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IDENTIFICATION OF FLUTTER DERIVATIVES OF TRUSS BRIDGE 

DECK FROM GUST RESPONSE 

 

Abstract 

 

Long-span cable supported bridges are highly susceptible to wind excitation and the 

aerodynamic instability such as flutter phenomenon play an important role in the design 

of these bridges.  This phenomenon is well represented in term of flutter derivatives that 

are function of the reduced frequency and body shape and can be identified from section 

model test by using system identification method. 

 System identification techniques which have been applied to identify the flutter 

derivatives can be classified into two broad groups. A deterministic system identification 

technique, that is applied for only free decaying vibration signal or impulse response. 

Therefore, in this system the buffeting force and their responses are considered as 

external noise, so this causes more difficulties at high wind velocity such as noise 

increase due to turbulence. The other is a stochastic system identification technique that 

is not only applied for free decaying signal but also buffeting response. In this system 

identification technique the deterministic knowledge of the input is replaced by the 

assumption that the input is a realization of a stochastic process.  

The wind in the atmospheric boundary layer is always turbulence. Therefore any 

research of wind-induced vibration problems must consider this issue. Not many 

researchers have focused clearly on the effects of turbulence on aero-elastic forces, 

especially at high turbulence intensity.  

This study is to clarify the effects of oncoming turbulence on the self-excited force of a 

suspended long span bridge deck. In the study reported herein, the more challenging is 

the application of a system identification method to identify flutter derivatives from gust 

responses for the section model. The gust response is obtained by an experimental wind 

tunnel test for a trussed deck section. The output only time domain analysis stochastic 

system identifications: covariance stochastic system (SSI_cov) and data driven 

stochastic system (SSI_data) methods are proposed to extract simultaneously all flutter 

derivatives (FDs) from two degrees of freedom system. The results are also compared 

with those from smooth flow as well as free decay response.  

Both covariance stochastic system and data driven stochastic system methods show 
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a good identification results even under turbulent flows because a feature of those 

methods treat buffeting force and response as inputs instead of noises. The SSI_data 

method is appreciably faster than SSI_cov method. An identification of flutter derivatives 

from buffeting responses is plausible. The advantage of this technique is easier to obtain 

buffeting response under turbulent flows. This is less time consuming than free decay 

test. Especially at high wind velocity it can avoided that the vertical free decay data is too 

short causing less accuracy. 

Turbulent flows significantly affect dynamic responses and flutter derivatives of the 

truss bridge deck section. Buffeting raises the response amplitude level progressively in 

proportion to the reduced wind speed and turbulent intensity. Specifically, turbulence 

induces buffeting response but increase flutter critical velocity. 
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NOMENCLATURE 

Vr  =  reduced wind velocity 

U  =  mean wind velocity 

f  =  frequency 

B   =   deck width  

D  =  deck height 

Ai
* =   torsional flutter derivatives  

Hi
*  =   vertical flutter derivatives  

Iu  =  horizontal turbulent component 

Iw  =  vertical turbulent component 

m  =  mass 

I   =   mass moment of inertia  

h   =   vertical displacement   

Lse  =   self-excited lift force   

Mse =  self-excited moment 

Lb  =   buffeting lift force   

Mb =  buffeting moment 

C   =   system damping matrix  

Ch  =   mechanical damping of vertical mode  

C =   mechanical damping of torsional mode 

M  =  mass matrix 

Ce  =  effective damping matrix (gross damping matrix) 

Ke  =  effective stiffness matrix (gross stiffness matrix) 

LhR, LR  flutter derivatives 

K   =   reduced frequency, Bω/U  

k   =   reduced frequency, bω/U  

b   =  half model width  

Kh  =   reduced frequency, Bωh/U  

Kα  =   reduced frequency, bωa/U 

A  =  state matrix 

x  =  state vector 

E  =  Expectation  

T  =  Toeplitz matrix 

H  =  Hankel matrix 



ix 
 

Yp  =  past output  

Yf  =  future output 

P  =  projection matrix 

O  =  observation matrix 

Dc  =  transmission   

wk  =  process noise 

vk  =  measurement noise 

QR =  QR factorization 

Kk  =  Kalman gain 

Ii  =  turbulence intensity 

Li
x  =  turbulence integral length scale 

Rxx =  autocorrelation 

Su  =  power spectrum density function 

    standard deviation 

h  =   circular frequency of heaving mode 

  =   circular frequency of peaching mode 

fh   =   frequency of heaving mode 

f   =   frequency of peaching mode 

  =  logarithmic decrement 

   =   air density 

    torsional displacement 

   =    frequency ratio 

  =  damping ratio 

h  =  vertical damping ratio 

 =  torsional damping ratio 

   =   natural circular frequency   

    =    logarithmic decrement of damping  

X̂   =  Kalman filter state sequence 

' '' ' '' ' '' ' '', , , , , ,a a b b a a b bk k k k and m m m m    “ Kussner coefficients” 

