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Abstract. We study algebraic properties of the series Kn of semigroups, which
is inspired by [5] and has origins in convexity theory. In particular, we describe
Green’s relations on Kn, prove that there exists a faithful representation of Kn

by n × n matrices with non-negative integer coefficients (and even explicitly
construct such a representation), and prove that Kn does not admit a faithful
representation by matrices of smaller size. We also describe the maximal nilpo-
tent subsemigroups in Kn, all isolated and completely isolated subsemigroups,
all automorphisms and anti-automorphisms of Kn. Finally, we explicitly con-
struct all irreducible representations of Kn over any field and describe primitive
idempotents in the semigroup algebra (which we prove is basic).

1. Introduction

Let E be a real vector space and Func(E) be the set of all functions on E

with values in the extended real line R ∪ {−∞, +∞}. In convexity theory there

appear three natural operators on Func(E), namely the operator c of taking the

convex hull of a function, the operator l of taking the largest lower semicontinuous

minorant of the function, and the operator m defined via

m(f)(x) =

{
f(x), if f is everywhere > −∞;

−∞, otherwise.

The operators c, l, m generate a monoid, G(E), with repsect to the usual com-

position. In [5] it was shown that this monoid consists of 18 elements and has

the following presentation (as a monoid):

G(E) = 〈c, l, m : c2 = c, l2 = l, m2 = m,

clc = lcl = lc, cmc = mcm = mc, lml = mlm = ml〉. (1.1)

Furthermore, the paper [5] also contains a detailed study of the algebraic struc-

ture of G(E) and gives a faithful representation of G(E) by 3× 3 matrices with

non-negative integer coefficients.
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There is a fairly straightforward way to generalize (1.1). Let n be a positive

integer. Denote by Kn the monoid defined via the following presentation:

Kn = 〈a1, . . . , an : a2
i = ai, i = 1, . . . , n;

aiajai = ajaiaj = ajai, 1 ≤ i < j ≤ n〉. (1.2)

We will call Kn Kiselman’s semigroup after the author of [5]. Obviously, we

have G(E) ∼= K3. The generalization (1.2) was proposed by O. Ganyushkin and

the second author in 2002 (unpublished). In [4] several results on the structure

of Kn were announced. Unfortunately, the proofs have never appeared. So,

we have decided to study Kn independently. In the present paper we prove

all the results announced in [4], in particular, we describe Green’s relations on

Kn (Section 7), prove that there exists a faithful representation of Kn by n × n

matrices with non-negative integer coefficients (and even explicitly construct such

a representation), and prove that Kn does not admit a faithful representation by

matrices of smaller size (Subsection 11.1). We also obtain some additional results,

in particular, we describe the maximal nilpotent subsemigroups in Kn (Section 8),

all isolated and completely isolated subsemigroups (Section 9), all automorphisms

of Kn and all anti-automorphisms of Kn (Section 6). We also explicitly construct

all irreducible representations of Kn over any field and describe the primitive

idempotents in the semigroup algebra (Subsection 11.2). We are convinced that

Kn is a very beautiful combinatorial objects and might have a lot of further

interesting combinatorial properties and applications.
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cial support of the Swedish Institute and the hospitality of Uppsala University
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2. Finiteness of Kn

We will denote by e the unit element in Kn. For a finite alphabet, A, we

denote by W(A) the set of all finite words over this alphabet, including the

empty word (with respect to the usual operation of concatenation of words this

is the same as the free monoid, generated by A, which is sometimes denoted by

A∗). Let l : W(A) → N ∪ {0} denote the length function.

LEMMA 1.

(i) Let i ∈ {1, . . . , n} and w ∈ W({a1, . . . , ai−1}). Then we have aiwai = aiw
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in Kn.

(ii) Let i ∈ {1, . . . , n} and w ∈ W({ai+1, . . . , an}). Then we have aiwai = wai

in Kn.

Proof. We prove (i). The statement (ii) is proved by similar arguments. We

proceed by induction on l(w). If l(w) = 0 or l(w) = 1, the statement follows

directly from the presentation (1.2). Assume now that l(w) > 1 and write w =

w′aj for some j < i. Then w′ ∈ W({a1, . . . , ai−1}) and l(w′) = l(w)−1. We have

aiwai = aiw
′ajai = (aiw

′)ajai = (by the inductive assumption) =

= (aiw
′ai)ajai = aiw

′aiajai = (by (1.2)) = aiw
′aiaj = (aiw

′ai)aj =

= (by the inductive assumption) = (aiw
′)aj = aiw

′aj = aiw.

Define the function L : N→ N as follows:

L(n) =

{
2k+1 − 2, n = 2k;

3 · 2k − 2, n = 2k + 1.

COROLLARY 2. Let α ∈ Kn, α 6= e, and let w ∈ W({a1, . . . , an}) be a word of

the shortest possible length such that α = w in Kn. Then we have the following:

(i) For i ≤ dn
2
e the letter ai occurs in w at most 2i−1 times.

(ii) For i ≥ dn+1
2
e the letter ai occurs in w at most 2n−i times.

(iii) l(w) ≤ L(n).

Proof. We prove (i) by induction on i. If the letter a1 occurs in w more than

once, the word w can be reduced (shortened) using Lemma 1(ii). This gives us

the basis of the induction. Let 1 < i ≤ dn
2
e. From the inductive assumption we

obtain that the total number of occurrences of the letters a1, . . . , ai−1 in w does

not exceed 2i−1 − 1. Hence we can write w = w1b1w2b2w3 . . . w2i−1−1b2i−1−1w2i−1 ,

where bj ∈ {a1, . . . , ai−1} and wj ∈ W({ai, . . . , an}) for all appropriate j. If ai

occurs in some wj more than once, the word wj and hence w can be reduced

using Lemma 1(ii). Hence the total number of occurrences of ai in w does not

exceed 2i−1. This proves (i). (ii) is proved by similar arguments. (iii) follows

from (i) and (ii) since for all n = 2k ∈ N we have

L(n) =
k∑

i=1

2i−1 +
n∑

i=k+1

2n−i

and for all n = 2k + 1 ∈ N we have

L(n) =
k+1∑
i=1

2i−1 +
n∑

i=k+2

2n−i.
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As an immediate corollary from the latter statement we have:

THEOREM 3. The semigroup Kn is finite, moreover

|Kn| ≤ 1 + nL(n).

Proof. The semigroup Kn is generated by n elements. By Corollary 2(iii), every

element of Kn, different from the unit element e, can be written as a product of

at most L(n) generators. Since all generators are idempotents, repeating the last

generator, occurring in such a product, we conclude that every element of Kn,

different from the unit element e, can be written as a product of exactly L(n)

generators. The statement follows.

QUESTION 4. Can one give an explicit formula for |Kn|?

REMARK 5. In [4] a slightly more general family of semigroups is considered:

let (I, <) be a partially ordered set. Define

KI = 〈ai, i ∈ I : a2
i = ai, i ∈ I; aiajai = ajaiaj = ajai, i, j ∈ I, i < j〉.

[4, Theorem 2] states that KI is finite if and only if I is finite and < is linear.

This is an immediate consequence of Theorem 3. Indeed, Theorem 3 gives us

the sufficiency. The necessity follows from the trivial observation that for incom-

parable i, j ∈ I the elements (aiaj)
k ∈ KI , k ∈ N, are obviously different since

there is no relation involving both ai and aj.

