ON THE INTEGER RING OF A KUMMER EXTENSION GENERATED BY A POWER ROOT OF A RATIONAL NUMBER

By
Humio Ichimura

(Received May 8, 2009)

Abstract

Let $m \geq 3$ be a square free integer. We show that for an integer $a \in \boldsymbol{Z}$ relatively prime to m, the Kummer extension $\boldsymbol{Q}\left(\zeta_{m}, a^{1 / m}\right)$ over the m-th cyclotomic field $\boldsymbol{Q}\left(\zeta_{m}\right)$ has a normal integral basis whenever it is tame.

1. Introduction

A finite Galois extension N / F over a number field F with group G has a normal integral basis (NIB for short) when \mathcal{O}_{N} is cyclic over the group ring $\mathcal{O}_{F}[G]$. Here, \mathcal{O}_{F} is the ring of integers of F. If N / F has a NIB, then it is necessarily tame (at most tamely ramified) by a theorem of Noether. The celebrated theorem of Hilbert and Speiser asserts that any tame abelian extension N / \boldsymbol{Q} over the rationals \boldsymbol{Q} has a NIB. On the other hand, Kawamoto [8, 9] proved that for an odd prime number $p \geq 3$ and an integer $a \in \boldsymbol{Z}$, the cyclic extension $\boldsymbol{Q}\left(\zeta_{p}, a^{1 / p}\right) / \boldsymbol{Q}\left(\zeta_{p}\right)$ has a NIB if it is tame. Here, for an integer $m>1, \zeta_{m}$ denotes a primitive m-th root of unity. In [3], Gómez Ayala gave an alternative proof using his necessary and sufficient condition [3, Theorem 2.1] for a tame Kummer extension of prime degree to have a NIB. For some related topics on Kawamoto's result, see the author $[4,6,7]$.

In this note, we generalize Kawamoto's result using the argument of Gómez Ayala. For an integer $m \geq 2$, let F_{m} denote the m-th cyclotomic field $\boldsymbol{Q}\left(\zeta_{m}\right)$. When m is odd, we have $F_{m}=F_{2 m}$.

THEOREM. Let $m \geq 3$ be a square free integer. Then, for any integer $a \in \boldsymbol{Z}$ with $(a, m)=1$, the cyclic extension $F_{m}\left(a^{1 / m}\right) / F_{m}$ has a NIB whenever it is tame.

Proposition. For an odd integer $a \in \boldsymbol{Z}$, the cyclic extension $F_{4}\left(a^{1 / 4}\right) / F_{4}$

Key words and phrases: normal integral basis, Kummer extension
has a NIB if it is tame.

2. Lemmas

In this section, we recall some results which are necessary to show the Theorem. Let F be a number field and $m \geq 2$ an integer. Let \mathfrak{A} be an ideal of \mathcal{O}_{F}. We can write

$$
\mathfrak{A}=\prod_{i \geq 1} \mathfrak{A}_{i}^{i}
$$

for some square free ideals \mathfrak{A}_{i} of \mathcal{O}_{F} relatively prime to each other. We have $\mathfrak{A}_{i}=\mathcal{O}_{F}$ for sufficiently large i. We define the associated ideals \mathfrak{B}_{j} of \mathfrak{A} by

$$
\begin{equation*}
\mathfrak{B}_{j}=\prod_{i \geq 1} \mathfrak{A}_{i}^{[i j / m]} \quad(0 \leq j \leq m-1) \tag{1}
\end{equation*}
$$

where $[x]$ is the largest integer $\leq x$. The theorem of Gómez Ayala mentioned in Section 1 is generalized by Del Corso and Rossi [1, Theorem 1] as follows. (See Remark at the end of this section.)

LEMMA 1. Let $m \geq 2$ be an integer and let K be a number field with $\zeta_{m} \in K^{\times}$. Let $L=K\left(a^{1 / m}\right) / K$ be a tame cyclic Kummer extension of degree m with $a \in$ \mathcal{O}_{K}, and let $G=\operatorname{Gal}(L / K)$. Then L / K has a NIB if and only if the following two conditions are satisfied.
(i) The ideals $\mathfrak{B}_{j}(0 \leq j \leq m-1)$ associated to $a \mathcal{O}_{K}$ by (1) are principal.
(ii) Letting $\alpha=a^{1 / m}$, the congruence

$$
W=\sum_{j=0}^{m-1} \frac{\alpha^{j}}{x_{j}} \equiv 0 \bmod m
$$

holds for some $x_{j} \in \mathcal{O}_{K}$ with $x_{j} \mathcal{O}_{K}=\mathfrak{B}_{j}$.
Further, when this is the case, the integer W / m generates \mathcal{O}_{L} over the group $\operatorname{ring} \mathcal{O}_{K}[G]$.

