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Abstract. Leibniz rules of fractional order and logarithm of differentiations
are presented. They provide infinite order differential operator expressions of
fractional order and logarithm of differentiations. Including higher order cases,
commutation relations involving fractional order and logarithm of differentiations
are also studied. Special values of Riemann’s zeta function appear in higher order
commutation relations involving logarithm of differentiation.

1. Introduction

Since Inf(x) =
∫ x

0
(x−t)n−1

(n−1)1
f(t)dt satisifies dn

dxn Inf(x) = f(x), the integral

Iaf(x) =
1

Γ(a)

∫ x

0

(x− t)a−1f(t)dt, a > 0,

can be regarded as the a-th order indefinite integral. Simplified form of Abel’s

integral equation
∫ x

0
y(t)√
x−t

dt = F (x), F (x) is given, is the first example of such

integral transformation.

Since IaIb = Ia+b and lima→0 Ia = I(= I0), the identity map, {Ia|a ≥ 0} is a

1-parameter semigroup. Its generating operator A is given by

Af(x) = (log x + γ)f(x) +

∫ x

0

log

(
1− t

x

)
f ′(t)dt,

where γ is the Euler constant. We define logarithm of differentiation log
(

d
dx

)
by

−A. It seems this operator did not take attentions of researchers.

The following are two definitions of fractional order differentiations;

dn−af(x)

dxn−a
=

dn

dxn
Iaf(x),

dn−af(x)

dxn−a
= Ia

(
dnf(x)

dxn

)
.
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The first is called Riemann-Liouville’s fractional derivative, and the second is

called Caputo’s fractional derivative. They are different. But although not

widely noticed (cf.[1]), if we consider the domain and range of fractional order

differentiation are the space of Mikusinski’s operators ([10]), they coincide.

Fractional order differentiation and related calculus are called fractional cal-

culus. It is convenient to the study of functions having singularity of the form

x−a. Mainly by this reason, fractional calculus is used in applied mathematics

([8], [9], [12]). On the other hand, the domain and range of fractional calculus

remain unclear. This may be the reason why most of pure mathematicians are

not interested in fractional calculus.

In this paper, assuming g is a Gevrey class function of index α < 1, that is f

is smooth and |f (n)(x)| ≤ Mx(n!)α, the following Leibniz rules are derived.

da

dxa
(fg) =

daf

dxa
g +

∞∑
n=1

a(a− 1) · · · (a− n + 1)

n!

da−nf

dxa−n

dng

dxn
,

log

(
d

dx

)
(fg) =

(
log

(
d

dx

)
f

)
g +

∞∑
n=1

(−1)n−1

n
Inf

dng

dxn
.

Here, da−n

dxa−n means In−a. If a is not a positive integer, these Leibniz rules are not

symmetric in f and g. As for logarithm of differentiation, Nakanishi dicovered a

symmetric Leibniz rule ([11]). But by using these asymmetries, if f is a Gevrey

class function of index α < 1, we obtain

daf(x)

dxa
=

x−a

Γ(1− a)

(
f(x) +

∞∑
n=1

(−1)naxn

(n− a)n!

dnf(x)

dxn

)
,

log

(
d

dx

)
f(x) = −(log x + γ)f(x) +

∞∑
n=1

(−1)n−1xn

n · n!

dnf(x)

dxn
.

These are the first main results in this paper. If f is an entire function, and

|f (n)(x)| = O(rn), n →∞, r < 1, we also have

log

(
d

dx

)
f(log x) =

(−(X + γ) + dX

)
f(X)|X=log x,

dX =
∞∑

k=1

(−1)k−1ζ(k + 1)
dk

dXk
, ζ(k + 1) =

∞∑
n=1

n−(k+1),

−γ + dX =

(
d

dt
log(Γ(1 + t))

)
|t= d

dX
.

These expressions may relate fractional calculus and noncommutative field theory

(NCFT), because the maximal order of differentiation in NCFT is infinite ([5],

cf.[7]).
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By Leibniz rules, we also have

[
da

dxa
, x

]
= a

da−1

dxa−1
,

[
log

(
d

dx

)
, x

]
= I1.

