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Abstract. A graph G is said to be d-distinguishable if there is an assignment of
d labels to vertices such that no automorphism of G other than the identity map
preserves the labels of vertices. We shall prove that 4-regular quadrangulations
on the Klein bottle are 2-distinguishable with few exceptions, after reviewing
their classification.

Introduction

The “distinguishing number” in this paper is a combinatorial invariant defined

for an abstract graph, concerning the symmetry of graphs as follows. Let G be a

graph and c : V (G) → {1, 2, . . . , d} an assignment of labels to the vertices of G.

Such a labeling c is called a d-distinguishing labeling of G if no automorphism of

G other than the identity map preserves the labels given by c. In other words,

a d-distinguishing labeling blocks the symmetry of G up to automorphism. The

distinguishing number of G is defined as the minimum number d such that G is

d-distinguishable and is denoted by D(G).

We can find some arguments on the distinguishing number of graphs in

[1, 2, 7]. Furthermore, Negami [6] has established a general theorem on the

distinguishing number of graphs embedded on closed surfaces, using some tech-

nique in topological graph theory. In his theory, “the faithfulness of embedding”,

defined later, plays an important role. Acutually, he has proved that polyhedral

graphs faithfully embedded on a closed surface are 2-distinguishable with finitely

many exceptions. In particular, he has developed a theory to analyze the dis-

tinguishing number of triangulations on closed surfaces, applying re-embedding

theory for them established in [4]. So one might expect a theory on that of

quadrangulations on closed surfaces.

As one of such attempts, Fukuda and Negami have determined the distin-

guishing number of 4-regular quadrangulations on the torus; most of them are
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2-distinguishable and there are two infinite series of those quadrangulations on

the torus that are not 2-distinguishable. In this paper, we shall focus on the

4-regular quadrangulations on the Klein bottle in turn and prove the following

theorem:

THEOREM 1. Every 4-regular quadrangulatoin on the Klein bottle is 2-distin-

guishable unless it is isomorphic to one of Ql(4, 2) and Qm(2, r) with r ≥ 3.

In general, a graph G embedded on a closed surface F 2 is said to be r-

representative if any simple closed curve on F 2 intersects G in at least r points.

The assumption of being 3-representative excludes all exceptions in the above

theorem and hence we have:

COROLLARY 2. Every 3-representative 4-regular quadrangulation on the Klein

bottle is 2-distinguishable.

There have been classified the 4-regular quadrangulations on the Klein bottle

with their standard forms in [5]. The notations Ql(4, 2) and Qm(2, r) appear in

the classification and will be described with general cases in Section 1. Further-

more, we shall discuss the faithfulness of embedding of 4-regular quadrangula-

tions on the Klein bottle in Section 2 and determine their distinguishing numbers

in Section 3 to prove the above main theorem.

1. Classification and standard forms

A quadrangulation on a closed surface is a simple graph embedded on the

surface so that each face is bounded by a cycle of length 4. If a quadrangulation

on the Klein bottle is regular, then it is necessarily 4-regular by Euler’s formula.

According to the classification of 4-regular quadrangulations on the Klein bottle

in [5], there are three types of those, describled below.
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u1

u2

u3

...

u0

v0

v1

v2

v3

...

v0

Figure 1 A planar grid used for grid and ladder types

Prepare the cylinder Cp×Pr+1, which is obtained from the planar grid Pp+1×
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Pr+1 depicted in Figure 1 by identifying the two horizontal sides of length r. We

regard this cylinder as one embedded on an annulus in the natural way. Let

u0u1 · · ·up−1 and v0v1 · · · vp−1 be the two cycles lying along the boundary of the

annulus, which correspond to the two vertical sides of the grid. Their indices are

given modulo p so that ui and vi are joined by a horizontal path in the grid for

i = 0, 1, . . . , p− 1. Identify these cycles to obtain the Klein bottle.

This identification can be exhibited by an isomorphism τ between the two

cycles, which flips the direction and we have two possibilities; there is an index

i ∈ {0, 1, . . . , p − 1} with τ(ui) = vi or not. If it happens, we may assume

that i = 0 after re-labeling, and hence we have τ(ui) = v−i. This is the same

identification as to obtain the Klein bottle from a rectangle usually. That is,

identify the two horizontal sides in parallel and the two vertical sides in anti-

parallel. Then we obtain a 4-regular quadrangulation on the Klein bottle. We

call this type a grid type and denote it by Qg(p, r). If p is odd, then we always

get this type.

In the other case, the parameter p must be an even number, say p = 2s,

and we may assume that τ(ui) = vp−1−i. We have τ(u0up−1) = vp−1v0 and

τ(us−1us)=vsvs−1 in particular. Each of the two pairs of edges {u0up−1, v0vp−1}
and {us−1us, vs−1vs} are joined by a “ladder” placed horizontally in the grid and

such a ladder forms what is called a Möbius ladder on the Klein bottle. If we

remove the two Möbius bands corresponding to these Möbius ladders from the

Klein bottle, then we obtain a cylinder C2r × Ps although C2r runs horizontally

and Ps goes vertically in the grid. We call this type a ladder type and denote it

by Ql(2r, s). Cutting the Klein bottle along each of cycles corresponding to C2r

results in two Möbius bands. Such a cycle or a simple closed curve is called an

equator on the Klein bottle. Thus, Ql(2r, s) contains s equators lying in parallel.

One of common properties of the gird type Qg(p, q) and the ladder type

Ql(2r, s) is that they have a geodesic 2-factor given as a union of cycles of length

p placed along “meridians” on the Klein bottle; a meridian is a simple closed

curve on the Klein bottle such that cutting open the Klein bottle along it results

in an annulus. The difference between them is the existence of a “longitude”. A

longitude is a simple closed curve on the Klein bottle whose tubular neighborhood

is homeomorphic to a Möbius band and cutting open the surface along it results

in a Möbius band. We can take two disjoint logitudes, as simple closed curves,

on the Klein bottle. There is only one cycle of length r in Qg(p, r) which is a

longitude on the Klein bottle if p is odd while there are two if p is even. On the

other hand, there is no cycle in Ql(2r, s) which runs along a longitude.

It may be convenient in some cases to regard them as the same type, say

handle types, with notation Qh(p, r, ε). Here ε ∈ {0, 1} stands to distinguish the

original two types. Prepare the cylinder Cp × Pr+1 with two ends u0u1 · · · up−1
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and v0v1 · · · vp−1 as well as in the previous. Identify these ends by an isomorphism

τ between them with τ(ui) = vp−(i+ε) for i = 0, 1, . . . , p− 1 to obtain Qh(p, r, ε).

Then we have Qg(p, r) as Qh(p, r, 0) while Qh(p, r, 1) is isomorphic to Ql(2r, s)

if p is an even number 2s. If p is odd, then both Qh(p, r, 0) and Qh(p, r, 1) are

isomorphic to Qg(p, r).

