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Abstract. A graph G is said to be d-distinguishable if we can assign d distinct
labels to its vertices so that the only automorphism of G preserving the labels
of vertices is the identity map and its distinguishing number is defined as the
minimum number d such that G is d-distinguishable. We shall determine the
distinguishing number of 4-regular quadrangulations on the torus and show that
they are 2-distinguishable with spesified exceptions, after classifying the 4-regular
quadrangulations on the torus with standard forms.

Introduction

We deal with only finite simple graphs throughout this paper. The automor-

phism σ : G → G of G is a permutation over the vertex set V (G) of G such that

it preserves the adjacency of vertices and it extends to a permutation over the

edge set E(G) so that σ(uv) becomes the edge between σ(u) and σ(v) for any

edge uv ∈ E(G) with ends u and v. The set of automorphisms of G forms a

group with respect to thier compositions. We call it the automorphism group of

G and denote it by Aut(G).

The automorphism group Aut(G) exhibits the symmetry over G. We shall

consider how to break such symmetry, assigning labels to vertices. Given an as-

signment c : V (G) → {1, 2, . . . , d} of labels, we define Aut(G, c) as the subgroup

in Aut(G) consisting of automorphisms preserving the labels given by c:

Aut(G, c) = {σ ∈ Aut(G) : c(σ(v)) = c(v) for any v ∈ V (G)}

We call c a d-distinguishing labeling of G if Aut(G, c) is trivial. In other words,

the only automorphism that preserves the labeling of G is the identity map idG

over G if c is d-distinguishing. A graph G is said to be d-distinguishable if G

admits a d-distinguishing labeling. Since G is |V (G)|-distinguishable clearly, we

can consider the minimum number d such that G is d-distinguishable and define
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the distinguising number of G as it, which is denoted by D(G). For example, it

is easy to see that D(Kn) = n and D(Kn,n,n) = n + 1 for n ≥ 2. We can find

several arguments on these notions in [1, 2, 5] for example.

Recently, the second author [4] has established a theory on the distinguishing

number of graphs embedded on closed surfaces, using some methods in topo-

logical graph theory although the distinguishing number is defined for abstract

graphs. In particular, he has discussed the distinguishing number of “polyhedral

quadrangulations” on closed surfaces in a part of his theory. A quadrangulation

on a closed surface is usually defined as a simple graph embedded on the surface

so that each face is bounded by a cycle of length 4 and is said to be polyhedral if

any two faces meet each other in at most one vertex or one edge. In this paper,

we shall discuss the distinguishing number of 4-regular quadrangulations on the

torus, not assuming that they are polyhedral.

There have been classified the 4-regular quadrangulations on the torus in [3].

According to the classification, any 4-regular quadrangulation on the torus is

isomorphic to one of the standard forms Q(p, q, r) with suitable parameters p,

q and r described below. The standard form Q(p, q, r) has a geodesic 2-factor

which consists of r disjoint cycles of length p, say C0, C1, . . . , Cr−1. Each cycle

Ci goes straight at each vertex and each pair of Ci and Ci+1 with indices modulo

r bounds an annulus on the torus, which is divided into p quadrilaterals by

edges between them. Let u0, u1, . . . , up−1 be the vertices lying along C0 in this

order. Start at u0 along the edge joining u0 to C1 and go straight. Then we will

encounter C0 again after crossing all of Ci orthogonally in order; the goal is uq.

The following is our main theorem in this paper:

THEOREM 1. Every 4-regular quadrangulation on the torus is 2-distinguishable

unless it is isomorphic to one of the followings:

Q(5, 2, 1), Q(10, 3, 1), Q(3, 1, 2), Q(3, 0, 3),

Q(2q + 2, q, 1) (q ≥ 2), Q(p, 2, 2) (p ≥ 4)

The exceptions Q(5, 2, 1), Q(3, 1, 2) and Q(3, 0, 3) are isomorphic to K5,

K2,2,2 and C3 × C3, respectively and they are not 2-distinguishable acutually;

D(Q(5, 2, 1)) = 5, D(Q(3, 1, 2)) = 3 and D(Q(3, 0, 3)) = 3. Also the two infi-

nite series of exceptions are not 2-distinguishable, which will be discussed later.

The only polyhedral quadrangulation is Q(3, 0, 3) among these exceptions in the

theorem and hence we have the following corollary immediately:

COROLLARY 2. Every polyhedral 4-regular quadrangulation on the torus is 2-

distinguishable unless it is isomorphic to Q(3, 0, 3).
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We shall describe the standard forms of 4-regular quadrangulations on the

torus in detail in Section 1 and show that they are 2-distinguishable in easy cases

with sufficiently large parameters in Section 2. In Section 3, we shall discuss the

remaining cases, considering how to distinguish vertices. In Section 4, we shall

show that the two series of exceptions in the theorem are actually exceptions

and determine their distinguishing numbers. In Section 5, we shall investigate

“the faithfulness of embeddings” of 4-regular quadrangulations on the torus and

discuss the relation between our results and the general theory on polyhedral

graphs on closed surfaces developed in [4].

1. Standard forms

Let Ω be the integral grid of the xy-plane R2 consisting of vertical and hori-

zontal lines crossing at the points with integral coordinates. We regard Ω as an

infinite 4-regular quadrangulation on the plane. Thus, we have V (Ω) = {(x, y) ∈
R2 : x, y ∈ Z} and two vertices (x, y) and (x′, y′) are adjacent if and only if

|x − x′| + |y − y′| = 1. This infinite 4-regular quadrangulation covers Q(p, q, r)

naturally and we can specify each vertex of Q(p, q, r) with xy-coordinates as

u(x, y), which corresponds to the point (x, y) in Ω. In particular, the set of ver-

tices {u(i, j) : j = 0, 1, . . . , p − 1} may be assumed to form each cycle Ci in the

geodesic 2-factor in Q(p, q, r) and u(0,j) is identical with u(r,j−q).
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u0 = u(r,−q)

u0 = u(0, p)

u0 = u(0, 0)

uq = u(0, q)

uq

vr

Figure 1 The plane grid covering Q(p, q, r)

It is easy to see that u(x,y) ∈ V (Q(p, q, r)) is covered by the following set:

{(x + λr, y − λq + µp) : λ, µ ∈ Z}
Define a map τ(a,b) : V (Q(p, q, r)) → V (Q(p, q, r)) by τ(a,b)(u(x,y)) = u(x+a,y+b).

It is easy to see that τ(a,b) is well-defined and it becomes an automorphism of

Q(p, q, r). Since we can choose (a, b) arbitrarily, this implies that Aut(Q(p, q, r))
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is non-trivial and that Q(p, q, r) is vertex-transitive, that is, there is an automor-

phism τ of Q(p, q, r) with τ(u) = v for any pair of vertices u and v. In particular,

τ(0,p) and τ(r,−q) induce the identity map over Q(p, q, r).

To recognize the standard form presenting a given 4-regular quadrangulation

G on the torus, we read the parameters p, q and r as follows. First we choose

a vertex u0 and one of the four edges incident to u0, say u0u1, arbitrarily. Go

straight toward the direction of u0u1 and counting the number of vertices until we

meet u0, again. Then we get the first parameters p with a cycle C0 = u0u1 · · · up−1

of length p. Secondly, choose another edge u0v1 incident to u0 and not lying on

C0 and go straight toward the direction fo u0v1 until we encouter a vertex on C0.

Then we get a path u0v1 · · · vr of length r with vr = uq ∈ V (C).

Thus, the parameters p, q and r are uniquely determined by the choice of

an ordered triple 〈u0, u1, v1〉. There are 4 × 2 ways to choose u1 and v1 for a

fixed u0 but there are at most four distinct sets of parameters, as shown in the

following theorem. The set of parameters are independent of the choice of u0

since Q(p, q, r) is vertex-transitive.

THEOREM 3. Two 4-regular quadrangulations Q(p, q, r) and Q(p′, q′, r′) are

isomorphic as maps if and only if one of the followings holds:

(i) p′ = p, q′ = q, r′ = r.