Suggested by these realtions, we use

Ha =

{ ∞∑
n=1

cnx
an−1

∣∣∣∣
∞∑

n=1

|cn|2 < ∞
}

, 0 < a < 1,

Hlog =

{ ∞∑
n=0

cn(log x)n

∣∣∣∣
∞∑

n=0

|cn|2 < ∞
}

as the Hilbert spaces having da

dxa , 0 < a < 1, and R = log
(

d
dx

)
+ γ + log x as

deformed annihilation operators. We take xa and log x as the corresponding

deformed creation operators. The Lie algebras ga and glog, generated by da

dxa

and xa, and by log
(

d
dx

)
and log x respectively, are projective limits of nilpotent

Lie algebras. These suggest there might exist some relations between fractional

calculus and nilpotent analysis (cf.[6]). We set

Ca =

[
da

dxa
, xa

]
, Blog =

[
log

(
d

dx

)
, log x

]
.

Then Ca is a p-Schatten class diagonal form operator and Blog = ζ(2)I + Nlog.

Here p > 1/(1 − a) and Nlog is a generalized nilpotent operator (cf.[14]). In

general,

p︷ ︸︸ ︷
[ da

dxa , [· · · [ da

dxa ,

q︷ ︸︸ ︷
[xa, [· · · , [ xa, Ca], · · · ] is an m-Schatten class operator if

m > 1/((p + 1)(1− a) + q) and

[X1, [· · · , [Xm, Blog] · · · ] = (m + 1)!ζ(m + 2)I + Nlog,m.

Here Xi is either of log
(

d
dx

)
or − log x and Nlog,m is a generalized nilpotent

operator. Therefore, fractional order and logarithm of differentation provide

deformations of canonical commutation relation (cf.[13]). These are the second

main results in this paper.

This paper is organized as follows: §2 reviews fractional calculus. Alternative

definition of fractional calculus by using extended Borel transfromation is also

sketched (cf.[2]). §3 derives Leibniz rules and expresses fractional order and

logarithm of differentiation as infinite order differential operators. Infinite order

differential operator expressions of fractional calculus allows to consider fractional

order and logarithm of differentations of functions defined on R and to investigate

variable change of fractional calculus. These are explained in §4. §5 and §6 deal
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with higher order commutation relations involving fractional calculus. Higher

order commutation relations involving logarithm of differentiation are derived in

§7 and §8.

Acknowledgement. In [2], we have extended Borel transfromation and

applied it to the study of fractional calculus. Fractional calculus was applied to

infinite dimensional analysis in [3]. ga and glog were defined in [4]. But higher

order commutation relations were not considered in [4].

I thank Prof. Fujii for his encouragement and criticism for this paper. I also

thank Prof. Nakanishi, who asked commutation relations of fractional calculus.

2. Review on fractional calculus

Let a be a positive number. We use

Iaf(x) =
1

Γ(a)

∫ x

0

(x− t)a−1f(t)dt, (1)

as the definition of a-th order indefinite integal. Riemann-Liouville’s and Ca-

puto’s fractional derivatives are defined by

dn−a

dxn−a
f(x) =

dn

dxn
Iaf(x),

dn−a

dxn−a
f(x) = Ia

(
dnf(x)

dxn

)
,

respectively ([1]). They are different and db

dxb

(
dc

dxc

)
are not be equal to db+c

dxb+c , in

general.

These ambuigities are resolved if we use f+; f+(x) =

{
f(x), x ≥ 0

0, x < 0
instead

of f , because we have

Iaf(x) =
1

Γ(a)
xa−1

+ ∗ f+(x), u ∗ v(x) =

∫ ∞

−∞
u(x− t)v(t)dt.

In this case, we have da

dxa
db

dxb = da+b

dxa+b . Hence we can denote da

dxa = I−a and Ia = d−a

dx−a .

On the other hand, the constant function 1 is replaced by the Heaviside function

Y and we can not consider da1
dxa . Since

df+(x)

dx
=

df(x)

dx
+ f(0)δ,

δ is the Dirac function, we need distribution in this case (cf.[10]).
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{Ia|a ≥ 0}, I0 = I, the identity map, is a semigroup. Its generating operator

Af(x) = lima→0
dIaf(x)

da
is given by

Af(x) = γf(x) +

∫ x

0

log(x− t)
df+(t)

dt
dt

= (log x + γ)f(x) +

∫ x

0

log

(
1− t

x

)
df(t)

dt
dt.

