DIAGONAL SLIDES AND ROTATIONS IN QUADRANGULATIONS ON THE SPHERE

By
Atsuhiro Nakamoto and Yusuke Suzuki
(Received September 1, 2008; Revised February 27, 2009)

Abstract

We shall show that any two quadrangulations on the sphere with n vertices can be transformed into each other by at most $6 n-32$ diagonal slides and rotations if $n \geq 6$.

1. Introduction

A quadrangulation G on a closed surface F^{2} is a map of a simple graph (with no loops and no multiple edges) embedded on F^{2} such that each face is quadrilateral. Suppose that a quadrangulation G has a hexagonal region $v_{1} v_{2} v_{3} v_{4} v_{5} v_{6}$ with unique diagonal $v_{1} v_{4}$ and no inner vertices. The diagonal slide is an operation replacing the diagonal $v_{1} v_{4}$ with $v_{2} v_{5}$, or with $v_{3} v_{6}$ (see Figure 1). If a diagonal slide yields multiple edges or loops, then we don't apply it. This operation clearly transforms a quadrangulation to another quadrangulation on the same surface.

Figure 1 The diagonal slide.
Let f be a 2-cell region of F^{2}, bounded by a cycle of length 4 in G, which

[^0]

Figure 2 The diagonal rotation.
contains only a single vertex u of degree 2 . Let v_{1}, v_{2}, v_{3} and v_{4} be four vertices of G lying on the boundary of f in this order and assume that u is adjacent to v_{1} and v_{3}. The diagonal rotation is an operation replacing the edges $u v_{1}$ and $u v_{3}$ with $u v_{2}$ and $u v_{4}$, respectively. The diagonal rotation also transforms a quadrangulation into a quadrangulation on the same surface (see Figure 2). Two quadrangulations G and G^{\prime} on a closed surface F^{2} are said to be equivalent to each other if they can be transformed into each other by a finite sequence of diagonal slides and diagonal rotations, up to homeomorphism.

The following theorem has been proved by the first author of the paper [3], and related topics are in $[4,5]$.

THEOREM 1. For any closed surface F^{2}, there exists a positive integer $M\left(F^{2}\right)$ such that any two bipartite quadrangulations G_{1} and G_{2} with $\left|V\left(G_{1}\right)\right|=\left|V\left(G_{2}\right)\right|$ $\geq M\left(F^{2}\right)$ are equivalent to each other under diagonal slides and diagonal rotations, up to homeomorphism.

In this paper, we deal with quadrangulations only on the sphere S^{2}. It is known that every quadrangulation on S^{2} is bipartite, and $M\left(S^{2}\right)=4$ in the above theorem. In this paper, focusing on the number of diagonal slides and rotations needed to transform given two quadrangulations, we shall prove the following.

THEOREM 2. Any two quadrangulations G_{1} and G_{2} with $\left|V\left(G_{1}\right)\right|=\left|V\left(G_{2}\right)\right|=$ n on the sphere can be transformed into each other, up to homeomorphism, by at most $6 n-32$ diagonal slides and rotations if $n \geq 6$.

This research for quadrangulations has been motivated by the earlier works for diagonal flips in triangulations; e.g., see [1, 2, 6]. (A triangulation on a closed surface F^{2} is a graph on F^{2} such that each face is triangular, and a diagonal flip of an edge e is to replace e in the quadrilateral formed by the two triangular faces sharing e by another diagonal.)

Figure 3 The standard form of quadrangulations on the sphere.

2. Proof of the theorem

The vertex set $V(G)$ of a bipartite graph G can be uniquely decomposed into two independent sets, called the partite sets of G. We denote these by $V_{B}(G)$ and $V_{W}(G)$ respectively and always consider a fixed 2-vertex coloring which assigns black to each vertex in $V_{B}(G)$ and white to one in $V_{W}(G)$.

If a quadrangulation G is bipartite, then $\left\{v_{1}, v_{3}, v_{5}\right\}$ and $\left\{v_{2}, v_{4}, v_{6}\right\}$ in Figure 1 are contained in $V_{B}(G)$ and $V_{W}(G)$ separately before and after the deformation. So a diagonal slide preserves the bipartiteness of quadrangulations and does not change the partite sets. On the other hand, a diagonal rotation also preserves the bipartiteness but change the partite sets, that is, it changes the color of u in Figure 2. Thus, both a diagonal slide and a diagonal rotation are needed to transform two bipartite quadrangulations with the same number of vertices but different size of partite sets.

