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Abstract. In this paper, we establish some limit theorems for self-normalized
U-statistics defined by absolutely regular sequences.

1. Introduction and results

Let {ξn;−∞ < n < ∞} be a strictly stationary stochastic sequence with

values in some countably generated measurable space (X,X). Denote by F the

distribution of ξ1 and put Ma
b = σ{ξa, . . . , ξb} (a ≤ b). We say that {ξn} abso-

lutely regular if it satisfices the condition

β(n) = E

{
sup

B∈M∞
n

∣∣P (B|M0
∞)− P (B)

∣∣
}
↓ 0 (n →∞).

A measurable function h : Xm → R is called a kernel for

θ =

∫
· · ·

∫
h(x1, . . . , xm)

m∏
i=1

dF (xi)

if it is symmetric in its m arguments. A U-statistic Un is then given by

Un = Un(h) =

(
n

m

)−1 ∑
1≤i1<i2<···<im≤n

h(ξi1 , . . . , ξim).

A kernel h is called degenerate for the distribution F if for all choices of ai ∈ X

(1 ≤ i ≤ m) and all j ∈ {1, . . . ,m}

Eh(a1, . . . aj−1, ξj, aj+1, . . . , am) = 0.

A U-statistic is called degenerate if the corresponding kernel has this property.
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It is known that by the Hoeffding projection method every U-statistic can be

written as a finite weighted sum of degerate ones, namely,

Un =
m∑

l=0

(
m

l

)
U (l)

n

where U l
n denotes the U-statistic obtained from the degenerate kernel

ĥl(x1, . . . , xl) =
l∑

j=0

(
l

j

)
(−1)l−jhl(x1, . . . , xl)

with

ĥl(x1, . . . , xl) =

∫
· · ·

∫
h(x1, . . . , xm)

m∏

i=l+1

dF (xi).

Define

(1) σ2
n = E

(
n∑

i=1

(ĥ1(ξi)− θ)

)2

and

(2) σ2 = E(ĥ1(ξi)− θ)2 +
∞∑
i=1

E(ĥ1(ξ1)− θ)(ĥ1(ξ1+i)− θ)

if the sum converges absolutely.

Let 0 < γ < 1/8. Throughout this paper, we fix this γ. Let r and k be

integer-valued functions of n such that

(3) r = r(n) = o(n(1/4)−γ) and k = k(n) =
[n

r

]
.

where [u] denotes the largest integer j such that j ≤ u. Put

Sn =
n∑

i=1

ĥ1(ξi)

and consider the new normalizer

(4) C2
n =

k∑
j=1

(
r∑

i=1

(ĥ1(ξ(j−1)r+i)− n−1Sn)

)2

.

In Yoshihara (1976) it was shown that if (6) and (7) (below) hold, then

E(Un(h))2 = O(n−1−ε) (2 ≤ l ≤ m)
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for some ε > 0, which implies

Un(h)− θ√
nσ

− Sn − θ√
nσ

→ 0 (in probability)

as n → 1, provided σ > 0. Thus, to study the limiting behavior of (Un(h) −
θ)/(

√
nσ) it is enough to consider the limiting behavior of (Sn−θ)/(

√
nσ), which

is defined by a strictly stationary sequence {ĥ1(ξi) − θ; i ≥ 1} of random vari-

ables satisfying the absolutely regular condition. Using this fact many important

results have been established by many authors. But, unfortunately, we can not

use those results, directly, in practice, since they are depend on σ and we can not

caliculate σ explicitely. Hence, to solve the real problems using the theoretical

results, it is needed to consider new self-normalizers which may be used without

knowing the concrete value of σ. The new normalizer C2
n is one of the normalizers

which generalizes the self-normalizer in the independent case since in that case

we may take r = 1 and k = n.

The object of this paper is to study the limiting behavior of

n

mCn

(Un(h)− θ).

Here, the self-normalizer Cn is used instead of σn.

Denker and Keller (1983) showed that the limiting behavior of

n

mσn

(Un(h)− θ).

depends on that of Sn. More specifically, if (n/mσn)(Sn − θ) converges in prob-

ability or a.s. under some conditions, then (n/mσn)(Un(h)− θ) converges in the

same manner under the same conditions (See Yoshihara (1993)). Thus, to know

the limiting behavior of (n/mCn)(Un(h) − θ) it is enough only to consider that

of ∣∣∣∣
1

σn

− 1

Cn

∣∣∣∣ .

We prove the following theorems (Theorems 1-5 (below)).