3. The canonical form for elements of Kn

Let ϕ : W({a1, . . . , an}) → Kn denote the canonical epimorphism. For

w ∈ W({a1, . . . , an}) set w = {x ∈ W({a1, . . . , an}) : ϕ(x) = ϕ(w)}. If

w = ai1ai2 . . . aik ∈ W({a1, . . . , an}), then by a subword of w we will mean an el-

ement of W({a1, . . . , an}) of the form aisais+1ais+2 . . . ait for some 1 ≤ s ≤ t ≤ k.

By a quasi-subword of w we will mean an element of W({a1, . . . , an}) of the form

ail1
ail2

ail3
. . . ailt

for some 1 ≤ l1 < l2 < l3 < · · · < lt ≤ k (including the empty

quasi-subword). Each subword is, by definition, a quasi-subword.

The main result of this section is the following statement:

THEOREM 6. Let w ∈ W({a1, . . . , an}).
(i) The set w contains a unique element of the minimal possible length.
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(ii) v ∈ w has the minimal possible length if and only if the for each i ∈
{1, 2, . . . , n} the following condition is satisfied: if aiuai is a subword of

v then u contains some aj with j > i and some ak with k < i.

The words v ∈ W({a1, . . . , an}), satisfying the condition of Theorem 6(ii),

will be called canonical. If w ∈ W({a1, . . . , an}) and v ∈ w is canonical, we will

say that v is the canonical form of w. By Theorem 6(i) the homomorphism ϕ

induces a bijection between the set of all canonical words in W({a1, . . . , an}) and

the elements of Kn. In particular, it makes sense to speak about the canonical

form of an element from Kn.

REMARK 7. The statement of Theorem 6(i) was announced in [4, Theorem 1].

Proof. Define the binary relation → on W({a1, . . . , an}) in the following way:

for w, v ∈ W({a1, . . . , an}) we set w → v if and only if there exists i ∈ {1, . . . , n}
such that w = w1aiuaiw2 and either v = w1aiuw2 and u ∈ W({a1, . . . , ai−1}), or

v = w1uaiw2 and u ∈ W({ai+1, . . . , an}). From Lemma 1 we obtain that w → v

implies v ∈ w. Obviously, w → v implies l(v) = l(w)−1, in particular, any chain

v1 → v2 → v3 → . . . in W({a1, . . . , an}) terminates in a finite number of steps.

Denote by
∗→ the reflexive-transitive closure of →.

LEMMA 8. For all u, v, w ∈ W({a1, . . . , an}), such that u 6= v, w → u and

w → v, there exists x ∈ W({a1, . . . , an}) such that

w

←−−
−−− ←−−

−−−

u v

∗ ∗
←−−

−−−

←−−
−−−

x

Proof. Both u and v are quasi-subwords of w by the definition of→. u is obtained

from w by deleting some ai, and v is obtained from w by deleting some aj. If

i 6= j, from Lemma 1 we obtain that we are allowed to delete the corresponding

occurrence of ai in v obtaining some x such that v → x. Moreover, again applying

Lemma 1 we have that we are allowed to delete the corresponding occurrence of

aj in u. Since these operations obviously commute we will get the same result x

and u → x, as required.

Now assume that i = j. By the definition of →, the deletion of ai involves

two occurrences of ai in a word. If the corresponding two pairs of ai’s in w do not

intersect, then the same argument as above works, implying that our deletion

operations commute.



26 G. KUDRYAVTSEVA AND V. MAZORCHUK

Without loss of generality, in the remaining cases we may assume w =

aiαaiβai, where α, β ∈ W({a1, . . . , ai−1, ai+1, . . . , an}). If u = v, we can ob-

viously take x = u = v. Hence we are left to deal with the following cases:

1. u = αaiβai, v = aiαβai. Because of (1.2) this is possible if and only if α = e,

which gives us u = v. This case was considered above.

2. u = αaiβai, v = aiαaiβ. In this case we can take x = αaiβ and obviously

have u → x, v → x.

3. u = aiαaiβ, v = aiαβai. Because of (1.2) this is possible if and only if β = e,

which gives us u = v. This case was considered above.

The statement of the lemma follows.

The statement (i) follows now from Lemma 8 and the Diamond Lemma (see

e.g. [7]). The statement (ii) follows from the statement (i) and the definition of

the relation →. This completes the proof.

From Corollary 2(i) we know that for any w ∈ W({a1, . . . , an}) the length of

the minimal representative in w does not exceed L(n). Now we can show that

this bound is sharp.

COROLLARY 9. There exists w ∈ W({a1, . . . , an}) such that the length of the

minimal representative in w equals L(n).

Proof. Let k = dn
2
e and set w1 = a1an, w2 = a2an−1,. . . , wk−1 = ak−1an−k+2,

wk =

{
akan−k+1, n is even;

ak, n is odd.

Define the words vi, i = 1, . . . , k, recursively as follows: v1 = w1; if vi =

wj1wj2 . . . wjs , then vi+1 = wi+1wj1wi+1wj2wi+1 . . . wi+1wjswi+1. It follows im-

mediately that l(vk) = L(n) and it is easy to see from the construction that vi is

canonical for every i. The claim follows.

4. Idempotents in Kn

Let w ∈ W({a1, . . . , an}). Define the content c(w) of w as the set of all those

i ∈ {1, . . . , n} such that the letter ai appears in w. In particular, c(e) = ∅ and

c(ai) = {i} for all i = 1, . . . , n. From (1.2) it follows immediately that c(v) = c(w)

for every v ∈ w, in particular, one can speak of the content of an element from

Kn. Furthermore, obviously c(wv) = c(w) ∪ c(v) for all v, w ∈ W({a1, . . . , an}),
which implies the following statement:
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LEMMA 10. c is an epimorphism from the semigroup W({a1, . . . , an}) to the

semigroup (2{1,2,...,n},∪). c also induces an epimorphism from Kn to the semi-

group (2{1,2,...,n},∪) (abusing notation we will denote this epimorphism also by

c).

Let X ⊂ {1, . . . , n}. If X = ∅, set e? = e. If X 6= ∅, let X = {i1, . . . , ik}
such that i1 > i2 > · · · > ik. Set eX = ai1ai2 · · · aik .

PROPOSITION 11. Each eX is an idempotent in Kn and every idempotent in

Kn has the form eX for some X ⊂ {1, . . . , n}. In particular, the semigroup Kn

contains 2n idempotents.

Proof. As the word ai1ai2 · · · aik is canonical we have eX 6= eY if X 6= Y . That

eXeX = eX follows immediately from Lemma 1(i). Hence we have only to show

that any idempotent in Kn has the form eX for some X ⊂ {1, . . . , n}. Let x ∈ Kn

be an idempotent. Then xk = x for all k ∈ N and the necessary statement follows

from the following lemma:

LEMMA 12. Let w ∈ W({a1, . . . , an}). Then wk = ec(w) for all k ≥ |c(w)|.

