) = rm} ,

where d(z, A) = inf
{‖z − y‖L2(Ω0) : y ∈ A

}
for z ∈ L2(Ω0) and A ⊂ L2(Ω0).

LEMMA 1. There exists a sequence {rm}m∈Z ⊂ R+ such that the sequence

{U0(m)}m∈Z of closed convex sets in L2(Ω0) defined by (3.3) satisfies the fol-

lowing conditions:

(i) For each m ∈ Z,

(τ−mv1)[0], (τ−m−1v2)[0] 6∈ U0(m).

(ii) If u1, u2 ∈ [v, w] are solutions of (P ) such that

J(uj) < 2[c(v, w) + c(w, v)] for i = 1, 2,

and

u1[0] ∈ U0(m) and u2[0] ∈ U0(m + 1) for some m ∈ Z,

then

τ−mv1[0] < u1[0] < τ−m−1v2[0],

τ−m−1v1[0] < u2[0] < τ−m−2v2[0] on Ω0

and

u1[0] < u2[0] on Ω0.

Proof. Let {rm}m∈Z ⊂ R+ and let {U0(m)} be the sequence defined by (3.3). It

is easy to see that the assertion (i) holds by choosing each rm sufficiently small.

Put

S = {u ∈ [v, w] : u is a solution of (P) with J(u) < 2[c(v, w) + c(w, v)]} .

Then one can see that each u ∈ S is a classical solution of (P) and there exists

C0 > 0 such that

(3. 5) ‖u‖C1(Ω0) ≤ C0 for all u ∈ S.
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Let m ∈ Z. Recall that v1 < v2 on Ω. Then by (3.5), we can choose γ(m) ∈ (0, 1
2
)

satisfying the following condition:

(S) If u ∈ S satisfies (3.6), then τ−mv1[0] < u[0] < τ−m−1v2[0],

where

1

2
(τ−mv1(x1, y) + τ−mv2(x1, y))(3. 6)

< u(x1, y)

<
1

2
(τ−m−1v1(x1, y) + τ−m−1v2(x1, y)) on [γ(m), 1− γ(m)]×D.

Let u1, u2 ∈ [v, w] be solutions of (P) with u1[0] ∈ U0(m) and u2[0] ∈ U0(m + 1).

Then since

−∆(τ−m−1v1) = g(x, u1)− g(x, τ−m−1v1)

and (g1) hold, we have by standard regularity arguments for elliptic problems

that there exists L > 0 such that

|u1(x1, y)− τ−m−1v1(x1, y)| ≤ L‖u1 − τ−m−1v1‖L2(Ω0)(3. 7)

for (x1, y) ∈ [γ(m), 1− γ(m)]×D.

Similarly, we have

|u1(x1, y)− τmv2(x1, y)| ≤ ‖u1 − τ−mv2‖L2(Ω0)(3. 8)

for (x1, y) ∈ [γ(m), 1− γ(m)]×D.

Then from (3.7) and (3.8), we have by choosing rm sufficiently small that (3.6)

holds. Then by (S), we obtain that τmv1[0] < u1[0] < τ−m−1v2[0] holds. Similarly

we have by choosing rm+1 so small that τ−m−1v1[0] < u2[0] < τ−m−2v2[0] holds.

By a similar argument, we have that u1[0] < u2[0] holds on Ω0 by choosing rm

and rm+1 sufficiently small.

In the rest of this paper, we fix {U0(m)}m∈Z which satisfies the properties (i)

and (ii) in Lemma 1. From the definition, we have that

(3. 9) sup
{
‖u− w‖L2(Ω0) : u ∈ U0(m)

}
→ 0, as m →∞.

LEMMA 2. Let u ∈ [v, w]. We assume that there exists ε0 > 0 such that

lim inf
j→∞

‖τ−ju− v‖L2(Ω0) > ε0 and lim inf
j→∞

‖τ−ju− w‖L2(Ω0) > ε0.

Then there exists a constant ρ0 > 0 such that

lim
j→∞

a0(τ−ju) > ρ0,

where ρ0 is independent of u.
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Proof. Let {τ−ju} ⊂ [v, w]0 satisfy the assumption. Suppose contrary

lim
j→∞

a0(τ−ju) = 0.

Then we may assume that τ−ju → u weakly in H1(Ω0) and strongly in L2(Ω0)

as j →∞. Thus we have

a0(u) ≤ lim inf
j→∞

a0(τ−ju).

Then by the property of v and w, one can see that u = v or u = w holds. This is

a contradiction. Therefore there exists ρ0 > 0 such that limn→∞ a0(τ−ju) > ρ0.

