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Abstract. A graph G is said to be d-distinguishing colorable if there is a d-
coloring of G such that any automorphism of G except the identity map does
not preserve colors. We shall prove that every 3-connected planar graph is 6-
distinguishing colorable and every maximal planar graph is 5-distinguishing col-
orable except K2,2,2 and C6 + K2, establishing a general theorem on the distin-
guishing colorability of graphs faithfully embedded on closed surfaces.

Introduction

Let G be a graph and c : V (G) → {1, 2, . . . , d} a labeling of vertices with d

numbers (or “colors”), which is not assumed to be a proper coloring now. Define

Aut(G, c) as the set of automorphisms σ : G → G such that c(σ(v)) = c(v) for

all vertices v ∈ V (G). Then Aut(G, c) forms a subgroup in the automorphism

group Aut(G) of G. If Aut(G, c) consists only of the identity, c is said to be

d-distinguishing.

A graph G is said to be d-distinguishable if G admits a d-distinguishing la-

beling. The distinguishing number of G is defined as the minimum number d

such that G is d-distinguishable and is denoted by D(G). There have been many

papers written on the distinguishing number of graphs, say [1, 2], and also we

can find some recent papers [4, 6, 8] on this topic with topological aspect. In par-

ticular, Fukuda, Negami and Tucker have discussed the distinguishing number

of planar graphs, as follows.

THEOREM 1. (Fukuda, Negami and Tucker [4]) Every 3-connected planar

graph is 2-distinguishable, except K4, K2,2,2, W4, W5, C3 +K2, C5 + K2 and Q3.

Here Wn and Q3 denote the wheel with rim of length n and the 3-cube, respec-

tively. The others are given by the standard notations. For example, Cn + K2

presents the double pyramid with n-gonal base, or which is often called a double
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wheel.

On the other hand, Collins and Trenk [3] have defined a variety of the distin-

guishing chromatic number concerning vertex coloring of graphs. A graph G is

said to be d-distinguishing colorable if G has a d-distinguishing coloring, which

should be a proper coloring, and the distinguishing chromatic number χD(G)

is defined as the minimum number d such that G is d-distinguishing colorable.

It is obvious that D(G) ≤ χD(G). For example, it is not difficult to see that

D(Kn,n,n) = n + 1 (n ≥ 2) and χD(Kn,n,n) = 3n.

In this paper, we shall carry out topological arguments similar to that in [6],

using the notion of “faithfulness of embedding”, and establish a general theorem

on the distinguishing chromatic number of graphs embedded on closed surface.

We shall prove the following theorem on planar graphs as one of its corollaries:

THEOREM 2. Every 3-connected planar graph is 6-distinguishing colorable.

A maximal planar graph is a simple graph G such that G can be embedded on

the plane and that G + e cannot be for any new edge e joining two nonadjacent

vertices in G. It is easy to see that any maximal planar graph with at least four

vertices can be embedded on the sphere as a triangulation, that is, so that each

face is bounded by a cycle of length 3 and that it is 3-connected. Thus, it follows

from Theorem 2 that such a maximal planar graph is 6-distinguishing colorable.

However, we can prove a stronger theorem on maximal planar graphs:

THEOREM 3. Every maximal planar graph is 5-distinguishing colorable unless

it is isomrphic to K2,2,2 or C6 + K2.

We shall show a more essential fact that χD(G) ≤ χ(G)+2 for a 3-connected

planar graph G with some exceptions as an immediate consequence of our gen-

eral arguments in Section 1. As we know, “Four Color Theorem” states that

every planar graph is 4-colorable. This and the above inequality imply our main

theorem, Theorem 2. On the other hand, we use not only Four Color Theorem

but also the planarity of graphs explicitly to prove Theorem 3.

1. Faithfully embedded polyhedral graphs

Let G be a graph embedded on a closed surface F 2. If any automorphism

σ of G extends to an auto-homeomorphism h : F 2 → F 2 with h|G = σ, then

G is said to be faithfully embedded on F 2. As the following lemma suggests,

the assumption of being faithfully embedded works to extend local arguments

around a vertex to a global one over the whole surface:
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LEMMA 4. Let G be a graph embedded on a closed surface F 2 and v a vertex of

degree at least 3. If an automorphism σ of G extends to an auto-homeomorphism

over F 2 and fixes each of three vertices u, v and w which form a corner uvw of

a face A, then σ must be the identity map over G.