Since both of diagonal slide and diagonal rotation preserve the bipartiteness of quadrangulations, a bipartite quadrangulation and a non-bipartite one on a same surface can never be equivalent to each other even if they have the same and sufficiently large number of vertices. The following lemma is just an exercise.

LEMMA 3. Every quadrangulation on the sphere is bipartite.
Let Γ_{n} denote a complete bipartite graph $K_{2, n+2}$ embedded on the sphere as a quadrangulation (see Figure 3). Note that Γ_{n} has $n+2$ vertices of degree 2 and two vertices of degree $n+2$. Thus, Γ_{0} represents the unique minimum quadrangulation on the sphere with 4 vertices. We call it a standard form of quadrangulations on the sphere.

Let G be a quadrangulation on the sphere. Let u and v be two vertices of G lying on the boundary 4-cycle of a face of G but are not adjacent on the 4-
cycle. We call $\{u, v\}$ a diagonal pair of vertices. To prove Theorem 2, we define a constant $d_{G}(u, v)$ for a diagonal pair $\{u, v\}$ by:

$$
d_{G}(u, v)=2 \operatorname{deg} u+\operatorname{deg} v .
$$

Lemma 4. Let G be a quadrangulation on the sphere with n vertices and let b and b^{\prime} be a diagonal pair. Then G can be transformed into Γ_{n-4}, up to homeomorphism, by $3 n-6-\left(2 \operatorname{deg} b+\operatorname{deg} b^{\prime}\right)$ diagonal slides and diagonal rotations.

Proof. Let $b w b^{\prime} w^{\prime}$ be a face of G where $b, b^{\prime} \in V_{B}(G)$ and $w, w^{\prime} \in V_{W}(G)$. We first suppose that $\operatorname{deg} w \geq 3$ and let $b, b^{\prime}, b_{1}, b_{2}, \ldots, b_{l}$ be the neighbors of w lying in this order. If b_{1} has degree 2 , we apply a diagonal rotation around b_{1}. If b_{1} has degree at least 3 , then let w_{1}, w_{2} be two distinct white vertices adjacent to b_{1} such that $w b^{\prime} w_{1} b_{1}$ and $w b_{1} w_{2} b_{2}$ form two faces of G sharing the edge $w b_{1}$. Under these conditions, if w_{2} is not adjacent to b^{\prime}, then we apply a diagonal slide of $w b_{1}$ to join b^{\prime} and w_{2} and we can increase $d_{G}\left(b, b^{\prime}\right)$ by 1 . If w_{2} is adjacent to b^{\prime}, then we can replace $w b^{\prime}$ with $b w_{1}$ since $b w_{1} \notin E(G)$ by the planarity. Note that this operation decreases the degree of b^{\prime} but increases that of b. Therefore in both cases, applying exactly one operation, we can increase $d_{G}\left(b, b^{\prime}\right)$ by at least 1 .

Next, suppose that $\operatorname{deg} w=2$ and let ω_{1} be the white vertex such that $b w b^{\prime} \omega_{1}$ bounds a face of G. If $\omega_{1}=w^{\prime}$, then G consists of only four vertices $\left\{b, b^{\prime}, w, w^{\prime}\right\}$ and is isomorphic to Γ_{0}. If $\omega_{1} \neq w^{\prime}$, then we carry out the same deformation inside the quadrangle $b w^{\prime} b^{\prime} \omega_{1}$ not including w as we did for the $b w^{\prime} b^{\prime} w$. (Now, if $\operatorname{deg} \omega_{1}=2$, let ω_{2} be the vertex such that $b \omega_{1} b^{\prime} \omega_{2}$ forms a face of G.)

Eventually, this algorithm stops when $\omega_{n-3}=w^{\prime}$ and we get a sequence of vertices $w=\omega_{0}, \omega_{1}, \omega_{2} \ldots, \omega_{n-3}=w^{\prime}$ such that each of them has degree 2 and each $b \omega_{k} b^{\prime} \omega_{k+1}$ bounds a face of the quadrangulation where the subscripts are taken modulo $n-2$. This final form is clearly isomorphic to Γ_{n-4}, in which both b and b^{\prime} have degree $n-2$, and $d_{\Gamma_{n-4}}\left(b, b^{\prime}\right)=3 n-6$. Since one diagonal slide or diagonal rotation corresponds to the increment 1 of $d_{G}\left(b, b^{\prime}\right)$ through the above deformations, the total number of those diagonal slides and rotations in this algorithm does not exceed:

$$
d_{\Gamma_{n-4}}\left(b, b^{\prime}\right)-d_{G}\left(b, b^{\prime}\right)=3 n-6-\left(2 \operatorname{deg} b+\operatorname{deg} b^{\prime}\right) .
$$

Thus, the lemma follows.
Now we shall prove Theorem 2.