LEMMA 3. There exists mv,1 ∈ N such that for each u ∈ Γ(v, v) with u[0] ∈
∪m≥mv,1U0(m),

(3. 10) J(u) > c(v, w) +
c(w, v)

2
.

Proof. Suppose contrary that there exists {un} ⊂ Γ(v, v) such that J(un) ≤
c(w, v) + c(v,w)

2
for each n > 1 and

lim
n→∞

‖w − un‖2
L2(Ω0) = 0.

Let ϕ ∈ C∞(R, [0, 1]) be such that ϕ(t) = 1 on (−∞, 0] and ϕ(t) = 0 on

[1
2
,∞). We put

ψ1(u)(x1, y) = ϕ(x1)u(x1, y) + (1− ϕ(x1))w(x1, y)

and

ψ2(u)(x1, y) = ϕ(1− x1)u(x1, y) + (1− ϕ(1− x1))w(x1, y)

for u ∈ H1
loc(Ω) and (x1, y)2 ∈ R×D. Then noting that

J1,∞(ψ1(u)) = J−∞,−1(ψ2(u)) = 0 for each u ∈ Γ(v, v),

we have

J(ψ1(u)) + J(ψ2(u)) = J−∞,−1(u) + J1,∞(u) + a0(ψ1(u)) + a0(ψ2(u))

for u ∈ Γ(v, v). We also have

(3. 11)
a0(ψ1(un)) =

∫ 1

0

∫

D
(
1

2
|∇ψ1(un)|2 −G(ψ1(un)))dx− c0

=

∫ 1

0

∫

D
(
1

2
|(∇ϕ(x1))(un − w) + ϕ(x1) · ∇un + (1− ϕ(x1))∇w|2

−G(ψ1(un)))dx− c0.
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Similarly we evaluate a0(ψ2(un)). Noting that un → w strongly in L2(Ω0) and

weakly in H1(Ω0), we find by (3.11) that

lim sup
n→∞

[a0(ψ1(un)) + a0(ψ2(un))]

= lim sup
n→∞

[

∫ 1

0

∫

D
(
1

2
|ϕ(x1)∇un + (1− ϕ(x1))∇w|2 −G(ψ1(un)))dx− c0

+

∫ 1

0

∫

D
(
1

2
|ϕ(1− x1)∇un + (1− ϕ(1− x1))∇w|2 −G(ψ2(un)))dx− c0]

= lim sup
n→∞

[

∫ 1

0

∫

D
(
ϕ(x1)

2

2
|∇un|2 +

1− ϕ(x1)
2

2
|∇w|2 −G(ψ1(un))dx− c0

+

∫ 1

0

∫

D
(
ϕ(1− x1)

2

2
|∇un|2 +

1− ϕ(1− x1)
2

2
|∇w|2 −G(ψ2(un))dx− c0]

≤ lim sup
n→∞

[

∫ 1/2

0

∫

D
(
1

2
|∇un|2 −G(ψ1(un))dx +

∫ 1

1/2

∫

D
(
1

2
|∇w|2 −G(w))dx− c0

+

∫ 1

1/2

∫

D
(
1

2
|∇un|2 −G(ψ2(un))dx +

∫ 1/2

0

∫

D
(
1

2
|∇w|2 −G(w))dx− c0]

= lim sup
n→∞

[

∫ 1/2

0

∫

D
(
1

2
|∇un|2 −G(un))dx +

∫ 1

1/2

∫

D
(
1

2
|∇w|2 −G(w))dx− c0

+

∫ 1

1/2

∫

D
(
1

2
|∇un|2 −G(un)dx +

∫ 1/2

0

∫

D
(
1

2
|∇w|2 −G(w))dx− c0].

Then noting that
∫ 1

0

∫

D
(
1

2
|∇w|2 −G(w))dx− c0 = 0,

we have

lim sup
n→∞

[a0(ψ1(un)) + a0(ψ2(un))] ≤ lim sup
n→∞

a0(un).

Therefore we have

lim sup
n→∞

J(un) ≥ lim sup
n→∞

[J(ψ1(un)) + J(ψ2(un))].

Since ψ1(un) ∈ Γ(v, w), we have J(ψ1(un))+c(v, w). Similarly, we have ψ2(un) ∈
Γ(w, v) and J(ψ2(un)) ≥ c(w, v). Therefore we have

lim sup
n→∞

J(un) ≥ c(v, w) + c(w, v).

Since c(w, v) is positive by (C), this is a contradiction. This completes the

proof.
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LEMMA 4. There exists ε1 > 0 such that for each u ∈ Γ−(v) such that u[0] ∈
∪m≥uv,1U0(m) and J(u) ≤ c(v, w) + c(w,v)

4
,

inf
m≥mv,1

‖v − u‖2
L2(Ωm) ≥ ε1.