  =  mode shape 

  =  eigenvector;  =  covariance matrix 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Bridge aerodynamic and turbulence effect 

The design of long span bridges, either suspension or cable stayed bridges must be withstood 

the forces induced by the wind effect. In addition, such bridges are highly susceptible to wind 

excitation because of their inherent flexibility, low structural damping and light in weigh. Wind 

loads play an importance role in the design of these structures. The action of wind loads are 

broadly divided into two groups, aerostatic and aerodynamic loads (figure 1.1).  

The effects of aerostatic such as deflection and stress are caused by wind load (primary effect 

of wind). It shall be considered for all structures and instability for flexible structures (long span 

bridge). Estimate of wind load effect on a structure is the most important aspect in the wind 

actions. Considering wind load is enough for most ordinary structures. Wind load does not decide 

the structure in most cases, but is needed to secure the horizontal stiffness of the structure.  

The aerodynamic force can be divided into two main groups: limited-amplitude response 

(limited vibration) and divergent-amplitude response vibrations (self-excited vibration). First 

category responses occur for not only large structure (flexible) but also secondary  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 Classification of wind action on bridge 
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members. This part comprises: the buffeting force; vortex-induced oscillation; rain-wind-induced 

vibration of stay; wake-induced vibration occurs with parallel-aligned decks.   

Whereas second category responses occur for only large structure (flexible) and consist of flutter 

and galloping.  

Based on relationship between amplitude of response and non-dimensional reduced wind 

velocity (Vr=U/fB; where U: mean wind velocity, f: frequency, B: deck width), it can be classified 

that the vortex-induced vibration usually occur at low wind velocity range, the buffeting 

phenomenon is significant at medium velocity range up to high wind velocity, meanwhile, the 

flutter phenomenon occur at high wind velocity range (figure 1.2). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 Response amplitude versus reduced wind velocity 
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 The buffeting phenomenon: the breathing of natural wind forces the structure into vibration in 

 

Limited-amplitude  Divergent-amplitude  

Flutter or galloping Buffeting response Vortex-induced response  

Self-excited forces in 
smooth or turbulent wind 

Buffeting forces in turbulent 
wind 

Resonant peak 

Vr 

High wind velocity  Low and medium wind velocity 

Self-excited 
forces 

‘Lock-in’ 
response 

Karman-
induced 
response 

Forces 

Vibration 
Amplitude  



3 
 

the vertical or in the direction of wind axis. Buffeting response itself will be a problem for only 

flexible structures or long-span bridges. Buffeting is a random response of structure due to the 

effect of turbulence on the oncoming wind flow or due to signature or self-induced turbulence. 

Buffeting response does not generally lead to catastrophic failures but is important for 

serviceability considerations such as fatigue limit state. Gust response problem can be solved via 

experimental and analytical investigation in frequency domain or time domain methods. 

 Rain-wind-induced vibrations of cables are excited by two different factors, that is an axial 

flow in the near wake and “formation of upper rivulet” and it was classified that each factor could 

excited a cable independently (Matsumoto et al. 1992). 

 Wake-induced vibrations appear when an elastic bluff body is immersed in the wake 

developed from an upstream body it will dynamically respond with wake-induced vibrations. 

 Galloping is an instability typical of slender structures having special cross-section or the 

effective of some ice-coated power line cable. Under certain conditions these structure can vibrate 

with large-amplitude in the direction normal of wind flow.  

 Flutter phenomenon is the results from an interaction between the elastic behavior of a body 

and the changing in the aerodynamic pressure and vice versa, these pressures force can be called 

“motion-induced” or “self-excited” force. The changes self-excited force via flutter derivative by 

turbulence in oncoming flow will be focus and the extraction of flutter derivative by using system 

identification method from gust responses is the main focus. 

 

1.2 Flutter instability 

Flutter is a divergent amplitude self-excited vibration generated by the aerodynamic wind-

structure interaction and a total negative damping mechanism (the energy of motion derived from 

the aerodynamic exceeds the energy dissipated by the system though structural mechanical 

damping). There are two typical types of bridge flutter those are Torsional flutter (as the so call 

Stall flutter) that the fundamental torsional mode dominantly involves to the flutter instability and 

Couple flutter (as the so-called classical flutter) that the fundamental torsional mode couples with 

symmetric or asymmetric heaving mode. Various researchers show that the torsional flutter seem 

to dominant almost cases of bluff bridge section such as low slenderness ratio (B/D) rectangular 

section, stiffened truss section with open grating or solid slab, H-shape section, whereas high 

slenderness ratio rectangular and streamlined boxed bridge sections are favorable for coupled 

flutter.  