DEFINITION 1. We define logarithm of differentiation log
(

d
dx

)
by

log

(
d

dx

)
f(x) = −

(
(log x + γ)f(x) +

∫ x

0

log

(
1− t

x

)
df(t)

dt
dt

)
. (2)

The following examples are used later.

da

dxa
xc =

Γ(c + 1)

Γ(c− a + 1)
xc−a,

da

dxa
1 =

1

Γ(1− a)
x−a. (3)

log

(
d

dx

)
xc = −

(
log x + γ −

∞∑
n=1

c

n(n + c)

)
xc. (4)

Here, none of c, −a and c− a are negative integers. We also use

log

(
d

dx

)
(log x)n

= −(log x + γ)(log x)n +
n−1∑

k=0

(−1)n−k+1n!ζ(n− k + 1)

k!
(log x)k. (5)

By (5), we obtain

PROPOSITION 1. Let dx be

dx =
∞∑

k=1

(−1)k−1ζ(k + 1)
dk

dxk
.

Then we have

log

(
d

dx

)
(log x)n =

(−(X + γ) + dX

)
Xn|X=log x. (6)

By (6), if f(x) =
∑

n cnxn satisfies |f (n)(x)| = O(rn), n → ∞, r < 1 on

(positive) real axis, then

log

(
d

dx

)
f(log x) =

(−(X + γ) + dX)f(X)|X=log x.
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There are several alternative definitions of fractional calculus. Among them,

we sketch the definition by Borel transformation, which provides a simple proof

of the formula ea log( d
dx

) = da

dxa .

Let f(z) =
∑∞

n=0 cnz
n, then its Borel transform B[f(ζ)](z) is defined by

B[f ](z) =
∞∑

n=0

cn

n!
zn =

1

2πi

∮
e

z
ζ
f(ζ)

ζ
dζ.

Borel transformation is linear and satisfies

d

dz
B[f(ζ)](z) = B[ζ−1f(ζ)](z), B[fg](z) = B[f ]]B[g],

where u]v is d
dx

∫ x

0
u(x− t)v(t)dt. Originally, Borel transforms of log x and xa,

a /∈ Z, are not defined. But since inverse Borel transformation B−1 is given by

B−1[f ] =
∫∞
0

e−xf(xt)dt, we define Borel transforms of log x and xa by

B[log ζ](z) = log z + γ, B[ζa] =
za

Γ(a + 1)
.

We have

lim
ε→0

B[(ζ + ε)a](z) =
za

Γ(a + 1)
, lim

ε→0
B[log(ζ + ε)] = log z + γ,

only on {z|<z > 0}. Hence extended Borel transformation is defined only for

functions defined on {z|<z > 0}, or at least functions defined on C \ {x ≤ 0}.
We note that since B−1[δ](z) = z−1, δ is the Dirac function, we define B[ζ−1] = δ

in the extended Borel transformation.

It is shown

e]t log x =
e−γt

Γ(1 + t)
xt, e]f =

∞∑
n=0

f ]n

n!
,

where f ]n =

n︷ ︸︸ ︷
f] · · · ]f ([2], (5) follows from the proof of this formula). Hence we

can define

da

dza
B[f(ζ)](z) = B[ζ−af(ζ)](z), log(

d

dz
)B[f(ζ)](z) = −B[log ζf(ζ)](z).

By definitions, we have ea log( d
dz

) = da

dza on the one hand, and

−B[log ζf(ζ)](x) = −(γu(x) +

∫ x

0

log(x− t)
du(t)

dt
dt), u = B[f ],
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on the other hand. Since extended Borel transformation is defined for functions

on positive real axis, this shows definition of logarithm of differentiation by using

Borel transformation coincides with our previous definition.

3. Leibniz rules and infinite order differential operator expressions

Since I1f = If =
∫ x

0
f(t)dt, if g is sufficiently regular, e.g., if g is a Gevrey

class function of index α < 1, that is, g is smooth and |g(n)(x)| ≤ Mx(n!)α, we

have

I1(fg) = (I1f)g − (I2f)g′ + · · ·+ (−1)n−1(Inf)g(n−1) + · · · .

Because we have |Inf(x)| ≤ Cx|x|n
n!

, for some constant Cx > 0.

