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Abstract. Majorana [3] has considered the question of uniqueness of Cauchy
problem for ordinary differential equation in R. The present paper extends these
results to a class of differential equations in finite dimensional Hilbert spaces.
A uniqueness criterion for generalized differential equations in finite dimensional
Hilbert spaces is derived as well.

1. Introduction

Majorana [3] established, with the aid of an auxiliary non-differential equation

of the form

u = tf(t, u), (1. 1)

a nonuniqueness result for the following initial value problem

x′ = f(t, x), x(0) = 0, (1. 2)

where x and 0 are reals. And as a consequence a new uniqueness criterion [[3],

theorem 2] was deduced.. The advantages of Majorana’s result consists in the

fact that any of the standard Lipschitz condition types do not apply, i.e., those

conditions imposed on the difference f(t, x)− f(t, y). For the sake of simplicity

we give here the statement of Majorana’s nonuniqeness result.

THEOREM 1.1. ([3]) Let the function f(t, x) be defined in [0, 1]×R, continuous

with respect to t, and such that f(t, 0) = 0 for every t ∈ [0, a] (a < 1). Further let

(1. 2) have two different classical solutions. Then, for every ε > 0, there exists

t ∈ [0, a] such that (1. 1) has at least two different roots u with |u| < ε.

Statement of the problem. Majorana’s approach turned out unsuitable to

check analogous theorems on the simplest space R2 as the following example

shows
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EXAMPLE 1.1. Let us consider the inial value problem

x̂′ = f̂(t, x̂), x̂(0) = 0̂, (1. 3)

where

f̂(t, x̂) =

{ (
2√
‖bx‖(x1 + x2),

2√
‖bx‖(x2 − x1)

)
if x̂ 6= 0̂,

0̂ if x̂ = 0̂.

In polar coordinates (1. 3) becomes

r′ = 2
√

r, θ′ =
−2√

r
.

Thus, besides the trivial solution x̂ = 0̂, there is at least another one given by

x̂ =

{ (
t2 cos ln 1

t2
, t2 sin ln 1

t2

)
if t 6= 0

0̂ if t = 0.

We conclude that (1. 3) satisfies the assumptions of theorem 1.1[3], however, one

can’t find more than the trivial root to equations analogous to (1. 1), namely,

u1 = λ(u1 + u2), u2 = λ(u2 − u1),

where λ is an arbitrary scalar, in particular, λ = 2t√
‖bu‖ ∀t ∈ [0, 1].

Our main concern herein is to prove, by analyzing a scalar equation analogous

to (1. 1), uniqueness of solutions of each one of the following problems

x̂′ = f̂(t, x̂), x̂(0) = 0̂, (1. 4)

x̂(t) = p̂(t) +

∫ t

o

f̂(s, x̂(s))ds, (1. 5)

where f̂ takes values in a real ( or complex ) Hilbert space H, with dim(H) < ∞,

x̂ and 0̂ are in H. The basic outline of the proof is as in [3]. Throughout the

following the notations <,>, and ‖.‖ will be used to denote respectively the inner

product and the norm in H. By an abstract function we mean a function taking

values in a real ( or complex ) Hilbert space. By a solution of (1. 4) we mean

an abstract function ϕ̂(t), defined, continuous and differentiable on the interval

[0, a], a < 1, and satisfies (1. 4). Peano’s existence theorem is not applicable

when dim(H) = ∞. This is because the continuity of f̂(., x̂(.)) is not sufficient

for local existence of a solution of (1. 4) ( see, for example, [2,Chap.5] ). The

reason for this fact is that closed unit ball in an infinite dimensional space is not

necessarily relatively compact.
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2. Ordinary Differential Equation in Hilbert Space

THEOREM 2.1. Let the abstract function f̂(t, x̂) be continuous on [0, 1] × H

and satisfy, for every t ∈ [0, 1], f̂(t, 0̂) = 0̂. Further let (1. 4) admit two different

solutions defined on [0, a] (a < 1). Then, for every ε > 0, there exists t ∈ [0, a]

such that the following auxiliary scalar equation

Re < û, f̂(t, û) >=
1

t
‖û‖2 (2. 1)

has at least two different roots û with ‖û‖ < ε.

We base the proof on, among other tools, the following simple but useful

observation due to J.B. Diaz and R.J. Weinacht [1]. Let ϕ̂(t) be a solution of

(1. 4), then ‖ϕ̂(t)‖ has a finite derivative on (0, a] given by

d

dt
‖ϕ̂(t)‖ =

{
Re<bϕ′(t),bϕ(t)>

‖bϕ(t)‖ , ‖ϕ̂(t)‖ 6= 0,

0, ‖ϕ̂(t)‖ = 0.
(2. 2)

For completeness we quote Diaz’s proof. It is well know that ‖ϕ̂(t)‖2 is differen-

tiable on [0, a], and has the derivative

d

dt
‖ϕ̂(t)‖2 = 2Re < ϕ̂′(t), ϕ̂(t) > . (2. 3)

The differentiability of ‖ϕ̂(t)‖ follows from the differentiability of ‖ϕ̂(t)‖2, we

thus have two cases to consider. Firstly, if ϕ̂(t) 6= 0̂, then

d

dt
‖ϕ̂(t)‖ =

d

dt
(‖ϕ̂(t)‖2)

1
2 =

1

2

1

(‖ϕ̂(t)‖2)
1
2

d

dt
‖ϕ̂(t)‖2.