There is one more type of a 4-regular quadrangulation on the Klein bottle.

Now prepare the rectangular region given as Ω = {(x, y) ∈ R2 : 0 ≤ x ≤
r, 0 ≤ y ≤ 2p} on the xy-plane R2 and take the points (x, y) in Ω with integral

coodinates as vertices only if x− y ≡ 0 (mod 2). Add edges so that each vertex

(x, y) is adjacent to (x ± 1, y ± 1). We denote the resulting graph on the plane

by Mp,r; this is depicted as in Figure 2. The two corners at the right side of Mp,r

are occupied by two vertices if r is even, while no vertex there if r is odd, as in

the figure.

Figure 2 A planar grid

used

for mesh types

First identify the pair of horizontal sides of Ω to

get a cylinder and next the two ends of this cylinder

to obtain the Klein bottle so that it contains a 4-

regular quadrangulation. This is called a mesh type

and we denote it by Qm(p, r). One might be anxious

about the ambiguity in the second identificaion, but

we obtain a unique quadrangulation on the Klein

bottle, up to isomorphism, in fact.

To see this, give labels u0, u1, . . . up−1 to the ver-

tices on the left side and v0, v1, . . . , vp−1 to the right

side upward, as well as in case of the handle types.

Each pair of ui and vi lie in the same horizontal level if r is even while their

y-coodinates differ by 1 if r is odd. An isomorphism τ between the cycles

u0u1 · · ·up−1 and v0v1 · · · vp−1 indicates the identification of two ends of the an-

nulus. If p is odd, we always find an index i so that τ(ui) = vi and hence we

obtain a unique result of the identification, up to isomorphism.

On the other hand, if p is even, there are two cases for the identification by

τ ; either τ(ui) = vi for two i’s, or there are not such i’s. In the second case, we

have τ(uiui+1) = vi+1vi for two i’s modulo p. Cut open the Klein bottle along

a meridian which contains the second column of vertices (x, y) with x = 1. It

is easy to see that the identification to recover the Klein bottle for this cutting

becomes the first type. Therefore, the two types of identification result in the

same 4-regular quadrangulation on the Klein bottle, up to isomorphism.

THEOREM 3. (Nakamoto and Negami [5]) Every 4-regular quadrangulation on

the Klein bottle is isomorphic to one of the grid types Qg(p, r), the ladder types

Ql(2r, s) and the mesh types Qm(p, r) with suitable parameters p and r.
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There are some restrictions on these parameters to keep the simpleness of

graphs. For the grid types, we have p ≥ 3 and r ≥ 3; if r = 2, then the longitude

contained in Qg(p, r) forms a cycle of length 2. For the ladder types Ql(2r, s), we

have r ≥ 2 and s ≥ 2; if s = 1, then rungs of two Möbius ladders form multiple

edges. For the mesh types Qm(p, r), we have p ≥ 2 and r ≥ 3. For each type,

the two parameters are designed so that their product is equal to the number of

vertices.

There are several ways to derive another 4-regular quadrangulation from

a given one. One of those is to take the dual. For example, Qh(p, r, 0) and

Qh(p, r, 1) can be embedded together on the Klein bottle so that they are dual

to each other after moving slightly one of them. In such an embedding, the lon-

gitude of Qh(p, r, 0) corresponding to the horizontal sides of the grid runs within

the Möbius ladder of Qh(p, r, 1), crossing each of its rungs at a point. On the

other hand, it is easy to see that the dual of Qm(p, q) is isomorphic to itself. We

may express these situations with the following formulas:

Qh(p, r, 0)∗ = Qh(p, r, 1), Qh(p, r, 1)∗ = Qh(p, r, 0), Qm(p, q)∗ = Qm(p, q)

Another way to make a 4-regular quadrangulation is to take “the radial

graph”, as follows. Let G be a graph 2-cell embedded on a closed surface in

general. Put a vertex x in each face A of G, which can be ragarded as a vertex

in the dual G∗ of G and add new edges from x to all vertices lying along the

boundary cycle of A. The resulting graph with all edges of G removed is called

the radial graph of G and is denoted by R(G). Obviously, the same graph can

be obtained from G∗ in the same way. Thus, we have R(G) = R(G∗).
Also, it is clear that if G is a 4-regular quadrangulation, then so is R(G).

Thus, R(Qh(p, q, ε)) and R(Qm(p, r)) can be expressed by the standard forms

with suitable parameters. The former should be a mesh type since it contains

neither a meridian nor a Möbius ladder. The latter should be a grid type since

it contains a longitude. It is easy to see the following formulas:

R(Qh(p, r, 0)) = R(Qh(p, r, 1)) = Qm(p, 2r), R(Qm(p, r)) = Qg(2p, 2r)

The dual of the radial graph R(G) of G is called the medial graph with

notation M(G) and it also is a 4-regular quadrangulation on the Klein bottle if

so is G. However, M(Qh(p, r, ε)) = Qm(p, 2r)∗ is isomorphic to Qm(p, 2r) and

M(Qm(p, r)) = Qg(2p, 2r)
∗ is isomorphic to Qh(2p, 2r, 1) = Ql(4r, p). Therefore,

the standard forms given in [5] are closed under taking duals, radial and medial

graphs, as above.
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2. Faithfulness of embeddings

A graph G embedded on a closed surface F 2 is said to be faithfully embedded

on F 2 if any automorphism σ : G → G extends to an auto-homeomorphism

h : F 2 → F 2 with h|G = σ. The faithfulness of embeddings is very important

to analyze the distinguishing number of graphs since the symmetry of a graph

can be regarded as that over the surface containing it. Here we shall discuss how

to recognize the faithfulness of embedding of 4-regular quadrangulations on the

Klein bottle.

Let G be a graph embedded on a closed surface F 2 so that each face is

bounded by a cycle. A cycle is said to be facial or non-facial if it bounds a

face or not. Let f : G → F 2 be another embedding of G to F 2, which is an

injective continuous map between two topological spaces G and F 2. A face of

G or its boundary cycle C is said to be a panel or to be paneled for f if f(C)

is facial in f(G). The graph G is said to be full-paneled for f if the faces of G

are all panelled for f . In this case, the embedding f : G → F 2 extends to an

auto-homeomorphism h : F 2 → F 2 with h|G = f .

An automorphism σ : G → G can be regarded as an embedding map σ :

G → F 2 of G to the surface F 2 where G is embedded. Thus, G is faithfully

embedded on F 2 if and only if G is full-paneled for all automorphisms of G. On

the other hand, if f(G) 6= G, then f cannot be regarded as an automorphism

of G and it is another embedding of G to F 2. If G is full-paneled for such an

embedding f , then we may consider that G and f(G) are the same embeddeding

up to auto-homeomorphism over the surface. This motivates us to define the

following notions.