(ii) p′ = p, q′ = p− q, r′ = r.

(iii) p′ = pr/(p, q), q′ = nr, r′ = (p, q),

(iv) p′ = pr/(p, q), q′ = pr/(p, q)− nr, r′ = (p, q),

In both (iii) and (iv), (p, q) stands for the greatest common divisor of p and q

and n can be obtained as the minimum non-negative integer satisfying nq ≡ (p, q)

(mod p).

Proof. Two maps are isomorphic if and only if there is a homeomorphism be-

tween the surfaces containing them that carries one onto the other, preserving

their faces. If Q(p, q, r) is isomorphic to Q(p′, q′, r′), then we can read the param-

eters p′, q′ and r′ over Q(p, q, r). Thus, it suffices to understand what parameters

we can read, re-choosing 〈u0, u1, v1〉 for a fixed u0.

We use the same notations as given before the theorem. Let w0, w1, w2 and

w3 be the four neighbors of u0 lying around it in this cyclic order with w0 = u1,

w1 = v1 and w2 = up−1. Then we obtain a set of parameters (p′, q′, r′) by choosing

an ordered triple 〈u0, ws, wt〉 for s, t ∈ {0, 1, 2, 3} with |s− t| 6= 2. In particular,

the original parameters (p, q, r) can be read with 〈u0, w0, w1〉.
First, consider the parameters (p̄, q̄, r̄) with 〈u0, w2, w3〉. To read these, we

go straight along C0 backward and come back to u0. Next we go straight to-
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ward the direction of u0w3. Then we reach a vertex on C0, again after crossing

Cr−1, Cr−2, . . .. The vertex is up−q and is the qth vertex if we count the vertices

along C0 backward from u0. These imply that p̄ = p, q̄ = q and r̄ = r. This

fact can be applied to each pair of ordered triples each of which can be obtained

from the other by rotating it in 180◦. Therefore, we oabtain only four sets of pa-

rameters from 〈u0, ws, wt〉’s and they can be read with 〈u0, w0, w1〉, 〈u0, w2, w1〉,
〈u0, w1, w0〉 and 〈u0, w3, w0〉.

Read the parameters p′, q′ and r′ with 〈u0, w2, w1〉. Then the p vertices lying

along C0 are re-labeled backward and uq labeled with 〈u0, w0, w1〉 is re-labeled

as the (p − q)th vertex on C0. This implies that p′ = p, q′ = p − q and r′ = r,

which corresponds to (ii) in the theorem.

Read the parameter p′, q′ and r′ with 〈u0, w1, w0〉 in turn. Go straight toward

the direction of u0w1 until we come back to u0; don’t stop at uq if uq 6= u0.

Suppose that we encountered m vertices on C0 finally. Then we obtain a cycle

C ′
0 of length mr and mq ≡ 0 (mod p). If u0 = u(0,0), then the m vertices on

C0 we encountered are u(q, 0), u(2q, 0), . . . , u(mq, 0) = u(0,0). These divide C0 into m

segments and the length of each segment is equal to r′ and hence p = mr′.
Since mq ≡ 0 (mod p), there is a poisitive integer α with mq = αp and hence

q = αr′. Since m is the minimum number satisfying these equalities, r′ must be

the greatest common divisor (p, q) of p and q. Since pr = p′r′ as the number

of vertices, we have p′ = pr/r′ = pr/(p, q). Go straight toward the direction

of u0w0. Then we encounter u(r′, 0) and this is the nrth vertex along C ′
0 with

nq ≡ r′ = (p, q). Thus, we have q′ = nr. Now we have obtained the formulas

corresponding to (iii).

The translation formula in (iv) can be obtained just as the composition of

(iii) and (ii). So we need to discuss nothing more.

To eliminate duplications of Q(p, q, r), we may assume that 0 ≤ q ≤ p/2.

For, Q(p, q, r) with p/2 < q ≤ p − 1 can be translated into Q(p, p − q, r) with

0 ≤ p − q ≤ p/2 by the formula (ii) in Theorem 3. Furthermore, we should

exclude the parameters that present non-simple graphs. The following lemma

shows those:

LEMMA 4. The standard form Q(p, q, r) with 0 ≤ q ≤ p/2 presents a simple

graph if and only if none of the following holds:

(i) p ≤ 2

(ii) r = 1 and q ≤ 1

(iii) r = 1 and p = 2q

(iv) r = 2 and q = 0.
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Proof. It is easy to see that Q(p, q, r) has a self-loop if and only if either p = 1

or (r, q) = (1, 0) and that the other cases allows multiple edges.

2. Sufficiently large cases

In this section, we shall discuss the case when r ≥ 3. In this case, we can

prove easily that all Q(p, q, r)’s but one are 2-distinguishable. In general, a graph

G is 2-distinguishable if and only if there is a subset S ⊂ V (G) such that the only

automorphism σ of G with σ(S) = S is the identity map over G. We shall use this

frequently below. Since Q(p, q, r) is vertex-transitive, we have D(Q(p, q, r)) ≥ 2.

Thus, if Q(p, q, r) is 2-distinguishable, then D(Q(p, q, r)) = 2. We use the same

notation u(x, y), Ci and so on as in the previous section.

LEMMA 5. D(Q(p, q, r)) = 2 if r ≥ 4.

Proof. Put S = V (C0) ∪ {u(1,0), u(2,1)} and let H be the subgraph induced by S

in Q(p, q, r). Then H consists of the cycle C and two additional vertices u(1,0)

and u(2,1). Since r ≥ 4, the latter is isolated in H while the former has degree

1 in H and is adjacent to u(0,0), which has degree 3 in H. The other vertices

has degree 2 in H. Thus, it is clear that any automorphism σ of Q(p, q, r) with

σ(S) = S fixes each of u(0,0), u(1,0) and u(2,1) and that σ(C0) = C0.

The neighbors of p vertices lying along C0 form two disjoint cycles C1 and

Cr−1. The former contains a vertex u(1,0) belonging to S but the latter does

not. This implies that σ(C1) = C1 in particular. Similarly, the neighbors of

vertices on Ci form two disjoint cycles Ci−1 and Ci+1. If we have known that

σ(Ci−1) = Ci−1 and σ(Ci) = Ci, then we also conclude that σ(Ci+1) = Ci+1.

Therefore, σ sends any cycle Ci onto itself. In particular, either σ turns over

C1 with σ(u(1,0)) = u(1,0), or fixes C1 pointwise. Similarly, σ turns over C2 with

σ(u(2,1)) = u(2,1), or fixes C2 pointwise. However, the only compatible case is

when σ|C1∪C2 is the identify map over C1 ∪ C2 since u(1,0) is adjacent to u(2,0),

but not to u(2,2). Clearly, this extends to all of cycles Ci’s and σ must be the

identity map over Q(p, q, r). Therefore, Q(p, q, r) is 2-distinguishable if r ≥ 4.

It should be noticed that the argument in the above proof does not work

actually with S so defined if r = 3. For, both u(1,0) and u(2,1) have degree 1 in

H and σ may exchange C1 and C2 = Cr−1. For example, Q(p, 0, 3) ∼= Cp × C3

admits an automorphism σ which rotates the face u(1,0)u(2,0)u(2,1)u(1,1) in 180◦.
Such an automorphism σ exchanges u(1,0) and u(2,1) although we have σ(S) = S.

Thus, we need to change the choice of S for the case of r = 3, as shown in the
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proof below.

LEMMA 6. D(Q(p, q, 3)) = 2 if p ≥ 4.

