ON CONGRUENT EMBEDDINGS OF A TETRAHEDRON INTO A CIRCULAR CYLINDER

By

Hiroshi Maehara

(Received September 24, 2009; Revised December 2, 2009)

Abstract

We prove that for any pair of congruent regular tetrahedra embedded in a fixed infinite circular cylinder, one tetrahedron can be superposed to the other tetrahedron by a rigid motion within the cylinder. Thus, all congruent embeddings of a regular tetrahedron into a circular cylinder are equivalent modulo rigid motions within the cylinder. We also present an elementary proof of the fact that a regular tetrahedron of unit edge can be inscribed in a circular cylinder of radius r if and only if $1 / 2 \leq r \leq 3 \sqrt{2} / 8$.

1. Introduction

Many authors considered problems related to embedding or inscribing simplices in circular cylinders, mostly to study the outer j-radii of simplices or to compute cylinders through the vertices of a simplex. See e.g., Brandenberg, et al. [1, 2], Devillers, et al. [3], Schömer, et al. [7], and the references in these articles. In this note, we classify the embeddings of a regular tetrahedron in circular cylinders. (It will be also interesting to consider the classifications of embeddings of other regular polyhedra in circular cylinders.)

For $r>0$, an infinite circular cylinder $C(r)$ of radius r is defined to be the closed r-neighborhood of the z-axis in \mathbb{R}^{3}. A regular tetrahedron with unit edge is simply called a unit tetrahedron. A unit tetrahedron T contained in $C(r)$ is also called an embedding of a unit tetrahedron in $C(r)$. If all vertices of T in $C(r)$ lie on the boundary $\partial C(r)$ of $C(r)$, then T is said to be inscribed in $C(r)$.

It is known that $C(r)$ can contain a unit tetrahedron if and only if $r \geq 1 / 2$ (e.g., Pukhov [6], Brandenberg, et al. [1]) and a unit tetrahedron can be inscribed in $C(r)$ if and only if $1 / 2 \leq r \leq 3 \sqrt{2} / 8$ (e.g., Devillers, et al. [3]). We present an elementary proof of these facts (Corollary 2).

Let T_{1}, T_{2} be a pair of unit tetrahedra in $C(r)$. If we can superpose T_{1} on T_{2} by moving T_{1} within $C(r)$ as a rigid body, then T_{1} is said to be equivalent in $C(r)$ to T_{2}. Let $\nu_{\circ}(r)$ denote the maximum number of mutually non-equivalent

[^0]Key words and phrases: Embedding of tetrahedron, circular cylinder
unit tetrahedra in $C(r)$. We present an elementary proof of the following:

THEOREM 1.

$$
\nu_{\circ}(r)= \begin{cases}0 & \text { for } r<1 / 2 \\ 1 & \text { for } r \geq 1 / 2\end{cases}
$$

This result is simple but not trivial. If circular cylinders are replaced by equilateral triangular prisms $\Delta(t) \times \mathbb{R}$, the result is not so simple, where $\Delta(t)$ denotes the equilateral triangle of edge length t. Let $\nu_{\Delta}(t)$ denote the maximum number of mutually non-equivalent embeddings of a unit tetrahedron in $\Delta(t) \times$ \mathbb{R}, modulo rigid motions within the prism. Then, as proved in [5], the result becomes:

$$
\nu_{\Delta}(t)=\left\{\begin{array}{cll}
0 & \text { for } t<t_{0}:=\frac{1+\sqrt{2}}{\sqrt{6}} \\
6 & \text { for } \quad t_{0} \leq t<t_{1}:=\frac{\sqrt{3}+3 \sqrt{2}}{6} \\
18 & \text { for } t_{1} \leq t<1 \\
1 & \text { for } \quad 1 \leq t
\end{array}\right.
$$

2. Tetrahedra inscribed in a cylinder

Note that $\{C(r) \mid r>0\}$ is a nested family, that is, for every $0<s<r$, we always have $C(s) \subset C(r)$. If a unit tetrahedron contained in $C(r)$ has a vertex lying in the interior of $C(r)$, then the vertex is called an interior vertex in $C(r)$. A unit tetrahedron inscribed in $C(r)$ has no interior vertex in $C(r)$.

LEMMA 1. If a unit tetrahedron in $C(r)$ has an interior vertex, then it is equivalent in $C(r)$ to a unit tetrahedron contained in the interior $\operatorname{Int} C(r)$ of $C(r)$, and hence equivalent in $C(r)$ to a unit tetrahedron contained in a $C(s)$, for some $s<r$.

Proof. Note that (1) if a triangle has three vertices on the boundary of $C(r)$, then a rotation (through arbitrary small angle) around an edge sends one vertex into Int $C(r)$, and (2) if a line segment L has both endpoints on the boundary of $C(r)$, then a rotation of L (through arbitrary small angle) around the midpoint of L in the vertical plane containing L sends the both endpoints into Int $C(r)$. Applying these (1)(2), the lemma is obtained.