Proof. Let Ω be the set of faces that σ fixes. Then Ω 6= ∅ since it contains A at

least; if deg v = 2, then σ might swap the two faces meeting along the path uvw.

If a face B does not belong to Ω, we can rechoose it so that B meets another

face B′ ∈ Ω along an edge xy since G is connected. However, σ must fix B, too

since there are only two faces sharing xy, which are B and B′ and since σ fixes

B′. This is a contradiction. Therefore, there is no face not belonging to Ω.

Here we shall modify the distinguishing chromatic number for more general

use, as follows. Consider a pair (G, Γ) of a graph G and a subgroup Γ in Aut(G).

Let Γc denote the subgroup consisting of automorphisms σ ∈ Γ that preserve

colors given by a coloring c : V (G) → {1, 2, . . . , d} of G. If Γc = {idG}, then c

is called a d-distinguishing coloring of (G, Γ). The pair (G, Γ) is d-distinguishing

colorable if it admits a d-distinguishing coloring and the distinguising chromatic

number of the pair is defined as the minimum number d such that (G, Γ) is d-

distinguishing colorable and is denoted by χD(G, Γ). It is clear that χD(G, Γ) ≤
χD(G) for any subgroup Γ in Aut(G) and that χ(G) = χD(G, {idG}), where χ(G)

stands for the chromatic number of G in the usual sense.

A 3-connected graph G is said to be polyhedral on a closed surface F 2 if each

face is bounded by a cycle and if the boundary cycles of two faces intersect in at

most one vertex or one edge. A pair (G, Γ) is said to be faithfully embedded on

F 2 if any automorphism σ ∈ Γ extends to an auto-homeomorphism h : F 2 → F 2

with h|G = σ.

THEOREM 5. Let G be a polyhedral graph G on a closed surface F 2 and Γ a

subgroup in Aut(G). If (G, Γ) is faithfully embedded on F 2, then χD(G, Γ) ≤
max{6, χ(G) + 2}.

Proof. Put k = χ(G) for convenience and consider a k-coloring c : V (G) →
{1, 2, . . . , k} of G. First suppose that G has two faces of different sizes sharing

an edge uv, say A and B. Define a (k + 2)-coloring c1 : V (G) → {1, 2, . . . , k, k +

1, k + 2} by c1(u) = k + 1, c1(v) = k + 2 and c1(x) = c(x) for any other vertex x.

It is clear that any automorphism σ ∈ Γ fixes each of u and v if σ preserves colors

of vertices given by c1 since they are unique vertices colored with k+1 and k+2,

respectively. Such an automorphism σ fixes each of the two faces A and B since

they are only faces incident to uv and are of different sizes. This implies that σ

is the identity map over G by Lemma 4, and hence c1 is a (k + 2)-distinguishing
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coloring of (G, Γ).

Now we may assume that all faces have the same size. Let v be any vertex of G

with neighbors u0, u1, . . . , ud−1 lying around v in this cyclic order and A the face

having the corner u0vu1. Define a (k + 2)-coloring c2 : V (G) → {1, 2, . . . , k, k +

1, k + 2} by c2(u0) = k + 1, c2(u1) = k + 2 and c2(x) = c(x) for any other vertex

x. Take any automorphism σ ∈ Γ which preserves this new coloring c2. Then

σ fixes u0 and u1 since they are unique vertices colored with k + 1 and k + 2,

respectively. If σ fixes v, then it fixes the corner u0vu1 and hence σ becomes the

identity map over G, by Lemma 4. This implies that c2 is a (k+2)-distinguishing

coloring of (G, Γ).

Assume that σ(v) 6= v. Then σ maps the corner u0vu1 to another courner of

a face B, whose boundary cycle contains both u0 and u1. Since G is polyhedral,

there are two possibilities; (i) A = B and it is a quadrilateral, or (ii) A 6= B

and they are triangular faces sharing the edge u0u1. It follows from the first

argument in this proof that the faces of G are all quadrilateral or all triangular,

corresponding to (i) or (ii).

