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Abstract. The logarithmic function and its related functions of the differential
operator d/dx are defined by extending the framework of Mikusiński’s opera-
tional calculus. The operation of ϕ(d/dx) on a function F (x), which vanishes
for x < 0, is expressed as a convolution of a distribution Ω(x) and F ′(x). For
various examples of ϕ(d/dx), the explicit expressions for Ω(x) are found and
their properties are investigated. Extension to the several-variable case is also
considered.

1. Introduction

Recently, in order to find models of deformed canoninal commutation rela-

tions, Asada[4] has studied non-integer powers of differentiation (fractional cal-

culus) and the logarithmic differentiation. His analysis is mainly based on the

Borel transformation [3], but he has considered the logarithmic differentiation

also in some other ways.

Let x be a real variable; we write the differential operator d/dx as D. Let F (x)

be an arbitrary C1-class function whose support is included in R+ ≡ {x| x = 0}.
Then, according to Asada, we have

(log D)F (x) = −γF (x)−
∫ x

0

dy log(x− y)F ′(y), (1. 1)

where γ is Euler’s constant. If F (x) has a finite jump at x = 0, (1.1) still remains

valid by understanding that F ′(x) contains a δ(x) (Dirac measure) term.

We can derive (1.1) from the well-known formula for a non-integer order

“derivative” (see next section)

D−αF (x) =
1

Γ (α)

∫ x

0

dy (x− y)α−1F (y) (1. 2)
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with <α > 0. We differentiate (1.2) with respect to −α and take the limit of

α → 0. When differentiated, two terms arise according to the Leibniz rule, and

both are divergent as α → 0. The divergent parts of both terms cancel, and the

remainder yields the right-hand side of (1.1).

As shown by Asada [4], it is not difficult to derive the following formulae from

(1.1):

(log D)xtθ(x) =
(
− log x− γ +

∞∑
n=1

t

n(n + t)

)
xtθ(x), (1. 3)

(log D)(log x)mθ(x) =
(
− (log x)m+1 − γ(log x)m

−
m−1∑

k=0

(−1)m−km! ζ(m− k + 1)

k!
(log x)k

)
θ(x), (1. 4)

where ζ(s) denotes Riemann’s zeta function and θ(x) stands for the Heaviside

step function, that is, θ(x) = 1 for x = 0, θ(x) = 0 for x < 0. We have explicitly

written θ(x) for clarity.

Now, as is well known, Mikusiński [6] made mathematical justification of

Heaviside’s operational calculus on the basis of the convolution of functions whose

support is included in R+. He succeeded in defining various functions of D, but

log D cannot be defined as an operator in the sense of his theory.

In the present paper, we extend the concept of the operator of Mikusiński’s

operational calculus so as to include Asada’s formula (1.1). In this extended

framework, various logarithmic-type functions of D can be defined. We investi-

gate their properies and calculate explicit formulae for simple cases.

The present paper is organized as follows. In Sec.2, we propose a definition

of logarithmic-type functions of D in terms of convolution. In Sec.3, we calculate

the defining function of (log D)m, m being a positive integer. In Sec.4, its gener-

ating function is discussed. In Sec.5, (log D)β for β complex and log(log D) are

considered. In Sec.6, we show that it is possible to discuss logarithmic-type func-

tions of D in the Mikusiński framework if we consider a commutator. Extension

to the several-variable case is discussed in the final section.

The author would like to thank Professor A. Asada for presenting his results

in the mathematical-physics seminar held in RIMS, Kyoto University prior to

publication; his talks motivated the present work.
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2. Extention of Mikusiński’s operator

Mikusiński’s operational calculus [6] is based on the commutative algebra C;

it is the totality of continuous functions defined in R+ and its product is defined

by the convolution on R+. According to Titchmarsh’s theorem, C has no zero

divisor. Hence C can be extended to a field, Q, of quotients. An operator is

defined as an element of Q. It can be shown that all usual operations in the

functional analysis are transcribed into the corresponding ones in Q.