Proof. Put S = V (C0)∪ {u(1,0), u(2,1), u(2,2)} and let H be the subgraph induced

by S in Q(p, q, 3). Then u(1,0) has degree 1 in H and both u(2,1) and u(2,2) have

degree 2 in H. The subgraph H contains two cycles without chords, one of which

is C0 and the other is u(2,1)u(2,2)u(0,q+2)u(0,q+1). However, the former contains a

vertex adjacet to the unique vertex u(1,0) of degree 1 in H, but the latter does

not unless q = p − 1 or p − 2. Thus, any automorphism σ of Q(p, q, 3) with

σ(S) = S fixes C0 setwise in such a case. Here we may assume that 0 ≤ q ≤ p/2

in addition. If q = p − 1 ≤ p/2, then we have p ≤ 2, which forces Q(p, q, r) to

have multiple edges, a contradiction. If q = p− 2 ≤ p/2, then we have p ≤ 4 and

hence (p, q) = (4, 2) under the assumption in the lemma.
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Figure 2 Q(4, 2, 3)

We need to discuss in more detail to conclude the same fact as above in this

unique exceptional case, depicted in Figure 2. In this case, u(1, 0) has degree 1,

u0 = u(0, 0) = u(3, 2) has degree 4, u3 = u(0, 3) = u(3, 1) has degree 3 in H and the

other vertices in S have degree 2 in H. These imply that σ fixes each of u(1, 0), u0

and u3. On the other hand, five vertices not belonging to S form a path of length

4 and σ fixes each of X = {u(1, 1), u(2, 0)}, Y = {u(1, 2), u(2, 3)} and Z = {u(1, 3)}
setwise. Then u(2, 1) is adjacent to the two vertices in X and u(2, 2) is adjacent

to those in Y , but u1 and u2 have none of these properties. Therefore σ does

not exchange u1u2 and u(2, 1)u(2, 2) and hence σ fixes C0 pointwise, rather than

setwise as we want.

Similarly, σ fixes C1 and C2, too, since C1 and C2 can be recognized as two

disjoint cycles in Q(p, q, 3)−C0 and since the number of vertices in C1 belonging

to S is different from that of C2. Then σ flips C1 with σ(u(1,0)) = u(1,0), or fixes

it pointwise, while σ fixes {u(2,1), u(2,2)}. This implies that σ|C1∪C2 must be the

identity map over C1 ∪ C2 if p ≥ 4; σ may flip both C1 and C2 if p = 3. This

extends to the whole of Q(p, q, 3) and σ must be the identity map over Q(p, q, 3).

Therefore, Q(p, q, 3) is 2-distinguishable if p ≥ 4.
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The only remaining cases with r ≥ 3 is Q(3, q, 3). Under the assumption of

q ≤ p/2, it suffices to treat the following two cases:

LEMMA 7. D(Q(3, 0, 3)) = 3 and D(Q(3, 1, 3)) = 2.

Proof. Let G be the 4-regular quadrangulation Q(3, 0, 3) on the torus, which is

isomorphic to C3 × C3. Then it has presicely six cycles of length 3, three of

which are disjoint and correspond to the first factor of C3 × C3 and the other

three to the second factor. To distinguish these two type of cycles, we call them

“vertical” and “horizontal”, respectively. Suppose that G has a 2-distinguishing

labeling c : V (G) → {1, 2}. We may assume that |c−1(1)| ≤ 4 < |c−1(2)|, up to

symmetry.

First, suppose that one of the six cycles, say C, gets only one kind of labels.

Then it is clear that any automorphism σ̄ of G−C which preserves the labeling

c|G−C extends to an automorphism of G preserving c. Also, it is not difficult to

see that G − C ∼= C3 × K2 is not 2-distinguishable. This implies that there is

an automorphism σ̄ of G−C which preserves c|G−C and is not the identity map

over G− C. Then σ̄ extends to an automorphism σ of G which preserves c and

it is not the identity map over G. This is contrary to our assumption on c being

2-distinguishing.

Therefore, we may assume that any cycle of length 3 contains two knids of

labels, “1” and “2”. Then we have c−1(1) = 3 or 4, and have three cases depicted

as the first three in Figure 3, up to symmetry; the vertices encircled in the figure

get label “1” while the others get “2”. The first one in the figure presents the

case when there are only three “1”’s. If |c−1(1)| = 4, one of the three veritcal

cycle gets two “1”’s and so does one of the three horizontal cycles. The second

one presents the case when those two cycles have a common vertex with “1” and

the third presents the case when they do not. Clearly, we can see the symmetry

on the torus which induces naturally an automorphism of G of order 2 preserving

the labeling in each case. However, this is contrary to c being 2-distinguihing,

again and hence G is not 2-distinguishable with D(G) ≥ 3.
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Figure 3 Labelings of C3 × C3 with two and three labels
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On the other hand, the fourth in Figure 3 presents a 3-distinguishing labeling

of G. To see it, let σ be an automorphism of G preserving this labeling. There is a

unique vertical cycle with three labels “1”, “2” and “3”, a unique cycle with only

“1” and one with “2”. Then σ must fix these three cycles setwise and must fix

each of the vertices on the first one since they have different labels. This extends

to the other two cycles and σ becomes the identity map over G. Therefore, G is

3-distinguishable and we have D(G) = 3.

Now let G be the 4-regular quadrangulation Q(3, 1, 3) on the torus. It is

not so difficult to see that G consists of three disjoint cycles of length 3 and

one hamilton cycle and that this decomposition is unique. This implies that

any automorphism σ of G fixes the hamilton cycle v0v1 · · · v8 setwise. Define

c : V (G) → {1, 2} by c(v0) = c(v1) = c(v3) = 1 and c(v) = 2 for any other vertex

v. Then σ must fix all vertices in addition if σ preserves this labeling c and hence

c is 2-distinguishing. Therefore, G is 2-distinguishable with D(G) = 2.

3. Distinguishing vertices

In the previous section, we have determined the distinguishing number of

all Q(p, q, r) with r ≥ 3. So it suffices to deal with the case when r ≤ 2 here.

Our argument below will work for all cases, but its main part concerns such a

exceptional case.

Let G be a graph and S a subset of V (G) in general. A vertex v ∈ V (G) is

said to be distinguished with S if σ(v) = v for any automorphism σ of G with

σ(S) = S. Thus, G is 2-distinguishable if and only if there is a subset S ⊂ V (G)

such that all vertices of G are distinguished with S. Furthermore, a set X or a

subgraph H with vertex set X is said to be distinguished with S if each vertex

in X is distinguished with S and it is self-distinguished if S = X. We try to find

a self-distinguished set S and to extend the distinguishability of vertices.

Now consider any 4-regular quadrangulation G on the torus. Then it can be

described with one of the standard forms Q(p, q, r) with suitable parameters p,

q and r. After translating parameters, we may assume that 0 ≤ q ≤ p/2. Fix

p, q and r for G with this condition and the labeling of vertices u(x,y), as given

in Section 1, to realize this set of parameters. Furthermore, we should exclude

the parameters which present non-simple graphs. Under these assumptions, let

H(x, y) be the subgraph in Q(p, q, r) with the following vertex set and edge set:

V (H(x, y)) = {u(x, y), u(x, y+1), u(x, y+2), u(x+1, y), u(x+1, y+1)}
E(H(x, y)) = {u(x, y)u(x, y+1), u(x, y+1)u(x, y+2), u(x+1, y)u(x+1, y+1),

u(x, y)u(x+1, y), u(x, y+1)u(x+1, y+1)}



56 T. FUKUDA AND S. NEGAMI

This subgraph H(x, y) consists of one square u(x, y)u(x, y+1)u(x+1, y+1)u(x+1,y) and

one edge u(x, y+1)u(x, y+2) joining the square and a unique vertex u(x, y+2) of degree

1. However, H(x, y) may have chords, which are edges joing two vertices in H(x, y)

but not belonging to H(x, y), and the five vertices listed above may not be all

distinct in general. It is clear that H(x, y) has no chord and have exactly five

distinct vertices if the parameters p, q and r are sufficiently large. Here H(x, y) is

said to be good in such a case. It should be noticed that it does not depend on

the choice of (x, y) whether H(x, y) is good or not.