Proof. Set N = |c(w)|. Let X ⊂ {1, . . . , n}. From Lemma 1(i) and the defi-

nition of eX it follows that eXai = eX for every i ∈ X. Hence it is enough to

show that wN = ec(w). For i ∈ {1, . . . , n} denote by ∂i : W({a1, . . . , an}) →
W({a1, . . . , ai−1, ai+1, . . . , an}) the operation of deleting all occurrences of the

letter ai in a word. Let c(w) = {i1, . . . , iN} and i1 > i2 > · · · > iN . Using

Lemma 1(i) we inductively compute:

wN = wwww . . . w︸ ︷︷ ︸
N times

= w∂i1(w)∂i1(w)∂i1(w) . . . ∂i1(w) =

= w∂i1(w)∂i2∂i1(w)∂i2∂i1(w) . . . ∂i2∂i1(w) = · · · =
= w∂i1(w)∂i2∂i1(w)∂i2∂i3∂i1(w) . . . (∂iN−1

. . . ∂i2∂i1)(w). (4.1)

For j = 1, . . . , N − 1 set wj = ∂ij . . . ∂i2∂i1(w). Again, from the computation

(4.1) and Lemma 1(ii) we inductively derive:

wN = ww1w2 . . . wN−1 = ∂iN (w)∂iN (w1)∂iN (w2) . . . ∂iN (wN−2)wN−1 =

= ∂iN−1
∂iN (w)∂iN−1

∂iN (w1) . . . ∂iN−1
∂iN (wN−3)∂iN (wN−2)wN−1 = · · · =

= (∂i2 . . . ∂iN−1
∂iN )(w)(∂i3 . . . ∂iN−1

∂iN )(w1) . . . ∂iN (wN−2)wN−1. (4.2)

Now it is left to observe that

c((∂i2 . . . ∂iN−1
∂iN )(w)) = {i1}, c((∂i3 . . . ∂iN−1

∂iN )(w1)) = {i2}, . . . ,
c(wN−1) = {iN}.
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Hence the product in the formula (4.2) results in the product ai1ai2 . . . aiN , which

is equal to ec(w). Therefore wN = ec(w) and the statement is proved.

The statement of Proposition 11 follows immediately from Lemma 12.

REMARK 13. It is easy to see that different idempotents in Kn do not commute.

Furthermore, the set of all idempotents in Kn is not a subsemigroup of Kn, as it

follows from the next statement.

PROPOSITION 14. Let X,Y ⊂ {1, 2, . . . , n}. Then the following conditions

are equivalent:

(a) eXeY is an idempotent.

(b) eXeY = eX∪Y .

(c) For every i ∈ X \ Y and every j ∈ Y \X we have i > j.

Proof. The implication (b)⇒(a) is obvious. By Lemma 10 we have c(eXeY ) =

X ∪Y . At the same time eX∪Y is the only idempotent of Kn with content X ∪Y .

The implication (a)⇒(b) follows.

If |X| = 0, the implication (c)⇒(b) is trivial. Hence we may assume |X| > 0.

We prove the implication (c)⇒(b) by induction on |Y |. If |Y | = 0, we have

eY = e and the claim is obvious. Let |Y | > 0 and y be the minimal element of

Y . Let x be the minimal element of X. If x = y, we have

eXeY = eX\{x}ayeY \{y}ay = eX\{x}eY \{y}ay

by Lemma 1(ii). The sets X \ {x} and Y \ {y} still satisfy (c) and hence by

induction we get

eX\{y}eY \{y}ay = e(X∪Y )\{y}ay = eX∪Y .

If x 6= y, then x > y by (c). Hence the sets X and Y \ {y} satisfy (c) and

hence by induction we get

eXeY = eXeY \{y}ay = e(X∪Y )\{y}ay = eX∪Y .

This proves the implication (c)⇒(b).

Finally, assume that (c) is not satisfied. Let i ∈ X \ Y and j ∈ Y \ X be

such that i < j. Then the letter ai occurs in eXeY to the left of the letter aj.

Moreover, both ai and aj occur only once. Hence, applying Lemma 1 we will

not be able to switch the occurrences of these letters. This and Proposition 11

imply that eXeY is not an idempotent. This proves the implication (a)⇒(c) and

completes the proof.
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COROLLARY 15. All maximal subgroups of Kn are trivial (that is consist of

one element).

Proof. Let f ∈ Kn be an idempotent and x ∈ Kn be an element, which belongs

to the maximal subgroup of Kn, corresponding to f . Then xk = f for some

k ∈ N and fx = xk+1 = x. Now Lemma 12 implies x = f , completing the proof.

REMARK 16. The idempotent e{1,...,n} is the zero element of Kn. This follows

from Lemma 1.

Recall the following natural order on the idempotents: f1 ≤ f2 if and only if

f1f2 = f2f1 = f1. We have:

PROPOSITION 17. Let f1, f2 ∈ Kn be idempotents. Then f1 ≤ f2 if and only

if c(f2) ⊂ c(f1).

Proof. If c(f2) ⊂ c(f1) then f1f2 = f2f1 = f1 follows from Remark 16. Assume

that f1f2 = f2f1 = f1. Then, by Lemma 10, we have c(f1f2) = c(f1) ∪ c(f2) =

c(f1). Hence c(f2) ⊂ c(f1). The statement is proved.

5. Kiselman’s linear representation of Kn

For i = 1, . . . , n denote by Ai the following (0, 1)-matrix of size n× n:

Ai =




1 0 . . . 0 1 0 . . . 0

0 1 . . . 0 1 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . 1 1 0 . . . 0

0 0 . . . 0 0 0 . . . 0

0 0 . . . 0 0 1 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . 0 0 0 . . . 1




,

where the i-th row is zero and the i-th column equals (1, . . . , 1, 0, . . . , 0)t (the

first i − 1 elements are equal to 1). The following proposition is inspired by [5,

Theorem 3.3].

PROPOSITION 18. The assignment ai 7→ An−i+1 extends uniquely to a homo-

morphism, ψn : Kn → Matn×n(Z). Moreover, we have ψn(e{1,...,n}) = 0.
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Proof. Because of (1.2) it is enough to check that A2
i = Ai for all i = 1, . . . , n;

and AiAjAi = AjAiAj = AjAi for all i, j such that 1 ≤ i < j ≤ n. This is

a straightforward calculation. That ψn(e{1,...,n}) = 0 is also a straightforward

calculation.

REMARK 19. In [5, Theorem 3.3] it is proved that ψ3 is faithful. Unfortunately,

already ψ4 is not faithful. For example, both, a3a4a2a1a3a2 and a3a2a4a3a1a2,

are different canonical words and hence represent different elements from K4.

However, one easily computes that ψ4(a3a4a2a1a3a2)

= ψ4(a3a2a4a3a1a2).

6. (Anti)automorphisms of Kn

PROPOSITION 20.

(a) The only automorphism of Kn is the identity.

(b) The map ai 7→ an−i+1 extends uniquely to an antiautomorphism of Kn. This

is the only antiautomorphism of Kn.

Proof. Let σ : Kn → Kn be an automorphism. Obviously σ(e) = e. The map

c ◦ σ : Kn → 2{1,...,n} must be an epimorphism since c is an epimorphism by

Lemma 10. For every i ∈ {1, . . . , n} the set 2{1,...,n} \ {∅, {i}} is closed under

∪, and c−1({i}) = ai. This implies that σ must induce a permutation on the

generators a1, . . . , an. Let us prove that σ(ai) = ai by induction on n. For n = 1

the statement is obvious. By (1.2), the letter an may be characterized as the

only letter ai among a1, . . . , an such that there does not exist any aj, j 6= i, with

the property ajai = aiajai = ajaiaj. Hence σ(an) = an. In particular, σ induces

a permutation of the remaining letters a1, . . . , an−1, that is an automorphism of

Kn−1. By the inductive assumption, this automorphism is trivial. Hence σ is

also trivial. This proves (a).