Secondly, if t ∈ [0, a] such that ϕ̂(t) = 0̂, then

d

dt
‖ϕ̂(t)‖ = lim

h↓0
‖ϕ̂(t + h)‖

h
= lim

h↓0
< ϕ̂(t + h), ϕ̂(t + h) >

1
2

h

= lim
h↓0

|h|
h

<
ϕ̂(t + h)

h
,
ϕ̂(t + h)

h
>

1
2

= < ϕ̂′(t), ϕ̂′(t) >
1
2 =< f̂(t, ϕ̂(t)), f̂(t, ϕ̂(t)) >

1
2

= < f̂(t, 0̂), f̂(t, 0̂) >
1
2 = 0.

Thus (2. 2) is established.

Proof of theorem 2.1. It follows, by the assumption f̂(t, 0̂) = 0̂, that (1. 4) has

the zero solution, and we then assume that (1. 4) has a nonzero solution ϕ̂(t) 6= 0̂.
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Let ε > 0 be given. Since û = 0̂ is a root of (2. 1) for every t ∈ [0, a], it is sufficient

to show the existence of t ∈ [0, a] for which (2. 1) is satisfied by some û 6= 0̂ with

‖û‖ < ε. Let a real function A(t) be defined by setting

A(t) =

{
‖bϕ(t)‖

t
, t 6= 0

0, t = 0,

t ∈ [0, a]. It follows, by (2. 1) and (2. 2), that A(t) is continuous on [0, a], differ-

entiable on (0, a), and in view of (2. 2), it has the derivative

A′(t) =
1

t2‖ϕ̂(t)‖ [Re < tf̂(t, ϕ̂(t)), ϕ̂(t) > −‖ϕ̂(t)‖2] (2. 4)

for every t ∈ (0, a].

Fix t2 ∈ (0, a) such that ϕ̂(t2) 6= 0̂ and ‖ϕ̂(t)‖ < ε for every t ∈ [0, t2]. Denote

t1 = sup{t ∈ [0, t2] : A(t) = 0}. Clearly ϕ̂(t1) = 0̂ and ϕ̂(t) 6= 0̂ for every

t ∈ (t1, t2]. At this point there are just two possibilities:

P1: If there exists t ∈ (t1, t2] such that A′(t) = 0, it is clear, by (2. 3), that for

such t (2. 1) is satisfied by û = ϕ̂(t), and hence the proof is accomplished just

taking these t and û = ϕ̂(t).

P2: Otherwise, if A′(t) 6= 0 for every t ∈ (t1, t2]. According to Darboux property

A′(t) has a constant sign in (t1, t2]. We then put û = ϕ̂(t2)( 6= 0̂), and define

G(t) = Re < tf̂(t, ϕ̂(t2)), ϕ̂(t2) > −‖ϕ̂(t2)‖2, ∀t ∈ [0, a].

Now let us suppose that A′(t) > 0. G(0) = −‖ϕ̂(t2)‖2 < 0. On the other hand,

we have G(t2) = ‖ϕ̂(t2)‖t22A′(t2) > 0. It follows, by continuity of G, that there

exists t ∈ (0, t2] such that G(t) = 0, and thus (2. 1) holds just in taking this value

of t and û = ϕ̂(t2).

Let us assume that A′(t) < 0, for every t ∈ (t1, t2], By (2. 1),

t
d

dt
‖ϕ̂(t)‖2 = 2Re < tϕ̂′(t), ϕ̂(t) >≤ 2‖ϕ̂(t)‖2

t
d

dt
‖ϕ̂(t)‖2 − 2‖ϕ̂(t)‖2 ≤ 0

d

dt

1

t2
‖ϕ̂(t)‖2 ≤ 0

for t > t1. Moreover,

lim
t↓t1

‖ϕ̂(t)‖2

t2
= lim

t↓t1
<

ϕ̂(t)

t
,
ϕ̂(t)

t
>= 0
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because of continuity of ϕ̂, and ϕ̂(t1) = 0̂. Thus, the continuous non-negative

function ‖bϕ(t)‖2
t2

is non-increasing for t > t1, while its limit, as t approaches t1

from the right, is zero. Consequently, one must have ‖bϕ(t)‖2
t2

= 0 for t > t1, which

contradicts the definition t1 = sup{t ∈ [0, t2] : A(t) = 0}. Hence the assumption

A′(t) < 0 is impossible, and the proof will thus be accomplished .

An immediate consequence of theorem 2.1 is the following uniqueness crite-

rion.

THEOREM 2.2. Let the abstract function f̂(t, x̂) be continuous and satisfy, for

every t ∈ [0, 1], f̂(t, 0̂) = 0̂. Assume further that there exist ε > 0 and t0 ∈ (0, 1]

such that û = 0̂ is the only root of the (2. 1) with ‖û‖ < ε for every t ∈ [0, t0].