Figure 1.3 shows the flutter phenomena of torsional flutter and coupled flutter cases. Torsional 

fundamental mode is defined as substantially torsional vibration around central point of cross-
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section. In this mode, the derivation of phase between torsional (noses-up positive) and heaving 

response (downward positive) at mid-chord point, is 00 or 1800 and correspond to torsional twist 

center is upstream point or downward point from the mid-chord point. These fundamental modes 

are expressed by T0 and T180 (Figure 1.3a & 1.3b). On the other hand, heaving fundamental mode 

is defined as prominent heaving response induced by lift generated by slight pitching angle in 

quasi-steady sense with -900 or 900 as phase lag of heaving to torsional displacements. These two 

fundamental modes correspond to dCL/d>0 or dCL/d<0 and are expressed by H-90 or H90 (figure 

1.3c & 1.3d), respectively (Matsumoto et al. 2008).  

 

 

 

Figure 1.3 Form of torsional and heaving 2DOF coupled flutter  

 

Base on series of experiments on various fundamental sections and based on flow-structure 

interaction phenomena that Matsumoto et al. (1996, 2001) classified the mechanism of flutter 
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branch coupled flutter, torsional-branch coupled flutter and coupled flutter, heaving-torsional 

coupled flutter. 

Flutter problems can be divided into three groups those are analytical, experimental and 

simulation methods (figure 1.4). Analytical methods of flutter were motivated by airfoil and thin-

plate section. Selberg (1961) developed Bleich’s (1951) formula and apply for various types of 

bridge section, moreover, Kloppel (1967) expressed by empirical diagrams. Theodorsen (1935) 

introduced the complex function is known as Theodorssen’s circulation functions to model self-

excited force, however Theodorsen’s self-controlled flutter forces are limitedly applied only for 

airfoil and thin-plate structures.  

Most of bridge can be classified as bluff bodies which is a highly complex unsteady flow structure 

involves separated regions where large suction pressure generated, shear layer which may or may 

not reattach and vortex shed from the leading and trailing edges. This flow scenario is more 

complicated and a thin-airfoil model and it accompany formulations are inadequate for this 

scenario. Scanlan & Tomko (1971) developed experimental approach to build the real forms of 

self-excited forces by so-called flutter derivatives for 2DOF flutter problems and it is the most 

widely-used formulations for modern bridge flutter analysis with variety of bridge cross-section.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4 Analysis of flutter instability problems  
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Base on 2DOF flutter problems, Matsumoto (1995) introduced the step-by-step method which the 

flutter frequency in the heaving branch and torsional branch are converged by iterative calculation. 

On the other hand, in the complex eigenvalue method the flutter characteristics are solved base on 

an eigen-value problem. 

For nDOF systems flutter problem, there are two methods: finite differential method in linear-

time approximation and finite element method in modal space. Scanlan (1990) introduced single-

mode and two mode-flutter analysis. Various recent researchers studied on multimode coupled 

flutter (Jain et al. (1996), Katsuchi et al. (1999), Chen et al. (2001)) and the results was in good 

agreement with the measurement and exhibited a significant coupling among modes. 

The computational fluid dynamics (CFD) technique has developed very fast and many 

researchers studied on this field, first verified wind tunnel results and makes clearly mechanism of 

aerodynamic phenomena. So far CFD may become useful and might replace wind tunnel, 

however simulation still exist many limitation to apply for complex section and dynamic model.  

 The experimental method conducted on sectional model test in wind tunnel with free vibration 

test for very DOF (single DOF, 2DOF and 3DOF). The aeroelastic coefficient (flutter derivatives) 

will be obtained by system identification method.  

 

1.3 Motivation and objectives of study 

The motivation for this study is based on inconsistences in past studies, unclearly the 

turbulence effect on self-excited forces (or flutter derivative) and shortcoming of current free 

vibration method for extracting flutter derivatives (FDs) by section model test in wind tunnel. 

This section highlights briefly some inconsistencies in past experimental results and then 

comment upon these results and final propose the objectives of this study.   

 Designing for long-span bridges often used section-model test to identified stable section 

geometric from selected bridge deck section and aero-elastic model test for finalize the design.  

