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Abstract. We shall show that any two quadrangulations on the sphere with n
vertices can be transformed into each other by at most 6n − 32 diagonal slides
and rotations if n ≥ 6.

1. Introduction

A quadrangulation G on a closed surface F 2 is a map of a simple graph (with

no loops and no multiple edges) embedded on F 2 such that each face is quadri-

lateral. Suppose that a quadrangulation G has a hexagonal region v1v2v3v4v5v6

with unique diagonal v1v4 and no inner vertices. The diagonal slide is an op-

eration replacing the diagonal v1v4 with v2v5, or with v3v6 (see Figure 1). If a

diagonal slide yields multiple edges or loops, then we don’t apply it. This op-

eration clearly transforms a quadrangulation to another quadrangulation on the

same surface.
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Figure 1 The diagonal slide.

Let f be a 2-cell region of F 2, bounded by a cycle of length 4 in G, which
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Figure 2 The diagonal rotation.

contains only a single vertex u of degree 2. Let v1, v2, v3 and v4 be four vertices

of G lying on the boundary of f in this order and assume that u is adjacent

to v1 and v3. The diagonal rotation is an operation replacing the edges uv1

and uv3 with uv2 and uv4, respectively. The diagonal rotation also transforms

a quadrangulation into a quadrangulation on the same surface (see Figure 2).

Two quadrangulations G and G′ on a closed surface F 2 are said to be equivalent

to each other if they can be transformed into each other by a finite sequence of

diagonal slides and diagonal rotations, up to homeomorphism.

The following theorem has been proved by the first author of the paper [3],

and related topics are in [4, 5].

THEOREM 1. For any closed surface F 2, there exists a positive integer M(F 2)

such that any two bipartite quadrangulations G1 and G2 with |V (G1)| = |V (G2)|
≥ M(F 2) are equivalent to each other under diagonal slides and diagonal rota-

tions, up to homeomorphism.

In this paper, we deal with quadrangulations only on the sphere S2. It is

known that every quadrangulation on S2 is bipartite, and M(S2) = 4 in the

above theorem. In this paper, focusing on the number of diagonal slides and

rotations needed to transform given two quadrangulations, we shall prove the

following.

THEOREM 2. Any two quadrangulations G1 and G2 with |V (G1)| = |V (G2)| =
n on the sphere can be transformed into each other, up to homeomorphism, by at

most 6n− 32 diagonal slides and rotations if n ≥ 6.

This research for quadrangulations has been motivated by the earlier works

for diagonal flips in triangulations; e.g., see [1, 2, 6]. (A triangulation on a closed

surface F 2 is a graph on F 2 such that each face is triangular, and a diagonal

flip of an edge e is to replace e in the quadrilateral formed by the two triangular

faces sharing e by another diagonal.)
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Figure 3 The standard form of quadrangulations on the sphere.

2. Proof of the theorem

The vertex set V (G) of a bipartite graph G can be uniquely decomposed into

two independent sets, called the partite sets of G. We denote these by VB(G) and

VW (G) respectively and always consider a fixed 2-vertex coloring which assigns

black to each vertex in VB(G) and white to one in VW (G).

If a quadrangulation G is bipartite, then{v1, v3, v5}and{v2, v4, v6} in Figure 1

are contained in VB(G) and VW (G) separately before and after the deformation.

So a diagonal slide preserves the bipartiteness of quadrangulations and does not

change the partite sets. On the other hand, a diagonal rotation also preserves

the bipartiteness but change the partite sets, that is, it changes the color of u

in Figure 2. Thus, both a diagonal slide and a diagonal rotation are needed to

transform two bipartite quadrangulations with the same number of vertices but

different size of partite sets.

Since both of diagonal slide and diagonal rotation preserve the bipartiteness

of quadrangulations, a bipartite quadrangulation and a non-bipartite one on a

same surface can never be equivalent to each other even if they have the same

and sufficiently large number of vertices. The following lemma is just an exercise.

LEMMA 3. Every quadrangulation on the sphere is bipartite.