Replacing f by fa(t) = (x−t)a−1

Γ(a)
f(t) in this equality, and using

Infa(x) =
1

(n− 1)!Γ(a)

∫ x

0

(x− t)n+a−2f(t)dt =
Γ(n + a)

(n− 1)!Γ(a)
In+a−1f(x),

we obtain

Ia(fg) = (Iaf)g − a(Ia+1)f)g′ + · · ·+
+(−1)n−1 Γ(n + a− 1)

(n− 1)!Γ(a)
(Ia+n−1f)g(n−1) + · · · . (7)

if g is a Gevrey class function of index α < 1. Then by the definition of Riemann-

Liouville’s fractional derivative, we have

PROPOSITION 2. If g is a Gevrey class function of index α < 1, then

da

dxa

(
f(x)g(x)

)
=

daf(x)

dxa
g(x) + a

da−1f(x)

dxa−1

dg(x)

dx
+ · · ·+

+
a(a− 1) · · · (a− n + 1)

n!

da−nf(x)

dxa−n

dng(x)

dxn
+ · · · . (8)

Here da−nf(x)
dxa−n means In−af(x).
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Since d
dt

(dtf
dxt ) = log( d

dx
)(dtf

dxt ), we have

d

dt

(
dt

dxt
(fg)

)

=
d

dt

(
dtf

dxt
g + t

dt−1f

dxt−1
g′ + · · ·+ t · · · (t− n + 1)

n!

dt−nf

dxt−n
g(n) + · · ·

)

= log

(
d

dx

)(
dtf

dxt

)
g +

dt−1f

dxt−1
g′ + t

d

dt

(
dt−1f

dxt−1

)
g′ + · · ·+

+
(t− 1) · · · (t− n + 1)

n!

dt−nf

dxt−n
g(n) +

+t
d

dt

(
(t− 1) · · · (t− n + 1)

n!

dt−nf

dxt−n
g(n)

)
+ · · · ,

by (8). Hence we obtain

PROPOSITION 3. If g is a Gevrey class function of index α < 1, then

log

(
d

dx

)(
f(x)g(x)

)

=

(
log

(
d

dx

)
f(x)

)
g(x) +

∞∑
n=1

(−1)n−1

n

(
Inf(x)

)dng(x)

dxn
. (9)

If g = c, a constant function, then we have

da

dxa
(f · c) =

(
daf

dxa

)
c, log

(
d

dx

)
(f · c) =

(
log

(
d

dx

)
f

)
c

by (8) and (9). On the other hand, if a is not a positive integer, we have

da−n

dxa−n
1 =

1

Γ(n + 1− a)
xn−a 6= 0,

for all positive integers n, by (3). We also have log( d
dx

)1 = −(log x + γ) 6= 0 by

(4). Hence using f(x) = 1 · f(x) and

a(a− 1) · (a− n + 1)

n!Γ(n + 1− a)
=

(−1)n−1a

n!(n− a)Γ(1− a)
,

we obtain by (8) and (9)

THEOREM 1. If f is a Gevrey class function of index α < 1, then

daf(x)

dxa
=

x−a

Γ(1− a)

(
f(x) +

∞∑
n=1

(−1)n−1axn

(n− a)n!

dfn(x)

dxn

)
, (10)

log

(
d

dx

)
f(x) = −(log x + γ)f(x) +

∞∑
n=1

(−1)n−1xn

n · n!

dnf(x)

dxn
. (11)
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NOTE. (10) does not have meanings if a is a positive integer. But since
1

Γ(1−a)
= sin(πa)Γ(a)

π
, we have

dm−εf(x)

dxm−ε

=
sin(πε)Γ(m− ε)xε

π

(
x−mf(x) +

∞∑

n6=m

(m− ε)xn−m

(n−m + ε)n!

dmf(x)

dxm

)
+

+
sin(πε)Γ(m− ε)xε

πε

(m− ε)

m!

dmf(x)

dxm
.

Hence in the sense of pointwise convergence, we obtain

lim
a→m

x−a

Γ(1− a)
(f(x) +

∞∑
n=1

(−1)n−1axn

(n− a)n!

dnf(x)

dxn

)
=

dmf(x)

dxm
.

4. Fractional calculus of functions defined on domains other than R+

Originally, fractional calculus is defined for functions defined on R+ = {x|x ≥
0}. But (10) and (11) allow to investigate fractional order and logarithm of

differentiations for functions defined on a domain other than R+.

If f is a Gevrey class function of index α < 1 defined on D ⊂ C; D is

simply connected and 0 /∈ D, we can define its fractional order and logarithm

of differentiations by (10) and (11). They also allow to consider fractional order

and logarithm of differentiations of functions defined on covering spaces of such

domains. In §5 and §7, we use the cases D = {z||z| = 1, z 6= −1} and its covering

space {eiθ| − π/a < θ < π/a}, 0 < a < 1.