Proof. Suppose contrary that there exists {un} ⊂ Γ−(v) such that un[0] ∈
∪m≥mv,1U0(m), J(un) ≤ c(v, w) + c(w,v)

4
for each n ≥ 1 and

lim
n→∞

inf
m≥mv,1

‖v − un‖2
L2(Ωm) = 0.

Then there exists a sequence {jn} ⊂ N such that jn ≥ mv,1 for n ≥ 1 and

lim
n→∞

‖v − un‖2
L2(Ωjn ) = 0.

Let ϕ ∈ C∞(R, [0, 1]) be the function defined in the proof of Lemma 3. We put

ψn(un) = ϕ(x1 − jn)un(x1, y) + (1− ϕ(x1 − jn))v(x1, y) for (x1, y) ∈ R×D.

Then ψn(un) ∈ Γ(v, v) for n ≥ 1 and

J(ψn(un)) = J−∞,jn−1(un) + ajn(ψn(un)).

Noting that τjnun → v strongly in L2(Ω0) and τ−jnun → v weakly in H1(Ω0).

Since ajn(ψn(un)) = a0(τ−jn(ψn(un))), by the same argument as in the proof of

Lemma 3 we have

lim sup
n→∞

a0(τ−jn(ψn(un))) ≤ lim sup
n→∞

a0(τ−jnun),

thus

lim sup
n→∞

ajn(ψn(un)) ≤ lim sup
n→∞

ajn(un).

Therefore we have

lim sup
n→∞

J−∞,jn(un) ≥ lim sup
n→∞

J(ψn(un)).

Since ψn(un) ∈ Γ(v, v) with un[0] ∈ ∪m≥mv,1U(m), we have by Lemma 3 that

J(ψn(un)) ≥ c(v, w) + c(w, v)/2. Then

lim sup
n→∞

J(un) ≥ lim sup
n→∞

J−∞,jn(un) ≥ lim sup
n→∞

J(ψn(un)) ≥ c(v, w) +
c(w, v)

2
.

This is a contradiction.
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LEMMA 5. For each v1 ∈M(v, w) and u ∈ Γ−(v),

J(min{v1, u}) ≤ J(u).

Proof. For each v1 ∈M(v, w) and u ∈ Γ−(v), we have

J min{v1, u}) + J max{v1, u}) = J(v1) + J(u).

Then max{v1, u} ∈ Γ(v, w), thus by the property of v1

J(max{v1, u}) ≥ J(v1)

Therefore we have

J(min{v1, u}) ≤ J(u).

Here we de.ne a subset Un(m) ⊂ [v, w]n for m,n ∈ Z. For each m,n ∈ Z, we

put

Wn(m) =
{
u ∈ L2(Ωn) : (τ−m+nv2)[n] ≤ u ≤ (τ−m−1+nv1)[n]

}

and

Un(m) = [Wn(m) + Bn,rm(0)] ∩(3. 12)

{u ∈ [v, w]n : τ−m+nv1)[n] ≤ u ≤ (τ−m−1+nv2)[n]},

where Bn,rm(0) = τn(Brm(0)). Then one can see that for u ∈ H1
loc(Ω), u[0] ∈

U0(m) if and only if τnu[n] ∈ Un(m) for m,n ∈ Z.

LEMMA 6. For each n ≥ mv,1, there exist δv,1(n) > 0 and mv,2(n) > mv,1 such

that for each u ∈ Γ−(v) satisfying J(u) < ∞ and u[mv,1] ∈ ∂Umv,1(n),

J−∞,m(u) ≥ c(v, w) + δv,1(n) for all m ≥ mv,2(n).

Proof. Suppose contrary that there exist n0 ≥ mv,1 and sequences {mn} ⊂ N,

{un} ⊂ Γ−(v) such that un[mv,1] ∈ ∂Umv,1(n0) for n ≥ 1, limn→∞ mn = ∞ and

lim
n→∞

J−∞,mn(un) ≤ c(v, w).

We need a few steps to prove the assertion.

Step1: We set

Λ =
{
u ∈ [v, w] : u ≤ τ−n0−1+mv,1 , v2, u[mv,1] ∈ ∂Umv,1(n0), J(u) ≤ c(v, w)

}
.
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Then by the definition of Un(m), Λ ∩M(v, w) = ∅. We show Λ is not empty.

We put

ũn =

{
min{τ−n0−1+mv,1 , v2, un} on (−∞, mv,1 + 1]×D

un on [mv,1 + 1,∞)×D,

φn =

{
max{τ−n0 − 1 + mv,1v2, un} on (−∞,mv,1 + 1]×D

τ−n0−1+mv,1v2 on [mv,1 + 1,∞)×D,

for each n ≥ 1. By the definition of Un(m), we have that un ≤ τ−n0−1+mv,1v2 on

Ωmv,1 for each n ≥ 1. Then

J(ũn) + J(φn) = J(τ−n0−1+mv,1v2) + J(un).