Base on section models, the flutter derivatives will be obtained under smooth flow. Not many 

researchers have focused clearly on the effects of turbulence on aero-elastic forces.  Scanlan 

& Lin (1978) are the pioneers who used a trussed deck section model and then concluded 

that flutter derivatives has an insignificant difference in smooth and turbulent flows (figure 

1.5). However, Huston (1986) conducted a test on a model of the Golden Gate Bridge deck 

section and the results shown a significant discrepancy in flutter derivatives between smooth 

and turbulence flow as demonstrated in figure 1.6 (Haan & Kareem 2007). The torsional 

damping term A2
* plays an important role on torsinal flutter instability, since its 

positive/negative value corresponds to the aerodynamic instability/stability of torsinal fluter. 
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Figure 1.5 Flutter derivative (A2
*) from the simulated trussed deck section model of Scanlan & 

Lin (1978) 

 

 

Figure 1.6 Flutter derivative A2
*
 of the Golden Gate bridge deck section in flows generated by the 

neutral and low-pass mode of Huston’s (1986) 

 

Sarkar et al. (1994) conducted a single section model test under both smooth and turbulence flows 

and applied robust system-identification method Modified Ibrahim Time Domain (MITD) (Sarkar 

1992).  The bridge model was the Tsurumi Fairway Bridge with the cross section of the bridge is a 

trapezoidal, streamlined steel box girder. Their study shown two valuable conclusions 1) The 

turbulence flow does not appreciably affect the self-excited forces via the flutter derivatives 

(figures 1.7&1.8), 2) The MITD method is based on the assumption that there is no external  
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Figure 1.7 Effect of turbulence (a) H*
2, (b) H*

3, (c) H*
1, (d) H*

4 of Sarkar (1994) 

 

 

Figure 1.8 Effect of turbulence (a) A*
2, (b) A*

3, (c) A*
1, (d) A*

4 of Sarkar (1994) 
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excitation of the system. For a section model immerse in turbulent-flow, where the buffeting 

forces and these response are regarded as external force, and hence theoretical condition free 

vibration is violated. The MITD method treats the resulting forced response as though additional 

noise is present in the signals. This made the identification flutter derivatives more difficult and 

most likely reduced the accuracy. Note that the influence of turbulence on FDs is still debatable 

and will depend on the section. 

For study on FDs, the free vibration technique of sectional model is often used and system 

identifications (SID) technique to extract FDs is widely applied. Various SID techniques were 

developed by many authors: the Extended Kalman Filter method (Yamada et al. (1992)). 

Modified Ibrahim Time Domain method (Sarkar et al. (1992)), Unifying Least-squares method 

(Gu et al. (2000)) and Iterative Least-Squares method (Gan Chowdhury et al. (2003)). These 

systems are namely deterministic system identification techniques, which are only applied for free 

decaying vibration signal or impulse response. Therefore, in these systems the buffeting force and 

their responses are considered as external noise, so this causes more difficulties at high wind 

velocity such as noise increase due to turbulence.  

Jakobsen et al. (1995) and Nikitas et al. (2011) extracted FDs from simulated buffeting response 

and from ambient vibration data from full-scale monitoring data using a covariance block Hankel 

matrix method (CBHM). Eigen realization algorithm (ERA) (Juang & Papa (1985)) method with 

preprocess output covariance was used by Zhang et al. (2004) to identify the FDs. These methods 

are namely stochastic system identification techniques (SSI), which are not only applied for free 

decaying signal but also buffeting response. In these SSI the deterministic knowledge of the input 

is replaced by the assumption that the input is a realization of a stochastic process. An advantage 

of those methods treats buffeting force and response as inputs instead of noises. 

Kirkegaard et al. (1997) compared three state space systems: stochastic subspace identification 

(SSI), stochastic realization estimator matrix block Hankel (MBH) and prediction error method 

(PEM). The results show that the SSI method gives good results in terms of estimated modal 

parameters and mode shapes. The MBH is seen to give poor estimates of the damping ratios and 

the mode shapes compared with the other two techniques. In addition, the SSI is approximately 

ten times faster than the PEM.  

On the other hand, there is a shortcoming involved in the free vibration method. At high wind 

velocity the extraction of FDs may not be obtained accurately because the aerodynamic damping 

of vertical mode is too high and vertical free-vibration data is too short for analysis.  

From these considerations, the idea for applying SSI method to estimate FDs from gust 

responses of a truss bridge deck section is brought. 
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Objectives of studies in this dissertation are as follow:  

Firstly, gust response is obtained by an experimental wind tunnel test for a trussed deck section 

with different turbulence properties.  