A “function of the differential operator”, denoted by ϕ(D),*1 is given by

ϕ(D)F (x) =

∫ x

0

dy Φ(x− y)F (y), (2. 1)

where Φ(x) and F (x) are elements of Q. Mikusiński calculated the explicit

expressions for Φ(x) corresponding to various functions ϕ(D), such as rational

functions of D, functions expandable into a power series of D−1, non-integer

powers of rational functions of D, various kinds of exponential functions of D,

etc. However, it is not possible to construct Φ(x) corresponding to log D. In

order to include log D and its related functions, it is necessary to deform (2.1)

slightly.

In Mikusiński’s operational calculus, it is essential that Φ(x) and F (x) are

treated in a symmetric way. But since our purpose is to define ϕ(D) by Φ(x),

we need not adhere to the symmetric treatment. By giving up the symmetry

between Φ(x) and F (x), we can give a definition of the function of D in a more

flexible way.

We propose to define ϕ(D) by the formula

ϕ(D)F (x) ≡
∫ x

−0

dy Ω(x− y)F ′(y). (2. 2)

Here, F (x) is a function of C1-class in R+; since its support is included in R+, we

may write F (x) = F (x)θ(x). The symbol −0 means to take the limit 0 from the

x < 0 side; hence F (−0) = 0 always. If F (+0), i.e., the x → 0 limit of F (x) from

the x > 0 side is nonvanishing and equal to a finite value, we understand that

F ′(x) contains F (+0)δ(x). As for Ω(x), whose support is, of course, included in

R+, we suppose, for a moment, that it is a function of C1-class for x > 0.

By integrating (2.2) by parts, we obtain

ϕ(D)F (x) =
[
Ω(x− y)F (y)

]x

−0
+

∫ x

−0

dy Ω′(x− y)F (y). (2. 3)

∗1 Mikusiński used a symbol s instead of D.
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If the first term of the right-hand side vanishes, then (2.3) reduces to (2.1) by

setting Ω′ = Φ. Since F (−0) = 0, the first term vanishes if Ω(+0) = 0. If

Ω(+0) 6= 0 is a definite finite value, we redefine Ω(x) − Ω(+0) as Ω(x) so that

the situation reduces to the case of Ω(+0) = 0. On the other hand, if Ω(+0) is

not a definite finite value, (2.2) no longer coincides with (2.1), but becomes its

finite part.

If we set F (x) = θ(x) in (2.2), we have

ϕ(D)θ(x) = Ω(x). (2. 4)

In particular, if ϕ(x) = 1, then Ω(x) = θ(x); we thus see that (2.2) is a repre-

sentation more natural than (2.1).

Now, as is known in the theory of distributions [7], a convolution of two

distributions is well defined if at least one of them has a compact support. Hence,

in (2.2), we can regard Ω(x) as a distribution. On the other hand, according to

the structure theorem of the distribution, any distribution can be represented as

a finite order derivative of a continuous function. Hence Φ(x) in the Mikusiński

theory can be identified with a distribution.

The most typical example in which Ω(+0) does not exist is the case of ϕ(D) =

log D. Identifying D−1 with Mikusiński’s integration operator l, we consider

D−αF (x) =

∫ x

−0

dy
(x− y)α−1

Γ (α)
F (y). (2. 5)

Since limx→0 xα/Γ (α + 1) = 0 for <α > 0, (2.3) implies

D−αF (x) =

∫ x+0

−0

dy Yα+1(x− y)F ′(y). (2. 6)

Here we have employed Schwartz’s pseudofunction [7] defined by

Yλ(x) = Pf.
xλ−1

Γ (λ)
θ(x) for λ 6= 0,−1,−2, · · ·

= δ(n)(x) for λ = −n = 0,−1,−2, · · · , (2. 7)

where Pf. means a finite part. As a distribution, Yλ(x) can be analytically

continued to the whole complex plane and give an entire function of λ. Hence

(2.6) is meaningful for any value of α. Especially, for −α = n = 0, 1, 2, . . . , the

right-hand side of (2.6) correctly reproduces the nth order derivative of F (x);

thus the identification of D−1 with the integration operator l is reasonable.