To formulate the central limit theorem let ρ be the sup-norm metric for

functions in D = D[0, 1]. Let G be a set of all functions g : D → R that are

(D,D)-measurable and ρ-continuous, or ρ-continuous except at points forming a

set of Wiener measure zero on (D,D), where D denotes the σ-algebra of subsets

of D generated by the finite-dimensional subset of D.

Define the D[0, 1]-valued random function Xn = {Xn(t); 0 ≤ t ≤ 1} by

(5) Xn(t) =
n

mCn

(U[nt] − θ) (0 ≤ t ≤ 1)
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THEOREM 1. Let g ∈ G be arbitrary. Suppose there exists a 0 < δ ≤ 1 such

that

(6) sup
1≤i1<···<im

E |h(ξi1 , . . . , ξim)|2+δ < ∞

and

(7)
∞∑

n=1

β
δ

16+δ (n) < ∞.

If σ > 0, then

(8) P (g(Xn(·)) < x) → P (g(W (·)) < x)

for any x ∈ R, where {W (t) : 0 ≤ t ≤ 1} denotes a standard Wiener process.

Theorem 1 may be generalized as Theorem 2 (below). Let Q be the class of

positive functions q(t) on (0, 1] which are nondecreasing near zero and let

I(q, a) =

∫ 1

0+

1

t
exp

(
−aq2(t)

t

)
dt, 0 < a < ∞.

We define the weighted sup-norm metric ‖ · /q‖ by
∥∥∥∥
x− y

q

∥∥∥∥ = sup
0<t<1

∣∣∣∣
x(t)− y(t)

q(t)

∣∣∣∣ .

THEOREM 2. Let q ∈ Q be arbitrary. Suppose the conditions of Theorem 1

hold. Then, for any g ∈ G we have that as n →∞

(9) g

(
Xn([n·])

q(·)
)

D−→ g

(
W (·)
q(·)

)
on (D[0, 1], ‖ · /q‖),

if I(g, a) < ∞ for any a > 0.

Let

Φ(x) =
1√
2π

∫ x

−∞
e−

t2

2 dt.

We prove the following Berry-Esseen theorem.

THEOREM 3. Let h : Xm → R be a non-degenerate kernel. Let {ξn} be abso-

lutely regular with mixing coefficient β(·). Suppose there exists a 0 < δ ≤ 1 such

that (6) and (7) hold. Then

(10) ∆n = sup
x∈R

|P (Xn(1) ≤ x)− Φ(x)| = O(n−λ)

where

(11) λ =
(1− ε)δ

144
with ε =

2− 2δ − 2δ2

2 + δ
.
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Denote by

π(P,Q) = inf {ε > 0|P (A) ≤ Q(Aε) + ε for all closed A ⊂ R}

the Prohorov distance of two distributions P and Q on R, where

Aε = {x ∈ R|dist(x, A) < ε} .

THEOREM 4. Let h : Xm → R be a non-degenerate kernel. Let {ξn} be abso-

lutely regular with mixing coefficient β(·). Suppose there exists a 0 < δ ≤ 1/2

such that (6) and (7) hold. Then

(12) π(L(Xn), N(0, 1)) = O(n−λ)

where λ is the one defined by (11).

THEOREM 5. Suppose h : Xm → R is a nondegenerate kernel. Suppose further-

more {ηi} is absolutely regular with mixing coefficient β(·) such that

(13) sup
1≤i1<···<im

E |h(ζi1 , . . . , ζim)|8 < ∞

and for some 0 < δ ≤ 1

(14)
∞∑

n=1

(n + 1)
56−9δ

δ β(n) < ∞.

if σ > 0.

Then, we can redefine {ξi} without changing its distribution on a richer space

together with a Wiener process {W (t); 0 ≤ t < ∞} such that

(15)
n

3
2

mCn

(Un − θ)−W (n) = O
(
n

1
2
−λ′

)
a.s.

for some λ′ > 0.

2. Preparatory materials

In this section, we always denote by {ζn} a strictly stationary absolutely

regular sequence of zero mean random variables.

We use often the following inequalities.
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LEMMA A. (I) Suppose that there exist positive numbers p and κ such that

0 < p + κ ≤ 1, E|ζ1|1+p+κ < ∞ and

∞∑
i=1

β
κ

2+κ (i) < ∞.

Then,

(16) E

∣∣∣∣∣
m∑

i=1

ζi

∣∣∣∣∣

1+p

≤ cm
{
E|ζ1|1+p+κ

} 1
1+p+κ .

(See, Utev (1984).)

(II) If for some δ > 0

E|ζ1|2+δ < ∞,

then

(17) E

(
m∑

i=1

ζi

)2

≤ cm

{
E|ζ1|2 +

{
E|ζ1|2+δ

} 2
2+δ

m∑
i=1

β
δ

2+δ (i)

}
.