In Case (i), G is a quadrangulation on F 2 and has a k-coloring c such that each

diagonal pair of vertices in any face get a common color. This implies that only

two colors appear along the boundary of each face. It is clear that the neighboring

face has the same two colors and hence c must be a 2-coloring with colors 1 and 2.

Choose any two faces A and B sharing one edge uv and let uvw1w2 and uvw′
1w

′
2

be their boundary cycles. We may assume that c(u) = c(w1) = c(w′
1) = 1 and

c(v) = c(w2) = c(w′
2) = 2. Define a (k + 2)-coloring c3 : V (G) → {1, 2, 3, 4} with

k = 2 by c3(u) = c3(w1) = k + 1, c3(v) = c3(w
′
2) = k + 2 and c3(x) = c(x) for

any other vertex x. Then A is a unique face incident to two vertices colored with

k + 1, so is B for color k + 2 and uv is a unique edge shared by A and B since

G is polyhedral. Thus, any automorphism σ ∈ Γ preserving colors given by c3

fixes uv and also each of A and B. This forces σ to be the identity map over G

by Lemma 4, and hence c3 is a (k + 2)-distinguishing coloring of (G, Γ).

In Case (ii), G is a trinagulation on F 2 and has a k-coloring c such that any

two triangular faces uvw and uv′w sharing one edge uw get three common colors,

that is, c(v) = c(v′). Since G is connected, it follows that c is a 3-coloring with

colors 1, 2 and 3 and that the degree of each vertex in G is an even number. Take

a face with boundary uvw and define a 6-coloring c4 : V (G) → {1, 2, 3, 4, 5, 6}
by c4(u) = 4, c4(v) = 5, c4(w) = 6 and c4(x) = c(x) for any other vertex x.

Then any automorphism σ ∈ Γ fixes each of u, v and w since there are no other

vertices with colors 4, 5 and 6, and hence it fixes the face with boundary uvw.

This implies that σ is the identity map over G by Lemma 4 and that c4 is a

6-distinguishing coloring of (G, Γ). Thus, χD(G, Γ) ≤ 6.

Therefore, we have constructed a (k + 2)-distinguishing coloring of (G, Γ) in
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all cases but the last and hence χD(G, Γ) ≤ χ(G) + 2. Unifying this and the last

case, we obtain the theorem.

Note that χD(G, Γ) ≤ χ(G) + 2 unless G is a 3-colorable triangulation on a

closed surface. Although this might hold for the exceptional case, Theorem 5

works well enough to prove Theorem 2 and corollaries below.

A graph G with a fixed embedding on a closed surface F 2 is often called a

map on the surface. We denote such a map here by M(G). A map-automorphism

of G or an automorphism of M(G) is defined as an automorphism σ of G which

carries each face to a face, and hence σ extends to an auto-hoemomorphism over

F 2. We denote the set of map-automorphisms of G by Aut(M(G)) and call it the

automorphism group of M(G). Clearly, Aut(M(G)) forms a subgroup of Aut(G).

We can defined the distinguishing chromatic number χD(M(G)) of a map

M(G) in the same way as for an abstract graph, restricting automorphisms to

map-automorphisms. That is, we have χD(M(G)) = χD(G, Aut(M(G))). Be-

sides, (G, Aut(M(G))) is faithfully embedded on the surface. Therefore, the

following corollary is an immediate consequence of Theorem 5. A map M(G) is

said to be polyhedral if its underlying graph G is polyhedral.

COROLLARY 6. Let M(G) be a polyhedral map on a closed surface F 2 with

underlying graph G. Then χD(M(G)) ≤ max{6, χ(G) + 2}.

“Map Color Theorem” [7] gives us an exact upper bound for the chromatic

number of graphs embedded on a given closed surface. Using this and the above

corollary, we can establish the following corollary immediately; it suffices to see

the right hand of the inequality in the corollay is greater than or equal to 6 for

any closed surface.

COROLLARY 7. For any polyhedral map M on a closed surface F 2, we have:

χD(M) ≤
⌊

7 +
√

49− 24 ε(F 2)

2

⌋
+ 2

where ε(F 2) stands for the Euler characteristic of F 2.