Two embeddings f1 and f2 : G → F 2 of a graph G on a closed surface F 2 are

said to be equivalent up to homeomorphism if there is an auto-homeomorphism

h : F 2 → F 2 over F 2 with hf1 = f2. In particular, if G admits only one

equivalence class of embeddings on F 2, then G is said to be uniquely embedded

on F 2, up to homeomorphism.

When G is embedded on F 2, the identity map idG over G can be regarded

as an embedding map of G on F 2, which is often called the inclusion map of G,

and any embedding f : G → F 2 with f(G) = G induces an automorphism of

G. Thus, if G is uniquely embedded on F 2, then G is faithfully embedded on

F 2 since f extends to an auto-homeomorphism. However, a faithfully embedded

graph does not need to be uniquely embedded.

On the other hand, if G is not faithfully embedded on F 2, then there is an

automorphism σ of G which cannot extend to any auto-homeomorphism over F 2

and this σ can be regarded as an embedding of G not equivalent to the inclusion

map idG. Thus, G is not uniquely embedded on F 2, up to homeomorphism, in
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this case. However, it happens that all embeddings of G on F 2 looks the same if

we neglect the labels of vertices and one might want to say “uniquely embedded”

in such a case, too. The following definition works as he expects.

Two embeddings f1 and f2 : G → F 2 of a graph G on a closed surface F 2 are

said to be congruent if there exist an auto-homeomorphism h : F 2 → F 2 over

F 2 and an automorphism σ of G such that hf1 = f2 σ. A graph G is uniquely

embedded on F 2 up to congruence if all embeddings of G on F 2 are congruent to

one another. In particular, all automorphisms of G are congruent to each other

if we regard them as embeddings of G on F 2.

By definitons above, G is faithfully embedded on F 2 if and only if G is full-

paneled for all automorphisms of G. So we would like to find many panels in the

4-regular quadrangulations on the Klein bottle to conclude that most of them

are faithfully embedded. The following lemma will help us to do it. However,

we do not need to take account of Condition (ii) in most cases as we shall see in

our proof of Lemma 6. An embedding f : G → F 2 is said to be quadrangular if

f(G) is a quadrangulation on F 2.

LEMMA 4. Let G be a 4-regular quadrangulation on the Klein bottle K2 and v

a vertex of G with four neighbors u0, u1, u2 and u3 lying around v in this cyclic

order. Let Ci = vuiwiui+1 be the boundary cycles of the four faces of G which

are incident to v for i ≡ 0, 1, 2, 3 (mod 4). Suppose that:

(i) C0 and C1 are paneled for an quadrangular embedding f : G → K2, and

(ii) there is no vertex w, other than w2, such that vu2wu3 forms a cycle of length

4.

Then C2 is paneled for f .

Proof. Since C0 and C1 are paneled, the rotation around v in f(G) contains the

segment u0u1u2 and hence this must be completed to be u0u1u2u3. Thus, u2vu3

becomes a corner of a face in f(G). By the second conditionm vu2w2u3 is the

unique candidate for the boundary cycle of the face. Thus, vu2w2u3 is paneled

for f .

First, we shall discuss the faithfulness of embedding of 4-regular quadrangu-

lations of grid and ladder types on the Klein bottle, dealing with them together

as handle types.

LEMMA 5. A 4-regular quadrangulation Qh(p, r, ε) of handle type on the Klein

bottle contains a non-facial cycle of length 4 if and only if it is isomorphc to

one of Qh(4, r, ε), Qh(p, 2, 1), Qh(p, 3, 1) and Qh(p, 4, 0) with suitable parameters

(p, r, ε).
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Proof. Let G = Qh(p, r, ε) be a 4-regular quadrangulation of handle type on

the Klein bottle. The integral grid on the xy-plane consisting of vertical and

horizontal lines covers naturally G, according to the definition of handle types.

Thus, each vertical line covers a meridian in G on the Klein bottle and the

vertices corresponding to a common vertex of G occur along it in period p. Two

vertical lines at distance r cover a common meridian in G. Each of vertices in

this planar grid has coordinates (x, y) with integers x and y. We denote by u(x,y)

the vertex of G corresponding to the vertex (x, y) in the planar grid.

Suppose that G contains a non-facial cycle C of length 4. Let v be one of the

four vertices lying on C and assume that v = u(0,0) for convenience. Then C can

be lifted to a path of length 4 starting from v0 = (0, 0). Let v1 = (s, t) be the

other end of this path with v = u(s,t). We may assume that s ≥ 0 and t ≥ 0, up

to symmetry and there are the eight cases on (s, t) depicted in Figure 3, where v0

and v1 are encircled in each and the sequences of short arrows give examples for

the lift of C. However, some of them should be excluded immediately because

of the simpleness of G; (ii) implies p = 2, (iii) and (iv) r = 1, (vi) (r, ε) = (2, 0),

and u(0,1)u(1,1)u(2,1) would be a cycle of length 2 in (v). Discuss the remaining

cases (i), (vii) and (viii) in details below.

6

6

6

6

(i)
-

�

6

6

(ii)
-6

6

6

(iii)
- -6
�

(iv)
- -6

6

(v)

- -
6 ?

(vi)
- - -6

(vii)
- - - -

(viii)

Figure 3 Non-facial cycles of length 4 in handle types

Case (i) implies that p = 4 and G is isomorphic to Qh(4, r, ε) for any r ≥ 3

and any ε ∈ {0, 1}. On the other hand, we have r = 3 and 4 in Cases (vii) and

(viii), respectively. It is easy to see that G is isomorphic to Qh(p, 3, 1) in Case

(vii). However, we should be more careful in Case (viii); the candidates for G

are not only Qh(p, 4, 0) but also Qh(p, 2, 1). The cycle C of length 4 forms a

longitude in the former and an equator in the latter.

The above lemma suggests that it is very rare for handle types not to be
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faithfully embedded on the Klein bottle and so is it actually as shown in the

following lemma:

LEMMA 6. A 4-regular quadrangulation Qh(p, q, r) of handle type on the Klein

bottle is full-paneled for all of its quadrangular embeddings unless it is isomorphic

to either Qh(4, 2, 1) or Qh(4, 3, 1).

Proof. Let G be a 4-regular quadrangulation on the Klein bottle K2 and suppose

that G is not full-paneled for a quadrangular embedding f : G → K2. Then the

inverse map f−1(G) : f(G) → K2 of f also can be regarded as a quadrangular

embedding of f(G) to the Klein bottle and f(G) is not full-paneled for f−1, too.

That is, there exist some non-facials cycles C in G such that f(C)’s are facial in

f(G). By Lemma 5, G is isomorphic to one of Qh(4, r, ε), Qh(p, 2, 1), Qh(p, 3, 1)

and Qh(p, 4, 0).