The following is a special case of the general principal ideal theorem given by Miyake [10, Theorem 1].

LEMMA 2. Let $m \geq 2$ be a square free integer. For any integer $a \in \boldsymbol{Z}$ with $(a, m)=1$, there exists a unit ϵ of F_{m} such that $\epsilon \equiv a \bmod m$.

Remark. In [5, Theorem 2], we gave a generalization of the theorem of Gómez Ayala for a cyclic Kummer extension of arbitrary degree m. However, as pointed
out in [1], the "only if" part of [5, Theorem 2] is incorrect when m is not a power of a prime number. In [1, Theorem 1], Del Corso and Rossi corrected this mistake.

3. Proof of Theorem

Let $m \geq 3$ be a square free integer, and let $F=F_{m}$. Let $a \in \boldsymbol{Z}$ be an integer with $(a, m)=1$ such that the cyclic extension $L=F\left(a^{1 / m}\right) / F$ is tame. Suppose that L / F is of degree d for some proper divisor d of m. Then $L=F\left(a^{1 / d}\right)$. Further, the cyclic extension $F_{d}\left(a^{1 / d}\right) / F_{d}$ is tame and of degree d. This extension is unramified over the primes dividing $n=m / d$ as $(a, n)=1$. Therefore, if $F_{d}\left(a^{1 / d}\right) / F_{d}$ has a NIB, then the pushed up extension $L=F_{n} F_{d}\left(a^{1 / d}\right) / F$ has a NIB by a classical theorem on rings of integers (cf. Fröhlich and Taylor [2, (2.13)]).

From the above, we may as well assume that L is of degree m over F. Let $\alpha=a^{1 / m}$. From the condition $(a, m)=1$, we see that the ideal \mathfrak{B}_{j} associated to the integral ideal $a \mathcal{O}_{F}$ by (1) is principal and is generated by an integer $x_{j}^{\prime} \in \boldsymbol{Z}$. Therefore, by Lemma 2, we can choose a generator x_{j} of the principal ideal \mathfrak{B}_{j} so that $x_{j} \equiv 1 \bmod m$. Hence, by Lemma 1 , it suffices to show that

$$
\begin{equation*}
\sum_{j=0}^{m-1} \epsilon_{j} \alpha^{j} \equiv 0 \bmod m \tag{2}
\end{equation*}
$$

for some unit $\epsilon_{j} \in \mathcal{O}_{F}^{\times}$. Let $m=\prod_{r=1}^{g} p_{r}$ be the prime decomposition of m where p_{r} 's are distinct prime numbers. For a while, we fix an index r with $1 \leq r \leq g$. We put $n_{r}=m / p_{r}, \beta_{r}=\alpha^{n_{r}}=a^{1 / p_{r}}$, and $\pi_{r}=\zeta_{p_{r}}-1$. As L / F is tame, so is $F_{p_{r}}\left(\beta_{r}\right) / F_{p_{r}}$. Hence, $a \equiv u_{r}^{p_{r}} \bmod \pi_{r}^{p_{r}}$ for some $u_{r} \in \boldsymbol{Z}$ by Washington [11, Exercise 9.3]. By Lemma 2, we have $u_{r} \equiv \eta_{r} \bmod p_{r}$ for some unit η_{r} of F, and hence $a=\beta_{r}^{p_{r}} \equiv \eta_{r}^{p_{r}} \bmod \pi_{r}^{p_{r}}$. Then we see that $\beta_{r} / \eta_{r} \equiv 1 \bmod \pi_{r}$ and that

$$
\sum_{j_{r}=0}^{p_{r}-1}\left(\frac{\beta_{r}}{\eta_{r}}\right)^{j_{r}}=\prod_{k=1}^{p_{r}-1}\left(\frac{\beta_{r}}{\eta_{r}}-\zeta_{p_{r}}^{k}\right) \equiv 0 \bmod p_{r} .
$$

It follows that

$$
\begin{equation*}
\sum_{j_{1}=0}^{p_{1}-1} \cdots \sum_{j_{g}=0}^{p_{g}-1} \frac{\alpha^{j_{1} n_{1}+\cdots+j_{g} n_{g}}}{\eta_{1}^{j_{1}} \cdots \eta_{g}^{j_{g}}}=\prod_{r=1}^{g} \sum_{j_{r}=0}^{p_{r}-1}\left(\frac{\beta_{r}}{\eta_{r}}\right)^{j_{r}} \equiv 0 \bmod m . \tag{3}
\end{equation*}
$$