By applying a standard technique on convergence, the next corollary is obtained.

COROLLARY 1. Every unit tetrahedron T contained in $C(r)$ is equivalent in $C(r)$ to a unit tetrahedron inscribed in some $C(s), s \leq r$.

For every point $P=(a, b, c) \in \mathbb{R}^{3}$, its z-coordinate c is denoted by $z(P)$, and the orthogonal projection of P on the $x y$-plane (that is, the point $(a, b, 0)$) is denoted by \bar{P}. For a unit tetrahedron $T \subset \mathbb{R}^{3}$, let \bar{T} denote the orthogonal projection of T into the $x y$-plane.

The next is the key lemma in this paper.
LEMMA 2. Let $T=A B C D \subset C(r)$ be an inscribed unit tetrahedron such that

$$
\begin{equation*}
z(A) \leq z(B) \leq z(C) \leq z(D) \tag{1}
\end{equation*}
$$

If $\bar{A}=\bar{D}$ then \bar{T} is an isosceles triangle with base $\bar{B} \bar{C}$, otherwise, $\bar{A} \bar{D} \| \bar{B} \bar{C}$ (and hence \bar{T} is an isosceles trapezoid).

Proof. Let M be the midpoint of $A D$. Let H be the plane that perpendicularly bisects the line segment $A D$. Then $B, C, M \in H$. If $\bar{A}=\bar{D}$, then H is a horizontal plane, and since $M B=M C$, we have $\bar{A} \bar{B}=\bar{A} \bar{C}$. Thus, \bar{T} is an isosceles triangle with base $\bar{B} \bar{C}$.

Suppose $\bar{A} \neq \bar{D}$. Then H is an inclined plane. We may suppose that $A D$ is parallel to the $x z$-plane and $M=(0,-h, 0)$ for some $h>0$. Then the section of $\partial C(r)$ by H is an ellipse Ω with center at $(0,0,0)$ whose major axis lies on the $x z-$ plane and whose minor axis lies on the y-axis, see Figure 1 left. The two vertices B, C of T lie on this ellipse. Since $1=A B^{2}=A M^{2}+M B^{2}=1 / 4+M B^{2}$, we have $M B=\sqrt{3 / 4}$, and similarly $M C=\sqrt{3 / 4}$. Hence the two vertices B, C also lie on a circle Γ on H with center M, radius $\sqrt{3 / 4}$, see Figure 1 right. Thus B, C are intersection points of the ellipse Ω and the circle Γ. If Ω and Γ intersect only in two points, then it is obvious that $B C$ is parallel to the $x z$-plane, and hence we have $\bar{B} \bar{C} \| \bar{A} \bar{D}$.

Figure 1 The ellipse Ω and the circle Γ

Suppose that $\bar{B} \bar{C}$ and $\bar{A} \bar{D}$ are not parallel (that is, $B C$ is not parallel to the $x z$-plane). Then Ω and Γ must intersect in four points. Let us introduce rectilinear coordinate system (X, Y) on the inclined plane H as follows: the Y axis is the same as the y-axis of \mathbb{R}^{3}, and the X-axis is the line of the major axis of Ω, pointing either direction, see Figure 1 right. Since $B C$ is not parallel to the X-axis, the midpoint N of $B C$ does not lie on the Y-axis. Now, Ω and Γ are represented by the equations:

$$
\begin{align*}
\frac{X^{2}}{a^{2}}+\frac{Y^{2}}{r^{2}} & =1 \tag{2}\\
X^{2}+(Y+h)^{2} & =3 / 4 \tag{3}
\end{align*}
$$

where $a>0$ is the half length of the major axis of Ω, and r (the radius of the cylinder) is the half length of the minor axis of Ω. Let θ be the angle between $A D$ and the $x y$-plane. Since the minimum width of T (i.e., the minimum distance of a pair of parallel planes between which T can lie) is $1 / \sqrt{2}$ (see, e.g., [8],[4]), and since T lies between the planes $z=z(A)$ and $z=z(D)$, it follows that $\theta \geq \pi / 4$. Then, since H perpendicularly bisects $A D$, the angle $\pi / 2-\theta$ between the X-axis and the x-axis is at most $\pi / 4$. Therefore, $r / a=\cos (\pi / 2-\theta) \geq \cos (\pi / 4)=1 / \sqrt{2}$. Thus $a^{2} / r^{2} \leq 2$.