To define fractional order differentiation and logarithm of differentiation of

functions defined on R, we define functions xa
± and log± x on R by

xa
± =

{
xa, x ≥ 0,

e±aπi|x|a, x < 0,
log± x =

{
log x, x ≥ 0,

log x± πi, x < 0.

DEFINITION 2. Let f be a Gevrey class function of index α < 1 defined on R.

Then we set

da

dxa±
f(x) =

x−a
±

Γ(1− a)

(
f(x) +

∞∑
n=1

(−1)n−1axn

(n− a)n!

dnf(x)

dxn

)
, (12)

log±

(
d

dx

)
f(x) = −(log± x + γ)f(x) +

∞∑
n=1

(−1)n−1xn

n · n!

dnf(x)

dxn
. (13)
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On the other hand, the operators

xa da

dxa
=

1

Γ(1− a)

(
1 +

∞∑
n−1

(−1)n−1axn

(n− a)n!

dn

dxn

)
,

log

(
d

dx

)
+ log x = −γ +

∞∑
n=1

(−1)n−1xn

n · n!

dn

dxn

are defined for Gevrey class functions of index α < 1 on R. {xt dt

dxt |t ≥ 0} is not

a semigroup. But we have

d

dt

(
xt dt

dxt

)
|t=0 = log

(
d

dx

)
+ log x.

We can investigate variable change x → x(t) of fractional order or logarithm

of differentiation by using (10) and (11), if the change x → x(t) preserves ori-

entation. If x → x(t) reverses orientation, we need to use (12) and (13). For

example, if x = ct, we have

da

dta±
= ca

±
da

dxa±
, log±(

d

dt
) = log± c + log±(

d

dx
).

5. Deformed Hardy space Ha

By (8), we have [ da

dxa , x] = a da−1

dxa−1 .Therefore Hilbert spaces such as L2(R+)

are not appropriate to treat commutation relations involving da

dxa , if a is not an

integer. We propose

Ha =

{ ∞∑
n=1

cnxan−1|
∞∑

n=1

|cn|2 < ∞
}

(14)

as the Hilbert space to treat commutation relations involving da

dxa . In (14), a is

arbitrary. But we assume 0 < a < 1 in the rest.

H1 = H is the Hardy space. Hence we may regard Ha to be a deformed Hardy

space. We define a Hilbert space isometry ρa : Ha → H by

ρa(x
an−1) = xn−1.

We regard f(x) ∈ Ha to be a function on {eiθ|−π/a < θ < π/a}. Then the inner

product (f, g) of f, g ∈ Ha is given by

(f, g) =
a

2π

∫ π/a

−π/a

f(eiθ)g(eiθ)dθ.
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The function xa does not belong to Ha. But the multiplication operator xa :

f(x) → xaf(x) is defined. Since (xaxan−1, xam−1) = (xan−1, xa(m−1)−1), m ≥ 2,

and

(xaxan−1, xa−1) =
a

2π

∫ π/a

−π/a

eaniθdθ = 0,

we have

xa† = x−a; x−axan−1 = xa(n−1)−1, n ≥ 2, x−axa−1 = 0.

Hence as an operator on Ha, we have

da

dxa
xan−1 =

Γ(an)

Γ(a(n− 1))
xa(n−1)−1, n ≥ 2,

da

dxa
xa−1 = 0. (15)

dan

dxan also maps Ha into Ha. Owing to the second equality of (15), we do not

have ( da

dxa )n = dan

dxan in general.

NOTE. Precisely saying, dan

dxan is not defined on Ha. We can introduce Sobolev

norm and Sobolev space Wan
a by using these derivations. But we do not use this

aspect in the rest.

We define diagonal form operators Aa,± by

Aa,+xan−1 =
Γ(a(n + 1))

Γ(an)
xan−1,

Aa,−xan−1 =
Γ(an)

Γ(a(n− 1))
xan−1, n ≥ 2, Aa,−xa−1 = 0.

By definitions, we have

da

dxa
= x−aAa,− = Aa,+x−a, (

da

dxa
)† = Aa,−xa = xaAa,+. (16)

LEMMA 1. Let Ca be [ da

dxa , xa]. Then we have

Ca = Aa,+ − Aa,−. (17)

Proof. By (16), we have Ca = Aa,+x−axa − xax−aAa,− = Aa,+ −Aa,−. Hence we

obtain Lemma.