Let Γn denote a complete bipartite graph K2,n+2 embedded on the sphere

as a quadrangulation (see Figure 3). Note that Γn has n + 2 vertices of degree

2 and two vertices of degree n + 2. Thus, Γ0 represents the unique minimum

quadrangulation on the sphere with 4 vertices. We call it a standard form of

quadrangulations on the sphere.

Let G be a quadrangulation on the sphere. Let u and v be two vertices of

G lying on the boundary 4-cycle of a face of G but are not adjacent on the 4-



108 A. NAKAMOTO AND Y. SUZUKI

cycle. We call {u, v} a diagonal pair of vertices. To prove Theorem 2, we define

a constant dG(u, v) for a diagonal pair {u, v} by:

dG(u, v) = 2 deg u + deg v.

LEMMA 4. Let G be a quadrangulation on the sphere with n vertices and let b

and b′ be a diagonal pair. Then G can be transformed into Γn−4, up to homeo-

morphism, by 3n− 6− (2 deg b + deg b′) diagonal slides and diagonal rotations.

Proof. Let bwb′w′ be a face of G where b, b′ ∈ VB(G) and w,w′ ∈ VW (G). We

first suppose that deg w ≥ 3 and let b, b′, b1, b2, . . . , bl be the neighbors of w lying

in this order. If b1 has degree 2, we apply a diagonal rotation around b1. If b1

has degree at least 3, then let w1, w2 be two distinct white vertices adjacent to b1

such that wb′w1b1 and wb1w2b2 form two faces of G sharing the edge wb1. Under

these conditions, if w2 is not adjacent to b′, then we apply a diagonal slide of wb1

to join b′ and w2 and we can increase dG(b, b′) by 1. If w2 is adjacent to b′, then

we can replace wb′ with bw1 since bw1 /∈ E(G) by the planarity. Note that this

operation decreases the degree of b′ but increases that of b. Therefore in both

cases, applying exactly one operation, we can increase dG(b, b′) by at least 1.

Next, suppose that deg w = 2 and let ω1 be the white vertex such that bwb′ω1

bounds a face of G. If ω1 = w′, then G consists of only four vertices {b, b′, w, w′}
and is isomorphic to Γ0. If ω1 6= w′, then we carry out the same deformation

inside the quadrangle bw′b′ω1 not including w as we did for the bw′b′w. (Now, if

deg ω1 = 2, let ω2 be the vertex such that bω1b
′ω2 forms a face of G.)

Eventually, this algorithm stops when ωn−3 = w′ and we get a sequence of

vertices w = ω0, ω1, ω2 . . . , ωn−3 = w′ such that each of them has degree 2 and

each bωkb
′ωk+1 bounds a face of the quadrangulation where the subscripts are

taken modulo n − 2. This final form is clearly isomorphic to Γn−4, in which

both b and b′ have degree n − 2, and dΓn−4(b, b
′) = 3n − 6. Since one diagonal

slide or diagonal rotation corresponds to the increment 1 of dG(b, b′) through the

above deformations, the total number of those diagonal slides and rotations in

this algorithm does not exceed:

dΓn−4(b, b
′)− dG(b, b′) = 3n− 6− (2 deg b + deg b′).

Thus, the lemma follows.

Now we shall prove Theorem 2.

Proof of Theorem 2. First, we shall estimate the number of diagonal slides and

rotations which transform a given quadrangulation G into the standard form
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Γ4

Figure 4 Cube transformed into Γ4.

Γn−4. We would like to choose a diagonal pair {b, b′} in G so as to maximize

dG(b, b′) = 2 deg b + deg b′.
If n ≥ 9, there is a vertex of degree at least 4. This follows from the formula

for quadrangulations
∑

i≥2

(4− i)Vi = 8

where Vi stands for the number of vertices of degree i. Choose such a vertex as b.

Since a quadrangulation has no vertex of degree 1, we have dG(b, b′) ≥ 2×4+2 =

10 and we need at most 3n−16 diagonal slides and rotations to obtain Γn−4 from

G.

Now, we consider the case when the number of vertices n is less than 9.