Differentiating both sides of (2.6) with respect to −α and setting α = 0, we

can define log D. Then, without encountering divergent terms, we obtain

(log D)F (x) =

∫ x

−0

dy [− log(x− y)− γ]F ′(y), (2. 8)
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which is nothing but (1.1). In particular,

(log D)θ(x) = (− log x− γ)θ(x). (2. 9)

Furthermore, for α > 0, we have

(log(D + α))θ(x) =
(

log α +

∫ ∞

αx

dt
e−t

t

)
θ(x), (2. 10)

because [(log(D + α)− log D]θ(x) is given by

(log(1 + αD−1))θ(x) =
∞∑

n=1

(−1)n−1

n
αnD−nθ(x) =

∫ x

0

dy
1− e−αy

y
θ(x). (2. 11)

Asada caluclated (2.8) for F (x) = eαxθ(x)*2 ; comparing his formula with (2.10),

we find that the following interesting relation is seen to hold:

(log(D + α))θ(x) = e−αx(log D)eαxθ(x). (2. 12)

3. Positive-integer power of log D

In this section, we consider the case of ϕ(D) = (log D)m, where m is a positive

integer. Of course, it is defined by differentiating (2.6) m times with respect

to −α and then setting α = 0. But, because analytic continuation preserves

any analytic relation, we can calculate it successively by the recurrence formula

(log D)m+1θ(x) = (log D)[(log D)mθ(x)].

First, we set L(x) ≡ log x + γ, and rewrite (1.4) in terms of L(x) in order to

simplify our calculation. It is easy to show

(log D)Lm(x)θ(x)

=
(
− Lm+1(x)−

m−1∑

k=0

(−1)m−km! ζ(m− k + 1)

k!
Lk(x)

)
θ(x) (3. 1)

by means of mathematical induction. Then, by using (3.1), we calculate

∗2 Private communication.
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(log D)mθ(x) successively:

(log D)1θ(x) = −L(x)θ(x), (3. 2)

(log D)2θ(x) =
(
L2(x)− ζ(2)

)
θ(x), (3. 3)

(log D)3θ(x) =
(
− L3(x) + 3ζ(2)L(x)− 2ζ(3)

)
θ(x), (3. 4)

(log D)4θ(x) =
(
L4(x)− 6ζ(2)L2(x) + 8ζ(3)L(x)− 6ζ(4) + 3(ζ(2))2

)
θ(x),

(3. 5)

(log D)5θ(x) =
(
− L5(x) + 10ζ(2)L3(x)− 20ζ(3)L2(x) + 30ζ(4)L(x)− 24ζ(5)

− 15(ζ(2))2L(x) + 20ζ(2)ζ(3)
)
θ(x). (3. 6)

For general m, we find

(log D)mθ(x)

=
( [m/2]∑

l=0

1

l!

∑

k1=2,··· ,kl=2

(−1)m−|k|−l
m!

∏l
j=1 ζ(kj)∏l

j=1 kj · (m− |k|)!L
m−|k|(x)

)
θ(x),

(3. 7)

where |k| ≡ ∑l
j=1 kj. The upper limit of the sums over kj’s is |k| 5 m, but since

this is automatically guaranteed by the existence of (m−|k|)! in the denominator,

we have omitted to write so explicitly.

Proof of (3.7). We employ mathematical induction with respect of m. Its validity

for m = 1 is self-evident. Hence assuming the validity of (3.7), we calculate

(log D)[(log D)mθ(x)]. It is sufficient to consider each part characterized by the

number l of zeta function factors. Because the right-hand side of (3.1) is linear

with respect to zeta functions, the l part of (log D)[(log D)mθ(x)] consists of two

parts: the part arising from the l part of (log D)mθ(x) and the first term of (3.1)

and the part arising from the l − 1 part of (log D)mθ(x) and the remainder of

(3.1). The former is simply −L(x) times (3.7). The latter is given by

1

(l − 1)!

∑

k1=2,··· ,kl−1=2

(−1)m−|k|′−l+1
m!

∏l−1
j=1 ζ(kj)∏l−1

j=1 kj · (m− |k|′)!