LEMMA 2. Ca is a p-Schatten class operator if p > 1/(1− a) and

lima→1 ρaCaρ
−1
a = I by the strong topology of operators.
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Proof. Ca is a diagonal form operator where the diagonal element ca,n is

ca,n =
Γ(a(n + 1))

Γ(an)
− Γ(an)

Γ(a(n− 1))
, n ≥ 2,

by (17). Since Γ(an) =
√

2πe−an(an)an−1/2
(
1 + O( 1

n
)
)

by Stirling’s formula, we

have

Γ(a(n + 1))

Γ(an)
= e−a(a(n + 1))a

(
1 +

1

an

)an−1/2(
1 + O

(
1

n

))
.

Hence we get

ca,n =
(
a(n + 1)

)a
(

1 + O

(
1

n

))
− (an)a

(
1 + O

(
1

n

))
= ana−1

(
1 + O

(
1

n

))
.

Therefore lima→1 ca,n = 1 on the one hand, and
∑∞

n=1 |ca,n|p < ∞ if p > 1/(1−a)

on the other hand. Hence we have Lemma.

6. Higher order commutation relations involving fractional order dif-

ferentiation

In this section, we consider da

dxa and xa to be operators on Ha.

As opertors on Ha, neither da

dxa nor xa commute with Ca. Hence there are

non-trivial higher order commutation relations. As for xa, we have

[xa, Ca]x
an−1 = (ca,n − ca,n+1)x

a(n+1)−1.

Since ca,n = ana−1(1 + O(1/n)), we have

ca,n − ca,n+1 = −a2na−2

(
1 + O

(
1

n

))
.

Repeating this, we obtain

m︷ ︸︸ ︷
[xa, [· · · , [ xa, Ca] · · · ]xan−1

= (−1)mam+1na−(m+1)

(
1 + O

(
1

n

))
xa(n+m)−1. (18)

As for da

dxa , we have

[
da

dxa
, Ca

]
xan−1 = (ca,n − ca,n+1)

Γ(na)

Γ((n− 1)a)
xa(n−1)−1, n ≥ 2.



FRACTIONAL CALCULUS 141

Hence we have
[

da

dxa
, Ca

]
xan−1 = a2e−an2(a−1)

(
1 + O

(
1

n

))
xa(n−1)−1, n ≥ 2.

Repeating this, we obtain

m︷ ︸︸ ︷[
da

dxa
, [· · · ,

[
da

dxa
, Ca

]
· · ·

]
xan−1

= am+1e−man(m+1)(a−1)
(
1 + O(

1

n
)
)
xa(n−m)−1, n > m. (19)

By (18) and (19), we have

p︷ ︸︸ ︷[
da

dxa
,

[
· · · ,

[
xa,

q︷ ︸︸ ︷[
· · · ,

[
xa, Ca

]
· · ·

]
xan−1

= (−1)qap+qe−pan(p+1)(a−1)−q

(
1 + O

(
1

n

))
xa(n−p+q)−1, (20)

where we assume n > p. Hence we obtain

PROPOSITION 4. Let Im be the m-Schatten ideal. Then

p︷ ︸︸ ︷[
da

dxa
,

[
· · · ,

[
xa,

q︷ ︸︸ ︷[
· · · ,

[
xa, Ca

]
· · ·

] {
∈ Im, m > 1

(p+1)(1−a)+q
,

/∈ Im, m ≤ 1
(p+1)(1−a)+q

.
(21)

DEFINITION 3. We denote the Lie algebra generated by da

dxa and xa by ga.

NOTE 1. We do not consider topology of ga. Hence Y ∈ ga takes the following

form.

Y =
m∑

j=1

cj[Xj1 , [· · · , [Xj,nj−1, Xj,nj
] · · · ].

Here Xj,k is either da

dxa or xa.

NOTE 2. I does not belong to ga. We denote CI⊕ ga by g̃a.

da

dxa is unbounded. But other elements of ga are bounded by Proposition 4.

Therefore ia,p = ga ∩ Ip is an ideal of ga. By Proposition 4, we also have

⋂
p>0

ia,p = {0}. (22)
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Since ia,p ⊂ ia,q, p < q, there is a homomorphism

jp
q : ga/ia,q → ga/ia,p, p < q.

By definition, we have jp
q ◦jq

r = jp
r , if p < q < r. Hence if {pn} is a series such that

p1 > p2 > · · · , limn→∞ pn = 0, then we have a projective system {ga/ia,pn ; jpn+1
pn

}.