We easily see that the set of residue classes $j_{1} n_{1}+\cdots+j_{g} n_{g} \bmod m$ with

$$
\begin{equation*}
0 \leq j_{r} \leq p_{r}-1 \quad(1 \leq r \leq g) \tag{4}
\end{equation*}
$$

coincides with the set of all residue classes modulo m. Fix an integer i with $0 \leq i \leq m-1$. Then there uniquely exist integers $j_{r}(1 \leq r \leq g)$ satisfying (4) such that $i \equiv j_{1} n_{1}+\cdots+j_{g} n_{g} \bmod m$. Letting

$$
k_{i}=\frac{j_{1} n_{1}+\cdots+j_{g} n_{g}-i}{m} \in \boldsymbol{Z}
$$

we have

$$
\alpha^{j_{1} n_{1}+\cdots+j_{g} n_{g}}=\alpha^{i} a^{k_{i}} .
$$

By Lemma 2, there exists a unit δ_{i} of F such that $\delta_{i} \equiv a^{k_{i}} \bmod m$. Putting

$$
\epsilon_{i}=\frac{\delta_{i}}{\eta_{1}^{j_{1}} \cdots \eta_{g}^{j_{g}}}
$$

for each $0 \leq i \leq m-1$, we obtain the disired congruence (2) from (3).

4. Proof of Proposition

In this section, we write $F=F_{4}=\boldsymbol{Q}\left(\zeta_{4}\right)$ for brevity.
LEMMA 3. Let $c \in \boldsymbol{Z}$ be an odd square free integer with $c \equiv 1 \bmod 4$ and $c \neq \pm 1$. Let $K=F(\sqrt{c})$, and $\omega=(1+\sqrt{c}) / 2$. Then $\mathcal{O}_{K}=\mathcal{O}_{F}[\omega]$ and K / F has a NIB.

Proof. Let $k=\boldsymbol{Q}(\sqrt{c})$. It is well known that $\mathcal{O}_{k}=\boldsymbol{Z}[\omega]$ and k / \boldsymbol{Q} has a NIB. The assertion follows from this and [2, (2.13)].

Lemma 4. Let $a \in \boldsymbol{Z}$ be an odd integer, and let $L=F\left(a^{1 / 4}\right)$. Assume that the extension L / F is nontrivial and tame. Then we have $a \equiv 1 \bmod 8$. Further, if L / F is quadratic, then $a=b^{2}$ for some $b \in \boldsymbol{Z}$ with $b \equiv 1 \bmod 4$.

Proof. First, we deal with the case $[L: F]=2$. Since $a \in\left(F^{\times}\right)^{2}$, we see that $a= \pm b^{2}$ for some $b \in Z$ with $b \equiv 1 \bmod 4$. Assume that $a=-b^{2}$. As L / F is tame, it follows from [11, Exercise 9.3] that $\sqrt{a}=\sqrt{-1} \cdot b \equiv x^{2} \bmod 4$ for some $x \in \mathcal{O}_{F}$. As $(x, 2)=1$, we have $x^{2} \equiv 1 \bmod 2$, and hence $\sqrt{-1} \equiv 1 \bmod 2$, which is impossible. Hence, we obtain $a=b^{2}$.

Next, we deal with the case $[L: F]=4$. We show that the cases $a \equiv 5 \bmod 8$ and $a \equiv 3 \bmod 4$ do not happen. Let $K=F(\sqrt{a})=F(\sqrt{-a}) \subset L$. Write $a=a_{1} a_{2}^{2}$ for some odd integers a_{1} and a_{2} with a_{1} square free. Assume first that $a \equiv 5 \bmod 8$. By Lemma $3, \mathcal{O}_{K}=\mathcal{O}_{F}[\omega]$ with $\omega=\left(1+\sqrt{a_{1}}\right) / 2$. Assume that L / F is tame. Then it follows from [11, Exercise 9.3] that

$$
\sqrt{a}=a_{2}(2 \omega-1) \equiv(x+y \omega)^{2} \bmod 4
$$

for some $x, y \in \mathcal{O}_{F}$. This is equivalent to the conditions

$$
\begin{equation*}
-a_{2} \equiv x^{2}+\frac{a_{1}-1}{4} y^{2} \bmod 4 \tag{5}
\end{equation*}
$$