Before we discuss each case, we shall investigate when Condition (ii) in

Lemma 4 holds since we use it frequently. Suppose that the condition does

not hold for G = Qh(p, r, ε). That is, there is a vertex w of G such that vu2wu3

forms a non-facial cycle of length 4 and we find one of the two situations, up

to symmetry, depicted in Figure 4; two adjacent panels lie vertically or horizon-

tally. Each of the faces containing a circle inside in the figure is a panel for f .

For convenience, we use the same notations for vertiecs on the girds as in the

previous proof, with v = u(0,0).

( )

v

u0

u1

u2

u3

w

w

(V)

( )

u2

u1

w

u3

v u0

w

(H)

Figure 4 Around two consecutive panels in handle types

If Case (V) happens, then we have r = 2. However, u2 = u(0,1) and u(2,1)

must be identical in G and there would be multiple edges between u2 and u(1,1),

a contradiction. If Case (H) happens, then we have r = 2 or 3 and the former

case implies the same contradiction as in Case (V). Therefore, Condition (ii) in

Lemma 4 holds with (i) unless G is isomorphic to Qh(p, 3, 1). More precisely

speaking, it does not hold only when u2vu3 forms a corner of a face within a

Möbius ladder with three rungs.

Case 1. G ∼= Qh(p, 2, 1): In this case, G is isomorphic to the ladder type

Ql(4, s) with p = 2s. First suppose that p ≥ 6. Then there are precisely s non-
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facial cycles C of length 4 in G and each of them forms an equator on the Klein

bottle. The number of faces of G is equal to 4s and f(G) has the same number of

faces as G. Let n be the number of panels in G for f . Then the boundary cycles

of 4s− n faces in f(G) are the images of non-facial cycles in G by f . Thus, we

have 4s− n ≤ s and hence G has at least 3s panels for f . In this case, there are

two adjacent panels clearly. That is, Condisiton (i) in Lemma 4 holds and also

(ii) does by the above argument. Using the lemma repeatedly, we can recognize

many panels around these two and extend it to the whole of G. Therefore, G is

full-paneled for f if p ≥ 6.

On the other hand, it is easy to see that Qh(4, 2, 1) ∼= Ql(4, 2) is isomorphic

to K4 ×K2 and it admits a re-embedding which sends a facial cycle of length 4

in the Möbius ladder to its rim. Thus, Qh(4, 2, 1) should be excluded as one of

exceptions of the lemma.

Case 2. G ∼= Qh(p, 3, 1): Suppose that p ≥ 5. Then only Case (vii) in Figure 3

happens and any non-facial cycle of length 4 in G lies within one of the Möbius

ladders with three rungs. Such a cycle contains only one rung and each rung

is covered by precisely two such cycles. Thus, there are six non-facial cycles of

length 4 within each Möbius ladder.

Suppose that four of those non-facial cycles of length 4 in one Möbius ladder

are mapped to four cycles bounding faces in f(G). Since the Möbius ladder has

only three rungs, two of the four non-facial cycles contain a common rung and

cover all edges lying along the rim once together. If the other two non-facial

cycles cover the other two rungs, then we find an edge covered by three of those

cycles, which is contrary to that precisely two faces are incident to each edge

in f(G). Otherwise, that is, if they cover a common rung, then the first two

and they cover all edges along the rim doubly. In this case, any cycle of length

4 covering the third rung, facial or not, cannot be mapped to a facial cycle in

f(G). For, if it could, then an edge on the rim would be covered by three cycles

which are mapped to facial cycles in f(G), a contradiction.

Therefore, at most three of non-facial cycles of length 4 contained in one

Möbius ladder are mapped to facial cycles in f(G) and there are at most six in

total since G has one or two Möbius ladders, depending on the parity of p. By

the same argument as in the previous case, it follows that G has at least 3p− 6

panels since G has precisely 3p faces.

Since p ≥ 5, we have 3p/2 < 3p− 6. This implies that there are two adjacent

panels lying in a column of p faces in the grid. That is, we find an adjacent pair

of panels as depicted in Case (V) in Figure 4; neglect the existence of w. Then

we can find other panels in order around these two panels, confirming the two

conditions (i) and (ii) in Lemma 4. Finally, we conclude that all faces except at
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most six faces within the two Möbius ladders are paneled for f . Furthermore, it

is easy to see that the rotation around each vertex lying along the rims of the

Möbius ladders is preserved by f and that the remaining faces also are paneled

for f . Thus, G is full-paneled for f if p ≥ 5.

If p = 3 or 4, then G is isomorphic to either Qh(3, 3, 1) or Qh(4, 3, 1). The

formar is isomorphic to Qh(3, 3, 0) ∼= Qg(3, 3) and the latter is Ql(6, 2). The

same argument as above works for Qh(3, 3, 1) since it contains only one Möbius

ladder and has only three non-facial cycles of length 4. Thus, Qh(3, 3, 1) has at

least 9 − 3 = 6 panels for f and there are two adjacent ones among them since

9/2 < 6. Thus, Qh(3, 3, 1) is full-paneled and is not an exception of the lemma.

1+ b+ 3+ a+

a+
2+ c+

1+

a−
2− c−

1−

1−
b− 3−

a−

1+ b+ 3+ a+

Figure 5 Ql(6, 2)

On the other hand, Qh(4, 3, 1) ∼= Ql(6, 2) is an actual

exception. This is isomorphic to K3,3×K2 and contains

two Möbius ladders, each of which is isomorphic to K3,3.

Each of them is drawn by thick lines in Figure 5 and

has six vertices 1±, 2±, 3±, a±, b± and c±, labled so that

two vertices with the same symbol and different signs

are joined by an edge. In this case, there is an auto-

morphism σ of Qh(4, 3, 1) which exchanges 1+ and 2+,

and 1− and 2−, fixing the other vertices and it does not

extend to any auto-homeomorphism over the Klein bot-

tle. For example, the facial cycle b+2+c+3+ is mapped

to b+1+c+3+ by σ and the latter is not faicial. Since σ

can be regarded as an embedding of Qh(4, 3, 1) to the Klein bottle, b+2+c+3+ is

not paneled for σ. Therefore, Qh(4, 3, 1) is not full-paneled.

Case 3. G ∼= Qh(p, 4, 0): In this case, G contains at most two non-facial cycles

of length 4, each of which is a longitude, if p 6= 4 and four meridians are non-facial

cycles of length 4 in addition if p = 4. Thus, there are at most six non-facial

cycles of length 4 in either case and we have 4p/2 < 4p− 6 if p ≥ 4. Since 4p is

equal to the number of faces in G and since G has at least 4p − 6 panels, there

are two adjacent panels for f in G. Using Lemma 4 repeatedly, we can conclude

that all facial cycles are paneled for f and hence G is full-paneled for f if p ≥ 4.