(III) If for p ≥ 2 and for some δ > 0

(18) E|ζ1|p+δ < ∞ and
∞∑
i=0

(i + 1)
(p−2)(p+δ)+p

δ β(i) < ∞

then

(19) E

∣∣∣∣∣
m∑

i=1

ζi

∣∣∣∣∣

p

≤ cm
p
2

(
E|ζ1|p+δ

) p
p+δ .

Let r and k be the ones defined by (3) and put

ϑj =

jr∑

i=(j−1)r+1

ζi and Bn − 2 =
k∑

j=1

ϑ2
j .

Furthermore, put

σ2
m(ζ) = E

(
m∑

i=1

ζi

)2

and σ2(ζ) = Eζ2
1 + 2

∞∑
i=1

Eζ1ζ1+i.

If σ2(ζ) exists, then, by Lemma A we have

(20) σ2
m(ζ) = mσ2(ζ)(1 + o(1)).

We prove the following lemma.



SELF-NORMALIZED U-STATISTICS 7

LEMMA 1. (I) Suppose there exists a 0 < δ ≤ 1 such that

(21) E|ζ1|2+δ < ∞ and
∞∑
i=1

β
δ

8+δ (i) < ∞.

If σ(ζ) > 0, then

(22) P

(
B2

n ≤
1

5
σ2

n(ζ)

)
= o(n−γ).

(II) If for some 0 < δ < min{16γ/(1 + 2γ), 1}

(23) E|ζ1|4+δ < ∞ and
∞∑
i=0

(i + 1)
12+2δ

δ β(i) < ∞

and σ(ζ) > 0, then

(24) B2
n ≥

1

6
krσ2(ζ) a.s.

Proof. By (20) to prove (22) it suffices to show that

(25) P

(
B2

n ≤
1

5
kσ2

r(ζ)

)
= o(n−γ).

By the Jensen inequality

1

k

k∑
j=1

(
ϑj

σr(ζ)

)2

≥
(

1

k

k∑
j=1

|ϑj|
σr(ζ)

)2

,

we have that for all n sufficiently large and for any M > 0

P

(
1

k

k∑
j=1

(
ϑj

σr(ζ)

)2

< M

)
≤ P

(
1

k

k∑
j=1

|ϑj|
σr(ζ)

<
√

M

)

Thus, to prove (25) it suffices to show that

(26) P

(
1

k

k∑
j=1

|ϑj|
σr(ζ)

<
1

2

)
= o(n−γ) (n →∞).

We note that by Melevède and Peligrad (2000)

lim
n→∞

E
|ϑj|

σr(ζ)
= lim

n→∞
E

∣∣∣∣∣
1

σr(ζ)

r∑
i=1

ζi

∣∣∣∣∣ =

√
2

π
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if (21) holds and hence for all n sufficiently large

E
|ϑj|

σr(ζ)
>

√
1

2
.

Let κ̃ =
√

1/2−1/2 > 0. Since {ϑj} is absolutely regular with mixing coefficient

β(·) and Eϑ2
1 = σr(ζ), using the Chebyshev inequality, (16) with p = (2−δ)/(2+

δ) and (19) with p = 2

L. H. S. of (26)(27)

≤ P

(
1

k

k∑
j=1

( |ϑj|
σr(ζ)

− E
|ϑj|

σr(ζ)

)
≤ 1

2
− E

|ϑj|
σr(ζ)

)

≤ P

(
1

k

∣∣∣∣∣
k∑

j=1

( |ϑj

σr(ζ)
− E

|ϑj|
σr(ζ)

)∣∣∣∣∣ ≥ κ̃

)

≤ 1

k
4

2+δ κ̃
4

2+δ

E

∣∣∣∣∣
k∑

j=1

( |ϑj|
σr(ζ)

− E
|ϑj|

σr(ζ)

)∣∣∣∣∣

4
2+δ

≤ c

k
4

2+δ

k

(
E

∣∣∣∣
|ϑj|

σr(ζ)
− E

|ϑj|
σr(ζ)

∣∣∣∣
2
) 1

2

≤ c

k
2−δ
2+δ

(
E

∣∣∣∣
|ϑ1|

σr(ζ)

∣∣∣∣
2
) 1

2

≤ c

k
2−δ
2+δ

= o(n−γ),

which implies (26) and hence (22) is obtained.

To prove (24) we need to prove

P

(
B2

n <
1

5
knσ

2
rn

(ζ) i.o.