That ai 7→ an−i+1 extends uniquely to an antiautomorphism of Kn follows

from the fact that it preserves the defining relations (1.2). That this antiauto-

morphism is unique is proved analogously to (a). This completes the proof.

We will denote the unique antiautomorphism of Kn by τ .

QUESTION 21. Is it possible to classify endomorphisms of Kn?
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7. Green’s relations on Kn

THEOREM 22. Green’s relations L, R, D, H, and J for Kn are trivial (that is

all equivalence classes of these equivalence relations consist of one element each).

To prove this theorem we will need the following notion: let A = (ai,j) be an

n × n matrix with coefficients from some ring. Define the height h(A) of A as

follows:

h(A) =
n∑

i=1

|{j ∈ {1, . . . , n} : ai,j 6= 0}| · 2i.

For x ∈ Kn we define the height h(x) of x as h(ψn(x)).

We will need the following property of the height:

LEMMA 23. Let α ∈ Kn and i ∈ {1, . . . , n} be such that aiα 6= α. Then

h(aiα) < h(α). In particular, if α, β ∈ Kn are such that αβ 6= β, then h(αβ) <

h(β).

Proof. By the definition of h we have to show that h(ψn(ai)ψ(α)) < h(ψn(α)).

Set j = n−i+1. Because of the definition of ψn(ai) = Aj, the matrix ψn(ai)ψn(α)

is obtained from the matrix ψn(α) by the following sequence of elementary op-

erations: the j-th row of ψn(α) is added to all rows with numbers 1, 2, . . . , j− 1,

and then the j-th row of the resulting matrix is multiplied with 0. Let m be

the number of non-zero entries in the j-th row of ψn(α). This contributes m2j

to h(α). Since ψn(α) has only non-negative coefficients, adding the j-th row of

ψn(α) to the rows with numbers 1, 2, . . . , j − 1 we can create at most m new

non-zero elements in all these rows. These new elements will contribute at most

m(2j−1 + 2j−2 + · · · + 21) < m2j to h(aiα). Hence h(aiα) < h(α) and the first

statement of the lemma is proved. The second statement follows immediately

from the first one.

Now we are ready to prove Theorem 22:

Proof of Theorem 22. Let us prove the statement for the L relation. Assume

that a, b ∈ Kn are such that a 6= b and aLb. This means that there exists

x, y ∈ Kn such that xa = b and yb = a. Hence from Lemma 23 we obtain

h(b) = h(xa) < h(a) and h(a) = h(yb) < h(b). This implies h(a) < h(a), a

contradiction. Therefore, every L-class consists of exactly one element and thus

L is trivial.

Since the relation L is trivial, applying τ we obtain that the relation R is

trivial as well. From the definition of H and D it then follows that both H and

D are trivial. Since Kn is finite, we have D = J , completing the proof.
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REMARK 24. The statement of Theorem 22 was announced in [4, Theorem 3].

8. Maximal nilpotent subsemigroups of Kn

Recall that a semigroup, S, with the zero element 0 is called nilpotent provided

that there exists k ∈ N such that Sk = {0}. The minimal possible k with this

property is called the nilpotency class of S. For every X ⊂ {1, . . . , n} denote by

Nil(X) the set {w ∈ Kn|c(w) = X}.

THEOREM 25.

(i) For each X ⊂ {1, . . . , n} the set Nil(X) is a maximal nilpotent subsemigroup

of Kn (with the zero element eX). Nil(X) has nilpotency class |X| if |X| > 0,

and nilpotency class 1 if |X| = 0.

(ii) Every maximal nilpotent subsemigroup of Kn has the form Nil(X) for some

X ⊂ {1, . . . , n}.
(iii) We have the following decomposition into a disjoint union of maximal nilpo-

tent subsemigroups: Kn = ∪X⊂{1,...,n}Nil(X).

Proof. That Nil(X) is a subsemigroup of Kn follows from Lemma 10. That eX

is the zero element of Nil(X) and the only idempotent of Nil(X) follows from

Lemma 12. Hence Nil(X) is a nilpotent semigroup by [1, Fact2.30, page 179]. If

w ∈ Kn \ Nil(X), then w|c(w)| is an idempotent, different from eX . This means

that the semigroup, generated by Nil(X) and such w, can not be nilpotent.

That Nil({∅}) = {e} has nilpotency class 1 is obvious. Let X 6= ∅. The same

arguments as the ones used in Lemma 12 prove that the nilpotency class of

Nil(X) is at most |X|. Let X = {ai1 , . . . , aik} and i1 < i2 < · · · < ik.

LEMMA 26. The element w = ai1ai2 · · · aik has order k.

Proof. From Lemma 12 we have that the order of w is at most k, so we have

to prove that wl is not an idempotent for any l < k. Observe that, obviously,

the subsemigroup of Kn, generated by ai1 , ai2 , . . . , aik is isomorphic to Kk via

aij 7→ aj. Hence, without loss of generality, we may assume X = {1, . . . , n}.
By a direct calculation we have that the matrix ψn(a1a2 · · · an) is an upper

triangular matrix with zero diagonal, such that all element above the diagonal

equal 1. Hence ψn(a1a2 · · · an) is nilpotent of nilpotency class exactly n. The

claim follows.

From Lemma 26 we obtain that the nilpotency class of Nil(X) is exactly |X|.
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This proves (i).

Let S be a maximal nilpotent subsemigroup of Kn and f ∈ S be the corre-

sponding zero element. Then f = eX for some X ⊂ {1, . . . , n} by Proposition 11.

Since for every element x from S we then should have xk = eX for some k, from

Lemma 12 we obtain S ⊂ Nil(X), Now (ii) follows from (i). The statement (iii)

is now obvious.

9. Isolated and completely isolated subsemigroups of Kn

Let S be a semigroup. Recall that a subsemigroup, T ⊂ S, is called isolated

provided that for all x ∈ S the inclusion xl ∈ T for some l ∈ N implies x ∈ T . A

subsemigroup, T ⊂ S, is called completely isolated provided that xy ∈ T implies

x ∈ T or y ∈ T for all x, y ∈ S.

PROPOSITION 27.

(i) The map c induces a bijection between isolated subsemigroups of Kn and

subsemigroups of (2{1,...,n},∪). In particular, the minimal isolated subsemi-

groups of Kn are Nil(X), X ⊂ {1, . . . , n}.
(ii) The map c induces a bijection between completely isolated subsemigroups of

Kn and completely isolated subsemigroups of (2{1,...,n},∪).

Proof. Let S be an isolated subsemigroup of Kn. Then c(S) = T is a subsemi-

group of (2{1,...,n},∪), which is obviously isolated since (2{1,...,n},∪) consists of

idempotents. That S = c−1(T ) follows from [6, Proposition 4]. On the other

hand, for any subsemigroup T of (2{1,...,n},∪) the set c−1(T ) is a subsemigroup

of Kn and hence is isolated since T is isolated. This proves (i). (ii) follows easily

from (i).