LEMMA 8. The subgraph H(x,y) in Q(p, q, r) is good except the following cases:

(i) Q(p, 2, 1) (p ≥ 5), Q(p, 3, 1) (p ≥ 7)

(ii) Q(2q + 1, q, 1) (q ≥ 3)

(iii) Q(p, 1, 2), Q(p, 2, 2) (p ≥ 3)

(iv) Q(3, q, r) (r ≥ 3)

Proof. It is clear that if p ≥ 4 and r ≥ 3, then H(x, y) is good and hence we

should exclude only the case of p = 3 if r ≥ 3. This is listed as (iv) in the lemma.

Assume below that r = 1 or 2.

First consider the case of r = 1. The two vertices u(x+1, y) and u(x+1, y+1) in

H(x, y) appear as u(0, q) and u(0, q+1) in this case. It is clear that the five vertices

in V (H(x, y)) are all distinct with no vertical chord if and only if p ≥ 7 and

4 ≤ q ≤ p − 3. Denying these conditions, we obtain that p ≤ 6, q ≤ 3, or

p − 2 ≤ q. However, the third one should be excluded since p − 2 ≤ q ≤ p/2

implies p ≤ 4. The graph is not simple also in case of q = 0, 1. Thus, all cases

except Q(p, 2, 1) and Q(p, 3, 1) listed in (i) admit no vertical chord.

Label u(x, y), u(x, y+1), . . . by u0, u1, . . ., according to the way to read the

parameters p, q and r. Then u(x+2, y) is identical with u2q. To exclude horizontal

chords of H(x, y), it suffices to consider the position of u0 in the column containing

u(x+2, y). We conclude that there are horizontal chords in H(x, y) only when u2q =

up−1, u0, u1 or u2, as Figure 4 suggests. However, there would be multiple egdes

if u2q = u0 and q ≤ p/2 does not hold if u2q = u1, u2. Thus, we obtain only

Q(2q + 1, q, 1), which is (ii) in the lemma.

Now suppose that r = 2. Then neither u(x+1, y) nor u(x+1, y+1) appear the

column containing u(x, y) and H(x, y) has a vertical chord only when p = 3. To

find horizontal chords of H(x, y), we consider the poision of u0 in the column

containing u(x+2, y), which is identical with uq, and conclude that q = p−1, 0, 1, 2

as well as in the previous case. However, the first case implies that p ≤ 2 since

p − 1 ≤ p/2 while there are multiple edges in the second case. Thus, we obtain

Q(p, 1, 2) and Q(p, 2, 2), which cover all cases of p = 3; Q(3, 0, 2) is not simple.

They are listed in (iii).
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Figure 4 H = H(x, y) with horizontal chords in Q(p, q, 1)

Now we shall try our first purpose, finding a self-distingushed set. The sub-

graph H(x, y) defined above gives us an answer:

LEMMA 9. The set V (H(x, y)) is self-distinguished except the following cases:

(i) Q(p, 2, 1) (p ≥ 5), Q(p, 3, 1) (p ≥ 7)

(ii) Q(2q + 1, q, 1), Q(2q + 2, q, 1) (q ≥ 3).

(iii) Q(p, 1, 2), Q(p, 2, 2) (p ≥ 3).

(iv) Q(3, q, r) (r ≥ 3).

(v) Q(4, 1, 3), Q(4, 0, 4)

Proof. Put S = V (H(x, y)) and take any automorphism σ of G with σ(S) =

S. Since the exceptional cases in the lemma include all exceptional cases in

Lemma 8, H(x, y) is good. Then σ|H(x, y)
becomes an automorphism of H(x, y).

This implies that σ fixes each of v = u(x, y+2), u(x, y+1) and u(x+1, y) and hence

they are distinguished with S and encircled in Figure 5. Furthermore, the vertex

w = u(x−1, y+1) does not belong to S since H(x, y) has no horizotal chord and it is

a unique vertex in V (G) − S incident to the distinguished vertex u(x, y+1). This

implies that σ fixes w and hence it is distinguished with S, too. However, σ

might exchange u(x, y) and u(x+1, y+1) yet although we deny it below.

Suppose that σ exchanges u(x, y) and u(x+1, y+1). Then σ exchanges their neigh-

bors {u(x−1, y), u(x, y−1)} and {u(x+1, y+2), u(x+2, y+1)}, too. Since the distinguished

vertex v is adjacent to u(x+1, y+2), it must be identical with either (A) u(x−2, y), (B)

u(x−1, y−1) or (C) u(x, y−2), each of which might be a neighbor of σ(u(x+1, y+2)); also

u(x+1, y−1) might be such a vertex, but H(x, y) would have a chord u(x+1, y)u(x+1, y−1)

in this case, a contradiction. We can recongize the parameters in each of the three

cases as follows:

Case (A): We have either Q(p, p − 2, 2) or Q(p, q, 1) with 2q ≡ −2 (mod p).

Since p− 2 ≤ p/2 implies p ≤ 4, only Q(3, 1, 2) and Q(4, 2, 2) survive in the

former case. On the other hand, the congruence in the latter case implies
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Figure 5 Candidates for distinguished vertices

that 2q = p − 2 since q ≤ p/2, and hence we obtain Q(2q + 2, q, 1) with

q ≥ 3; the case of q = 2 is included in (i).

Case (B): We have Q(p, p − 3, 1) and p − 3 ≤ p/2. It follows that p ≤ 6 and

Q(p, p− 3, 1) is simple only if p = 5. Thus, only Q(5, 2, 1) survives.

Case (C): In this case, we can conclude only that p = 4.

As well as in the previous, the distinguished vertex w should be identical with

either (a) u(x+1, y+3), (b) u(x+2, y+2), (c) u(x+2, y) or (d) u(x+3, y+1). These restrict

the values of parameters as follows:

Case (a): We have Q(p, p − 2, 2) or Q(p, q, 1) with 2q ≡ −2 (mod p). This is

completely the same as Case (A).

Cases (b) and (c): We have Q(p, p− 1, 3), Q(p, 1, 3) or Q(p, q, 1) with 3q ≡ ±1

(mod p). However, the first case does not happen since p− 1 ≤ p/2 implies

p ≤ 2. The congruence in the third case implies that 3q = p ± 1 since

q ≤ p/2 and we obtain Q(3q ± 1, q, 1).

Case (d): We have Q(p, 0, 4), Q(p, q, 2) with 2q ≡ 0 (mod p) or Q(p, q, 1) with

4q ≡ 0 (mod p). The congruence in the second case implies either q = 0 or

q = p/2, but the former case yields multiple edges. Thus, only Q(2q, q, 2)

survives. The congruence in the third case implies either q = 0, q = p/2 or

q = p/4. However, Q(p, 0, 1) and Q(2q, q, 1) are not simple and hence only

Q(4q, q, 1) survives.

One of Cases (A) to (C) and one of cases (a) to (d) must happen together.

Clearly Cases (A) and (a) are one of such compatible pairs and Q(2q + 2, q, 1)

appears in (ii). The quadrangulation Q(4, 2, 2) in Case (A) survives also as

Q(2q, q, 2) in Case (d) while Q(3, 1, 2) appears nowhere other than in Case (a).

They are included in (iii). The unique surviver Q(5, 2, 1) in Case (B) appears

only as Q(3q − 1, q, 1) with q = 2 in Case (c) and is included as Q(2q + 1, q, 1)

with q = 2 in (ii). Corresponding to Case (C) with p = 4, we find only Q(4, 2, 2)
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in Cases (a) and (d), Q(4, 1, 3) in Case (c) and Q(4, 0, 4) in Case (d). The last

two are listed in (v).

Now we have seen that all possible cases under the assumption that σ ex-

changes u(x, y) and u(x+1, y+1) are listed as the exceptional cases in the lemma.

Therefore, σ fixes each of u(x, y) and u(x+1, y+1) except those cases. This implies

that all of the five vertices in S are distinguished with S and hence S = V (H(x, y))

is self-distinguihed.