)
= 0,

which is shown by the Borel-Cantelli lemma if we show

(28)
∞∑

n=1

P

(
B2

n <
1

5
knσ2

rn
(ζ)

)
< ∞.

Using the proof of (27) and (19) with p = 3 first and then (19) with p = 3 + δ,



SELF-NORMALIZED U-STATISTICS 9

we have

P

(
B2

n <
1

5
knσ2

rn
(ζ)

)

≤ P

(∣∣∣∣∣
1

kn

kn∑
j=1

( |ϑj|
σr(ζ)

− E
|ϑj|

σr(ζ)

)∣∣∣∣∣ ≥ κ̃

)

≤ 1

κ̃3k3
n

E

∣∣∣∣∣
kn∑
j=1

( |ϑj|
σrn(ζ)

− E
|ϑj|

σrn(ζ)

)∣∣∣∣∣

3

≤ c

k3
n

k
3
2
n

(
E

∣∣∣∣
|ϑ1|

σrn(ζ)
− E

|ϑ1|
σrn(ζ)

∣∣∣∣
3+δ

) 3
3+δ

≤ c

k
3
2
n

(
E

∣∣∣∣
ϑ1

σrn(ζ)

∣∣∣∣
3+δ

) 3
3+δ

≤ c

k
3
2
n

≤ c

n1+τ

for some τ < 0. Hence

L. H. S. of (28) ≤
∞∑

n=1

c

n1+τ
< ∞

and (24) is obtained.

Put

Tn =
n∑

i=1

ηi

and

σ2
m(η) = E

(
m∑

i=1

ηi

)2

and σ2(η) = Eη2
1 + 2

∞∑
i=1

Eη1η1+i.

LEMMA 2. Let {ηn} be a strictly stationary absolutely regular sequence of ran-

dom variables with Eη1 = θ and mixing coefficient β(·). Let 0 < ε < (1/2)γ be

arbitrary.

(I) Suppose there exists a 0 < δ < 1 such that

(29) E|η1|2+δ < ∞ and
∞∑
i=1

β
δ

4+δ (i) < ∞.

If σ(η) > 0, then

(30) P

(∣∣∣∣
Tn

n
− θ

∣∣∣∣ ≥ n−
1
4
+ε

)
= o(n−

1
2 ).
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(II) If for some δ > 0

(31) E|η1|4+δ < ∞ and
∞∑
i=0

(i + 1)
12+2δ

δ β(i) < ∞

and σ(ζ) > 0, then

(32)

∣∣∣∣
Tn

n
− θ

∣∣∣∣ ≤ n−
1
4
+ε a.s.

Proof. (I) By the Chebyshev inequality and (19) with p = 2 we have

P

(∣∣∣∣
Tn

n
− θ

∣∣∣∣ ≥ n−
1
4
+ε

)

≤ P

(∣∣∣∣∣
n∑

i=1

(ηi − θ)

∣∣∣∣∣ ≥ n
3
4
+ε

)
≤ 1

n
3
2
+2ε

E

∣∣∣∣∣
n∑

i=1

(ηi − θ)

∣∣∣∣∣

2

≤ cn−
3
2
−2ε · n = cn−

1
2
−2ε

which implies (30).

(II) To prove (32), we need to show that

P

(∣∣∣∣
Tn

n
− θ

∣∣∣∣ ≥ n−
1
4
+εi.o.

)
= 0.

Thus, it suffices to show

∞∑
n=1

P

(∣∣∣∣∣
n∑

i=1

(ηi − θ)

∣∣∣∣∣ ≥ n
3
4
+ε

)
< ∞,

which is obtained from the Chebyshev inequality, since by (19) with p = 4

P

(∣∣∣∣∣
n∑

i=1

(ηi − θ)

∣∣∣∣∣ ≥ n
3
4
+ε

)

≤ 1

n3+4ε
E

∣∣∣∣∣
n∑

i=1

(ηi − θ)

∣∣∣∣∣

4

≤ cn−3−4ε · n2 = cn−1−4ε

for all n.

LEMMA 3. Let {ηn} be a strictly stationary absolutely regular sequence of ran-

dom variables with Eη1 = θ and mixing coefficient β(·).
(I) Suppose there exists a 0 < δ ≤ 1 such that

(33) E|η1|2+δ < ∞ and
∞∑
i=1

β
δ

16+δ (i) < ∞.
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If σ(η) > 0, then

(34) P

(∣∣∣∣
1

σn(η)
− 1

Cn(η)

∣∣∣∣ ≥ n−(1/2)−ρ

)
= o(n−

δ
16 ).