10. Deletion properties

In this section we establish two combinatorial properties of Kn, which will

be used later on during the study of linear representations of Kn. However, we

think that these properties are rather remarkable and interesting on their own.

To simplify the notation we set f = e{2,3,...,n}. Our first deletion property is

the following statement:

PROPOSITION 28. Let v, w ∈ W({a2, . . . , an}) be canonical and different. Then

va1f 6= wa1f .
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Proof. Take the word va1f ∈ W({a2, . . . , an}). This word does not have to be

canonical. However, we can use Lemma 1 (maybe several times) to reduce it

to the unique canonical form given by Theorem 6. Since v is assumed to be

canonical, on the first step we can apply Lemma 1 only to some subword, aiαai,

of va1f , where the left ai is a letter of v and the right ai is a letter of f . This

means that a1 is a letter of α, and therefore only Lemma 1(i) can be applied.

Thus the new word will have the form va1β, where β is obtained from f by the

deletion of one of the letters. The main point is that the left-hand side v remains

the same. Now, applying the same argument inductively, we obtain that the

canonical form of va1f will by va1γ, where γ is a quasi-subword of f .

The same argument shows that the canonical form of wa1f will have the form

wa1γ
′, where γ′ is a quasi-subword of f . Since a1 does not occur in both v and

w by assumption, and v 6= w, we obtain that va1γ 6= wa1γ
′. The statement now

follows from Theorem 6.

The second deletion property is the following more tricky statement (and is

perhaps the deepest result of our paper):

PROPOSITION 29. Let w, v, u ∈ W({a2, . . . , an}) be canonical. Assume that

v 6= u and both wa1v and wa1u are canonical. Then wv 6= wu, wva1 6= wua1

and wva1f 6= wua1f .

Proof. We first prove that wv 6= wu. Assume this is not the case, that is assume

that wv = wu. To proceed we will need some preparation.

LEMMA 30. Let α, β ∈ W({a2, . . . , an}) be canonical and assume that αa1β is

canonical as well. Then the canonical form of αβ is obtained from αβ by deleting

some letters of the word α using Lemma 1(ii). Moreover, the reduction process

can be organized such that on every step the new letter which we delete is placed

to the left with respect to the letter, deleted on the previous step.

Proof. We proceed inductively on the number of deletions. Assume that aiγai is

a subword of αβ, to which we can apply Lemma 1. Since αa1β was canonical, we

obtain that aiγai = aiγ
′γ′′ai, where aiγ

′ is a suffix of α and γ′′ai is a prefix of β.

Since aiγ
′a1γ

′′ai, as a subword of a canonical word, was canonical itself, the word

γ′γ′′ must contain some aj with j > i. Hence we can only apply Lemma 1(ii) to

aiγai and thus have to delete some letter from α. We can of course always start

with the rightmost letter of α, which can be deleted.

Since we delete the rightmost possible letter, the rest of the word, which

is to the right of this letter, has to be canonical. This part is not affected by

our deletion, so it remains canonical. On the other hand, since we have used
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a′

w x′ y a u

w x′ y a x y′ u′ u

a1

︸ ︷︷ ︸
x-maximal

︸︷︷︸
y-maximal

Figure 1 Analysis in the proof of Proposition 29.

Lemma 1(ii), the right neighbor of our letter should have bigger index. So, if our

deletion creates possibilities for new deletions, for these new possibilities we can

only use Lemma 1(ii) (this is the same argument as in the previous paragraph).

In particular, it follows that new letters which can be deleted can appear only

to the left. Moreover, the same argument as above shows that if our deletion

creates some new letters which can be deleted, it is again only Lemma 1(ii) which

can be used. Therefore, we can again always choose the new rightmost letter and

proceed inductively, completing the proof.

From Lemma 30 we obtain that the canonical form can(wu) is obtained from

wu by deleting some letters from w, and the canonical form can(wv) is ob-

tained from wv by deleting some letters from w. In particular, wu = wv implies

can(wu) = can(wv). Without loss of generality we may assume l(u) ≤ l(v).

Then the above observations imply that v = u′u (as a word) for some word u′.
In particular, if l(u) = l(v), we already get a contradiction, proving that wv 6= wu

in this case.

Hence now we can assume that l(u) < l(v) and that v = u′u for some non-

empty word u′. Now we are going to make some analysis of wu and wv, which

we tried to illustrate on Figure 1. It will be convenient for us to distinguish the

symbols {a1, . . . , an} of our alphabet from the letters of a given word (this word

will, in fact, be the word w). So, in the rest of the proof by a letter of some

word we will mean a symbol of the alphabet together with the position in the

word (so different letters can correspond to the same symbol). For example, the

word a1a2a3a1 is written using only three different symbols, but it contains four

different letters (the first letter is the symbol a1 staying in position one and the

fourth letter is the the symbol a1 staying in position four). We will use a, x, y, v

to denote the letters of the words we will work with.
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Let a′ be the leftmost letter of the non-empty word u′. Let ai be the cor-

responding symbol. By Lemma 30, the letter a′ survives in can(wv). Since

l(u) ≤ l(v), the corresponding letter of can(wu) = can(wv) comes from w, say

from some letter a (this should be one of the occurrences of ai in w). Since wa1v

was canonical and a is the leftmost letter of v, there should exist a symbol, aj,

in w to the right of a such that j > i. We can choose the maximal possible j

and let x be the rightmost occurrence of aj in w to the right of our letter a. All

letters in w to the right of x (if any) have smaller indicies. In wv these letters are

followed by a′, which also has smaller index. Hence it is not possible to delete

this x using Lemma 1(ii). From Lemma 30 we obtain that x survives in can(wv).

Since can(wv) = can(wu), the letter x forces the existence of some letter x′

(representing the same symbol aj as the letter x) to the left of a, which survives in

can(wu) and corresponds there to the letter x in can(wv). Since w was canonical,

between x′ and x in w there should exist some symbol ak such that k > j. Since

j is the maximal possible index to the right of a, this symbol ak appears in

w between x′ and a. We again take k the maximal possible and let y be the

rightmost occurrence of ak between x′ and a. Then, by definion, k is bigger than

the index of all other symbols in w to the right of y. The letter a survives in

can(wu), which implies that one can not use Lemma 1(ii) to delete y in wu.

Hence y survives in can(wu) between x′ and a.

Since can(wv) = can(wu), this y should correspond to some occurrence of

ak to the right of x. However, this contradicts to the choice of x, which was

supposed to have the maximal possible index in w to the right of a. The obtained

contradiction proves that wv = wu is not possible, that is the first inequality of

our statement.

Since wv 6= wu, the canonical forms α and β of wv and wu respectively

are different. As wv,wu ∈ W({a2, . . . , an}) we obtain that αa1 and βa1 are

both canonical and hence different. This proves the inequality wva1 6= wua1.

From Proposition 28 we also obtain αa1f 6= βa1f , which proves the inequality

wva1f 6= wua1f . This completes the proof.

11. Linear representations of Kn

For a commutative ring, R, we denote by RKn the semigroup algebra of Kn

over R and by RKn the quotient of RKn modulo the ideal, generated by the

zero element e{1,2,...,n}.
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11.1 Faithful representations of Kn

We start with the following observation:

PROPOSITION 31. Let ρ be a faithful linear representation of Kn over some

field. Then dim ρ ≥ n.