and

$$
2 a_{2} \equiv 2 x y+y^{2} \bmod 4
$$

Let $\pi=1+\sqrt{-1}$. By the last congruence, we see that $y=\pi u$ for some $u \in \mathcal{O}_{F}$ with $\pi \nmid u$. We have $y^{2} \equiv \pi^{2}(=2 \sqrt{-1}) \bmod 4$ as $u^{2} \equiv 1 \bmod 2$. Hence, it follows from (5) and $a_{1} \equiv 5 \bmod 8$ that

$$
\pm 1 \equiv x^{2}+2 \sqrt{-1} \bmod 4
$$

If $x \equiv 1 \bmod 2$, we obtain $\pm 1 \equiv 1+2 \sqrt{-1} \bmod 4$, which is impossible. If $x=1+\pi v$ for some $v \in \mathcal{O}_{F}$ with $\pi \nmid v$, then we see that $\pm 1 \equiv 1+2 \pi v \bmod 4$, which is also impossible. Therefore, the case $a \equiv 5 \bmod 8$ can not happen. In a similar way, we can show that the case $a \equiv 3 \bmod 4$ can not happen using the fact that $K=F(\sqrt{-a})$ and $\mathcal{O}_{K}=\mathcal{O}_{F}[\omega]$ with $\omega=\left(1+\sqrt{-a_{1}}\right) / 2$.

Proof of Proposition. Though the assertion follows from Lemmas 3 and 4 and [5, Corollary 5], we give a proof for the sake of completeness. Let $a \in \boldsymbol{Z}$ be an odd integer, and let $L=F\left(a^{1 / 4}\right)$. Assume that L / F is tame. If L / F is a quadratic extension, then L / F has a NIB by Lemmas 3 and 4 . So, it remains to show the assertion when L / F is of degree 4 . By Lemma 4 , we have $a \equiv 1 \bmod 8$. Let $\alpha=a^{1 / 4}$. By $a \equiv 1 \bmod 8$ and [5, Lemma 6], we have

$$
1+\alpha+\alpha^{2}+\alpha^{3} \equiv 0 \bmod 4
$$

Since a is odd, we can choose a generator $x_{j} \in \boldsymbol{Z}$ of the associated ideal \mathfrak{B}_{j} of $a \mathcal{O}_{F}$ so that $x_{j} \equiv 1 \bmod 4$. Therefore, L / F has a NIB by Lemma 1 .

Acknowledgement. The author thanks Del Corso and Rossi for correcting the mistake in [5] and for sending him the paper [1]. The author was partially supported by Grant-in-Aid for Scientific Research (C), No. 19540005, Japan Society for the Promotion of Science.

References

[1] I. Del Corso and L. P. Rossi, Normal integral bases for cyclic Kummer extensions, Preprint 1.356.1706, Dipartimento di Matematica Universita' di Pisa.
[2] A. Fröhlich and M. J. Taylor, Algebraic Number Theory, Cambridge Univ. Press, Cambridge, 1993.
[3] E. J. Gómez Ayala, Bases normales d'entiers dans les extensions de Kummer de degré premier, J. Théor. Nombres Bordeaux, 6 (1994), 95-116.
[4] H. Ichimura, Note on the ring of integers of a Kummer extension of prime degree, IV, Proc. Japan Acad., 77A (2001), 92-94.
[5] H. Ichimura, On the ring of integers of a tame Kummer extension over a number field, J. Pure Appl. Algebra, 187 (2004), 169-182.
[6] H. Ichimura, On a theorem of Kawamoto on normal bases of rings of integers, Tokyo J. Math., 27 (2004), 527-540.
[7] H. Ichimura, On a theorem of Kawamoto on normal bases of rings of integers, II, Canad. Math. Bull., 48 (2005), 576-579.
[8] F. Kawamoto, On normal integral bases, Tokyo J. Math., 7 (1984), 221-231.
[9] F. Kawamoto, Remark on : "On normal integral bases", Tokyo J. Math., 8 (1985), 275.
[10] K. Miyake, On the general principal ideal theorem, Proc. Japan Acad., 56A (1980), 171-174.
[11] L. C. Washington, Introduction to Cyclotomic Fields (2nd ed.), Springer, New-York, 1997.

Faculty of Science, Ibaraki University Bunkyo 2-1-1, Mito, 310-8512, Japan
E-mail: hichimur@mx.ibaraki.ac.jp