Once we found a self-distinguished set, we can extend the set of distinguished

vertices by the following two lemmas. The extending rule is depicted in Figure

6, where the vertices we have already known as distinguished are encircled and

each arrow points a vertex which we find as another distinguished one. The first

two, given by Lemma 10, work for any Q(p, q, r), but the third depends on the

parameters p, q and r.
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Figure 6 Extending the distinguishability of vertices

LEMMA 10. Let G be any 4-regular quadrangulation on the torus and v a vertex

of G with four neighbors w0, w1, w2 and w3. If v, w0, w1 and w2 are distinguished

with a suitable set S, then so is w3.

Proof. Let σ be any automorphism of G with σ(S) = S. Then σ(v) = v since

v is distinguished with S and hence σ(wi) must be in the neighborhood of v for

i = 0, 1, 2, 3. Since σ(wi) = wi for i = 0, 1, 2, we have σ(w3) = w3, too.

The following lemma corresponds to the third rule in Figure 6. We should

refer to Lemma 8 for the condition to guarantee that H(x, y) is good.

LEMMA 11. If H(x, y) is good and if each vertex in H(x, y) is distinguished with

a subset S, then so is u(x+1, y+2).

Proof. Suppose that u(x+1,y+2) is not distinguished with S. Then there is an

automorphism σ of G with σ(S) = S and with σ(u(x+1, y+2)) 6= u(x+1, y+2). Since

the only neighbors of u(x+1, y+1) which are not distinguished are u(x+1, y+2) and

u(x+2, y+1), σ exchanges u(x+1, y+2) and u(x+2, y+1), and the latter must be adjacent
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to the distinguished vertex u(x, y+2) as well as u(x+1, y+2) is. This implies that

u(x, y+2) is identical with either u(x+2, y) or u(x+3, y+1). However, H(x, y) would have

a chord u(x+1, y)u(x+2, y) in the former case, contrary to H(x, y) being good.

On the other hand, if the latter happens, then H(x, y) is identical with H(x+3, y−1).

Applying Lemma 10 to u(x+3, y), we conclude that u(x+2, y) is distinguished with

S and it should be adjacent to u(x+1, y+2) as well as to u(x+2, y+1) since σ ex-

changes them. This implies that the distinguished vertex u(x+2, y) is identical

wtih u(x+1, y+3) and that H(x, y) is identical with H(x+2, y+2). However, H(x+2, y+2)

would have a chord u(x+3, y+2)u(x+3, y+1), contrary to H(x, y) being good, again.

Therefore, any automorphism σ of G with σ(S) = S fixes u(x+1, y+2) as we

want and hence u(x+1, y+2) is distinguished with S.

Combining Lemmas 10 and 11, we can prepare another extending rule of the

distinguishability of vertices, which is more useful to prove our main theorem.

LEMMA 12. Suppose that H(x, y) is good and exclude Q(2q + 2, q, 1). If H(x, y)

is distinguished with a subset S, then so is H(x+1, y).

Proof. It suffices to show that u(x+1, y+2), u(x+2, y) and u(x+2, y+1) are distinguished

with S. We have already shown it for the first one as Lemma 11 and this implies

immediately that u(x+2, y+1) is distinguished with S by Lemma 10.

Suppose that u(x+2, y) is not distinguished with S. Then there is an automor-

phism σ of G with σ(S) = S such that σ(u(x+2, y)) 6= u(x+2, y). Since u(x+2, y) is

adjacent to the distinguished vertex u(x+1, y), σ(u(x+2, y)) must be identical with

u(x+1, y−1). Since u(x+2, y) is adjacent also to the distinguished vertex u(x+2, y+1),

σ(u(x+2, y)) must be identical with either u(x+2, y+2) or u(x+3, y+1). If the first case

happens, then we have σ(u(x+2, y)) = u(x+1, y−1) = u(x+2, y+2) and it follows that

q = p − 3 ≤ p/2 and r = 1. That is, we have Q(p, p − 3, 1) with p ≤ 6, but

H(x, y) is not good in this, which is contrary to our assumption. Thus, it must

hold that σ(u(x+2, y)) = u(x+1, y−1) = u(x+3, y+1) and hence we have Q(p, p − 2, 2)

or Q(p, q, 1) with 2q ≡ −2 (mod p). The former case happens only in case of

Q(3, 1, 2) and Q(4, 2, 2) since p− 2 ≤ p/2, but this is not the case since H(x, y) is

not good in Q(3, 1, 2) and Q(4, 2, 2). In the latter case, we have Q(2q + 2, q, 1)

since 2q = p − 2, but this is excluded by the second assumption in the lemma.

Therefore, u(x+2, y) is distinguished with S.

The following lemma covers partially the case when H(x, y) is not good:

LEMMA 13. D(Q(p, 2, 1)) = 2 for p ≥ 7, and D(Q(p, 3, 1)) = 2 for p ≥ 11.

Proof. Each of Q(p, 2, 1) and Q(p, 3, 1) has a hamilton cycle u0u1 · · · up−1. Put
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S = {u0, u1, u3} and let HS be the subgraph induced by the vertices of S and

their neighbors in each graph. The isomorphism type of HS depends of the value

of p, but our arguments below will work in common.

Suppose that p ≥ 7 for Q(p, 2, 1). Then S induces a path u0u1u3 of length

2 in Q(p, 2, 1) and u1 is distinguished with S since any automorphism σ with

σ(S) = S fixes the middle point u1 of the path. Since p ≥ 7, u2 is a unique

vertex in HS which is adjacent to all of u0, u1 and u3. The vertex u0 has a

common neighbor with u1 other than u2, namely up−1, while u3 does not. This

distinguishes u0 from u1. Thus, we have four consecutive distinguished vertices

u0 to u3 in Q(p, 2, 1).

Suppose that p ≥ 11 for Q(p, 3, 1). Then S induces a path u1u0u3 of length

2 and hence its middle point u0 is distinguished with S. There are only two

cycles of length 4 containing the path u1u0u3; namely u1u0u3u2 and u1u0u3u4.

This implies that any automorphism σ with σ(S) = S fixes the set {u2, u4}.
Since p ≥ 11, u2 has a common neighbor with u0 other than u1 and u3, namely

up−1, but u4 does not. These imply that each of u2, u4 and up−1 is distinguished

with S. The vertices up−2 and u6 have different degree in HS and they are the

neighbors of u1 and of u3 other than u0, u2 and u4. This distinguishes u1 from

u3. Thus, we have six consecutive distinguished vertices up−1 = u−1, u0 to u4.

Assume that four consecutive vertices ui−3 to ui are distinguished with S in

Q(p, 2, 1) and that so are ui−4 and uu−5 in addition for Q(p, 3, 1). Then ui+1 is

one of the four neighbors of ui−1 (or ui−2) and the other three ui, ui−2 and ui−3 (or

ui−1, ui−3 and ui−5) in Q(p, 2, 1) (or in Q(p, 3, 1)). Since the vertices with indices

smaller than i + 1 are all distinguished with S by the assumption, ui+1 becomes

distinguished with S, too by Lemma 10. Therefore, we can conclude inductively

that all vertices are distinguished with S and that Q(p, 2, 1) and Q(p, 3, 1) are

2-distinguishable under the assumption on p in the lemman.

All we need to prove our main theorem has been prepared. The fact that

H(x, y) is self-distinguished will guarantee that Q(p, q, r) is 2-distinguishable in

most of cases. We shall show that the two infinite series listed in the theorem

are acutally exceptions in the next section.

Proof of Theorem 1. First suppose that G is a 4-regular quadrangulation

Q(p, q, r) on the torus except ones listed in Lemma 9. Then H(0, 0) is good and

is self-distinguished. Furthermore, H(1, 0), H(2, 0), H(3, 0), . . . are distinguished with

S = V (H(0, 0)) by Lemma 12. By (iii) in Theorem 3, H(p′, 0) is identical with H(0, 0)

where p′ = pr/(p, q). If this sequence {H(x, 0)} covers all vertices of G, then they

are all distinguished with S. Otherwise, consider the sequence {H(x, 1)}. Since

u(0,3) is distinguished with S by Lemma 10, H(0, 1) is distinguished with S, too
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and hence all vertices covered by the second sequence also are distinguished with

S. Continue this argument as far as we need. Finally we can conclude that all

vertices are distinguished with S and hence G is 2-distinguishable with D(G) = 2.