Proof. In the proof of Theorem 25 we saw that the element a1a2 · · · an is a

nilpotent element of nilpotency class exactly n. Since e{1,2,...,n} is the zero element

in Kn, factoring, if necessary, the image of ρ(e{1,2,...,n}) out, we may assume

that ρ(e{1,2,...,n}) = 0. If ρ is faithful, the matrix ρ(a1 · · · an) must then be a

nilpotent matrix of nilpotency class exactly n. Obviously, such matrix exists

only if dim ρ ≥ n.

As we have already mentioned in Remark 19, Kiselman’s representation of

Kn is not faithful for n = 4 (and hence for all n > 4 either). Let now K be a field.

From Proposition 18 we have ψn(e{1,2,...,n}) = 0 and hence ψn is a representation

of KKn as well. We continue with the following observation about faithfulness:

PROPOSITION 32. The indecomposable projective cover of Kiselman’s repre-

sentation of KKn in Kn is faithful as a representation of Kn.

Proof. Set π1 = e−an ∈ KKn, π2 = an−anan−1 ∈ KKn,. . . , πn−1 = anan−1 · · · a3−
anan−1 · · · a2 ∈ KKn, πn = anan−1 · · · a2. By a direct calculation using the for-

mulae from Section 5 one obtains that for i = 1, . . . , n the matrix ψn(πi) is the

diagonal matrix Di, whose diagonal is the vector (0, . . . , 0, 1, 0, . . . , 0), where the

element 1 stays on the i-th place.

First we claim that the vector v = (0, 0, . . . , 0, 1)t generates Kiselman’s rep-

resentation. Indeed, A1v = (1, 1, . . . , 1, 0)t and hence, acting on A1v by Di,

i = 1, . . . , n− 1, we produce all elements from the standard basis of Kn.

From Proposition 11 we know that πn = e{2,3,...,n} is an idempotent. Fur-

thermore, ψn(πn)v = v and hence KKnπn is a projective cover of Kiselman’s

representation.

Every element of Kn can be written as either w or wa1v, where w, v ∈
W({a2, . . . , an}). From Remark 16 it follows that πnw = wπn = πnv = vπn = πn.

Hence for any α ∈ Kn we have

πnαπn =

{
πn, a1 is not a letter of α;

e{1,2,...,n}, otherwise.

Hence πnKKnπn has dimension two and a monomial basis, consisting of πn and

e{1,2,...,n}. Factoring out the zero element e{1,2,...,n} we get a copy of the ground
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field since πn is an idempotent. Thus πnKKnπn is a local algebra. Hence πn is

a primitive idempotent of KKn, which implies that the KKn-module KKnπn is

indecomposable.

To complete the proof we have just to show that the corresponding repre-

sentation of Kn is faithful. By definition, the module KKnπn has a monomial

basis, which consists of all non-zero elements from the left principal ideal of Kn

generated by πn. In particular, we have the basis elements πn and a1πn (note

that a1πn is a canonical word).

If w, v ∈ W({a2, . . . , an}) are different and canonical, then wa1πn 6= va1πn

by Proposition 28. The elements wa1πn and va1πn are linearly independent in

KKnπn, in particular, they are different. Therefore the elements w and v from

Kn are represented by different linear operators on KKnπn.

If u, v, w ∈ W({a2, . . . , an}) are canonical, then uπn = πn and va1wπn =

va1πn 6= πn. Hence the elements u and va1w from Kn are represented by different

linear operators on KKnπn.

Let w1a1v1 and w2a1v2 be two different elements from Kn, written in the

canonical form. In particular, w1, w2, v1, v2 ∈ W({a2, . . . , an}) and are canonical.

If w1 6= w2, we have w1a1v1πn = w1a1πn and w2a1v2πn = w2a1πn (since πn is the

zero element with respect to aj, j > 1). Moreover, from Proposition 28 we get

w1a1πn 6= w2a1πn. Both w1a1πn and w2a1πn are basis elements of KKnπn, which

implies that the elements w1a1v1 and w2a1v2 are represented by different linear

operators on KKnπn.

Assume now that w1 = w2 = w. Then v1 6= v2 and we have w1a1v1a1πn =

w1v1a1πn and w2a1v2a1πn = w2v2a1πn using Lemma 1(ii). From Proposition 29

we get w1v1a1πn 6= w2v2a1πn. Both w1v1a1πn and w2v2a1πn are basis elements of

KKnπn, which implies that the elements w1a1v1 and w2a1v2 are represented by

different linear operators on KKnπn. Hence the representation of Kn on KKnπn

is faithful.

The ideas from the proof of Proposition 32 can be used to construct a huge

family of faithful n-dimensional representations of Kn. Consider the polynomial

ring Z[ξi,j : 1 ≤ i < j ≤ n]. Define the following representation of Kn by
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n× n-matrices over Z[ξi,j : 1 ≤ i < j ≤ n]:

κn : an−i+1 7→




1 0 . . . 0 ξ1,i 0 . . . 0

0 1 . . . 0 ξ2,i 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . 1 ξi−1,i 0 . . . 0

0 0 . . . 0 0 0 . . . 0

0 0 . . . 0 0 1 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . 0 0 0 . . . 1




,

where the i-th row is zero and the i-th column equals (ξ1,i, . . . , ξi−1,i, 0, . . . , 0)t.

PROPOSITION 33. The representation κn is faithful.

Proof. We proceed by induction on n. For n = 1, 2 the statement is easily

checked by a direct calculation.

Let w, u ∈ W({a2, . . . , an}) be different and canonical. The semigroup gen-

erated by a2, . . . , an is obviously isomorphic to Kn−1 under the map ai 7→ ai−1.

Let us denote this isomorphism by F . Then the first n − 1 rows and the first

n − 1 columns of κn(w) and κn(u) are exactly the matrices κn−1(F (w)) and

κn−1(F (u)) respectively. By induction we have κn−1(F (w)) 6= κn−1(F (u)) and

hence κn(w) 6= κn(u).

Let u, v, w ∈ W({a2, . . . , an}) be canonical. Then the last diagonal element

of u is 1 while the last diagonal element of va1w is 0. Hence κn(u) 6= κn(va1w).

Let w1, w2, v1, v2 ∈ W({a2, . . . , an}) be canonical. Assume that w1 6= w2 and

that w1a1v1 and w2a1v2 are also canonical. Recall that πn = an · · · a2. As in the

proof of Proposition 32 we have w1a1v1πn = w1a1πn and w2a1v2πn = w2a1πn.

Further

κn(a1πn) =:




0 0 . . . 0 ξ1,n

0 0 . . . 0 ξ2,n

. . . . . . . . . . . . . . .

0 0 . . . 0 ξn−1,n

0 0 . . . 0 0




.

Since w1 6= w2, by induction we, similarly to the arguments above, derive that the

matrices M1 and M2, formed by the first n− 1 rows and the first n− 1 columns

of the matrices κn(w1) and κn(w2) respectively, are different. Since w1, w2 ∈
W({a2, . . . , an}), the coefficients of these matrices do not contain ξi,n for all i.

Now observe that ξ1,n, . . . , ξn−1,n are linearly independent (over Z[ξi,j : 1 ≤ i <

j ≤ n−1]) elements of R. From the definition of the matrix multiplication we get
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that the last columns in the matrices κn(w1a1πn) and κn(w2a1πn) will be different.