(II) If for some 0 < δ < 8γ/(1 + 2γ)

(35) E|η1|8 < ∞ and
∞∑
i=0

(i + 1)
56−6δ

δ β(i) < ∞

and σ(ζ) > 0, then

(36)

∣∣∣∣
1

σn(η)
− 1

Cn(η)

∣∣∣∣ ≤
1

6
n−

1
2
−ρσ(η) a.s.

Here, ρ = δ/16(4 + δ) and

C2
n(η) =

k∑
j=1

(
r∑

i=1

(
η(j−1)r+i − Tn

n

))2

.

Proof. Let

B2
n(η) =

k∑
j=1

( r∑
i=1

(η(j−1)r+i − θ)

)2

.

We note first that
∣∣∣∣

1

σn(η)
− 1

Cn(η)

∣∣∣∣

≤
∣∣∣∣

1

σn(η)
− 1

Bn(η)

∣∣∣∣ +

∣∣∣∣
1

Bn(η)
− 1

Cn(η)

∣∣∣∣

=

∣∣∣∣
1

σn(η)
− 1

Bn(η)

∣∣∣∣ +
|B2

n(η)− C2
n(η)|

Bn(η)Cn(η)(Bn(η) + Cn(η))
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By the Cauchy-Schwarz inequality

|B2
n(η)− C2

n(η)|

≤
k∑

j=1

∣∣∣∣
( r∑

i=1

(η(j−1)r+i − θ)

)2

−
( r∑

i=1

(η(j−1)r+i − n−1Tn)

)2∣∣∣∣

=
k∑

j=1

∣∣∣∣
r∑

i=1

(η(j−1)r+i − θ)−
r∑

i=1

(η(j−1)r+i − n−1Tn)

∣∣∣∣

×
∣∣∣∣

r∑
i=1

(η(j−1)r+i − θ) +
r∑

i=1

(η(j−1)r+i − n−1Tn)

∣∣∣∣

=
k∑

j=1

r|n−1Tn − θ|
∣∣∣∣2

r∑
i=1

(η(j−1)r+i − θ)− r(n−1Tn + θ)

∣∣∣∣

≤ 2r|n−1Tn − θ|
k∑

j=1

∣∣∣∣
r∑

i=1

(η(j−1)r+i − θ)

∣∣∣∣

+kr2|n−1Tn − θ| |n−1Tn + θ|
≤ 2r

√
k|n−1Tn − θ|Bn(η) + kr2|n−1Tn − θ| |n−1Tn + θ|

and hence

|B2
n(η)− C2

n(η)|
Bn(η)Cn(η)(Bn(η) + Cn(η))

≤ 2
√

kr|n−1Tn − θ|
C2

n(η)
+

kr2|n−1Tn − θ| |n−1Tn + θ|
Bn(η)C2

n(η)
.

Combining these relations, we have
∣∣∣∣

1

σn(η)
− 1

Cn(η)

∣∣∣∣ ≤
∣∣∣∣

1

σn(η)
− 1

Bn(η)

∣∣∣∣(37)

+
2
√

kr|n−1Tn − θ|
C2

n(η)
+

kr2|n−1Tn − θ| |n−1Tn + θ|
Bn(η)C2

n(η)
.

Furthermore, if |n−1Tn − θ| ≤ n−(1/4)+ε and B2
n(η) ≥ (1/5)krσ2(η), then

|n−1Tn + θ| ≤ c0 for some c0 > 0 and

Cn(η) ≥
√

1

5
krσ2(η) + o(n) ≥ 1

3

√
krσ(η),

which implies

2
√

kr|n−1Tn − θ|
C2

n(η)
+

kr2|n−1Tn − θ| |n−1Tn + θ|
Bn(η)C2

n(η)

≤ c

(
1√
k

1

n
1
4
−ε

+

√
r√
k

1

n
1
4
−ε

)
≤ cn−

1
2
− γ

2
+ε.
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Since we can prove

σ2
n(η)− kσ2

r(η) = O(r),

using the elementary inequality

|√a−
√

b| ≤
√
|a− b| (a, b ≥ 0)

we have ∣∣∣∣
1

σn(η)
− 1

Bn(η)

∣∣∣∣ =
|Bn(η)− σn(η)|

σn(η)Bn(η)
(38)

≤ |Bn(η)−
√

kσ2
r(η)|

σn(η)Bn(η)
+
|σn(η)−

√
kσ2

r(η)|
σn(η)Bn(η)

≤ c

{√
|B2

n(η)− kσ2
r(η)|

krσ2(η)
+

|σ2
n(η)− kσ2

r(η)|
σn(η)Bn(η)(σn(η) +

√
kσ2

r(η))

}

≤ c

{√
|B2

n(η)− kσ2
r(η)|

krσ2(η)
+

1√
kn

}
.