2. Graphs on the sphere

It is well-known that every 3-connected planar graph is uniquely embedded

on the sphere, which follows from the uniqueness of its dual, proved by Whitney

[9]. As is pointed out in [5], the uniqueness of duals implies the faithfulness of
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embedding. That is, every 3-connected planar graph can be faithfully embedded

on the sphere. Furthermore, it is easy to see that a 3-connected planar graph is

polyhedral. Thus, we can apply Theorem 5 to prove our main theorem.

Proof of Theorem 2. Let G be a 3-connected planar graph embedded on the

sphere, which is polyhedral and is faithfully embedded. Put Γ = Aut(G). Then

(G, Γ) is faithfully embedded on the sphere. By Theorem 5, we have χD(G) =

χD(G, Γ) ≤ max{6, χ(G) + 2}. By Four Color Theorem, χ(G) ≤ 4 and hence

χD(G) ≤ 6.

Here, we shall determie the distinguishing chromatic number of the exceptions

in Theorem 3. Both of them can be regarded as double wheels; K2,2,2
∼= C4 +K2

in particular.

LEMMA 8. We have the following formulas:

(i) χD(Cn) = 3 if n 6= 4, 6, χD(C4) = χD(C6) = 4

(ii) χD(Cn + K2) = 5 if n 6= 4, 6, χD(C4 + K2) = χD(C6 + K2) = 6

Proof. (i) Let Cn = u0u1 · · ·un−1 be the cycle of length n. First we shall show

that χD(Cn) ≥ 3. If n is odd, then clearly 3 = χ(Cn) ≤ χD(Cn). If n is even, then

there is a unique 2-coloring of Cn with colors 1 and 2, up to exchanging colors.

Since a reflexion preserves the 2-coloring, Cn is not 2-distinguishing colorable

and hence we have χD(C3) ≥ 3 in this case, too.

Now we try to construct a 3-distinguishing coloring of Cn. Define a 3-coloring

c : V (Cn) → {1, 2, 3} by c(u0) = c(u3) = 3, c(ui) = 1 for odd numbers i 6= 3 and

c(uj) = 2 for even numbers j 6= 0. If n = 3, then clearly c is a 3-distinguishing

coloring since the vertices of Cn get all different colors. However, it does not

work if n = 4; u0 and u3 are adjacent to each other, but they get the same

color 3. It is easy to see that any 3-coloring of C4 assigns the same color to an

antipodal pair of veritces, say u0 and u2. Then the reflexion fixing u1 and u3

preserves the colors. This implies that C4 is not 3-distinguishing colorable and

hence χD(C4) = 4.

Suppose that n = 5 or ≥ 7 and take any automorphism σ ∈ Aut(G, c). It is

clear that σ({u0, u3}) = {u0, u3} since they are the only vertices colored with 3.

They divide Cn into two segments of length 3 and n − 3. Since n = 5 or ≥ 7

now, these segments have different lengths and hence σ cannot exchange them.

Furthermore, the coloring 3, 1, 2, 3 along u0u1u2u3 forces σ to fixe the segments

pointwise and to be the identity map over Cn. Thus, c is a 3-distinguishing

coloring of Cn and it follows that χD(Cn) = 3 for n = 5 or ≥ 7.

The remaining case is when n = 6. We shall write here c=(c0, c1, c2, c3, c4, c5)
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to express that c(ui) = ci for i = 0, 1, 2, 3, 4, 5. Consider any 3-coloring c of C6.

Suppose that there is a pair of vertices at distance 3 with the same color. We may

assume that c = (3, 1, 2, 3, ∗, ∗) with ∗ = 1 or 2. The rotation in 180◦ preserves

(3, 1, 2, 3, 1, 2) while the reflexion fixing u0 and u3 preseves (3, 1, 2, 3, 2, 1). If there

is no such pair, then we may assume that c = (3, 1, 2, 1, 2, 1). The reflexion fixing

u0 and u3 preserves this. Therefore, C6 admits no 3-distinguishing coloring. It is

easy to see that the 4-coloring c′ = (3, 1, 2, 3, 4, 1) is 4-distinguishing and hence

χD(C6) = 4.