If p = 3, then G is isomorphic to Qh(3, 4, 0) and it contains only one non-

facial cycle of length 4, which is a longitude. Thus, G has at most one facial cycle

which is not paneled for f . However, it is clear that a facial cycle surrounded

by eight panels are paneled for f , too. Therefore, Thus, Qh(3, 4, 0) is not an

exception of the lemma.

Case 4. G ∼= Qh(4, r, ε): This is the remaining case. Suppose that the

previous cases do not happen. Then G contains precisely r non-facial cycles of

length 4, each of which forms a meridian on the Klein bottle, while the number
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of faces in G is equal to 4r. This implies that there are at least 3r panels for

f and there are two adjacent panels for f . By the same argument as above, we

conclude that G is full-paneled. There is no exception in this case.

Now we shall discuss the faithfulness of embedding of the mesh types. Al-

though there are infinitely many exceptions in this case, it is easier than the

previous case.

LEMMA 7. A 4-regular quadrangulation Qm(p, r) of mesh type on the Klein

bottle contains a non-facial cycle of length 4 if and only if either p = 2 or r = 4.

Proof. Let G be a 4-regular quadrangulation Qm(p, r) of mesh type on the Klein

bottle. The planar grid consisting of lines with slope ±1, like Figure 2, covers G.

Suppose that G contains a non-facial cycle C of length 4. Then C is lifted to a

path of length 4 in the planar grid. We may assume that one of two ends of the

path is located at (0, 0). Let (x, y) be the other end. Since they are joined by a

path of length 4, we have x ≤ 4 and y ≤ 4 and both x and y are even numbers.

Thus, we have (x, y) ∈ {0, 2, 4} × {0, 2, 4}− {(0, 0)}. However, if x = 2, then we

would have r = 2, but G would not be simple in this case. The remaining case

is when x = 0 or 4, each of which corresponds to p = 2 or r = 4, respectively.

Conversely, it is clear that G contains non-facial cycles of length 4 actually in

these cases.

LEMMA 8. Every 4-regular quadrangulation Qm(p, r) of mesh type on the Klein

bottle is full-paneled for all of its quadrangular embeddings if and only if p ≥ 3

and r 6= 4.

Proof. By Lemma 7, if p 6= 2 and r 6= 4, then G contains no non-facial cycle of

length 4 and hence all facial cycles are paneled for any quadrangular embedding.

Thus, the sufficiency is clear. To show the necessity, it suffices to show that

Qm(2, r) and Qm(p, 4) are not full-paneled for some quadrangular embedding.

It is easy to see that Qm(2, r) is isomorphic to the graph Hr constructed as

follows. Prepare r pairs of vertices {x+
i , x−i } for i ≡ 0, 1, . . . , r − 1 (mod r), and

join x±i and x±i+1 for every pair of signs ±. By the isomorphism between Qm(2, r)

and Hr, we may identify their vertices so that x−i = u(i,0) and x+
i = u(i,2) if i

is even while x−i = u(i,1) and x+
i = u(i,3) if i is odd. It is clear that there is

an automorphism σi which exchanges two vertices in {x+
i , x−i }, fixing the other

vertices. For example, σ0 carries a facial cycle u(0,2)u(1,1)u(2,2)u(1,3) to a non-facial

cycle u(0,0)u(1,1)u(2,2)u(1,3) and hence Qm(2, r) is not full-paneled for σ0, which can

be regarded as a quadrangular embedding.
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· · · · · ·
x−0 x−1 x−2 x−3 x−4

x+
0 x+

1 x+
2 x+

3 x+
4

Figure 6 The isomorphism

type

of Qm(2, r)

On the other hand, Qm(p, 4) also contains

two distinct vertices w1 and w2 which can be ex-

changed by an automorphism σ fixing the other

vertices; there are two pairs of those in fact. Since

any identification for Qm(p, r) results in a unique

quadrangulation up to isomorphism, we may as-

sume that u(0,0) = u(4,2) and u(0,2) = u(4,0) in

Qm(p, 4). Then u(1,1) and u(3,1) have four com-

mon neighbors u(0,0), u(0,2), u(2,0) and u(2,2), and

we can choose these two as w1 and w2. Similarly to the previous, σ carries

a facial cycle u(1,1)u(0,2)u(1,3)u(2,2) to a non-facial cycle u(3,1)u(0,2)u(1,3)u(2,2), and

hence Qm(p, 4) is not full-paneled for a quadrangular embedding σ. Therefore,

if Qm(p, r) is full-paneled for all quadrangular embeddings, then we have p 6= 2

and r 6= 4.

The following theorem is our goal in this section and will play an important

role to decide the distinguishing number of 4-regular quadrangulations on the

Klein bottle in the next section:

THEOREM 9. Every 4-regular quadrangulation on the Klein bottle has a unique

quadrangular embedding on the Klein bottle, up to congruence. It is faithfully

embedded on the Klein bottle, except Ql(4, 2), Ql(6, 2), Qm(2, r) with r ≥ 3 and

Qm(p, 4) with p ≥ 3.

Proof. Let G be any 4-regular quadrangulation on the Klein bottle, isomorphic

to none of Ql(4, 2) ∼= Qh(4, 2, 1), Ql(6, 2) ∼= Qh(4, 3, 1), Qm(2, r) and Qm(p, 4).

By Lemmas 6 and 8, G is full-paneled for all of its quadrangular embeddings and

hence every quadrangular embedding of G extends to an auto-homeomorphism

over the Klein bottle. This implies that any quadrangular embedding of G is

equivalent to the inclusion map of G, up to homeomorphism and that G is

faithfully embedded on the Klein bottle since any automorphism of G can be

regarded as a quadrangular embedding.

On the other hand, the exceptions of the faithfulness are not isomorphic to

one another as graphs if they have different types and different parameters. For

example, if Ql(2r, 2) were isomorphic to Qm(2, r′), then we would have r′ = 2r,

comparing the number of their vertices. It is not difficult to see that Ql(4, 2) 6∼=
Qm(2, 4) and that Ql(6, 2) 6∼= Qm(2, 6). If Ql(2r, 2) were isomorphic to Qm(p, 4),

then we would have r = p, but Ql(4, 2) 6∼= Qm(2, 4) and Ql(6, 2) 6∼= Qm(3, 4).

These imply that each of the exceptions cannot be re-embedded on the Klein

bottle as another exception. Therefore, each of them has a unique congruence
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class of quadrangular embeddings on the Klein bottle. They are not exceptions

for the uniqueness up to congruence

We have already shown that each of the exceptions admits an automorphism

which does not extend to any auto-homeomorphism over the Klein bottle, in the

previous arguments. Thus, they are actually exceptions for the faithfulness and

are those for the uniqueness up to homeomorphism, too.