Since φn ∈ Γ(v, w), we have J(ũn) ≤ J(un) by the argument of Lemma 5. By

definition of ũn, we find J−∞,m(ũn) ≤ J−∞,m(un) for each n ≥ 1 and m ≥ mv,1.

Since J−∞,m(un) is nondecreasing with respect to m by (C), we find that for each

m ≥ mv,1,

lim
n→∞

J−∞,m(ũn) ≤ lim
n→∞

J−∞,m ≤ lim
n→∞

J−∞,mn(un) ≤ c(v, w).

We may assume that ũn → u0 ∈ H1
loc(Ω) weakly in H1

loc(Ω), ũn → u0 strongly in

L2
loc(Ω) and pointwise a.e.. Then u0 ≤ τ−n0−1+mv,1v2 on (−∞, mv,1 + 1]×D and

u0[mv,1] ∈ ∂Umv,1(n0). For each m ≥ mv,1 by the weak lower semicontinuity of

Jl,m,

Jl,m(u0) ≤ lim inf
n→∞

Jl,m(ũn),

thus letting l → −∞ gives

J−∞,m(u0) ≤ lim
n→∞

J−∞,m(ũn) ≤ lim
n→∞

J−∞,m(un) ≤ c(v, w)

for all m ≥ mv,1. Then m →∞ implies

J(u0) ≤ lim
n→∞

J(ũn) ≤ lim
n→∞

J−∞,mn(un) ≤ c(v, w).

Again by the minimization property of τ−n0−1+mv,1v2, we have that

J(min{τ−n0−1+mv,1v2, u0}) ≤ J(u0).

Here we put ũ0 = min{τ−n0−1+mv,1v2, u0}. Then ũ0 ∈ Λ, i.e. Λ 6= ∅.
Step 2: We put

Γ = {u ∈ Γ−(v) : u ≤ τ−n0−1+mv,1v2,

lim inf
m→∞

‖u− v‖2
L2(Ωm) ≥ ε1, J(u) ≤ c(v, w) + ε}
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where ε1 is the constant obtained in Lemma 4, and ε ∈ (0, c(w, v)/4). Then by

Lemma 4, Λ ⊂ Γ. Let γΓ = infz∈Γ J(z). In this step we will see that γΓ < c(v, w).

Let {ûn} be a sequence in Γ such that limn→∞ J(ûn) = γΓ. Then there exists

{in} ⊂ N such that

inf
m≥0

‖v − τinûn‖2
L2(Ωm) ≥ ε1 − 1

n
for all n ≥ 1

We put un = min{τ−n0−1+mv,1v2, τ−inûn} for n ≥ 1. Then {un} ⊂ Γ. By Lemma 5

it follows that J(un) ≤ J(ûn) for n ≥ 1. We may assume that un → u0 ∈ H1
loc(Ω)

weakly in H1
loc(Ω), strongly in L2

loc(Ω) and pointwise a.e.. Then we find that

u0 ∈ Γ and J(u0) = γΓ. Let t > 0 sufficiently small, then by Lemma 5, we have

J(min{τ−n0−1+mv,1v2, u0 + tψ}) ≤ J(u0 + tψ).

for all ψ ∈ C∞
0 (Ω). Again by the argument in Lemma 5, we also have

J(max{v, min{τ−n0−1+mv,1v2, u0 + tψ}}) ≤ J(min{τ−n0−1+mv,1v2, u0 + tψ})
Since max{v, min{τ−n0−1+mv,1v2, u0 + tψ}} ∈ Γ for all ψ ∈ C∞

0 (Ω),

J(u0) ≤ J(max{v, min{τ−n0−1+mv,1v2, u0 + tψ}}) ≤ c(v, w) + ε.

Now we find that each u ∈ Γ such that J(u) = γΓ is a solution of (P ). We

suppose that γΓ = c(v, w). Then noting that J(ũ0) = c(v, w) = γΓ, we have

that ũ0 is a solution of (P ). Since ũ0 ∈ Λ, we find that ũ0 6∈ M(v, w). Let

m ∈ N and put ũ1 = min{τ−n0−1+mv,1v2, τ−mũ0} ∈ Γ. Then one can see that

ũ1 ∈ Γ. By choosing m sufficiently large, we have ũ1 6= τ−n0−1+mv,1v2 and

ũ1 6= τ−mũ0. Then we have J(max{τ−n0−1+mv,1v2, τ−mũ0}) > J(τ−n0−1+mv,1v2).