·
m−|k|′+1∑

p=2

(−1)p (m− |k|′)! ζ(p)

(m− |k|′ − p + 1)!
Lm−|k|′−p+1(x)θ(x), (3. 8)

where |k|′ ≡ ∑l−1
j=1 kj = |k| − kl. We set p = kl and symmetrize the expression of

(3.8) with respect to k1, · · · , kl−1 and kl after cancellation of (m − |k|′)!. That
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is, we make the following rewriting:

∑

k1,··· ,kl−1

∑

kl

S(k1, · · · , kl)∏l−1
j=1 kj

=
1

l

∑

k1,··· ,kl

|k|S(k1, · · · , kl)∏l
j=1 kj

, (3. 9)

where S(k1, · · · , kl) is a totally symmetric quantity. By reducing to a common

denominator, we see that the sum of both parts coincides with the l term of (3.7)

for (log D)m+1θ(x).

It is instructive to confirm that (3.7) is consistent with the following funda-

mental property of the logarithmic function:

(log D + a)mF (x) = (log eaD)mF (x), (3. 10)

where a is a constant.

Direct check of (3.10). According to the definition (2.2), we write

(log D)mF (x) ≡
∫ x

−0

dy Ωm(x− y)F ′(y), (3. 11)

where Ωm(x) is given by (3.7). The left-hand side of (3.10) is

(log D + a)mF (x) =

∫ x

−0

dy

m∑
p=0

m!

p!(m− p)!
apΩm−p(x− y)F ′(y) (3. 12)

On the other hand, the right-hand side of (3.10) is

(log D′)mF (eax′) =

∫ x′

−0

dy′ Ωm(x′ − y′)eaF ′(eay′), (3. 13)

where we have set x ≡ eax′, so that eaD ≡ D′. By the transformation y′ = e−ay,

(3.13) is rewritten as

(log eaD)mF (x) =

∫ x

−0

dy Ωm(e−a(x− y))F ′(y). (3. 14)

Hence, to verify (3.10), it is sufficient to prove

Ωm(e−ax) =
m∑

p=0

m!

p!(m− p)!
apΩm−p(x). (3. 15)

The left-hand side of (3.15) is equal to the right-hand side of (3.11) with the

replacement of L(x) by L(x) − a in (3.7). After expanding (L(x) − a)m−|k|, we



156 N. NAKANISHI

arrange the resultant expression in powers of ap. Then, by making the simple

rewriting

m!

(m− |k|)! ·
(m− |k|)!

p!(m− |k| − p)!
=

m!

p!(m− p)!
· (m− p)!

(m− p− |k|)! , (3. 16)

we find that it coincides with the right-hand side of (3.15). ¤

4. Generating function

By definition, Y−α+1(x) (see (2.6) and (2.7)) should be the generating function

of (3.7). In this section, we confirm that the power series constructed by (3.7)

indeed reproduces Y−α+1(x):

J(x; α) ≡
∞∑

m=0

αm

m!
(log D)mθ(x) = eα log Dθ(x) = Dαθ(x) = Y−α+1(x). (4. 1)

Proof of (4.1). Substituting (3.7) into J(x; α), we have

J(x; α)

=
∞∑

m=0

αm

[m/2]∑

l=0

1

l!

∑

k1=2,··· ,kl=2

(−1)m−|k|−l

∏l
j=1 ζ(kj)∏l

j=1 kj · (m− |k|)!L
m−|k|(x)θ(x).

(4. 2)

Setting m− |k| = n, we change the order of summations; then

J(x; α) =
∞∑

n=0

(−αL(x))n

n!

∞∑

l=0

(−1)l

l!

∑

k1=2,··· ,kl=2

∏l
j=1 ζ(kj)∏l

j=1 kj

α|k|θ(x). (4. 3)

Since |k| = ∑l
j=1 kj, (4.3) becomes

J(x; α) =
∞∑

n=0

(−αL(x))n

n!

∞∑

l=0

(−1)l

l!