(ii) Put G = Cn + K2 for convenience. It suffices to show that χD(G) =

χD(Cn) + 2. Let c be any d-distinguishing coloring of G and {x, y} the inde-

pendent pair of vertices corresponding to K2. Since both x and y are adjacent

to all vertices lying along Cn, their colors c(x) and c(y) are different from the

colors of vertice on Cn. Furthermore, we have c(x) 6= c(y) since there is an auto-

morphism of G that exchanges x and y, fixing each vertex on Cn. Let c̄ be the

(d− 2)-coloring of Cn obtained as the restriction of c to Cn. It is clear that any

automorphism σ̄ ∈ Aut(Cn, c̄) extends to an automorphism σ ∈ Aut(G, c) with

σ(x) = x and σ(y) = y. This implies that c̄ is a (d − 2)-distinguishing coloring

of Cn and it follows that χD(G) ≥ χD(Cn) + 2.

Conversely, take any (d− 2)-distinguising coloring c̄ of Cn with colors 1, . . . ,

d − 2. Define a d-coloring c of G by c(x) = d − 1, c(y) = d and c(z) = c̄(z) for

each vertex z on Cn. If c is not d-distinguishing, then there is an automorhism

σ ∈ Aut(G, c) which is not the identity map over G. Since x and y are unique

vertices colored with d− 1 and d respectively, σ fixes each of x and y and hence

it must move some vertices on Cn. That is, σ|Cn ∈ Aut(Cn, c̄) is not the identity

map over Cn. However, this is contrary to our assumption of c̄ being (d − 1)-

distinguising. Therefore, c is a d-distinguishing coloring of G. This implies that

χD(G) ≤ χD(Cn) + 2.

Theorem 3 cannot be obtained as an easy corollay of Theorem 5. We need

more detailed arguments with the planarity of graphs.

Proof of Theorem 3. Let G be a maximal planar graph on the sphere. Then G

has a vertex of degree 3, 4 or 5, as well-known and also G is 4-colorable by Four

Color Theorem. Let c′ : V (G) → {1, 2, 3, 4} be its 4-coloring. We shall modify

c′ to be a 5-distinguishing coloring c : V (G) → {1, 2, 3, 4, 5}, as follows.

Case 1. G has a vertex v of degree at least 7. Let C = u0u1 · · · uk−1 be the link

of v, with the indices taken modulo k. Without loss of generality, we may assume

that c(v) = 4 and u0, u1, . . . , uk−1 are colored by 1, 2 and 3. For i = 0, 1, . . . , k−1,

we define a 5-coloring ci : V (G) → {1, 2, 3, 4, 5} by ci(ui) = ci(ui+3) = 5 and
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ci(x) = c′(x) for any other vertex x ∈ V (G) − {ui, ui+3} if ui is not adjacent to

ui+3; otherwise, ci should be “undefined”. If ci is undefined, then ci+1 and ci+2

can be defined since the edge uiui+3 prevents ui+1 and ui+2 from being adjacent

to ui+4 and ui+5, respectively. Thus, we may assume that c0 can be defined at

least.

Take any automorphism σ0 ∈ Aut(G, c0). If σ0(v) = v, then σ0 sends the

cycle C onto itself, fixing {u0, u3} setwise since the only vertices colored with 5

in c0 are u0 and u3. The set {u0, u3} divides the link of v into two segments,

u1u2 and u4u5 · · · uk−1; their lengths are different since k ≥ 7. This implies that

σ0 fixes each of these two segments and besides σ0(u1) = u1 and σ0(u2) = u2

since they have different colors. Therefore, σ0 fixes these segments pointwise and

hence does the whole of the link of v totally and extends to the identity map by

Lemma 4. Thus, G is 5-distinguishing colorable in this case. Otherwise, there is

another vertex v0 = σ0(v) that is colored by 4 in c′ and is adjacent to both u0

and u3. Now we found a path u0v0u3 of length 2 outside the star neighborhood

of v.

Carry out the same arguments for ci (i = 0, 1, . . . k−1) as for c0 in the above.