Assume that n = 8, G either has a vertex of degree 4 or is isomorphic to a

cube with 8 vertices by the above formula again. Even if the latter happens, the

number of operations, which transform G into Γ4, is at most 4 (see Figure 4).

Next, we use the complete list of quadrangulations on the sphere with 4 ≤
n ≤ 7 in Figure 5. When n = 7, it is easy to check that the numbers of operations

transforming those graphs into Γ3 are at most 2. Furthermore, if n = 6, a single

diagonal rotation is sufficient for the theorem.

At last, consider any two quadrangulations G1 and G2 with n vertices on

the sphere. Since each of them can be transformed into Γn−4, G1 and G2 can

be transformed into each other via Γn−4 by twice many operations as shown

above. For any integer n ≥ 6, 6n− 32 diagonal slides and rotations are sufficient

and hence the theorem holds. (Note that if n = 4, 5, no diagonal slide and

diagonal rotation is needed since each number of vertices admits the unique

quadrangulation.)

3. Lower bounds

In this section, we shall estimate a lower bound for the number of diagonal slides

and rotations which transform a given quadrangulation into another and show
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n = 4 n = 5 n = 6

n = 7

Figure 5 Quadrangulations on the sphere with n ≤ 7.

that the linear order of the bound in Theorem 1 is best possible with respect to

the number of vertices n of quadrangulations.

Let G and G′ be two quadrangulations on the sphere with V (G) = {v1, . . . vn}
and V (G′) = {v′1, . . . v′n} and suppose that

deg v1 ≤ · · · ≤ deg vn; deg v′1 ≤ · · · ≤ deg v′n.

Then we define the degree difference D(G,G′) by:

D(G,G′) =
n∑

i=1

| deg vi − deg v′i|.

THEOREM 5. Let G and G′ be two quadrangulations on the sphere. Any se-

quence of diagonal slides and rotations which transforms G into G′ contains at

least 1
4
D(G,G′) those deformations.

Proof. Let Dσ denote the number of diagonal slides and rotations in the sequence

and suppose that each vertex vi of G corresponds to a vertex v′σ(i) of G′ through

the sequence. We need at least | deg vi − deg v′σ(i)| diagonal deformations to

adjust the degree of vi while each of them changes the degree of four vertices

simultaneously. Thus,

Dσ ≥ 1

4

n∑

i=1

| deg vi − deg v′σ(i)|.

Considering the permutation σ over {1, . . . , n}, we have that

Dσ ≥ 1

4
min

σ

n∑

i=1

| deg vi − deg v′σ(i)|.
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Figure 6 Quadrangulation with vertices of degree 3 and 4.

It is not so difficult to show that 1
4
D(G,G′) gives the right hand of this

inequality. Let di = deg vi and d′i = deg v′i and assume that d1 ≤ · · · ≤ dn and

d′1 ≤ · · · ≤ d′n. We can easily show the following inequality by a routine.

(|di − d′k|+ |dj − d′h|)− (|di − d′h|+ |dj − d′k|) ≤ 0 (i < j; k < h)

For example, when d′k ≤ di ≤ d′h ≤ dj, then

(|di − d′k|+ |dj − d′h|)− (|di − d′h|+ |dj − d′k|) = 2(di − d′h) ≤ 0.

This implies that

n∑

i=1

|di − d′i| ≤
n∑

i=1

|di − d′σ(i)|.

Thus, we got a conclusion.

The standard form Γn−4 has the degree sequence (2, . . . , 2, n−2, n−2) which

contains n − 2 2’s. On the other hand, we can construct a quadrangulation

Gn of sufficiently large size n = 8 + 4m with degree sequence (3, . . . , 3, 4, . . . , 4)

including eight 3’s and n − 8 4’s (see the quadrangulation given in Figure 6).

Then, we have:

D(Γn−4, Gn) = 8 · (3− 2) + (n− 10) · (4− 2) + 2 · (n− 2− 4) = 4n− 40.

Thus, we need at least n − 10 diagonal slides and rotations to transform Gn

into Γn−4, by Theorem 5. This example implies that the order of the bound in

Theorem 2 is the best, as mentioned above.
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