Proof of Theorem 2. First, we shall estimate the number of diagonal slides and rotations which transform a given quadrangulation G into the standard form

Figure 4 Cube transformed into Γ_{4}.
Γ_{n-4}. We would like to choose a diagonal pair $\left\{b, b^{\prime}\right\}$ in G so as to maximize $d_{G}\left(b, b^{\prime}\right)=2 \operatorname{deg} b+\operatorname{deg} b^{\prime}$.

If $n \geq 9$, there is a vertex of degree at least 4. This follows from the formula for quadrangulations

$$
\sum_{i \geq 2}(4-i) V_{i}=8
$$

where V_{i} stands for the number of vertices of degree i. Choose such a vertex as b. Since a quadrangulation has no vertex of degree 1 , we have $d_{G}\left(b, b^{\prime}\right) \geq 2 \times 4+2=$ 10 and we need at most $3 n-16$ diagonal slides and rotations to obtain Γ_{n-4} from G.

Now, we consider the case when the number of vertices n is less than 9 . Assume that $n=8, G$ either has a vertex of degree 4 or is isomorphic to a cube with 8 vertices by the above formula again. Even if the latter happens, the number of operations, which transform G into Γ_{4}, is at most 4 (see Figure 4).

Next, we use the complete list of quadrangulations on the sphere with $4 \leq$ $n \leq 7$ in Figure 5. When $n=7$, it is easy to check that the numbers of operations transforming those graphs into Γ_{3} are at most 2. Furthermore, if $n=6$, a single diagonal rotation is sufficient for the theorem.

At last, consider any two quadrangulations G_{1} and G_{2} with n vertices on the sphere. Since each of them can be transformed into Γ_{n-4}, G_{1} and G_{2} can be transformed into each other via Γ_{n-4} by twice many operations as shown above. For any integer $n \geq 6,6 n-32$ diagonal slides and rotations are sufficient and hence the theorem holds. (Note that if $n=4,5$, no diagonal slide and diagonal rotation is needed since each number of vertices admits the unique quadrangulation.)

3. Lower bounds

In this section, we shall estimate a lower bound for the number of diagonal slides and rotations which transform a given quadrangulation into another and show

Figure 5 Quadrangulations on the sphere with $n \leq 7$.
that the linear order of the bound in Theorem 1 is best possible with respect to the number of vertices n of quadrangulations.

Let G and G^{\prime} be two quadrangulations on the sphere with $V(G)=\left\{v_{1}, \ldots v_{n}\right\}$ and $V\left(G^{\prime}\right)=\left\{v_{1}^{\prime}, \ldots v_{n}^{\prime}\right\}$ and suppose that

$$
\operatorname{deg} v_{1} \leq \cdots \leq \operatorname{deg} v_{n} ; \quad \operatorname{deg} v_{1}^{\prime} \leq \cdots \leq \operatorname{deg} v_{n}^{\prime}
$$

Then we define the degree difference $D\left(G, G^{\prime}\right)$ by:

$$
D\left(G, G^{\prime}\right)=\sum_{i=1}^{n}\left|\operatorname{deg} v_{i}-\operatorname{deg} v_{i}^{\prime}\right|
$$

THEOREM 5. Let G and G^{\prime} be two quadrangulations on the sphere. Any sequence of diagonal slides and rotations which transforms G into G^{\prime} contains at least $\frac{1}{4} D\left(G, G^{\prime}\right)$ those deformations.