If ci can be defined, then either we can conclude that G is 5-distinguishing

colorable or can find a path uiviui+3 outside the star neighborhood of v with

vi = σi(v) for some automorphism σi ∈ Aut(G, ci); vi does not lie in the link of

v since c′(v) = ci(v) = 4. If the first case does not happen for all i’s, then each

pair {ui, ui+3} is joined by a path uiviui+3 or an edge uiui+3, which corresponds

to the case when ci is undefined. It is easy to that the planarity excludes the

latter and forces v0, v1, . . . , vk−1 to be one vertex. That is, the subgraph H

induced by {v, u0, u1, . . . , uk−1, v0} in G is isomorphic to Ck + K2 and we have

degG v = degG v0 = degH v0 = k. This implies that there is no vertex inside

the region bounded by v0uiui+1 and hence G = H ∼= Ck + K2. Thus, G is

5-distinguishing colorable in this case by Lemma 8.

Case 2. G has a vertex v of degree 3. Define a 5-coloring c : V (G) →
{1, 2, 3, 4, 5} by c(v) = 5 and c(x) = c′(x) for any other vertex x ∈ V (G)− {v}.
Then any automorphism σ ∈ Aut(G, c) must fix v and hence it leaves the neigh-

bors of v invariant. Since the three neighbors have three distinct colors in c, σ

fixes them, too and becomes the indentity map of G by Lemma 4. Thus, G is

5-distinguishing colorable.

Case 3. G has a vertex v of degree 5. Let u1, u2, u3, u4 and u5 be the five

neighbors of v lying around v in this order. That is, u1u2u3u4u5 forms the link of

v. Without loss of generality, we may assume that c′(v) = 4, c′(u1) = c′(u3) = 1,

c′(u2) = c′(u4) = 2 and c′(u5) = 3. Define a 5-coloring c : V (G) → {1, 2, 3, 4, 5}
by c(v) = 5 and c(x) = c′(x) for any other vertex x ∈ V (G)−{v}. It is clear that
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any automorphism σ ∈ Aut(G, c) fixes v and each of its neighbors and hence it

becomes the identify map of G by Lemma 4. Thus, c is 5-distinguishing coloring

and hence G is 5-distinguishing colorable.

Case 4. Each vertex in G has dergee 4 or 6. This is the final case; assume that

none of Cases 1 to 3 happen. Since all vertices have even degree, G is 3-colorable

and c′ may be assumed to be a 3-coloring with colors 1, 2 and 3.

First, suppose that there are two adjacent vertices v and u of degree 6. Let

Cv = u0u1u2u3u4u5 be the link around v with u = u0 and Cu = v0v1v2v3v4v5 the

link around u with v = v0, u1 = v5 and u5 = v1. Then we may assume that

c′(u) = c′(u2) = c′(u4) = 1, c′(v) = c′(v2) = c′(v4) = 2 and c′(u1) = c′(u3) =

c′(v1) = c′(v3) = 3. By the planarity, at least one of the pairs {u2, v2} and

{u4, v4} is not adjacent. Up to symmetry, we assume that u2 is not adjacent

to v2 and define a 5-coloring c : V (G) → {1, 2, 3, 4, 5} by c(v) = c(v2) = 4,

c(u) = c(u2) = 5 and c(x) = c′(x) for the other vertices x. Then the subgraph

induced by vertices with colors 4 and 5 forms a path u2vuv2 of length 3 and

clearly any automorphism σ ∈ Aut(G, c) fixes this path pointwise. It follows

that σ is the identity map over G by Lemma 4. Thus, c is a 5-distinguishing

coloring and G is 5-distinguishing colorable in this case.

The remaining case is when the set of vertices of degree 6 is independent. If

there is a vertex of degree 6, then it must be adjacent to six vertices of degree

4. It is easy to see that G is isomorphic to C6 + K2, in this case. Otherwise, all

vertices of G has degree 4 and G must be isomorphic to K2,2,2 These two graphs

are listed as the exceptions in the theorem.

We have carried out only local arguments in the previous proofs. It might be

possible to prove the following by more global arguments about colorings on the

plane:

CONJECTURE 1. Every 3-connected planar graph is 5-distinguishing colorable

with a finite number of exceptions.
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