( ∑

k=2

ζ(k)

k
αk

)l

θ(x)

= exp
(
− αL(x)−

∑

k=2

ζ(k)

k
αk

)
θ(x). (4. 4)

Hence noting L(x) = log x + γ and using the formula

log Γ (−α + 1) = γα +
∑

k=2

ζ(k)

k
αk, (4. 5)

we find that J(x; α) is equal to [Γ (−α + 1)]−1x−αθ(x).
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Digression Looking at (3.3)-(3.6), we become aware of the fact that the

total sum of the coefficients in each formula for m = 2 is always zero. One cannot

believe that this fact is merely accidental. That is, it is natural to conjecture

that the expression that is obtained by formally setting ζ(k) and L(x) equal to

1 in (3.7) for m = 2 is always equal to 0. That is, we should have an identity

[m/2]∑

l=0

1

l!

∑

k1=2,··· ,kl=2

(−1)m−|k|−l m!∏l
j=1 kj · (m− |k|)! = 0 for m = 2. (4. 6)

This is indeed true. Direct proof is supposed to be very difficult, but we can

prove (4.6) very simply if we employ its generating function.

Proof of (4.6). As is seen from (4.4), the generating function of the left-hand

side of (4.6) is written as

exp
(
− α−

∑

k=2

αk

k

)
= elog(1−α) = 1− α. (4. 7)

Thus it contains no terms nonlinear with respect to α. Therefore, (4.6) holds.

5. Complex power of log D

First, we consider (log D)−mθ(x), m being a positive integer. It is obtained by

integrating Yα+1(x) with respect to α m times and then setting α = 0. Therefore,

the following “ν function” [5] becomes important:

ν(x) ≡
∫ ∞

0

dt
xt

Γ (t + 1)
. (5. 1)

Now, rewriting (1.3) as

(log D)xtθ(x) =
[
− xt(log x + γ) + xt

∞∑
n=0

(
1

n + 1
− 1

n + t + 1

) ]
θ(x)

=
(
− xt log x + xt Γ

′(t + 1)

Γ (t + 1)

)
θ(x), (5. 2)

we find

(log D)
xt

Γ (t + 1)
θ(x) = − ∂

∂t

xt

Γ (t + 1)
θ(x). (5. 3)

By using (5.3) repeatedly, we obtain a beautiful result

(log D)mYt+1(x) =

(
− ∂

∂t

)m

Yt+1(x). (5. 4)
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Reversing (5.4), we should have

(
− ∂

∂t

)−m

Yt+1(x) = (log D)−mYt+1(x). (5. 5)

Here, (−∂/∂t)−1 means the integration over t from t to +∞ because Γ (t) ∼ tte−t

as t → +∞. Setting t = 0 in (5.5), therefore, we have

(log D)−mθ(x) =

∫ ∞

0

dt1

∫ ∞

t1

dt2 · · ·
∫ ∞

tm−1

dtmYtm+1(x)

=
1

(m− 1)!

∫ ∞

0

dt tm−1Yt+1(x)

=
1

(m− 1)!
(xD)m−1ν(x)θ(x). (5. 6)

As confirmed in (3.10), we know log D − α = log(e−αD) = log(d/d(eαx)).

Hence, (5.6) implies

(log D − α)−mθ(x) =
1

(m− 1)!
(xD)m−1ν(eαx)θ(x). (5. 7)

We can extend the above result for (log D)−m to (log D)β, β being a complex

number. By noting the second line of (5.6), it is natural to define it by

(log D)βθ(x) =

∫ ∞

0

dt Y−β(t)Yt+1(x). (5. 8)

Indeed, for β = m, we easily see from (2.7) and (5.4) that the right-hand side of

(5.8) reduces to (log D)mθ(x), that is, the left-hand side of (5.8) for β = m.

From (5.8) together with*3

DαYt+1(x) = Y−α+t+1(x), (5. 9)

we obtain

Dα(log D)βθ(x) =

∫ ∞

0

dt Y−β(t)Y−α+t+1(x). (5. 10)

Finally, differentiating (5.8) with respect to β and then taking the limit of

β → 0, we obtain the formula for log log D:

(log log D)θ(x) = −γθ(x) +

∫ ∞

0

dt log t
∂

∂t
Yt+1(x). (5. 11)

This calculation is similar to the derivation of (1.1) from (1.2).
∗3 (5.9) is the generating-function version of (5.4).
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6. Commutator representation

As emphasized in Section 2, in order to define the logarithmic-type functions

of D, it is necessary to extend the framework of Mikusiński’s operational calculus.