Hence κn(w1a1v1πn) 6= κn(w2a1v1πn) and therefore κn(w1a1v1) 6= κn(w2a1v1).

Finally, let us assume that w, u, v ∈ W({a2, . . . , an}) are canonical and such

that wa1u and wa1v are canonical and different. By Lemma 1(ii) we have

wa1ua1πn = wua1πn and wa1va1πn = wva1πn. Moreover, from Proposition 33

we have wu 6= wv. The same arguments as in the previous paragraph show that

the last columns in the matrices κn(wua1πn) and κn(wua1πn) will be different.

Hence κn(wa1u) 6= κn(wa1v). This completes the proof.

As an immediate corollary we obtain the following statement, which, together

with Proposition 31, was announced in [4, Theorem 4]:

THEOREM 34. Kn has a faithful representation by n × n matrices with non-

negative integer coefficients.

Proof. By Proposition 33, the representation κn is faithful. For every pair

{α, β} of different elements from Kn we have κn(α) 6= κn(β), hence there ex-

ist i{α,β} and j{α,β} such that the (i{α,β}, j{α,β})-entry of κn(α) is different from

the (i{α,β}, j{α,β})-entry of κn(β). These entries are polynomials with integer

coefficients, so this condition can be written as the condition “some non-zero

polynomial in ξi,j is not equal to zero”. Since Kn is finite by Theorem 3, the

faithfullness of κn gives us a finite number of polynomial inequalities. Since the

set Nn(n−1)/2 is Zariski dense in Qn(n−1)/2, we will get that there are infinitely

many collections of ni,j ∈ N, 1 ≤ i < j ≤ n, such that after the evaluation

ξi,j → ni,j all our inequalities are still satisfied. This means that there are in-

finitely many collections of ni,j ∈ N, 1 ≤ i < j ≤ n, such that after the evaluation

ξi,j → ni,j we obtain a faithful representation of Kn with non-negative integer

coefficients. This completes the proof.

Following the proof of Proposition 33 one can in fact explicitly present a

collection of ni,j, such that after the evaluation ξi,j → ni,j one obtains a faithful

representation of Kn with non-negative integer coefficients. Define two sequences,

mi and li, i ≥ 1, recursively as follows: m1 = l1 = 1, mi = li−1 + 1, li = i2
i
mi2i

i ,

i ≥ 2.

PROPOSITION 35. Denote by κ′n the representation of Kn with non-negative

integer coefficients, obtained from κn via the evaluation ξi,j → mi
j.

(i) κ′n is faithfull.

(ii) For every w ∈ Kn each entry of the matrix κ′n(w) is smaller than ln.

Proof. We prove this by the simultaneous induction on n. For n = 2 both
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statements are easily checked by a direct calculation. Since mi
n > lj for all i ≥ 1

and j < n by construction, the maximal possible entry appearing in the matrix

κ′n(ai), i ≤ n, is mn−1
n < mn

n. From Corollary 2(iii) it follows that every element

from Kn can be written as a product of at most 2n generators. It is easy to see

that then the maximal possible entry of such product is smaller than n2n
(mn

n)2n
.

The induction step for (ii) is now completed by comparing this with the definition

of ln.

To prove (i) we just follow the proof of Proposition 33. It is easy to see that

the only thing we have to verify is that, given two different matrices κ′n−1(F (w))

and κ′n−1(F (v)), the rightmost columns of the matrices κn(wa1πn) and κn(va1πn)

are different. These columns are linear combinations of mi
n, i = 1, . . . , n−1 with

coefficients from the matrices κ′n−1(F (w)) and κ′n−1(F (u)). By induction, all such

coefficients do not exceed ln−1, which is strictly smaller than mn by definition.

It follows that two such linear combinations with different collections of such

coefficients will be different. This completes the proof.

11.2 Irreducible representations and the structure of KKn

Let K be a field. For any X ⊂ {1, 2, . . . , n} we define the map ρX : Kn → K
as follows:

ρX(w) =

{
1, c(w) ⊂ X;

0, otherwise.

PROPOSITION 36.

(i) For any X ⊂ {1, 2, . . . , n} the map ρX gives an irreducible representation

of KKn.

(ii) Representations ρX , X ⊂ {1, 2, . . . , n}, are pairwise non-equivalent and

constitute an exhaustive list of irreducible representations of KKn. In par-

ticular, KKn has 2n non-equivalent irreducible representations.

(iii) ρX is a representation of KKn if and only if X 6= {1, 2, . . . , n}. In particular,

KKn has 2n − 1 non-equivalent irreducible representations.

Proof. Fix X ⊂ {1, 2, . . . , n}. For i ∈ {1, . . . , n} define ρX(ai) to be 1 if i ∈ X

and 0 otherwise. It is straightforward to check that this assignment satisfies the

defining relations (1.2) of Kn. Hence it extends uniquely to a representation of

Kn. From the definition of c one immediately obtains that this extension is the

map ρX . The representation ρX is irreducible since it is one-dimensional. This

proves (i).

Let X and Y be different subsets of {1, . . . , n}. Withour loss of generality we
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may assume that X \ Y 6= ∅. Let i ∈ X \ Y . Then ρX(ai) = 1 and ρY (ai) = 0.

Hence ρX and ρY are not equivalent. In particular, we have 2n non-equivalent

irreducible representations of KKn. However, from Proposition 11 we know that

Kn has 2n idempotents, and from Theorem 22 we know that all Green’s relations

on Kn are trivial. Hence, Munn’s Theorem (see for example [2, Theorem 5.33])

gives us that KKn has exactly 2n non-equivalent irreducible representations. This

proves (ii). (iii) follows immediately from (i), (ii) and a direct calculation. This

completes the proof.

COROLLARY 37. The algebra KKn is basic.

Proof. From Proposition 36(ii) we have that all simple KKn-modules are one-

dimensional. This implies the statement.

Since we now know all irreducible representations of KKn, it is a natural

question to determine the decomposition of the regular module into a direct sum

of indecomposable projectives, that is to find a decomposition of the unit element

of KKn into a direct sum of pairwise orthogonal primitive idempotents.

Let X ⊂ {1, . . . , n}. Assume that X = {i1, . . . , is}, where i1 > i2 > · · · > is;

and {1, . . . , n} \X = {j1, . . . , jt}, where j1 < j2 < · · · < jt. Set

e
(n)
X = ai1ai2 · · · ais(e− aj1)(e− aj2) · · · (e− ajt) ∈ KKn.

PROPOSITION 38.

(i)

{e(n)
X : X ⊂ {1, . . . , n}} = an{e(n−1)

Y : Y ⊂ {1, . . . , n− 1}}∪
{e(n−1)

Y : Y ⊂ {1, . . . , n− 1}}(e− an).

(ii) For every X ⊂ {1, . . . , n} the element e
(n)
X is a primitive idempotent of KKn.

(iii) e
(n)
X e

(n)
Y = 0 if X 6= Y .

(iv) e =
∑

X⊂{1,...,n} e
(n)
X .

Proof. If n ∈ X, from the definition of e
(n)
X we have e

(n)
X = ane

(n−1)
X\{n}. If n 6∈ X,

from the definition of e
(n)
X we have e

(n)
X = e

(n−1)
X (e− an). This proves (i).