NOTE. ga/ip looks like a truncation. But (21) shows that it is not a truncation.

By definition, each ga/ia,pn is a nilpotent Lie algebra and by (22), we have

lim
←
{ga/ia,pn ; jpn+1

pn
} ∼= ga. (23)

Hence we obtain

THEOREM 2. ga is a projective limit of nilpotent Lie algebras.

7. The spaces Hlog and Flog

By (9), we have [log( d
dx

), x] = I1, the indefinite integral operator. Hence

spaces such as L2(R+) are not appropriate to the study of commutation relations

involving logarithm of differentiation. We propose

Hlog =

{ ∞∑
n=0

cn(log x)n|
∞∑

n=0

|cn|2 < ∞
}

(24)

as the Hilbert space to treat commutation relations involving logarithm of dif-

ferentiation.

Let f(w) =
∑∞

n=0 cnw
n, w = log x, be an element of Hlog. Then considering

f(w) to be a function on S1 \ {−1} = {x ∈ C||x| = 1, x 6= −1}, f(w) becomes

a power series f(iθ) =
∑∞

n=0 cn(iθ)n, −π < θ < π. Therefore we may regard

Hlog to be a function space on (−π, π). As a Hilbert space, we can identify Hlog

and W 1/2(−π, π), the Sobolev 1/2-space over (−π, π). {(log x)n|n = 0, 1, . . .} is

a complete basis of Hlog. It is not an orthogonal system. We may use Legendre

polynomials of log x as a complete orthogonal basis of Hlog. But in the rest, we

do not use these arguments.

Let log x be the multiplication operator log x : f(log x) → log xf(log x). Then
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by (5), we have

[log(
d

dx
), log x](log x)n

= −(log x)n+1(log x + γ) +
n∑

k=0

(−1)n−k(n + 1)!ζ(n + 2− k)

k!
(log x)k +

+(log x)n+1(log x + γ)−
n−1∑

k=0

(−1)n−k+1n!ζ(n + 1− k)

k!
(log x)k+1

=
n∑

k=1

(−1)n−k
((n + 1)!

k!
− n!

(k − 1)!

)
ζ(n + 2− k)(log x)k +

+(−1)n(n + 1)!ζ(n + 2)

=
n∑

k=0

(−1)n−k(n + 1− k)
n!

k!
ζ(n + 2− k)(log x)k

= ζ(2)(log x)n − 2nζ(3)(log x)n−1 + · · · .

Hence we obtain

LEMMA 3. We have
[
log

(
d

dx

)
, log x

]
= ζ(2)I + Nlog. (25)

Here Nlog satisfies Nn
log(log x)m = 0, n > m.

We can regard log x as a deformed creation operator. But we can not regard

log( d
dx

) as a deformed annihilation operator, because it does not annihilate 1.

We use

R = log(
d

dx
) + log x + γ,

as a deformed annihilation operator instead of log( d
dx

). Then, we have

[R, log x] =

[
log

(
d

dx

)
, log x

]
= ζ(2)I + Nlog.

In the rest, we denote [R, log x] by Blog,1. We also use Blog instead of Blog,1.

R and Nlog are unbounded operators on Hlog. As a convenient representation

space of R (and log( d
dx

)), we use

Flog =

{
f(log x)|f(x) =

∞∑
n=0

anx
n,

∣∣∣∣
dnf(x)

dxn

∣∣∣∣ = O(rn), n →∞, r < 1

}
.
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We also set F = {f(x) =
∑∞

n=0 anx
n||dnf(x)

dxn | = O(rn), n →∞, r < 1}. Flog is a

dense subspace of Hlog. But we do not consider topologies of F and Flog, although

we consider convergence of a series {fn(x)} or {fn(log x)}, where fn(x) ∈ F.

We define a vector space isomorphism κ : Flog
∼= F by κ(f(log x)) = f(x).

By definition, we have κ ◦ log x ◦ κ−1 = x, where log x and x are regarded as

multiplication operators on Flog and on F. By (6), we also have

κ ◦ log

(
d

dx

)
◦ κ−1 = −(x + γ) + dx. (26)

DEFINITION 4. We denote the Lie algebra generated by log( d
dx

) and log x by

glog.