Assume that the conditions of (I) hold. Let 0 < δ ≤ 1. Then, by (16) with

p = ε = δ/8 first and then by (19) with p = 2 + (δ/2) we have

E

{√
|B2

n(η)− kσ2
r(η)|√

krσ(η)

}2+(δ/4)

(39)

=
1

(
√

krσ(η))2+(δ/4)
E

∣∣∣∣
k∑

j=1

{( r∑
i=1

(η(j−1)r+i − θ)

)2

− σ2
r(η)

}∣∣∣∣
1+ δ

8

≤ c

(krσ2(η))1+ δ
8

k

{
E

∣∣∣∣
( r∑

i=1

(ηi − θ)

)2

− σ2
r(η)

∣∣∣∣
1+ δ

4
} 1

1+ δ
4

≤ c

(krσ2(η))1+ δ
8

k

{
E

∣∣∣∣
r∑

i=1

(ηi − θ)

∣∣∣∣
2+ δ

2
} 4

4+δ

=
c

k
δ
8 r1+ δ

8

(r1+ δ
4 )

4
4+δ =

c

k
δ
8 r

δ
8

= cn−
δ
8 .

From (37), (39) and the definition of ρ we have

P

(∣∣∣∣
1

σn(η)
− 1

Cn(η)

∣∣∣∣ ≥ n−
1
2
−ρ,

∣∣∣∣
Tn

n
− θ

∣∣∣∣ ≤ n−
1
4
+ε, B2

n(η) ≥ 1

5
krσ2(η)

)

≤ P

(∣∣∣∣
1

σn(η)
− 1

Bn(η)

∣∣∣∣ ≥
1

2
n−

1
2
−ρ, B2

n(η) ≥ 1

5
krσ2(η)

)

≤ cn( 1
2
+ρ)(2+ δ

2
) 1

(kr)
1
2
(2+ δ

2
)
E

{√
|B2

n(η)− kσ2
r(η)|√

krσ(η)

}2+ δ
2

≤ cn−
δ
16 .
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Thus, by Lemmas 1(I) and 2(I)

P

(∣∣∣∣
1

σn(η)
− 1

Cn(η)

∣∣∣∣ ≥ 2n−
1
2
−ρ

)

≤ P

(∣∣∣∣
1

σn(η)
− 1

Cn(η)

∣∣∣∣ ≥ n−
1
2
−ρ,

∣∣∣∣
Tn

n
− θ

∣∣∣∣ ≤ n−
1
4
+ε, B2

n(η) ≥ 1

5
krσ2(η)

)

+P

(∣∣∣∣
Tn

n
− θ

∣∣∣∣ ≥ n−
1
4
+ε

)
+ P

(
B2

n(η) ≤ 1

5
krσ2(η)

)

= o(n−
δ
16 ) + o(n−

1
2 ) + o(n−γ) = o(n−

δ
16 ),

which completes the proof of (34).

Next, assume that the conditions of (II) hold. Using (35), (19) with p = 4−δ

firstly and then (19) with p = 8− δ we have that

E

{√
|B2

n(η)− kσ2
r(η)|√

krσ(η)

}8−2δ

(40)

=
1

(
√

krσ(η))8−2δ
E

∣∣∣∣
k∑

j=1

{( r∑
i=1

η(j−1)r+i − θ

)2

− σ2
r(η)

}∣∣∣∣
4−δ

≤ c

(kr)4−δ
k2− δ

2

{
E

∣∣∣∣
( r∑

i=1

ηi − θ

)2

− σ2
r(η)

∣∣∣∣
4− δ

2
} 4−δ

4−(δ/2)

≤ c

k2− δ
2 r4−δ

{
E

∣∣∣∣
r∑

i=1

ηi − θ

∣∣∣∣
8−δ} 8−2δ

8−δ

≤ c

k2− δ
2 r4−δ

(r4− δ
2 )

8−2δ
8−δ =

c

k2− δ
2

=
c

(n
3
4
+γ)2− δ

2

=
c

n1+τ

for some τ > 0. Hence, (36) follows from (37), (38), Lemmas 1(II), 2(II) and the

Borel-Cantelli lemma.

LEMMA 4. (I) Suppose conditions of Lemma 3(I) holds. Then,

1

σn(η)

n∑
i=1

ηi − 1

Cn(η)

n∑
i=1

ηi
P→ 0 (n →∞).