Therefore J(ũ1) < J(ũ0) = c(v, w). Since ũ0, ũ1 ∈ Γ, this is a contradiction.

Thus we find that γΓ < c(v, w).

Step 3: Let u0 ∈ Γ such that J(u0) = γΓ. Then we show that

(3. 13) lim inf
n→∞

‖u0 − w‖2
L2(Ωn) ≥ ε2

holds. Suppose that there exists {ni} ⊂ N such that limi→∞ ni = ∞ and

lim
i→∞

{u0 − w‖2
L2(Ωni−1∪Ωni∪Ωni+1)

= 0.

Recall that u0 and w are solutions of (P ) on Ω. Therefore

−∆(w − u0) = g(x,w)− g(x, u0).

Then by a standard regularity argument for elliptic problem, we find that there

exists M > 0 such that

(3. 14) ‖∆w −∆u0‖L2(Ωni )
≤ M‖w − u0‖L2(Ωnn−1∪Ωni∪Ωn1+1) for i ≥ 1.
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Let ϕ ∈ C∞(R, [0, 1]) be the function defined in the proof of Lemma 3. We put

Ψi(u0) = ϕ(x1 − ni)u0(x1, y) + (1− ϕ(x1 − ni))w(x1, y) for (x1, y) ∈ R×D.

Then by 3.14), we find that

lim
i→∞

ani
(Ψi(u0)) = lim

i→∞
ani

(u0) = 0

and then

lim sup
i→∞

J(Ψi(u0)) = lim sup
i→∞

J−∞,ni
(Ψi(u0))

= lim
i→∞

J−∞,n1−1(u0)

≤ J(u0)

Since Ψi(u0) ∈ Γ(v, w), we have J(Ψi(u0)) ≥ c(v, w). Therefore we find that

J(u0) ≥ c(v, w). This is a contradiction. Then we have that there exists ε2 > 0

such that (3.13) holds.

Step 4: Here we put

Γ∞ =
{

u ∈ [v, w] : u ≤ τ−n0−1+mv,1v2, lim inf
m→∞

‖u− v‖2
L2(Ωm) ≥ ε1

lim inf
m→∞

‖u− v‖2
L2(Ωm) ≥ ε2, J(u) ≤ c(v, w)

}
.

Then by step 2 and step 3, we have that u0 ∈ Γ∞ i.e. Γ∞ 6= ∅. By Lemma 2, if u

satisfies lim infm→∞ ‖u−v‖2
L2(Ωm) ≥ ε1 and lim infm→∞ ‖u−w‖2

L2(Ωm) ≥ ε2 then u

can not satisfy J(u) ≤ c(v, w). Thus Γ∞ must be empty. This is a contradiction.

Then we obtain that the assertion holds.

LEMMA 7. For each n ≥ mv,1 and ε > 0, there exists mv,3(n, ε) ∈ N such that

mv,3(n, ε) > mv,2(n) and

J−∞,m(u) ≥ c(v, w)− ε

for all m ≥ mv,3(n, ε) and u ∈ Γ−(v) with u[mv,1] ∈ Umv,1(n).

Proof. Suppose contrary that there exist n0 ≥ 1, ε0 > 0, and sequences {un} ⊂
Γ−(v) and {mn} ⊂ N such that un[mv,1] ∈ Umv,1(n0), limn→∞mn = ∞ and

J−∞,mn(un) < c(v, w)− ε0.

By property of Umv,1(n0), un ≤ τ−n0−1+mv,1v2 on Ωmv,1 . We put

un =

{
min{τ−n0−1+mv,1v2, un} on (−∞,mv,1 + 1]×D

un on [mv,1 + 1,∞)×D
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for each n ≥ 1. Then by the argument of Lemma 5,

lim
n→∞

J−∞,m(un) ≤ lim
n→∞

J−∞,m(un) ≤ lim
n→∞

J−∞,mn(un) ≤ c(v, w)− ε0,

for each m ≥ mv,1. We may assume that un → u ∈ H1
loc(Ω) weakly in H1

loc(Ω),

strongly in L2
loc(Ω) and pointwise a.e.. Then we have u ∈ Γ−(v), u[mv,1] ∈

Umv,1(n0) and

J(u) < c(v, w)− ε0.

We have by Lemma 4 lim infn→∞ ‖u− v‖L2(Ωn) > 0. If

lim infn→∞ ‖u − w‖L2(Ωn) > 0 holds, then by Lemma 2 we have J(u) = ∞.

Therefore we find that

lim inf
n→∞

‖u− w‖L2(Ωn) = 0

holds. That is u ∈ Γ(v, w). This implies that J(u) ≥ c(v, w). This is a contra-

diction.