By eliminating X from (2) and (3), we have

$$
\begin{equation*}
\left(a^{2}-r^{2}\right) Y^{2}-2 r^{2} h Y-r^{2}\left(h^{2}+a^{2}-3 / 4\right) r^{2}=0 \tag{4}
\end{equation*}
$$

Since Ω and Γ intersect in four points, the equation (4) must have two solutions, say, α, β. Since B, C have different Y-coordinates (otherwise, we have $\bar{B} \bar{C} \|$ $\bar{A} \bar{D}$), we may suppose the B has Y-coordinate α, and C has Y-coordinate β. Then the midpoint N of $B C$ has Y-coordinate $(\alpha+\beta) / 2$. Since

$$
\alpha+\beta=\frac{2 r^{2} h}{a^{2}-r^{2}}=\frac{2 h}{a^{2} / r^{2}-1} \geq 2 h
$$

we have $(\alpha+\beta) / 2 \geq h$. Thus the Y-coordinate (the y-coordinate) of N is at least h. Then \bar{N} (which is the midpoint of $\bar{B} \bar{C}$) has the y-coordinate at least h. Since \bar{N} does not lie on the y-axis (for otherwise, $\bar{B} \bar{C} \| \bar{A} \bar{D}$), we have $O \bar{N}>h$. This implies $O \bar{N}>O \bar{M}$. However, in the two chords $\bar{B} \bar{C}, \bar{A} \bar{D}$ of the circle in the $x y-$ plane with center O and radius r, we have $(\bar{B} \bar{C})^{2}=1-(z(C)-z(D))^{2},(\bar{A} \bar{D})^{2}=$ $1-(z(D)-z(A))^{2}$. Hence (1) implies that $\bar{B} \bar{C} \geq \bar{A} \bar{D}$, which implies that $O \bar{N} \leq O \bar{M}$, a contradiction.

3. Radius of a cylinder with an inscribed tetrahedron

LEMMA 3. Let $T=A B C D$ be a unit tetrahedron inscribed in $C(r)$ and suppose that $z(A) \leq z(B) \leq z(C) \leq z(D)$. Let θ be the angle between the line $A D$ and the horizontal plane. Then $\pi / 4 \leq \theta \leq \pi / 2$ and

$$
\begin{equation*}
r^{2}=f(\theta):=\frac{9}{32}-\frac{1}{32}(\sin 2 \theta)^{2} . \tag{5}
\end{equation*}
$$

Proof. Let M be the midpoint of $A D$ and N be the midpoint of $B C$. Then \bar{M} is the midpoint of $\bar{A} \bar{D}$ and \bar{N} is the midpoint of $\bar{B} \bar{C}$. Since $\bar{A}, \bar{B}, \bar{C}, \bar{D}$ are vertices of an isosceles trapezoid (isosceles triangle if $\bar{A}=\bar{D}$) with base $\bar{B} \bar{C}$ by Lemma 2, we have $\bar{M} \bar{N} \perp \bar{B} \bar{C}$. Hence $M N$ is perpendicular to the vertical plane containing $B C$. Therefore, $M N$ is horizontal. Hence, if the angle between $A D$ and the horizontal plane is θ, then the angle between $B C$ and the horizontal plane is $\pi / 2-\theta$. Since $\theta \geq \pi / 2-\theta$ by the assumption $z(A) \leq z(B) \leq z(C) \leq z(D)$, we have $\pi / 4 \leq \theta \leq \pi / 2$.

To show (5), first consider the case $\theta=\pi / 2$. In this case, $A D$ is vertical, $\bar{A}=$ \bar{D}, and isosceles triangle $\bar{A} \bar{B} \bar{C}$ is horizontally inscribed in $C(r)$. Since $\bar{B} \bar{C}=1$, and the height of the isosceles triangle $\bar{A} \bar{B} \bar{C}$ is equal to $\bar{M} \bar{N}=M N=1 / \sqrt{2}$, its circumradius is equal to $3 / \sqrt{32}$, and hence $r^{2}=9 / 32=f(\pi / 2)$.

Now, suppose $\pi / 4 \leq \theta<\pi / 2$. We may suppose that M, N lies on the y-axis on \mathbb{R}^{3}. Since $M N=1 / \sqrt{2}$, we may further put

$$
\begin{equation*}
M=(0,-t, 0), \quad N=\left(0, \frac{1}{\sqrt{2}}-t, 0\right) \tag{6}
\end{equation*}
$$

Then, $r^{2}=O M^{2}+M \bar{A}^{2}=O N^{2}+N \bar{B}^{2}$, where $O=(0,0,0)$, the origin. Since $M \bar{A}^{2}=\frac{1}{4} \cos ^{2} \theta$ and $N \bar{B}^{2}=\frac{1}{4} \sin ^{2} \theta$, we have

$$
t^{2}+\frac{1}{4} \cos ^{2} \theta=\left(\frac{1}{\sqrt{2}}-t\right)^{2}+\frac{1}{4} \sin ^{2} \theta
$$

from which we have

$$
\begin{equation*}
t=\frac{1}{4 \sqrt{2}}+\frac{1}{2 \sqrt{2}} \sin ^{2} \theta \tag{7}
\end{equation*}
$$