Now consider the exceptional cases listed in Lemma 9. We have discussed

the distinguishability of vertices in Q(p, q, r), fixing the parameters p, q and r so

far, but we shall allow to translate them suitably up to isomorphism below.

(i) Q(p, 2, 1) (p ≥ 5), Q(p, 3, 1) (p ≥ 7): We have already known that

Q(p, 2, 1) is 2-distinguishable except Q(5, 2, 1) and Q(6, 2, 1) by Lemma 13.

The former exception is isomorphic to K5 while the latter is K2,2,2 and is iso-

morphic to Q(3, 1, 2). They are excluded the first and the third exceptions in

the theorem. Similarly, Q(p, 3, 1) is 2-distinguishable if p ≥ 11. by Lemma

13. The complement of Q(7, 3, 1) is 2-regular and forms a hamilton cycle

u0u2u4u6u1u3u5. It follows that all vertices of Q(7, 3, 1) are distinguished

with {u0, u2, u6} and hence Q(7, 3, 1) is 2-distinguishable. Also, it is easy

to see that Q(9, 3, 1) is 2-distinguishable since it forms a unique hamilton

cycle with three triangles. On the other hand, Q(8, 3, 1) and Q(10, 3, 1) are

listed as two of the exceptions in the theorem; the former can be regarded

as Q(2q +2, q, 1) with q = 3 The complement of Q(10, 3, 1) is isomorphic to

K5×K2. It is not so difficult to see that D(Q(10, 3, 1)) = D(K5×K2) = 3.

(ii) Q(2q + 1, q, 1), Q(2q + 2, q, 1) (q ≥ 3): The latter is excluded in the

theorem while Q(2q + 1, q, 1) is isomorphic to Q(2q + 1, 2, 1), as shown

below.

(2q − 1)q = (2q + 1)q − 2q ≡ −2q ≡ 1 (mod 2q + 1)

Thus, n = 2q − 1 is the solution of nq ≡ 1 (mod 2q + 1) and hence we can

translate the parameters of Q(2q + 1, q, 1) into the following parameters p′,
q′ and r′ by (iv) in Theorem 3 with this n:

p′ = (2q + 1) · 1/(2q + 1, q) = 2q + 1

q′ = p′ − n · 1 = 2q + 1− (2q − 1) = 2

r′ = (2q + 1, q) = 1

Thus, we can omit Q(2q + 1, 2, 1) as a special type of Q(p, 2, 1) in (i).

(iii) Q(p, 1, 2), Q(p, 2, 2) (p ≥ 3): The latter appears as one of the exceptions

in the theorem while Q(p, 1, 2) can be translated into Q(2p, 2, 1) by (iii) in

Theorem 3. As well as in the previous case, we can omit Q(2p, 2, 1) as a

special type of Q(p, 2, 1).

(iv) and (v) Q(3, q, r) (r ≥ 3), Q(4, 1, 3), Q(4, 0, 4): By Lemmas 5, 6 and 7,

they are 2-distinguishable except Q(3, 0, 3). Thus, we do not exclude them

as exceptions in the theorem.
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We have just confirmed that all cases are either 2-distinguishable or listed as

exceptions in the theorem. This completes the proof.

4. Exceptional cases

In this section, we shall discuss the two infinite series of exceptions Q(2q +

2, q, 1) and Q(p, 2, 2) in detail. They are different maps on the torus, but are

isomorphic to each other as graphs, as we shall show below.

LEMMA 14. The 4-regular quadrangulations Q(2q + 2, q, 1) on the torus is iso-

morphic to Q(q + 1, 2, 2) as graphs for q ≥ 2.

Proof. The first kind Q(2q +2, q, 1) has a hamilton cycle u0u1 · · · u2q+1 and each

vertex ui has four neighbors ui−1, ui+1, ui+q and ui−q with indices taken modulo

2q + 2. Let N(ui) be the set of these four vertices. Then we can find that

N(ui) = N(uq+1+i). Put Ui = {ui, uq+1+i} to clear the structure of Q(2q+2, q, 1).

Then we have V (Q(2q + 2, q, 1)) = U0 ∪ U1 ∪ · · · ∪ Uq and all pairs between Ui

and Ui+1 are adjacent with indices taken modulo q + 1.

The second kind Q(p, 2, 2) consists of two cycles u′0u
′
1 · · · u′p−1, u′′0u

′′
1 · · · u′′p−1

and edges u′iu
′′
i , u′′i u

′
i+2 for i ≡ 0, 1, . . . , p − 1 (mod p). Then u′i and u′′i−1 have

four common neighbors u′i−1, u′i+1, u′′i and u′′i−2. Put U ′
i = {u′i, u′′i−1} for i ≡

0, 1, . . . , p− 1 (mod p). Then all pairs between U ′
i and U ′

i+1 are adjacent.

Comparing these two structures, we find an isomorphism Φ between Q(2q +

2, q, 1) and Q(q + 1, 2, 2) so that Φ(ui) = u′i and Φ(uq+1+i) = u′′i−1 for i =

0, 1, . . . , q.

LEMMA 15. The 4-regular quadrangulation Q(2q + 2, q, 1) on the torus can be

presented only by two standard forms Q(2q + 2, q, 1) and Q(2q + 2, q + 2, 1) if q

is odd and by two more standard forms Q(q + 1, q − 1, 2) and Q(q + 1, 2, 2) if q

is even.

Proof. First suppose that q is odd. Then we have (2q + 2, q) = (2, q) = 1. Solve

nq ≡ (2, q) = 1 (mod 2q + 2).

q2 − 1 = (q − 1)(q + 1) = {(q − 1)/2}(2q + 2) ≡ 0 (mod 2q + 2)

Thus we have n = q and Q(2q + 2, q, 1) can be translated into itself by (iii)

in Theorem 3. Therefore, Q(2q + 2, q, 1) admits only one more standard form

Q(2q + 2, q + 2, 1) given by (ii).

Suppose that q is even. Then we have (2q + 2, q) = (2, q) = 2. Solve nq ≡
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(2, q) = 2 (mod 2q + 2).

(q − 1)q = (q + 1)q − 2q = (2q + 2)(q/2)− 2q ≡ 2 (mod 2q + 2)

Thus, we have n = q−1 and Q(2q+2, q, 1) can be translated into Q(q+1, q−1, 2)

by (iii) and into Q(q + 1, 2, 2) by (iv) in Theorem 3.

LEMMA 16. The 4-regular quadrangulation Q(p, 2, 2) can be presented only by

two standard forms Q(p, 2, 2) and Q(p, p − 2, 2) if p is even and by two more

standard forms Q(2p, p− 1, 1) and Q(2p, p + 1, 1) if p is odd.

Proof. First suppose that p is even and slove n · 2 ≡ (p, 2) = 2 (mod p). Clearly

we have n = 1 and hence Q(p, 2, 2) can be translated into itself by (iii) in Theorem

3. There is another standard form Q(p, p− 2, 2) given by (ii).

Suppose that p is odd and solve n · 2 ≡ (p, 2) = 1 (mod p). Then we have

n = (p + 1)/2 and hence Q(p, 2, 2) can be translated into Q(2p, p + 1, 1) by (iii)

and into Q(2p, p− 1, 1) by (iv) in Theorem 3.

By the above two lemmas, Q(2q + 2, q, 1) and Q(p, 2, 2) present the same

map on the torus only if q = p− 1 is even. Otherwise, they exhibit two different

embeddings of one graph on the torus.

LEMMA 17. D(Q(2q + 2, q, 1)) = 3 (q ≥ 2) and D(Q(p, 2, 2)) = 3 (p ≥ 3).

Proof. If suffices to show the first equality since Q(2q +2, q, 1) and Q(p, 2, 2) are

isomorphic as graphs with q = p− 1. We use the same notations as in our proof

of Lemma 14 to express the structure of Q(2q + 2, q, 1).