Here we put

W̃n(m) =
{
u ∈ L2(Ωn) : (τm+nw2)[n] ≤ u ≤ (τm+1+nw1)[n]

}

and

W̃n(m) = [W̃n(m) + Bn,erm(0) ∩(3. 15)

{u ∈ [v, w]n : (τm+nw1)[n] ≤ u ≤ (τm+1+nw2)[n]},

for each m,n ∈ Z.

By analogous arguments as in the proof of Lemma 1, Lemma 3, Lemma 6

and Lemma 7 we have

LEMMA 8. There exists a sequence {r̃m}m∈Z ⊂ R+ such that the sequence{
Ũ0(m)

}
of closed convex sets in L2(Ω0) defined by (3.15) satisfies the following

conditions:

(i) For each m ∈ Z,

(3. 16) (τmw1)[0], (τm+1w2)[0] 6∈ Ũ0(m).

(ii) If u1, u2 are solutions of (P ) such that

J(ui) < 2[c(v, w) + c(w, v)] for i = 1, 2,

and

u1[0] ∈ Ũ0(m) and u2[0]2 ∈ Ũ0(m + 1) for some m ∈ Z,
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then

τmw1[0] < u1[0] < τm+1w2[0],

τm+1w1[0] < u2[0] < τm+2w2[0] on Ω0

and

u1[0] < u2[0] on Ω0.

LEMMA 9. (1) There exists mw,1 > 0 such that for each u ∈ Γ(v, v) with u[0] ∈
∪m≥mw,1Ũ0(m),

(3. 17) J(u) > c(w, v) +
c(v, w)

2
.

(2) For each n ≥ mw,1, there exist δw,1(n) > 0 and mw,2(n) > mw,1 such that for

each u ∈ Γ+(v) satisfying J(u) < ∞ and u[−mw,1] ∈ ∂Ũ−mw,1(n),

J−m,∞(u) ≥ c(w, v) + δw,1(n) for all m ≥ mw,2(n).

LEMMA 10. For each n ≥ mw,1 and ε > 0, there exists mw,3 ∈ N such that

mw,3(n, ε) > mw,2(n) and

J−m,∞(u) ≥ c(w, v)− ε

for all m ≥ mw,3(n, ε) and u ∈ Γ+(v) with u[−mw,1] ∈ Ũ−mw,1(n).

Proof of Theorem 1. Fix a positive integer k1 ≥ max{mv,1,mw,1}. Fix ε > 0

such that

ε <
1

2
min{δv,1(k1), δw,1(k1)},

where δv,1 and δw,1 are positive numbers obtained in Lemma 6 and Lemma 9.

We put m > max{mv,3(k1, ε),mw,3(k1, ε)}, where mv,3(k1, ε) and mw,3(k1, ε) are

positive integers obtained in Lemma 7 and Lemma 10. Let

u0 = min{τ−k1−1+mv,1v1, τk1+1+2m−mw,1w1}.

From the definition of v1 and w1, we find that

(3. 18) J(u0) → c(v, w) + c(w, v), as m →∞.

Then by choosing m ≥ 1 sufficiently large, we have that

(3. 19) J(u0) < c2(k1) = c(v, w) + c(w, v) +
ε

2
.
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We may assume, by choosing m sufficiently large, that

u0[mv,1] = τ−k1−1+m1v1[mv,1] and u0[2m−mw,1] = τk1+1+m2w1[2m−mw,1].

Then we have

u0[mv,1] ∈ Umv,1(k1) and u0[2m−mw,1] ∈ Ũ2m−mw,1(k1).

Here we put m1 = mv,1 and m2,1 = 2m−mw,1. Then we set

Γ1 =
{

u ∈ Γ(v, v) : J(u) ≤ c2(k1), u[m1] ∈ Um1(k1) and u[m2,1] ∈ Ũm2,1(k1).
}

Then since u0 ∈ Γ1, Γ1 6= ∅. We put γ = infz∈Γ1 J(z). Let {un} be a minimizing

sequence in Γ1 such that limn→∞ J(un) = γ. We put

φn =

{
min{τ−k1−1+m1v2, un} on (−∞,m1 + 1]×D

un on [m1 + 1,∞)×D,

for each n ≥ 1. Since un[m1] ∈ Um1(k1), un ≤ τ−k1−1+m1v2 on Ωm1 . Then the

argument of Lemma 5 implies J(φn) ≤ J(un) for each n ≥ 1. By definition of

φn, we find that J−∞,m1(φn) ≤ J−∞,m1(un) for each n ≥ 1. We also put

φ̃n =

{
un on (−∞,m2,1]×D

min{τk1+1+m2,1 , w2, un} on [m2,1,∞)×D,

for each n ≥ 1. Then by the same argument as above we have Jm2,1,∞(φ̃n) ≤
Jm2,1,infty(un). We set

un =





min{τ−k1−1+m1 , v2, un} on (−∞, m1 + 1]×D
un on [m1 + 1,m2,1]×D

min{τk1+1+m2,1 , w2, un} on [m2,1,∞)×D.