Notice that this theorem concerns only quadrangular embeddings and says

nothing about the existence of non-quadrangular embeddings. If a 4-regular

quadrangulation G on the Klein bottle admits a non-quadrangular embedding

on the Klein bottle, then it should have triangular faces since Euler’s formula

forces the average of faces sizes to be 4 for any embedding of G on the Klein

bottle. Thus, G must contain a cycle of length 3, which is non-facial of course.

Clearly, the candidates for such a G are very few. We shall leave the detailed

arguments on the uniqueness of embedding for studies in future.

In the classification in [5], there has been given only the standard form of

4-regular quadrangulations on the Klein bottle, but the relation among those

standard forms has never been discussed. Now we can refer to it after estab-

lishing the above theorem. A couple of parameters present the same 4-regular

quadrangulations on the torus, as is shown in [3], while the type and parameters

correspond bijectively to the isomorphism type of those on the Klein bottle.

COROLLARY 10. Two 4-regular quadrangulations on the Klein bottle are iso-

morphic to each other as abstract graphs if and only if they have the same type,

grid, ladder or mesh, with the same parameters.

Proof. First neglect the exceptions for the faithfulness given in Theorem 9. Then

each of the 4-regular quadrangulations on the Klein bottle has a unique quad-

rangular embedding on the Klein bottle, up to heomeorphism, which is nothing

but its inclusion map. This implies that any isomorphism between two of those

preserves any topological property of them on the Klein bottle. For example,

The handle types contain meridians as their cycles while the mesh types do not.

Furthermore, any grid type contains a longitude as its cycle while any ladder

type does not. These properties distinguish the three types from one another.

The parameters determine the length of meridians, longitude and so one and

discriminate the isomorphism types of the same types. Also we can conclude the

same fact for the exceptions neglected individually.
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3. Distinguishability

Now we shall show that most of 4-regular quadrangulations on the Klein

bottle are 2-distinguishable. To do it, it is convenient to rephrase the property

of being 2-distinguishable as follows. A graph G is 2-distinguishable if and only

if there is a subset S in V (G) such that the only automorphism σ of G with

σ(S) = S is the identity map over G; specifying such a set S is nothing but

specifying vertices which get label “1” in a 2-distinguishing labeling with labels

“1” and “2”.

First, we shall determine the distinguishing number of the exceptional ladder

types that are not faithfully embedded on the Klein bottle:

LEMMA 11. D(Ql(4, 2)) = 3 and D(Ql(6, 2)) = 2.

Proof. First, we shall determine the distinguishing number of G = Ql(4, 2). This

is isomorphic to K4 × K2. Let V± = {1±, 2±, 3±, 4±} be the vertex sets of two

K4’s so that i+ and i− are joined by an edge corresponding to the second factor

K2 in the product.

Let c : V (G) → {1, 2} be a 2-distinguishing labeling of G and suppose that

there are two vertices in one of two K4’s which get the same label, say c(1+) =

c(2+) = 1. If c(1−) = c(2−), then the automorphism of G which exchanges 1+

and 2+, and 1− and 2−, fixing the other vertices preserves the labels of vertices

given by c. This is contrary to c being 2-distinguishing and hence we have

c(1−) 6= c(2−). If c(3+) = 1 in addition, then we would have c(3−) 6= c(1−)

and 6= c(2−), but this is impossible since there are only two labels. By similar

arguments, we conclude, up to symmetry, that:

c(1+) = c(2+) = c(1−) = c(3−) = 1, c(3+) = c(4+) = c(2−) = c(4−) = 2

However, the automorphism σ defined below preserves the labels:

σ(1±) = 1∓, σ(2±) = 3∓, σ(3±) = 2∓, σ(4±) = 4∓

This is contrary to the assumption on c, too. Therefore, there is no 2-distin-

guishing labeling of G and G is not 2-distinguishable.

Now consider the following labeling c : V (G) → {1, 2, 3}:

c(1±) = c(2+) = c(3−) = c(4−) = 1, c(2−) = c(3+) = 2, c(4+) = 3

Let σ be any automorphism of G preserving this labeling. It is clear that any

automorphism of G ∼= K4×K2 fixes each of V± setwise or exchanges them. Since

V+ contains “3” but V− does not, the former holds for σ and hence we have
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σ({1+, 2+}) = {1+, 2+}, c(3+) = 3+ and c(4+) = 4+. The last two imply directly

that σ fixes 3− and 4− and it follows that σ fixes 1− and 2− since c(1−) 6= c(2−).

This implies that σ fixes 1+ and 2+ and hence σ is the identity map over G.

Therefore, G is 3-distinguishable and we have D(G) = 3.

Now put G = Ql(6, 2). This is isomorphic to K3,3 × K2 and contains two

disjoint K3,3’s, say K+ and K−, as shown in Figure 7. Let X± = {1±, 2±, 3±}
and Y± = {a±, b±, c±} be the partite sets of K± so that each pair of vertices with

the same symbol and different signs are joined by an edge in G. In the figure, 1±,

2± and 3± lie at the top of K± and a±, b± and c± at the bottom of K± in order.

It is clear that G is a bipartite graph with partite sets X+ ∪ Y− and Y+ ∪ X−;

the vertices in the former are black and those in the latter are white. Define a

labeling c : V (G) → {1, 2} as shown in the figure:

c(1+) = c(2+) = c(c+) = c(1−) = c(a−) = 1

c(3+) = c(a+) = c(b+) = c(2−) = c(3−) = c(b−) = a(c−) = 2

1 1 2

1 2 2

2 2 1

1 2 2

K+

K−

Figure 7 A 2-distinguishing labeling of K3,3 ×K2

Let σ be any automorphism of G preserving this labeling. Since the number

of “1”’s in K+ is different from that in K−, σ cannot exchange K+ and K−, and

hence we have σ(K+) = K+ and σ(K−) = K−. Similarly, we have σ(X+) = X+

and σ(Y+) = Y+ since the number of “1”’s in X+ is different from that in Y+.

This imlies that σ(3+) = 3+ and σ(c+) = c+. If σ exchanged 1+ and 2+, then

it would exchange 1− and 2−, but this is forbidden since they have different

labels. Thus, we have σ(1+) = 1+ and σ(2+) = 2+, and similary σ(a+) = a+

and σ(b+) = b+. That is, σ|K+ must be the identity map and this forces σ|K−
to be the identity map, too. Therefore, the whole of σ also is the identity map

over G and we conclude that σ is a 2-distinguishing labeling of G and that G is

2-distinguishable. Since Aut(G) is not trivial, we have D(G) = 2.

The following lemma suggests the reason why the faithfulness of embedding

works well to analyze the distinguishing number of graphs embedded on closed
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surfaces; local arguments extend to the global one.