First suppose that there were a 2-distinguishing labeling c : V (Q(2q+2, q, 1))

→ {1, 2}. Since there is an automorphism σi of Q(2q + 2, q, 1) which exchanges

ui and uq+1+i in Ui, fixing all other vertices, we have c(ui) 6= c(uq+1+i) for i =

0, 1, . . . , q. Then we can define an automorphism σ of Q(2q + 2, q, 1) so that σ

carries each vertex in Ui to one in Ui+1 with the same label as it has. That is,

σ preserves the labels given by c and is not the identity map. This is contrary

to c being 2-distinguishing. Therefore, there is no 2-distinguishing labeling of

Q(2q + 2, q, 1) and D(Q(2q + 2, q, 1)) ≥ 3.

Define a labeling c : V (Q(2q + 2, q, 1)) → {1, 2, 3} by σ(u0) = σ(u1) =

σ(u3) = 1, σ(ui) = 2 for i = 2, 4, . . . , q and σ(uj) = 3 for j = q + 1, . . . , 2q +

1. Take any automorphism σ of Q(2q + 2, q, 1) preserving this labeling. Then

C = uq+1 · · · u2q+1 forms a unique cycle with only label “3”. This implies that

σ(C) = C and hence σ preserves another cycle C ′ = u0u1 · · · uq. Since C ′ has

length at least six, the occurences of “1” force σ to fix all vertices lying along C ′

and this forces it to fix all vertices along C, too. Therefore, σ must be the identity
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map and c is a 3-distinguishing labeling. Now we have D(Q(2q + 2, q, 1)) ≤ 3

and hence = 3.

5. Faithful embeddings

Let G be a graph embedded on a closed surface F 2. Then G is said to

be faithfully embedded on F 2 if any automorphism σ of G extends to an auto-

homeormophism over F 2. In other words, the symmetry of G can be realized

as that over F 2 in such a case. As is mentioned in introduction, the second

author has already established a general theorem on the distinguishing number

of polyhedral graphs on closed surfaces in [4]. As an easy corollary of his theorem,

we can conclude that:

THEOREM 18. (Negami [4]) Any polyhedarl quadrangulation faithfully em-

bedded on the torus is 2-distinguishable unless it is isomorphic to C3 × C3.

A natural question arises; does this theorem include our main theorem? Of

course, it does not since there exist infinitely many 4-regular quadrangulations on

the torus which are not polyhedral. So, what can we say about the faithfulness

of embedding? For example, Q(4, 0, 4) is isomorphic to the 4-cube Q4
∼= C4×C4

and is not faithfully embedded on the torus. We shall describe it in more detail

in the proof of Lemma 21.

In most of cases, we can decide the faithfulness of embedding of Q(p, q, r) by

general arguments, as we shall do later. Unfortunately, we need to deal with the

following case separately:

LEMMA 19. The 4-reglar quadrangulation Q(4, 1, 3) is faithfully embedded on

the torus.

Proof. It is clear that Q(4, 1, 3) decomposes into the geodesic 2-factor consisting

of three disjoint cycles C0, C1, C2 of length 4 which run in parallel to one another

and one hamilton cycle C which crosses the 2-factor orthogonally. Rename the

vertices as v0, v1, . . . , v11 so that they form the hamilton cycle C = v0v1 · · · v11.

Then ui = v3i and each vertex vi is incident to four edges vivi−3, vivi−1, vivi+1 and

vivi+3. Furthermore, there are two cycles vivi+1vi+2vi+3, vivi−1vi−2vi−3 meeting

only at vi and joined with two edges vi−2vi+1 and vi−1vi+2. It is just a routine

to confirm that any automorphism τ of Q(4, 1, 3) preserves this decomposition

(C0, C1, C2; C) with the structures described above and it follows that τ extends

an auto-homeomorphism over the torus. Therefore, Q(4, 1, 3) is faithfully em-

bedded on the torus.
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Here we shall show an easy criterion for a graph not to be faithfully embedded

on a closed surface in general:

LEMMA 20. Let G be a graph embedded on a closed surface and v a vertex of

degree at least 4 with neighbors w0, w1, w2, w3, . . . lying around v in this cyclic

order. If there is an automorphism τ of G which exchanges w1 and w2, fixing v

and w0, then G is not faithfully embedded on the surface.

Proof. By the assumption, [· · ·w0vw1 · · ·] is a segment of a boundary walk of a

face. However, [· · · τ(w0)τ(v)τ(w1) · · ·] = [· · ·w0vw2 · · ·] cannot be the boundary

walk of any face since it separates two edges vw1 and vw3 into its different sides.

Therefore, τ does not extend to any auto-homeomorphism over the surface and

hence G is not faithfully embedded on the surface.

Using the above, we shall show that Q(p, q, r) is not faithfully embedded on

the torus in the exceptional cases.

LEMMA 21. The 4-regular quadrangulations Q(3, 1, 2), Q(4, 0, 4), Q(5, 2, 1), Q(10, 3, 1),

Q(p, 2, 2) (p ≥ 4) and Q(2q + 2, q, 1) (q ≥ 2) are not faithfully embedded on the

torus.

Proof. First find the isomorphisms Q(3, 1, 2) ∼= K2,2,2, Q(4, 0, 4) ∼= C4×C4
∼= Q4,

Q(5, 2, 1) ∼= K5 and Q(10, 3, 1) ∼= K5,5 − a perfect matching to recognize their

automorphisms. Then there is an automorphism τ which exchanges u(0, 0) and

u(1, 1), fixing all the others for Q(3, 1, 2), Q(5, 2, 1), Q(2q + 2, q, 1); recall that

U0 = {u0, uq+1} = {u(0, 0), u(1, 1)} for the last in Lemma 14. In this case, we can

take u(0, 1), u(0, 0) and u(1, 1) as v, w1 and w2 in Lemma 20 in order and hence they

are not faithfully embedded on the torus.

Similarly, we find an automorphism τ of Q(10, 3, 1) which exchanges u(0, 0) and

u(1, 1), fixing u(0, 1) and u(−1, 1), but it exchanges u(0, 5) and u(0, 9), which are joined

to u(0, 0) and u(1, 1) by the perfect matching in the complement of Q(10, 3, 1).

Nevertheless, this τ also works as τ in Lemma 20 for Q(10, 3, 1).

For Q(p, 2, 2), we take u(0, 0), u(0,−1), u(1, 0), u(0, 1) and u(−1, 0) as v, w0, w1, w2

and w3 in Lemma 20 in order. Since U ′
1 = {u′1, u′′0} = {u(0, 1), u(1, 0)} in Lemma

14, there is an automorphism τ which exchanges w1 and w2, fixing all the others.

Therefore, Q(p, 2, 2) is not faithfully embedded on the torus, too.

For the remaining one Q(4, 0, 4), we need to discuss it more globally. Each

pair of Ci and Ci+1 induces a 3-cube in the 4-cube Q4, say [Ci, Ci+1], and the

four 3-cubes form a solid torus. Our torus where Q(4, 0, 4) is embedded is the

boundary of this solid torus. The 4-cube Q4 contains eight 3-cubes and each pair

of them can be exchanged by its automorphism. For example, [C0, C1] can be
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exchanged to the 3-cube induced by {u(i, j) : i = 0, 1, 2, 3, j = 0, 1}, which lies in

the hole of the solid torus. This can be realized by an automorphism τ which fixes

the two squares u(0, 0)u(1, 0)u(1, 1)u(0, 1) and u(2, 2)u(3, 2)u(3, 3)u(2, 3) pointwise, and

exchanges u(0, 2)u(1, 2)u(1, 3)u(0, 3) and u(3, 1)u(2, 1)u(2, 0)u(3, 0). In particular, C1 =

u(0, 0)u(0, 1)u(0, 2)u(0, 3) does not bound any face while τ(C1) = u(0, 0)u(0, 1)u(3, 1)u(3, 0)

bounds a face. Therefore, τ does not extend to any auto-homeomorphism over

the torus and hence Q(4, 0, 4) is not faithfully embedded on the torus.