(II) Suppose conditions of Lemma 3(II) holds. Then,

1

σn(η)

n∑
i=1

ηi − 1

Cn(η)

n∑
i=1

ηi → 0 a.s. (n →∞).
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Proof. We note that if
∣∣∣∣

1

σn(η)
− 1

Cn(η)

∣∣∣∣ ≤ c0n
− 1

2
−ρ

for some c0 > 0, then
∣∣∣∣

1

σn(η)

n∑
i=1

ηi − 1

Cn(η)

n∑
i=1

ηi

∣∣∣∣

≤
∣∣∣∣

1

σn(η)
− 1

Cn(η)

∣∣∣∣
∣∣∣∣

n∑
i=1

ηi

∣∣∣∣ ≤
c0

n
1
2
+ρ

∣∣∣∣
n∑

i=1

ηi

∣∣∣∣.

Since for the sequence {ηi} the law of the iterated logarithm holds under the

conditions in Lemma 3(I) and consequently in Lamma 3(II), the last term in

the above inequalities is equal to 0 almost surely. Hence, we have the desired

conclusions.

From Lemma 4(I) and the well-known weak convergence theorem for strictly

stationary sequence we have the following theorem.

THEOREM 6. Let {ζi} be a strictly stationary absolutely regular sequence of

zero mean random variables with mixing coefficient β(·). Suppose there exists a

0 < δ ≤ 1 such that (31) holds and σ(η) > 0. Then, for any g ∈ G
P (g(X̄n([n·])) < u) → P (g(W (·)) < u)

for all u ∈ R, where

X̄n(l) =

( k∑
j=1

( r∑
i=1

ζ(j−1)r+i

)2)− 1
2

l∑
i=1

ζi.

Remark. By the same method, we can deduce the same conclusion for the strictly

stationary strong mixing sequence under the analogous conditions in Theorem 6.

3. Proof of Theorems

Proof of Theorem 1. Since g ∈ G and Eĥ1(ξ1) = θ, putting ζi = ĥ1(ξ1)− θ from

Theorem 6, we have the theorem.

Proof of Theorem 2. The proof is easily obtained from Theorem 1.

To prove Theorems 3 and 4, we need the following theorem due to Denker

and Keller (1983).
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THEOREM A. Suppose h : Xm → R is a nondegenerate kernel. Suppose fur-

thermore {ηi} is absolutely regular with mixing coefficient β(·) satisfying

βδ/(2+δ)(n) = O(n−2+ε) for some 0 < δ ≤ 1, 0 ≤ ε < 1, σ(ζ) > 0 and

sup
1≤i1<···<im

E|h(ζi1 , · · · , ζim)|2+δ < ∞.

Then

sup
u∈R

∣∣∣∣P
(

n

σn(ζ)
(Un − θ) < u

)
− Φ(u)

∣∣∣∣ = O(n−λ)(41)

and

π

(
L

(
n

σn(ζ)
(Un − θ)

)
, N(0, 1)

)
= O(n−λ)(42)

where λ is the one defined by (11).

Proof of Theorem 3. To prove Theorem 3 we note that

sup
u∈R

∣∣∣∣P
(

Un − nθ

Cn(η)
< u

)
− Φ(u)

∣∣∣∣

≤ P

(∣∣∣∣
1

σn(ζ)
− 1

Cn(η)

∣∣∣∣|Un − nθ| ≥ n−λ

)

+ sup
u∈R

max

{∣∣∣∣P
(

1

σn(ζ)
(Un − nθ) < u + n−λ

)
− Φ(u + n−λ)

∣∣∣∣,
∣∣∣∣P

(
1

σn(ζ)
(Un − nθ) < u− n−λ

)
− Φ(u− n−λ)

∣∣∣∣
}

+ max{sup
u∈R

|Φ(u + n−λ)− Φ(u)|, sup
u∈R

|Φ(u− n−λ)− Φ(u)|}
= I1 + I2 + I3, (say).

By (41) I2 = O(n−λ). On the other hand, I3 = O(n−λ) follows from the elemen-

tary inequality

sup
u∈R

|Φ(u + q)− Φ(u)| ≤ |q|√
2π

.

Finally, by Lemma 3, the Chebyshev inequality and Lemma A we have

I1 ≤ P

(∣∣∣∣
1

σn(ζ)
− 1

Cn(η)

∣∣∣∣ ≥ n−
1
2
−2λ

)

+ P

(
n−

1
2
−2λ|Sn − nθ| ≥ n−λ

)

= O(n−2λ) + O(n−2λ) = O(n−2λ).

Hence, Theorem 3 is obtained.
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Proof of Theorem 4. Using the same method in the proof of Theorem 3, we can

prove Theorem 4 by (42), (cf. Dudley (1968)).