LEMMA 12. Let G be a connected graph faithfully embedded on a closed surface

F 2. If an automorphism of G fixes a corner of a face, then it is the identity map

over G.

Proof. Let A be a face with a corner uvw and σ an automorphism of G fixing the

corner, that is, σ(u) = u, σ(v) = v and σ(w) = w. Since G is faithfully embedded

on the surface, σ extends to an auto-homeomorphism h over F 2 and h sends each

face to a face of G. In particular, we have h(A) = A since σ fixes the corner

of A. This implies that σ fixes each of the vertices along the boundary cycle of

A. Furthermore, σ fixes a coner of each face adjacent to A since h preserves the

rotation around each vertex on the surface. Repeating this argument, we can

conclude that σ fixes the vertices lying along the boundary cycles of every face

since G is connected. Thus, σ is the identity map over G.

The following two theorems and Lemma 11 determine the distinguishing num-

ber of grid types and ladder types completely. The basic idea to prove the theo-

rems is to make a coner fixed by an automorphism, setting S suitably.

THEOREM 13. Every 4-regular quadrangulation Qg(p, r) of grid type on the

Klein bottle is 2-distinguishable.

Proof. Let G be a grid type Qg(p, r) with p ≥ 3 and r ≥ 3. Then G contains at

least one longitude of length r. Let w0w1w2w3 be the boundary cycle of a face

A containing one edge w0w1 on one of the longitudes.

Put S = {w0, w1, w3}. Then the subgraph H induced by S is isomorphic

to a path of length 2 and forms a corner of A. Take any automorphism σ of

G with σ(S) = S. This extends to an auto-homeomorphism h over the Klein

bottle since G is faithfully embedded by Theorem 9. Since degH w0 = 2 and

degH w1 = degH w3 = 1, σ fixes w0 and σ({w1, w3}) = {w1, w3}. If σ swapped w1

and w3, then h would carry the longitude containing w0w1 to a cycle containing

w0w3, which is a meridian of length p. Since this is impossible however, σ must fix

each of w1 and w3 and hence it fixes the corner w3w0w1 of the face A. By Lemma

12, σ becomes the identity map over G. This implies that G is 2-distinguishable.

THEOREM 14. A 4-regular quadrangulation Ql(2r, s) of ladder type on the

Klein bottle is 2-distinguishable unless it is isomorphic to Ql(4, 2).

Proof. Every ladder type G = Ql(2r, s) contains two Möbius ladders as its sub-
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graphs and each of their rims forms an equator on the Klein bottle. Take one of

edges lying on the rims, say uv, and let uvwx be the face incident to the edge

uv and lying outside the Möbius ladder. Then vw is contained in a meridian of

length 2s. Set S = {u, v, w} and let σ be any automorphism of G with σ(S) = S.

By Theorem 9, if (2r, s) 6= (4, 2) and (6, 2), then G is faithfully embedded

on the Klein bottle and hence σ extends to an auto-homeomorphism h over the

surface. It is clear that σ(v) = v since the only vertex of degree 2 in the subgraph

induced by S is v. Thus, there are two possibilities; σ fixes each of u and w,

or exchanges them. However, h would carry the equator containing vu to the

meridian containing vw in the latter case, but this is impossible. Therefore, σ

fixes the corner uvw and must be the identity map over G by Lemma 12. This

implies that G is 2-distinguishable.

By Lemma 11, Ql(6, 2) also is 2-distinguishable and hence is not an exception

of the theorem. Thus, we have only one exception, which is Ql(4, 2).

We need a slightly big task to analyze the distinguishing number of mesh

types since there are infinitely many exceptions for the faithfulness of their em-

beddings. We shall determine the distinguishing number of the exceptions before

establishing the theorem for mesh types.

LEMMA 15.

D(Qm(2, r)) =

{
3 (r = 3, r ≥ 5)

5 (r = 4)

Proof. First we shall show that D(Qm(2, r)) ≥ 3. As is shown in our proof

of Lemma 8, Qm(2, p) is isomorphic to Hr, which consists of r pairs {x+
i , x−i }

for i ≡ 0, 1, · · · , r − 1 and it has an automorphism σi which exchanges x+
i and

x−i , fixing the other vertices. Suppose that there is a 2-distinguishing labeling

c : V (Hr) → {1, 2} of Hr. If c(x+
i ) = c(x−i ) for some i, then σi preserves this

labeling, contrary to c being 2-distinguishing. Thus, c(x+
i ) 6= c(x−i ) for all i and

we may assume that c(x+
i ) = 1 and c(x−i ) = 2, up to symmetry. However, there is

an automorphis which shifts x±i to x±i+1, preserving the labels in this case. This

is contrary to our assumption, again. Therefore, there is no 2-distinguishing

labeling of Hr and hence we have Qm(2, r) ≥ 3.

Now suppose that r ≥ 5 and define a labeling c : V (Hr) → {1, 2, 3} by:

c(x+
0 ) = 1, c(x+

j ) = 2 (j = 2, . . . , r − 1)

c(x−i ) = 3 (i = 0, 1, . . . , r − 2), c(x−r−1) = 1

It is clear that any automorphism σ of Hr preserving this labeling fixes the two

cycles x+
0 x+

1 · · · x+
r−1 and x−0 x−1 · · · x−r−1 setwise, say C+ and C−, respectively. In
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particular, σ fixes x+
0 and x−r−1 since each of them is a unique vertex on each

cycle with label “1”. Thus, σ flips each of C± or fixes it pointwise. If the former

happens for C+, then x+
r−1 is mapped to x+

1 by σ. However, this is impossible

since x+
r−1 lies on a cycle of length 4 which contains two “1”’s, but x+

1 does not.

Thus, σ must fix C+ pointwise and also C− similarly, and hence it is the identity

map over Hr. This implies that c is a 3-distinguishing labeling and that Hr is

3-distinguishable. Therefore, D(Qm(2, r)) = D(Hr) = 3 for r ≥ 5.

On the other hand, it is easy to see that Qm(2, 3) ∼= K2,2,2 and Qm(2, 4) ∼=
K4,4. Also we have D(K2,2,2) = 3 and D(K4,4) = 5. These complete the formula

in the lemma.

LEMMA 16. The mesh type Qm(p, 4) is 2-distinguishable if p ≥ 3.

Proof. Consider the meshed rectangles as given in Figure 8 to construct the mesh

type Qm(p, 4) and use the notation u(x,y) to denote the vertex in Qm(p, 4) corre-

sponding to a point (x, y) on the xy-plane; the left bottom corner has coodinates

(0, 0) in particular. Since any identification to obtain the Klein bottle results

in a unique graph up to isomorphism, we may assume that u(0,i) = u(4,2p−i) for

i = 0, 2, . . . , 2p.