for each n ≥ 1. Then un ∈ Γ1. Now we have by above arguments J(un) ≤
J(un) ≤ c2(k1). We may assume that un → u ∈ H1

loc(Ω) weakly in H1
loc(Ω),

un → u strongly in L2
loc(Ω) and pointwise a.e.. We find u ∈ Γ1 such that

J(u) = γ. To prove that u is a solution of (P ) in Γ1, it is sufficient to show

that u[m1] 6∈ ∂Um1(k1) and u[m2,1] 6∈ ∂Ũm2,1(k1). By Lemma 6, we have that if

u[m1] ∈ ∂Um1(k1), then

J−∞,m(u) ≥ c(v, w) + δv,1(k1).

On the other hand, noting that

τ−2mu[−mw,1] ∈ Ũ−mw,1(k1),
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we have by Lemma 10 that

Jm+1,∞(u) = J−m+1,∞(τ−2mu)(3. 20)

≥ c(w, v)− ε

≥ c(w, v)− min{δv,1(k1), δw,1(k1)}
2

.

Then we have that J(u) ≥ c(v, w) + c(w, v) + δv,1(k1)/2. This is a contradiction.

Similarly, we find that u[m2,1] 6∈ ∂Ũm2,1(k1). Therefore we obtain that u = u1 ∈
Γ1 is a solution of (P ). That is

(3. 21) u1[m1] ∈ Um1(k1) and u1[m2,1] ∈ Ũm2,1(k1).

Let u ∈ Γ(v, v) be a solution of (P ) such that J(u) < 2(c(v, w) + c(w, v)),

u > τ−k1−1+m1v2 on Ωm1 , u > τk1+1+m2,1w2 on Ωm2,1

and

u < τk1+1+bmw2 onΩbm,

for some m̂ > m2,1 + 1. Then there exists j ∈ Z such that m1 < j < m̂− 1,

‖u− v‖L2(Ωj) > 0 and ‖u− w‖L2(Ωj) > 0.

Then one can see by an argument as in the proof of Lemma 2 that there exists

ρ > 0 such that

aj(u) =

∫

Ωj

(
1

2
|∆u|2 −G(x, u))dx− c0 ≥ ρ,

where ρ is independent of choice of u and j. We also note that

(3. 22) lim
n→∞

inf{J−∞,0(u) : u ∈ Γ−(v), u[0] ∈ U0(n)} ≥ c(v, w)

holds. Let ϕ ∈ C∞(R, [0, 1]) be the function defined in the proof of Lemma 3.

Then we set, for each n ≥ 1,

Φn(v1) = ϕ(x1 − 1)τ−n−1v1(x1, y) + (1− ϕ(x1 − 1))w(x1, y)

for (x1, y) ∈ R×D. Noting that Φn(v1)[0] = τ−n−1v1[0] ∈ U0(n),

Φn(v1) ∈ Γ(v, w) ⊂ Γ−. Then

J(Φn(v1)) = J−∞,0(τ−n−1v1) + a1(Φn(v1)) ≥ c(v, w) for each n ≥ 1.
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Since τ−n−1v1 and w are solutions of (P ), we have by the argument as in the

proof of Step 3 in Lemma 6, there exists M > 0 such that

‖∆τ−n−1v1 −∆w‖L2(Ω1) ≤ M‖τ−n−1v1 − w‖L2(Ω0∪Ω1∪Ω2) for n ≥ 1.

this implies

lim
n→∞

a1(Φn(v1)) = a1(w) = 0.

Thus

lim
n→∞

J−∞,0(τ−n−1v1) ≥ c(v, w),

therefore (3.22) holds. Similarly, we have

(3. 23) lim
n→∞

inf
{

J0,1(u) : u ∈ Γ+(v), u[0] ∈ Ũ0(n)
}
≥ c(w, v).

Now we fix k2 > k1 so large that

(3. 24) inf{J−∞,0(u) : u ∈ Γ−(v), u[0] ∈ U0(k2)} > c(v, w)− ρ

4

and

(3. 25) inf
{

J0,∞(u) : u ∈ Γ+(v), u[0] ∈ Ũ0(k2)
}

> c(w, v)− ρ

4
.

Here we put

ε̂ <
1

2
min{δv,1(k1), δw,1(k1), ρ}.