Now we shall prove that Q(p, q, r) is faithfully embedded on the torus with

specified exceptions, which we have disussed in the above lemma.

THEOREM 22. A 4-regular quadrangulation on the torus is faithfully embedded

on the torus unless it is isomorphic to Q(3, 1, 2), Q(4, 0, 4), Q(5, 2, 1), Q(10, 3, 1),

Q(p, 2, 2) (p ≥ 4) or Q(2q + 2, q, 1) (q ≥ 2).

Proof. Suppose that Q(p, q, r) with 0 ≤ q ≤ p/2 is not faithfully embedded on

the torus, that is, there is an automorphism σ of Q(p, q, r) which does not extend

to any auto-homeomorphism over the torus. Then there is a vertex u(x, y) such

that σ does not preserve the rotation around u(x, y). Since the automorphism

τ(a, b) defined in Section 1 extends an auto-homeomorphism over the torus, we

may assume that (x, y) = (0, 0) and σ fixes u(0, 0); consider τ(−x′,−y′)στ(x, y) if

σ(u(x, y)) = u(x′, y′).

The rotation around u(0, 0) reads u(0, 1)u(1, 0)u(0,−1)u(−1, 0) and should include

two segments σ(u(0, 1))σ(u(0,−1)) and σ(u(1, 0))σ(u(−1, 0)) since σ shuffles the rota-

tion. Then there are two non-adjacent faces u(0, 0)σ(u(0, 1))σ(w)σ(u(0,−1)) and

u(0, 0)σ(u(1, 0))σ(w′)σ(u(−1, 0)) for some vertex w and w′. If u(1, 1) = u(−1,−1)

or u(−1, 1) = u(1,−1), then we conclude that Q(p, q, r) is isomorphic to either

Q(p, 2, 2), Q(p, p − 2, 2) or Q(p, q, 1) with 2q ≡ ±2 (mod p). The first one ap-

pears as an exception in the theorem. The second one includes only Q(3, 1, 2)

and Q(4, 2, 2) since p−2 ≤ p/2 implies p ≤ 4. The former is one of the exceptions

and the latter also appears as Q(p, 2, 2) with p = 4. The third one is isomorphic

to Q(2q±2, q, 1). However, only Q(2q +2, q, 1) survives since q ≤ p/2 and it also

is an exception in the theorem. Thus, we may assume that u(1, 1), u(−1,−1), u(−1, 1)

and u(1,−1) are all distinct. It is easy to see that w 6= w′ under this assumption.

Figure 7 presents all cases of the possible positions of w, up to symmetry.

Since we fix the parameters p, q and r so that 0 ≤ q ≤ p/2, the only symmetry

we should consider is the rotation around u(0, 0) in 180◦.

Case ( I ): We have Q(4, q, r). Consider the position of w′ and first suppose that

w′ = u(−2, 0) = u(2, 0). Then we have (4/r)q ≡ 0 (mod 4) for r = 1, 2, 4

and obtain Q(4, 2, 2) and Q(4, 0, 4), which appear as the exceptions in the
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Figure 7 Shuffling the rotation around u(0, 0)

theorem. Otherwise, w′ lies at one of u(−2, 0) and u(2, 0) and also at one

of u(±1,±1). In either case, τ(3,±1) induces the identity map over Q(4, q, r)

and we have Q(4, q, 3) with q ≡ ±1 (mod 4) since 4r ≥ 5, and hence only

Q(4, 1, 3) survives since q ≤ p/2. This is not an exception in the theomre

by Lemma 19.

Case (L): We have Q(p, 3, 1). If w′ = u(−2, 0) = u(2, 0), then we must have 4×3 ≡ 0

(mod p) and hence p = 6 or 12. However, Q(6, 3, 1) is not simple and

Q(12, 3, 1) is isomorphic to Q(4, 1, 3), which appears in the previous case.

Otherwise, τ(3,±1) induces the identity map over Q(p, 3, 1) as well as in

Case I, and Q(p, 3, 1) is isomorphic to Q(p, q, 1) with 3q ≡ ±1 (mod p),

depending on the posision of w′. Thus, we have 3× 3± 1 ≡ 0 (mod p) and

hence p divides either 8 or 10. Since 3 ≤ p/2, we conclude that p = 8 or

10. However, Q(8, 3, 1) is isomorphic to Q(2q + 2, q, 1) with q = 3. On the

other hand, Q(10, 3, 1) is one of the exceptions in the theorem.

Case (L′): We have Q(p, p − 3, 1) and p ≤ 6 since p − 3 ≤ p/2. Thus, Q(p, q, r)

is isomorphic to either Q(5, 2, 1) or Q(6, 3, 1). The former appears as an

exception in the theorem while the latter should be omitted since it is not

simple.

Now we have found all exceptions listed in the theorem and they are not

faithfully embedded on the torus actually by Lemma 21.

To know how much Theorem 18 covers our main theorem, we need to recog-

nize the 4-regular quadrangulations on the torus that are not polyhedral.

LEMMA 23. A 4-regular quadrangulation Q(p, q, r) is polyhedral unless it is iso-

morphic to one of Q(p, 2, 1), Q(p, 1, 2), Q(p, 2, 2), Q(2q + 1, q, 1), Q(2q + 2, q, 1)

with suitable p and q which make them simple.

Proof. Suppose that Q(p, q, r) with 0 ≤ q ≤ p/2 is not polyhedral. Then there

are two faces which meet each other at two vertices that are not joined by an edge
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which the two faces share. Since Q(p, q, r) is vertex-transitive, we may assume

that one of the two faces is u(0, 0)u(1, 0)u(1, 1)u(0, 1), say A, and we have the four

cases B1 to B4 for the other, up to symmetry, as depicted in Figure 8. Thus,

one vertex incident to A and another incident to Bi should be identical and the

difference between their coordinates is one of (1,±2), (2,±1) and (2,±2).

u u u

u u u

u u u

u u u

A

B1 B2

B3

B4

(0, 0)

Figure 8 Non-polyhedral cases

In case of (1,±2), we have Q(p, 2, 1) and Q(p, p− 2, 1), but the latter should

be omitted since q ≤ p/2. In case of (2,±1), we have Q(p, q, 2) with q ≡ ±1

(mod p) and Q(p, q, 1) with 2q ≡ ±1 (mod p). However, only Q(p, 2, 1) and

Q(2q + 1, q, 1) survive in this case. In case of (2,±2), we have Q(p, q, 2) with

q ≡ ±2 (mod p) and Q(p, q, 1) with 2q ≡ ±2 (mod p), and only Q(p, 2, 2) and

Q(2q + 2, q, 1) survive under the assumption of q ≤ p/2. Now we have found all

exceptions in the lemma and they are not polyhedral actually.

If we restrict the 4-regular quadrangulations on the tous to polyhedral ones,

then most of them are faithfully embedded on the torus.

COROLLARY 24. Every polyhedral 4-regular quadrangulation on the torus is

faithfully embedded on the torus except Q(4, 0, 4) and Q(10, 3, 1).

Proof. It suffices to exclude ones not polyhedral from the exceptions in Theorem

22.

Unifying the exceptions in Theorem 22 and Lemma 23, we can complete the

list of all 4-regular quadrangulations on the torus that Theorem 18 does not

cover:

Q(4, 0, 4), Q(10, 3, 1), Q(p, 2, 1), Q(p, 1, 2), Q(p, 2, 2),

Q(2q + 1, q, 1), Q(2q + 2, q, 1)

Thus, we can prove Theorem 1 as a corollary of Theorem 18 if we decide the

distinguishing number of these exceptions individually.
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However, the proof of Theomre 18 in [4] proceeds under the strong assumption

that there exsits an auto-homeomorphism over the surface as the extension of a

given automorphism of a graph. On the other hand, our proof is purely combi-

natorial except that 4-regular quadrangulations are defined as graphs embedded

on the torus.
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