However, if we consider only the commutator between a function of D and a

function of x,*4 we can work in the Mikusiński framework.

Let f(x) be a C1-class function. From (2.1), we obtain

[ϕ(D), f(x)]F (x) = −
∫ x

−0

dy Φ(x− y)(f(x)− f(y))F (y). (6. 1)

If we integrate (6.1) by parts as in (2.3), the first term vanishes owing to the

presence of the factor f(x) − f(y), as long as the singularity of Ω(x − y) at

x = y is weaker than that of (x− y)−1. This means that in (6.1) our finite-part

definition coincides with that in the Mikusiński framework.

For f(x) = x, (6.1) becomes

[ϕ(D), x]F (x) = −
∫ x

−0

dy Φ(x− y)(x− y)F (y). (6. 2)

We set

Ψ(x) ≡ D[ϕ(D), x]θ(x) = Dϕ′(D)θ(x). (6. 3)

Then, (6.2) with F (x) = θ(x) implies

Ψ(x) = −xΦ(x). (6. 4)

From (6.1) and (6.4), we obtain

[ϕ(D), f(x)]F (x) =

∫ x

−0

dy Ψ(x− y)
f(x)− f(y)

x− y
F (y). (6. 5)

In particular, for ϕ(D) = log D, we have Ψ(x) = θ(x); hence

[log D, f(x)]F (x) =

∫ x

−0

dy
f(x)− f(y)

x− y
F (y). (6. 6)

It is interesting to compare (6.5) with the following formula concerning a

commutator of “operators” [1].

Let A and B be two elements of a non-commutative algebra, such that A

does not commute with [A, B]; for example, they are two generators of a free

tensor algebra. For an analytic function f(z), we can formally write

[f(A), B] =
f(AL)− f(AR)

AL − AR

[A, B], (6. 7)

∗4 The idea is similar to the renormalization in quantum field theory.



160 N. NAKANISHI

where AL and AR denote the A lying in the left of [A, B] and the A lying in the

right of [A, B], respectively, without regard to their positions written actually

[2].

The basis of considering (6.7) is the following fact. From the definition of the

commutator, we directly see that

[An, B] =
n−1∑
j=0

Aj
LAn−1−j

R [A, B] =
An

L − An
R

AL − AR

[A, B]. (6. 8)

Hence, if f(z) is a polynomial, (6.7) is valid. Therefore, it is natural to expect

that the above statement is justifiable in a certain sense by expanding f(A) into

a formal power series. We point out that our present consideration provides a

mathematical justification of (6.7) in the Mikusiński framework.

Setting A = x and B = ϕ(D) in (6.7) and using (6.2) with (6.4), we can

make the following formal calculation:

[ϕ(D), f(x)]F (x) =
f(xL)− f(xR)

xL − xR

[ϕ(D), x]F (x)

=
f(xL)− f(xR)

xL − xR

∫ x

−0

dy Ψ(x− y)F (y)

=

∫ x

−0

dy
f(x)− f(y)

x− y
Ψ(x− y)F (y). (6. 9)

Thus, (6.5) can be regarded as an integral representation of (6.7).

7. Several-variable case

In this section, we consider the case of a function of n variables x1, · · · , xn.

Our discussion is restricted only to a function ϕ(|D|) of |D| ≡ ∑n
j=1 Dj, where

Dj ≡ ∂/∂xj
*5 . The operand function is denoted by F (x) ≡ F (x1, · · · , xn).