Therefore

$$
\begin{aligned}
r^{2} & =\left(\frac{1}{4 \sqrt{2}}+\frac{1}{2 \sqrt{2}} \sin ^{2} \theta\right)^{2}+\frac{1}{4} \cos ^{2} \theta \\
& =\frac{9}{32}-\frac{1}{32}(\sin 2 \theta)^{2} .
\end{aligned}
$$

COROLLARY 2. A unit tetrahedron can be inscribed in $C(r)$ if and only if $\frac{1}{2} \leq$ $r \leq \frac{3 \sqrt{2}}{8}$.

Proof. If a unit tetrahedron can be inscribed in $C(r)$, then since $f(\theta)$ of (5) is strictly monotone increasing in $\frac{\pi}{4} \leq \theta \leq \frac{\pi}{2}$, we have $f\left(\frac{\pi}{4}\right) \leq r^{2} \leq f\left(\frac{\pi}{2}\right)$, and $\frac{1}{2} \leq r \leq \frac{3 \sqrt{2}}{8}$.

Conversely, if $\frac{1}{2} \leq r \leq \frac{3 \sqrt{2}}{8}$, then we can determine $\theta\left(\frac{\pi}{4} \leq \theta \leq \frac{\pi}{2}\right)$ by (5). Determine t by (7), and take M, N as in (6). Then we can take a line in the plane $y=-t$ that passes through M and makes angle θ with the horizontal line in this plane. Let A, D be the points on this line at distance $1 / 2$ from M. Similarly, we can take B, C in the plane $y=1 / \sqrt{2}-t$. Then $A B C D$ is a unit tetrahedron inscribed in $C(r)$.

COROLLARY 3. If T is a unit tetrahedron contained in $C(1 / 2)$, then T is inscribed in $C(1 / 2)$, and \bar{T} is a square.

4. Proof of Theorem 1

Proof. Let $T_{0} \subset C(r)$ be a unit tetrahedron. By Corollary 1 and Lemma 2, T_{0} is equivalent in $C(r)$ to a unit tetrahedron T inscribed in $C(s), s \leq r$, whose projection \bar{T} is an isosceles trapezoid (or an isosceles triangle). Using the same notations as in Lemma 3, if $\theta>\pi / 4$, then, since $f(\theta)$ is monotone increasing in $\frac{\pi}{4} \leq \theta \leq \frac{\pi}{2}$, we can rotate T around $M N$ with decreasing the circumradius of \bar{T} till θ becomes $\pi / 4$. Hence, we can move T_{0} within $C(r)$ so that it becomes inscribed in $C(1 / 2)$.

Let T_{1}, T_{2} be a pair of unit tetrahedra inscribed in $C(1 / 2)$. Then \bar{T}_{1}, \bar{T}_{2} are squares by Corollary 3 , and in both T_{1}, T_{2}, their angle θ must be equal to $\pi / 4$. Hence, by a suitable rotation of T_{1} around the z-axis and a suitable translation within $C(r)$, we can superpose T_{1} to T_{2}. Thus, every pair of unit tetrahedra in $C(r)$ are equivalent in $C(r)$.

References

[1] R. Brandenberg, T. Theobald, Radii minimal projections of polytopes and constrained optimization of symmetric polynomials, Adv. Geom. 6 (2006) 71-83.
[2] R. Brandenberg, T. Theobald, Algebraic method for computing smallest enclosing and circumscribing cylinders of simplices, Appl. Algebra Engrg. Comm. Comput. 14 (2004) 439-460.
[3] O. Devillers, B. Mourrain, F. P. Preparata, P. Trebuchet, Circular cylinders through four or five points in space, Discrete Comput. Geom. 29 (2003) 83-104.
[4] H. Maehara, An extremal problem for arrangement of great circles. Math. Japonica 41(1995) 125-129.
[5] H. Maehara, N. Tokushige, Classification of the congruent embeddings of a tetrahedron into a triangular prism, preprint.
[6] S. V. Pukhov, Kolmogorov widths of a regular simplex, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 1980 no. 4, 34-37, 99.
[7] E. Schömer, J. Sellen, M. Reichmann, C. Yap, Smallest enclosing cylinders, Algorithmica 27 (2000) 170-186.
[8] P. Steinhagen, Über die grösste Kugel in einer konvexen Punktmenge, Abh. Math. Sem. Hamburg 1 (1921) 15-26.

Research Institute of Educational Development, Tokai university
2-28-4, Tomigaya, Shibuyaku, Tokyo 151-8677, Japan
E-mail: maehara@tokai-u.jp

[^0]: 2000 Mathematics Subject Classification: 52B10, 52B99, 52C99