Figure 8 The mesh type Qm(p, 4)

As we have seen in our proof of Lemma 8, Qm(p, 4) has two pairs of those

vertices, say X1 and X2, that have four common neighbors. They are X1 =

{u(0,0), u(2,0)} and X2 = {u(1,p), u(3,p)} if p is odd and X2 = {u(0,p), u(2,p)} if p is

even. The shaded regions in each meshed rectangle in Figure 8 form two Möbius

bands containing X1 and X2 in cases of p = 3, 4 and 5. The boundary of each

of the Möbius bands contains the four neighbors of two vertices in Xi. Then we



90 A. WUSUYING, S. NEGAMI AND K. YAMAMOTO

can find a unique cycle of length 8 such that the four neighbors and others lie

along it alternately. Let Ci be the cycle containing the four neighbors of Xi for

i = 1, 2; they are drawn by thick lines in the figure.

C1 = u(0,2)u(1,1)u(2,2)u(3,1)u(4,2)u(1,2p−1)u(2,2p−2)u(3,2p−1)

C2 = u(0,p−2)u(1,p−1)u(2,p−2)u(3,p−1)u(4,p−2)u(1,p+1)u(2,p+2)u(3,p+1) (p: even)

= u(0,p−1)u(1,p−2)u(2,p−1)u(3,p−2)u(4,p−1)u(1,p+2)u(2,p+1)u(3,p+2) (p: odd)

The uniqueness of these cycles implies that σ(Ci) = Cj and σ(Xi) = Xj with

i, j ∈ {1, 2}, possibly equal, for any automorphism σ of Qm(p, 4). Also, there

is an automorphism σi which exchanges the two vertices in Xi, fixing the other

vertices. This implies that any distinguishing labeling assigns two distinct labels

to these two vertices. Put S = {u(0,0), u(0,p), u(0,2), u(1,1), u(3,1)} if p is even and

replace u(0,p) in S with u(1,p) if p is odd; the vertices belonging to S are encircled

in the figure. Define a labeling c : V (Qm(p, 4)) → {1, 2} by c(v) = 1 for v ∈ S

and c(v) = 2 for v 6∈ S. We shall show that c is a 2-distinguishing labeling to

conclude that Qm(p, 4) is 2-distinguishable. Let σ be any automorphism σ of

Qm(p, 4) which preserves the labels given by c.

If p = 3, then we have C1 = C2 and Qm(3, 4) consists of this cycle C1 and

the four vertices in X1∪X2. First, the occurences of “1” along C1 forces σ to fix

each of the vertices lying on C1. The four neighbors of X1 get two “1”’s and two

“2”’s while those of X2 get one “1” and three “2”’s. This implies that σ cannot

exchange X1 and X2, and hence it fixes them. Therefore, σ must be the identity

map over Qm(3, 4) and we conclude that c is 2-distinguishing.

Suppose that p ≥ 4. Then C1 and C2 are distinct cycles and C1 has three

vertices with label “1”. Since the number of “1”’s occurring along C2 is 1 or 0,

σ cannot exchange C1 and C2 and hence we have σ(Ci) = Ci and σ(Xi) = Xi for

i = 1, 2. In particular, σ fixes each of the vertices lying on C1 as well as in the

previous case.

Here we shall use the following logic; if σ fixes each of u(x−1,y), u(x,y−1) and

u(x+1,y), then σ fixes u(x,y+1), too. However, this is incorrect if there is a vertex w,

other than u(x,y+1), adjacent to both u(x−1,y) and u(x+1,y) since σ might exchange

u(x,y+1) and w. For example, if y = p − 1, then this unexpected case happens

actually. Conversely, we can carry out the above logic repeatedly whlie 2 ≤ y ≤
p− 2 and conclude that σ fixes the vertices in the lower white regoin. Similarly,

σ fixes those in the upper white region and hence it fixes each of the vertices

lying on C2. Also σ fixes each of the two vertices in Xi since they get different

labels. Now we have seen that σ fixes all vertices, that is, it is the identity map

over Qm(p, 4). Therefore, c is a 2-distinguishing labeling and hence Qm(p, 4) is

2-distinguishable.
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Now all we need to prove the following theorem has been prepared:

THEOREM 17. A 4-regular quadrangulation Qm(p, r) of mesh type on the Klein

bottle is 2-distinguishable if and only if p ≥ 3.

Proof. The necessity is clear by Lemma 15. To prove the sufficiency, we assume

that p ≥ 3 and we may assume that Qm(p, r) is faithfully embedded on the Klein

bottle since we have already discussed the case when it is not, in Lemmas 15 and

16. That is, we have r = 3 or r ≥ 5.

u(0,2)

u(3,3) = u(0,2)

Figure 9 A 2-distinguishing labeling of Qm(p, 3)

Put S = {u(0,2), u(1,1), u(1,3), u(2,0)} and let H be the subgraph in Qm(p, r)

induced by S. It is clear that H is a path of length 3 and u(1,3)u(0,2)u(1,1) form

a corner of a face if r ≥ 5. On the other hand, if r = 3, then we need to take

account of the identification of the left and right sides of the meshed rectangle.

In this case, we may assum that u(0,2) is identified with u(3,3) in Qm(p, 3) after

changing identification along the vertical sides; recall that this does not change

the isomorphism type of Qm(p, 3). Thus, if p ≥ 3, then H forms a path of length

3 bending at a corner of a face like “Γ”, as well as in case of r ≥ 5.

Now take any automorphism σ of Qm(p, r) with σ(S) = S. Then σ extends

to an auto-homeomorphism h over the Klein bottle since Qm(p, r) is faithfully

embedded. Since h preserves any corner of a face, it is clear that σ fixes the

corner u(1,3)u(0,2)u(1,1) and hence it must be the identity map over Qm(p, r) by

Lemma 12. Therefore, Qm(p, r) is 2-distinguishable if p ≥ 3 and if r = 3 or

r ≥ 5, and so is it in case of r = 4 by Lemma 16.

We do not need to prove Theorem 1 any longer because it just states The-

orems 13, 14 and 17 together. It should be noticed that the infinite series of

exceptions Qm(2, r) in our theorem can be embedded on the torus as 4-regular

quadrangulations and hence they also appear as exceptions in the theorem in

[3]. On the other hand, the other exception Ql(4, 2) ∼= K4 ×K2 in our thoerem
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cannot be a quadrangulation on the torus although it can be embedded there.

COROLLARY 18. The distinguishing number of 4-regular quadrangulations on

the Klein bottle takes only three values 2, 3 and 5.

Proof. It is clear that the automorphism group of any 4-regular quadrangulation

on the Klein bottle is non-trivial and hence D(G) ≥ 2. We find only 2, 3 and 5

in the theorems, looking through this section.
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