Then we find there exists a positive integer m2,2 > m2,1 and u2 ∈ Γ(v, v) such

that

J(u2) < c(v, w) + c(w, v) +
ε̂

2

and

u2[m1] ∈ Um1(k2) and u2[m2,2] ∈ Ũm2,2(k2).

We set c2(k2) = c(v, w) + c(w, v) + bε
2

and put

Γ2 =
{

u ∈ Γ(v, v) : J(u) ≤ c2(k2), u[m1] ∈ Um1(k2) and u[m2,2] ∈ Ũm2,2(k2)
}

.

The solution u2 is a local minimal in Γ2. Then u1 < u2 on Ωm1 . In fact

τ−m1u1[0] ∈ U0(k1) and τ−m1u2[0] ∈ U0(k2).
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By Lemma 1, we find that

τ−k1v1[0] < τ−m1u1[0] < τ−k1−1v2[0] on Ω0,

τ−k2v1[0] < τ−m1u2[0] < τ−k2−1v2[0] onΩ0

and

τ−m1u1[0] < τ−m1u2[0] on Ω0.

Since u1 ∈ Γ(v, v), we may assume that m2,2 is so large that

u1 < τm2,1+k1+1w2 < τm2,2+k2w1 < u2 on Ωm2,1 .

We also have u1 < u2 on Ωm2,2 . In fact, if u1(x1, y) ≥ u2(x1, y) for some (x1, y) ∈
Ωm2,2 , then aj(u2) ≥ ρ for some m1 < j < m2,2 − 1. Then we obtain by (3.24)

and (3.25) that

J(u2) ≥ J−∞,m1(u2) + aj(u2) + Jm2,2,∞(u2) ≥ c(v, w) + c(w, v) +
ρ

2
.

This is a contradiction. Thus we have u1 < u2 on Ωm2,2 .

By the minimality of v1 and v2, we will find that

(3. 26) τ−k1+m1v1 ≤ u1 ≤ τ−k1−1+m1v2 on (−∞,m1]×D

and

(3. 27) τ−k2+m1v1 ≤ u2 ≤ τ−k2−1+m1v2 on (−∞,m1]×D.

We show u1 ≤ τ−k1−1+m1v2 holds on (−∞,m1] × D. Since u1[m1] ∈ Um1(k1),

u1 ≤ τ−k1−1+m1v2 on Ωm1 . We put

u1 =

{
min{u1, τ−k1−1+m1v2} on (−∞,m1]×D

u1 on [m1,∞)×D,

ũ1 =

{
max{u1, τ−k1−1+m1v2} on (−∞,m1]×D

τ−k1−1+m1v2 on [m1,∞)×D,

and suppose there exists (x1, y) ∈ (−∞,m1]×D such that

u1(x1, y) > τ−k1−1+m1v2(x1, y). This assumption implies u1 6= u1 and ũ1 6=
τ−k1−1+m1v2. Then by the argument of Lemma 5, we have J(u1) > J(u1).

Since u1 is a minimizer in Γ1, this is contradiction. Therefore we have u1 ≤
τ−k1−1+m1v2 on (−∞,m1]×D. By analogous arguments, we have τ−k1+m1v1 ≤ u1

on (−∞, m1]×D. This implies

τ−kn+m1v1 ≤ un ≤ τ−kn−1+m1v2 on (−∞,m1]×D.
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We put −kn + m1 = −in and m1 = p, then (3) of Theorem 1 follows. Similarly

by the minimality of w1 and w2, we also have

τkn+m2,nw1 ≤ un ≤ τkn+1+m2,nw2 on [m2,n,∞)×D.

We put kn + m2,n = jn and m2,n = q, then (4) of Theorem 1 follows.

We will prove u1 ≤ u2 on Ω. Here we put

z1 = min{u1, u2} and z2 = max{u1, u2}.

By the argument above, we have u1 < u2 on Ωm1 , Ωm2 , and Ωm2,2 . Then

z1[m1] = u1[m1] ∈ Um1(k1) and z1[m2,1] = u1[m2] ∈ Ũm2,1(k1).

Similarly, we have

z2[m1] ∈ Um1(k2) and z2[m2,2] ∈ Ũm2,2(k2).

Then it follows that

J(z1) ≥ J(u1), J(z2) ≥ J(u2) and J(z1) + J(z2) = J(u1) + J(u2).

This implies that J(z1) = J(u1) and then z1 is a minimizer of Γ1 i.e., z1 is a

solution of (P ). Therefore we find that u1 ≤ u2. By repeating the argument

above, we have sequences {kn} ⊂ N and {un} ⊂ Γ(v, v) of solutions of (P ) such

that

un[m1] ∈ Um1(kn) for each n ≥ 1

and

u1 ≤ u2 ≤ u3 ≤ · · · .

The property (2) follows. This completes the proof.
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