Then the (1. 4) admits, on the interval [0, t0], only the zero solution.

The crucial point in theorems 2.1 and 2.2 is the assumption that (1. 4) has

the zero solution. We follow Majorana’s procedure to remove this restriction.

If we know a solution ϕ̂ of (1. 4), then, by means of change of variables x̂ =

p̂ + ϕ̂(t),(1. 4) becomes
{

p̂′ = F̂ (t, p̂),

p̂(0) = 0̂,

where F̂ (t, p̂) = f̂(t, p̂ + ϕ̂(t))− f̂(t, ϕ̂(t)).

Remark. In example 1.1 above, the space R2 endowed with the usual inner prod-

uct is a Hilbert space, (1. 3) has at least two different solutions, and (2. 1) has

the form

2u1√
‖û‖(u1 + u2) +

2u2√
‖û‖(u2 − u1) =

u2
1 + u2

2

t
.

It is easy to see that the trivial root û = 0̂ of the above scalar equation cor-

responds the trivial solution ϕ̂(t) = 0̂. By straightforward calculation one can

show that û = ϕ̂(2t2) represents the second root of the above scalar equation

corresponding the non-trivial solution ϕ̂(t), where t2 ∈ [0, 1] is any for which

ϕ̂(t2) 6= 0̂.

We just have achieved some uniqueness results for ordinary differential equa-

tions in Hilbert spaces. Our next main objective is to prove, by analyzing a

scalar equation analogous to (2. 1), uniqueness results for the generalized differ-

ential equation (1. 5).
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3. The generalized differential equations in Hilbert space

THEOREM 3.1. Suppose that (C1)–(C3) below are fulfilled

(C1) p̂ : [0, 1] → H is continuous,

(C2) f̂ : [0, 1]×H → H is continuous,

(C3) for every t ∈ [0, 1],
∫ t

0
f̂(s, p̂(s))ds = 0̂.

Assume further that (1. 5) has two different solutions defined on [0, a] ,(a < 1).

Then for every ε > 0 there exists t ∈ [0, a] such that the following auxiliary scalar

equation

Re < f̂(t, û + p̂(t)), û >=
1

t
‖û‖2 (3. 1)

has at least two distinct roots û each satisfies ‖û‖ < ε.

Proof of theorem 3.1. It is obvious, by (C3), that (1. 5) has the solution p̂(t), we

thus may assume that ϕ̂(t) with ϕ̂ 6= p̂, is a solution of (1. 5). Let ε > 0 be given.

Since, for every t ∈ [0, 1], û = 0̂ is a root of (3. 1), our task is to show that there

exists t ∈ [0, 1] for which (3. 1) is satisfied by some û 6= 0̂ with ‖û‖ < ε. Let

F̂ (t, û) be the scalar function defined in [0, 1]×H by

F̂ (t, û) = f̂(t, û + p̂(t)). (3. 2)

It follows, by (C2), that F̂ (t, û) is continuous on [0, 1] × H. By means of the

change of variable x̂(t) = ψ̂ + p̂(t), (3. 1) is replaced with

ψ̂(t) =

∫ t

0

F̂ (s, ψ̂(s))ds, (3. 3)

where F̂ is given by (3. 2). Clearly (3. 3) has the zero solution that corresponds

to the solution p̂(t) of (3. 1). Moreover any two different solutions of (1. 5) are

mapped into two different solutions of (3. 3). Let A(t) be a real-valued function

defined on [0, a], (a < 1) by

A(t) =

{
1
t
‖ ∫ t

0
F̂ (s, ψ̂(s))ds‖ if t 6= 0

0 if t = 0.

It is obvious, by (C2) and (3. 2), that A(t) is differentiable on (0, a]. By (3. 2)

and (3. 3) we obtain

A′(t) =
1

t2‖ψ̂(t)‖
[Re < tF̂ (t, ψ̂(t)), ψ̂(t) > −‖ψ̂(t)‖2

]

for every t ∈ (0, a].

From now on we follow step by step arguments similar to that in the proof of

theorem 2.1.
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As a consequence of theorem 3.1 we deduce the following uniqueness criterion

for (1. 5).

THEOREM 3.2. Suppose that (D1)–(D3) below are fulfilled

(D1) p̂ : [0, 1] → H is continuous,

(D2) f̂ : [0, 1]×H → H is continuous,

(D3) there exist ε > 0 and t0 such that for every t ∈ [0, t0], (3. 1) has a unique

root û 6= 0̂ with ‖û‖ < ε. Then p̂(t) is the only solution of (1. 5) on the interval

[0, t0].

Remark. There are two observations worth making here, firstly, the truly inter-

esting thing in the present paragraph is that theorem 3.1 generalizes theorem

2.1. Secondly, although the norm in Banach space could not in general be de-

fined in terms of inner product, the inner product should be replaced with duality

mapping to establish similar results in Banach space, which we hope to consider

elsewhere.
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