Now we prove the rest by a simultaneous induction on n. For n = 1 the

statements (ii), (iii) and (iv) are obvious.

Let Y ⊂ {1, . . . , n− 1}. Then

ane
(n−1)
Y ane

(n−1)
Y = (by Lemma 1(i))

ane
(n−1)
Y e

(n−1)
Y = (by inductive assumption)

ane
(n−1)
Y .
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Analogously, using Lemma 1(i) and the inductive assumption, we have

e
(n−1)
Y (e− an)e

(n−1)
Y (e− an) =

e
(n−1)
Y e

(n−1)
Y − e

(n−1)
Y ane

(n−1)
Y − e

(n−1)
Y e

(n−1)
Y an + e

(n−1)
Y ane

(n−1)
Y an =

e
(n−1)
Y e

(n−1)
Y − e

(n−1)
Y ane

(n−1)
Y − e

(n−1)
Y e

(n−1)
Y an + e

(n−1)
Y ane

(n−1)
Y =

e
(n−1)
Y − e

(n−1)
Y an =

e
(n−1)
Y (e− an).

Hence all e
(n)
X are idempotents.

Let Y, Z ⊂ {1, . . . , n − 1}. Then, using Lemma 1(i) and the inductive as-

sumption, we compute:

ane
(n−1)
Y ane

(n−1)
Z = ane

(n−1)
Y e

(n−1)
Z = 0;

ane
(n−1)
Y e

(n−1)
Z (e− an) = 0;

e
(n−1)
Z (e− an)ane

(n−1)
Y = 0.

Finally,

e
(n−1)
Y (e− an)e

(n−1)
Z (e− an) =

= e
(n−1)
Y e

(n−1)
Z − e

(n−1)
Y ane

(n−1)
Z − e

(n−1)
Y e

(n−1)
Z an + e

(n−1)
Y ane

(n−1)
Z an =

= −e
(n−1)
Y ane

(n−1)
Z + e

(n−1)
Y ane

(n−1)
Z = 0.

Hence the idempotents e
(n)
X , X ⊂ {1, . . . , n}, are pairwise orthogonal.

Further, using (i) and the inductive assumption we have

∑

X⊂{1,...,n}
e
(n)
X = an


 ∑

Y⊂{1,...,n−1}
e
(n−1)
Y


 +


 ∑

Y⊂{1,...,n−1}
e
(n−1)
Y


 (e− an) =

= an + (e− an) = e.

By the definition of e
(n)
X , the element e

(n)
X is a linear combination of differ-

ent canonical monomials. Hence e
(n)
X 6= 0 in KKn. Now since the number of

different e
(n)
X ’s is 2n, the statement about the primitivity of e

(n)
X ’s follows from

Proposition 36(ii) and Corollary 37. This completes the proof.

COROLLARY 39. Let X ⊂ {1, 2, . . . , n}. Then KKne
(n)
X is the projective cover

of ρX .

Proof. It is a straightforward calculation that ρX(e
(n)
X ) = 1. The claim follows.
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REMARK 40. One easily checks that the simple subquotients of Kiselman’s

representation of KKn are ρX , where |{1, 2, . . . , n} \X| = 1, each occurring with

multiplicity one.

As one more immediate corollary we obtain the following very surprising

result, which once more emphasizes the importance of Kiselman’s representation

and shows that Proposition 32 is fairly remarkable:

COROLLARY 41. Let X ⊂ {1, 2, . . . , n} be such that X 6= {2, 3, . . . , n}. Then

the projective module KKne
(n)
X is not a faithful representation of Kn.

Proof. The statement is obvious in the case X = {1, 2, . . . , n}, so we may assume

X 6= {1, 2, . . . , n}. Set w = e{2,3,...,n}− e{1,2,...,n} ∈ KKn. It is certainly enough to

show that wKKne
(n)
X = 0 (which means that the different elements e{2,3,...,n} and

e{1,2,...,n} are represented by the same linear transformations on KKne
(n)
X ). For

v ∈ W({a1, . . . , an}) we have

wv =

{
w, v does not contain a1;

0, otherwise.

Hence for any x ∈ KKn we have wx = αw + βe{1,2,...,n} for some α, β ∈ K.

Therefore

wxe
(n)
X = αwe

(n)
X + βe{1,2,...,n}e

(n)
X = αe

(n)
{2,3,...,n}e

(n)
X + βe

(n)
{1,2,...,n}e

(n)
X = 0

by Proposition 38(iii). The claim follows.

One can now say even more about the structure of KKn, in particular, giving

an independent explanation for Corollary 41:

PROPOSITION 42. The algebra KKn is directed in the sense that there exists

a linear order, ≺, on the set {X : X ⊂ {1, 2, . . . , n}} such that

HomKKn(KKne
(n)
X ,KKne

(n)
Y ) = 0

provided that Y ≺ X. In particular, the algebra KKn is quasi-hereditary with

respect to ≺ with projective standard modules.

Proof. Let us prove directness by induction on n. For n = 1 the statement

is obvious. To prove the induction step we consider the projective modules

P1 = KKnan and P2 = KKn(e− an). Obviously KKn
∼= P1 ⊕ P2.

Observe that for any x ∈ Kn, using Lemma 1(i), we have

anx(e− an) = anx− anxan = anx− anx = 0.



ON KISELMAN’S SEMIGROUP 45

Hence HomKKn(P1, P2) = 0.

The endomorphism algebra of P1 is the opposite of the algebra B= anKKnan.

This algebra is the linear span of the set {anxan : x ∈ Kn}. Using Lemma 1(i),

every element from the latter set can be written as any, where y ∈ Kn−1, moreover

all such elements are obviously linearly independent. It follows that any 7→ y

induces an isomorphism of B onto KKn−1. By the inductive assumption we

obtain that B is directed.

The endomorphism algebra of P2 is the opposite of the algebra C = (e −
an)KKn(e − an). This algebra is the linear span of the set {(e − an)x(e − an) :

x ∈ Kn}. Note that

(e− an)x(e− an) = x− anx− xan + anxan = x− xan

by Lemma 1(i). In particular, if x contains an, then from Lemma 1(i) it follows

that (e − an)x(e − an) = x − xan = x − x = 0. This means that C has the

following basis: {(e− an)x(e− an) : x ∈ Kn−1} and one immediately checks that

(e − an)x(e − an) 7→ x induces an isomorphism from C onto KKn−1. By the

inductive assumption we obtain that C is directed as well.

So, the endomorphism algebras of both P1 and P2 are directed and

HomKKn(P1, P2) = 0. It follows that KKn is directed, as asserted.

That a directed algebra is quasi-hereditary with projective standard mod-

ules follows immediately from the definition of quasi-hereditary algebras, see for

example [3]. This completes the proof.

We would like to finish with the following easy corollary from the above

results:

COROLLARY 43. |Kn| = 2|Kn−1|+ dimK(e− an)KKnan.

Proof. Using the proof of Proposition 42 we have

|Kn| = dimKKKn = dimK anKKnan + dimK(e− an)KKnan+

+ dimK anKKn(e− an) + dimK(e− an)KKn(e− an) =

dimKB + dimK(e− an)KKnan + 0 + dimKC =

2 dimKKKn−1 + dimK(e− an)KKnan = 2|Kn−1|+ dimK(e− an)KKnan.
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