To prove Theorem 5 we use the following theorem due to Denker and Keller

(1983).

THEOREM B. Suppose h : Xm→ R is a nondegenerate kernel. Suppose further-

more {ξi} is absolutely regular with mixing coefficient β(·) satisfying βδ/(2+δ)(n)

= O(n−2+ε) for some 0 < δ ≤ 1, 0 ≤ ε < 1/2, σ(ζ) > 0 and

sup
1≤i1<···<im

E|h(ζi1 , · · · , ζim)|2+δ < ∞.

Then, we can redefine {ξi} without changing its distribution on a richer space

together with a Wiener process {W (t); 0 ≤ t < ∞} such that

n

mσ
(Un − θ)−W (n) = O(n

1
2
−λ′) a.s. for some λ′ > 0.(43)

Proof of Theorem 5. If the conditions of Theorem 5 are satisfied, then by Lemma

3(II)
∣∣∣∣

1

σn(ζ)
− 1

Cn(η)

∣∣∣∣|Un − nθ|

= n
1
2
(1+ρ)

∣∣∣∣
1

σn(ζ)
− 1

Cn(η)

∣∣∣∣ · n−
1
2
(1+ρ)|Un − nθ|

= O(n−
ρ
2 )o(1) = o(n−

ρ
2 ) a.s.,

since for the sequence {Un−nθ} the law of the iterated logarithm holds. Hence,

the desired conclusion follows.

Remark. Define a von Mises’ functional Vn by

Vn =
1

nm

n∑
i1=1

· · ·
n∑

im=1

h(ξi1 , · · · , ξim) (n ≥ 1).

The statements in Theorems 1-5 hold for von Mises’ functionals under the anal-

ogous assumptions, when (6) and (13) are replaced by

sup
i1,··· ,im≥1

E|h(ξi1 , · · · , ξim)|2+δ < ∞

and

sup
i1,··· ,im≥1

E|h(ξi1 , · · · , ξim)|8 < ∞,

respectively.
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4. Simulation examples

To demonstrate simulation examples, in this section, we consider strictly

stationary sequences {Xi} of l-dependent random variables. Hence, the mixing

condition β(n) = 0 (n > l) is satisfied. Suppose E exp(t|Xi|) < ∞ (t > 0). Then,

from the proofs in the preceding section it is obvious that we may choose r as

r = [n(1/2)−γ] (0 < γ < (1/2)) and hence k = [n/r] = [n(1/2)+γ].

EXAMPLE 1. Let Z1, Z2, · · · , Zn be independent [0, 1] uniform random vari-

ables. For each i, let

Xj =

j+15∑
i=j

Zi − 8 (j = 1, 2, · · · ).

Then, the sequence {Xj} is a 16-dependent random variables with Xj = 0.

Let n > 1 be fixed and put

X̄n =
1

n
(X1 + · · ·+ Xn) = h̄1.

Furthermore, let r = [n0.48] and k = [n/r] and put

A2
j =

{ r∑
i=1

(X(j−1)r+i − X̄n)

}2

(j = 1, · · · , k).

Define

Yn =
X1 + X2 + · · ·+ Xn√
A2

1 + A2
2 + · · ·+ A2

k

.

We consider the case where n = 200, r = 12, k = 16, repeat 300 times the above

procedure and obtain Figure 1.

EXAMPLE 2. Let h(x, y) = |x− y| and consider the U-statistics

Un =
2

n(n− 1)

∑
1≤i<j≤n

|Xj −Xi| = 1

n(n− 1)

n∑
i=1

n∑
j=1

|Xj −Xi|,

where {Xi} is a sequence of 8-dependent N(0, 1) random variables. In this case,

θ = 2/
√

π.

To construct the sequence, let {Zi} be independent N(0, 1) random variables.

Put

Xj =
1√
8

j+7∑
i=j

Zi (j = 1, 2, · · · ).
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Then, the sequence {Xj} satisfies the required condition.

Let Φ(x) be the standard normal distribution function, φ(x) = Φ′(x) and put

h1(x) = x{2Φ(x)− 1}+ 2φ(x).

Let

h̄1 =
1

n

n∑
i=1

h1(Xi)

and put

A2
j =

{ r∑
i=1

(h1(X(j−1)r+i)− h̄1)

}2

(j = 1, · · · , k).

Compute

Yn =
n(Un − θ)

2
√

A2
1 + A2

2 + · · ·+ A2
k

.

We consider the case where n = 50, r = 4, k = 12, repeat 200 times the above

procedure and obtain Figure 2.
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