Proof. Let D_{σ} denote the number of diagonal slides and rotations in the sequence and suppose that each vertex v_{i} of G corresponds to a vertex $v_{\sigma(i)}^{\prime}$ of G^{\prime} through the sequence. We need at least $\left|\operatorname{deg} v_{i}-\operatorname{deg} v_{\sigma(i)}^{\prime}\right|$ diagonal deformations to adjust the degree of v_{i} while each of them changes the degree of four vertices simultaneously. Thus,

$$
D_{\sigma} \geq \frac{1}{4} \sum_{i=1}^{n}\left|\operatorname{deg} v_{i}-\operatorname{deg} v_{\sigma(i)}^{\prime}\right|
$$

Considering the permutation σ over $\{1, \ldots, n\}$, we have that

$$
D_{\sigma} \geq \frac{1}{4} \min _{\sigma} \sum_{i=1}^{n}\left|\operatorname{deg} v_{i}-\operatorname{deg} v_{\sigma(i)}^{\prime}\right|
$$

Figure 6 Quadrangulation with vertices of degree 3 and 4.
It is not so difficult to show that $\frac{1}{4} D\left(G, G^{\prime}\right)$ gives the right hand of this inequality. Let $d_{i}=\operatorname{deg} v_{i}$ and $d_{i}^{\prime}=\operatorname{deg} v_{i}^{\prime}$ and assume that $d_{1} \leq \cdots \leq d_{n}$ and $d_{1}^{\prime} \leq \cdots \leq d_{n}^{\prime}$. We can easily show the following inequality by a routine.

$$
\left(\left|d_{i}-d_{k}^{\prime}\right|+\left|d_{j}-d_{h}^{\prime}\right|\right)-\left(\left|d_{i}-d_{h}^{\prime}\right|+\left|d_{j}-d_{k}^{\prime}\right|\right) \leq 0 \quad(i<j ; k<h)
$$

For example, when $d_{k}^{\prime} \leq d_{i} \leq d_{h}^{\prime} \leq d_{j}$, then

$$
\left(\left|d_{i}-d_{k}^{\prime}\right|+\left|d_{j}-d_{h}^{\prime}\right|\right)-\left(\left|d_{i}-d_{h}^{\prime}\right|+\left|d_{j}-d_{k}^{\prime}\right|\right)=2\left(d_{i}-d_{h}^{\prime}\right) \leq 0
$$

This implies that

$$
\sum_{i=1}^{n}\left|d_{i}-d_{i}^{\prime}\right| \leq \sum_{i=1}^{n}\left|d_{i}-d_{\sigma(i)}^{\prime}\right|
$$

Thus, we got a conclusion.
The standard form Γ_{n-4} has the degree sequence ($2, \ldots, 2, n-2, n-2$) which contains $n-22$'s. On the other hand, we can construct a quadrangulation G_{n} of sufficiently large size $n=8+4 m$ with degree sequence $(3, \ldots, 3,4, \ldots, 4)$ including eight 3 's and $n-8$ 4's (see the quadrangulation given in Figure 6). Then, we have:

$$
D\left(\Gamma_{n-4}, G_{n}\right)=8 \cdot(3-2)+(n-10) \cdot(4-2)+2 \cdot(n-2-4)=4 n-40 .
$$

Thus, we need at least $n-10$ diagonal slides and rotations to transform G_{n} into Γ_{n-4}, by Theorem 5. This example implies that the order of the bound in Theorem 2 is the best, as mentioned above.

References

[1] R. Brunet, A. Nakamoto, S. Negami, Diagonal flips of triangulations on closed surface preserving specified properties, J. Combin Theory Ser. B. 68 (1996), 295-309.
[2] H. Komuro, A. Nakamoto, S. Negami, Diagonal flips in triangulations on closed surfaces with minimum degree at least 4, J. Combin. Theory Ser. B 76 (1999) 68-92.
[3] A. Nakamoto, Diagonal transformations in quadrangulations of surfaces, J. Graph Theory 21 (1996), 289-299.
[4] A. Nakamoto, Diagonal transformations and cycle parities of quadrangulations on surfaces, J. Combin. Theory Ser. B 67 (1996) 202-211.
[5] A. Nakamoto, Quadrangulations on closed surfaces, Interdiscip. Inform. Sci. 7 (2001), 77-98.
[6] S. Negami, Diagonal flips of triangulations on surfaces, a survey. Yokohama Math. J. 47 (1999), 1-40.

Atsuhiro Nakamoto
Department of Mathematics,
Faculty of Education and Human Sciences,
Yokohama National University,
79-2 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
E-mail: nakamoto@edhs.ynu.ac.jp
Yusuke Suzuki
Tsuruoka National College of Technology, Tsuruoka, Yamagata 997-8511,
Japan
E-mail: y-suzuki@tsuruoka-nct.ac.jp

[^0]: 2000 Mathematics Subject Classification: 05C10
 Key words and phrases: quadrangulation, sphere, local transformation