Since its support belongs to R n
+ , we can write

F (x) = F (x)
n∏

j=1

θ(xj) = F (x)θ(ξ), (7. 1)

where

ξ ≡ min{x1, · · · , xn}. (7. 2)

∗5 Extension to a function of
∑n

j=1 λjDj with λj > 0 is straightforward.
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It is convenient to make the following transformation of the variables:

x =

∑n
j=1 xj

n
,

uj = xj − xj+1 (j = 1, · · · , n− 1); (7. 3)

conversely,

xk = x +
n−1∑

j=k

uj − 1

n

n−1∑
j=1

juj. (7. 4)

From (7.3), we obtain

Dk =
1

n

∂

∂x
− ∂

∂uk−1

+
∂

∂uk

(
∂

∂u0

≡ ∂

∂un

≡ 0), (7. 5)

so that

|D| =
n∑

k=1

Dk =
∂

∂x
. (7. 6)

Thus, in this coordinate system, the problem essentially reduces to that in the

one-variable case.

From (2.2), therefore, we obtain

ϕ(|D|)F (x) =

∫ x

−0

dy Ω(x− y)
∂

∂y
F (y − x + x), (7. 7)

where F (y − x + x) means F (y − x + x1, · · · , y − x + xn). In writing (7.7), we

have made use of (7.4), that is,

y +
n−1∑

j=k

uj − 1

n

n−1∑
j=1

juj = y − x + xk. (7. 8)

As in the one-variable case, if we can adjust to have Ω(+0) = 0, we can write

ϕ(|D|)F (x) =

∫ x

−0

dy Φ(x− y)F (y − x + x), (7. 9)

where Ω′ = Φ.

Now, we consider the case ϕ(|D|) = |D|−α. From (7.7) and (2.6), we obtain

|D|−αF (x) =

∫ x

−0

dy Yα+1(x− y)
∂

∂y
F (y − x + x). (7. 10)
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If F (x) is a function of x only apart from
∏

j θ(xj) = θ(ξ), (7.10) becomes

|D|−αF (x)θ(ξ) =

∫ x

−0

dy Yα+1(x− y)
∂

∂y
[F (y)θ(y − x + ξ)]. (7. 11)

In particular,

|D|−αθ(ξ) = Yα+1(ξ). (7. 12)

Differentiating (7.11) with respect to −α and setting α = 0, we have

(log |D|)F (x)θ(ξ) =

∫ x

−0

dy [− log(x− y)− γ]
∂

∂y
[F (y)θ(y − x + ξ)]. (7. 13)

In particular,

(log |D|)θ(ξ) = (− log ξ − γ)θ(ξ). (7. 14)

As for the commutator representation, from (7.7) and the definition of a

commutator, we obtain

[ϕ(|D|), f(x)]F (x)

= −
∫ x

−0

dy Ω(x− y)
[
f(x)

∂

∂y
F (y − x + x)− ∂

∂y

(
f(y − x + x)F (y − x + x)

)]

= −
[
Ω(x− y)

(
f(x)− f(y − x + x)

)
F (y − x + x)

]x

−0

+

∫ x

−0

dy
∂

∂y
Ω(x− y) ·

(
f(x)− f(y − x + x)

)
F (y − x + x)

= −
∫ x

−0

dy Φ(x− y)
(
f(x)− f(y − x + x)

)
F (y − x + x), (7. 15)

where we have assumed

lim
ε→0

Ω(ε)[f(x)− f(x− ε)] = 0. (7. 16)

Writing Ψ(v) ≡ −vΦ(v), we obtain the formula

[ϕ(|D|), f(x)]F (x) =

∫ x

−0

dy Ψ(x− y)
f(x)− f(y − x + x)

x− y
F (y − x + x)

=

∫ x+0

0

dv Ψ(v)
f(x)− f(x− v)

v
F (x− v). (7. 17)

Here, Ψ(v) is expressed as follows. Setting f(x) = xj in (7.17), we find

ϕ′(|D|)F (x) = [ϕ(|D|), xj]F (x) =

∫ x+0

0

dv Ψ(v)F (x− v). (7. 18)
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Furthermore, for F (x) = θ(ξ), it reduces to

ϕ′(|D|)θ(ξ) =

∫ ξ

0

dv Ψ(v). (7. 19)

Since this is a function of ξ only as in the one-variable case, we find

Ψ(v) = (d/dv)ϕ′(d/dv)θ(v). (7. 20)
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