Here, log( d
dx

) and log x are considered to be operators on Flog. The Lie algebra

generated by R and log x is denoted by gR. Similarly to ga, we do not consider

topologies of glog and gR.

glog and gR are different. But as for g̃log = CI⊕ glog, we have

g̃log = CI⊕ glog = CI⊕ gR. (27)

By (26), we have

LEMMA 4. κglogκ
−1 is generated by −(x + γ) + dx and x. Similarly, κgRκ−1 is

generated by dx and x.

We denote κ ◦ Blog ◦ κ−1 = Bdx = Bdx,1. Then we have

Bdx = [dx, x] = ζ(2)I +
∞∑

k=1

(−1)k(k + 1)ζ(k + 2)
dk

dxk
.

Hence we obtain

Nlog

(
f(log x)

)
=

∞∑

k=1

(−1)k(k + 1)ζ(k + 2)
dkf(X)

dXk
|X=log x.

8. Higher order commutation relations involving logarithm of differ-

entiation

In this Section, we consider log( d
dx

) and log x acting on Flog, and dx and x

acting on F.

Since [x, dk

dxk ] = k dk−1

dxk−1 , we have

[x, Bdx,1] = −2ζ(3)I +
∞∑

k=1

(−1)k+1(k + 1)(k + 2)ζ(k + 3)
dk

dxk
.
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DEFINITION 5. We define Bdx,m inductively by

Bdx,m = [x, Bdx,m−1], m ≥ 2. (28)

κ−1 ◦ Bdx,m ◦ κ is denoted by Blog,m.

Directly, Blog,m is defined by

[log x, Blog,m−1] = Blog,m, m ≥ 2.

By definition, we have

Bdx,m = (−1)m(m + 1)!ζ(m + 2)I +

+
∞∑

k=1

(−1)k+m (k + m)!

k!
ζ(k + m + 1)

dk

dxk
, (29)

= (−1)m(m + 1)!ζ(m + 2)I + Ndx,m, (30)

where Ndx,m is a generalized nilpotent operator. That is, we have

Nk
dx,m(xl) = 0, k > l.

Each Bdx,m, m ≥ 1, is a constant coefficient linear differential operator of degree

infinite. Since the coefficient of k-th degree term of Bdx,m is evaluated by km, we

have

[Bdx,p, Bdx,q] = 0, p ≥ 1, q ≥ 1, (31)

as operators on F.

By (31) and (26), we have

[log(
d

dx
), Blog,m] = −[log x, Blog,m]. (32)

Hence we obtain

THEOREM 3. Let p + q be equal to m. Then we have

p︷ ︸︸ ︷[
log

(
d

dx

)
,

[
· · · ,

[
log

(
d

dx

)
,

q︷ ︸︸ ︷[
log x, · · · ,

[
log x, Blog,m

]
· · ·

]

= (−1)q(m + 1)!ζ(m + 2)I + (−1)pNlog,m. (33)

Here, Nlog,m = κ−1 ◦Ndx,m ◦ κ is a generalized nilpotent operator.
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By (29), explicit form of Nlog,m is given by

Nlog,m

(
f(log x)

)
=

∞∑

k=1

(−1)k+m (k + m)!

k!
ζ(k + m + 1)

dkf(X)

dXk
|X=log x.

By (32), we have [log( d
dx

), glog] = [log x, glog] and so on. We set

ilog,1 = [log x, glog], ilog,m = [log x, ilog,m−1], m ≥ 2. (34)

ilog,m is an Abelian ideal of glog and ilog,n, n < m. As a vector space, ilog,m is

spanned by {Blog,k : k ≥ m}. glog/ilog,1 is an Abelian Lie algebra and glog/ilog,2

is isomorphic to Heisenberg Lie algebra. Hence we may consider glog to be an

Abelian extension of Heisenberg Lie algebra. We denote

kp
q : glog/ilog,q → glog/ilog,p, q > p.

Then, since ∩m≥1ilog,m = {0}, we have

glog
∼= lim

←
{glog/ilog,m; km

m+1}.

Since each glog/ilog,m is a nilpotent Lie algebra, we obtain

THEOREM 4. glog is a projective limit of nilpotent Lie algebras.

By (26), we have [R, Blog,m] = 0 and

[log x, gR] = ilog,1.

Hence ilog,m, m ≥ 1, is contained in gR, and gR is also a projective limit of

nilpotent Lie algebras. Similarly to glog, gR can be regarded as an Abelian

extension of Heisenberg Lie algebra.
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