Secondly, the output only time domain analysis stochastic system identification (SSI) method 

is including covariance-driven stochastic system identification (SSI_cov) and data-driven 

stochastic system identification (SSI_data) those is proposed to extract simultaneously all FDs 

from two degrees of freedom system.    

Finally, the results obtained from two systems will be compared. Clarify the turbulence effect 

on dynamic response and self-excited force via flutter derivatives. The flutter derivatives extracted 

by gust responses which obtained from wind tunnel test. The results are also compared with 

conventional method that is free vibration method. 

 

1.4 Structure and outline of study 

The aim of the study is to clarify the effects of oncoming turbulence on the self-excited force 

of a suspended long span bridge deck by using a section model. The more challenging is the 

application of a stochastic system identification method to identify FDs from gust responses for 

the section model. The gust response is obtained by an experimental wind tunnel test for a trussed 

deck section. The stochastic system identification is proposed to extract simultaneously all FDs 

from two degrees of freedom system. The results are also compared with those from smooth flow 

and free decay response. 

The dissertation is classified by the 6 chapters including the first chapter introduction and the 

final conclusion. The main content of each chapters are briefly presented as follows: 

In chapter 2, summarizes the approach taken in the current work to address the motivating issues 

raised in this chapter. This summary includes some discussion of the literature on the effects of 

turbulence on self-excited force and system identification method. Final part of chapter presents 

the problematic in formulation of self-excited forces and applied Scanlan’s method for 2DOF with 

two different frequencies. 

In chapter 3, presents the stochastic system identification (SSI_cov and SSI_data) theory will be 

presented and application of stochastic system identification method to extract flutter derivatives.  

Final part will be presented method for elimination of noise effect. 

In chapter 4, outlines the experimental equipment used to generate gust response including the 

turbulence generation techniques, turbulence measurement, model configuration and model 

vibration measurement method. The turbulence properties and the effects of turbulence on model 
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dynamic will be also presented. 

In chapter 5, presents the application of stochastic system identification method for extracting 

flutter derivatives by gust response from wind tunnel data and white noise and colored noise 

simulation data are going to be presented. The results will be discussed and compared. 

In chapter 6, summarizes the major conclusions of the work and proposes research goals for 

future study. 
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CHAPTER 2 

 

APPROACH AND BACKGROUND 

 

The current approach addresses the issues aforementioned in chapter 1 with wind tunnel 

equipped with section-model, oscillating in a series of smooth turbulence flows. In addition, the 

extraction flutter derivatives by gust responses can be analyzed by ambient vibration technique of 

full-scale bridges. This chapter describes the approach taken in this dissertation and then 

summarizes existing literature on system identification to extract flutter derivatives and 

background of self-excited forces.  

 

2.1 Current approach 

The wind in the atmospheric boundary layer is always turbulence. Therefore any study of 

wind-induced vibration problems must consider this issue. Not many researchers have focused 

clearly on the effects of turbulence on self-excited forces, especially at high turbulence intensity. 

Generally, bridge aerodynamic problems in practically all cases are nonlinear; however, to 

treat the problem simply linear analytical approaches are often used. There are two main 

reasons (Simiu and Scanlan 1996). Firstly, the structure is usually analyzed as a linear elastic 

one and its action dominates the form of the response. Secondly, it is the incipient or starting 

condition, which may be treated as having only small amplitude that separates the stable and 

unstable regimes. For linear fluid-structure interaction problems, the buffeting forces can be 

ignored when studying on motion stability. The present of turbulence in the flow is equivalent 

to more noisy input signal. The flutter derivatives depend on a kind of cross-section and reduced 

frequency. A major analysis tool in previous study is a wind tunnel test by section-model. 

The experimental methods use for identifying flutter derivatives can be groups under two 

categories: force method (Han 2000; Sarkar et al. 2009) which known as the most accurate 

method for the deification of flutter derivatives, but because of its requirement for more complex 

apparatus, therefore research and wind tunnel test of this method are not popular. The 

implementation of this method is that the bridge deck section is driven by a sinusoidal motion 

with constant amplitude and frequency of either vertically or rotationally. A balance system is 

used to measure and analyze the aerodynamic forces acting on the section model then the flutter 

derivatives can be identified from these forces. Force method is not necessary to couple the 

degree of freedoms of the motion. The vertical flutter derivatives H1
*, H4

*, A1
*, A4

* are obtained 

from the aerodynamic forces generated by the force of vertical vibration, and the torsional flutter 
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derivatives H2
*, H3

*, A2
*, A3

* are obtained from the aerodynamic forced generated by the force of 

rotational vibration. 

By the free vibration test, the bridge deck section model is attached to a rigid test frame at each 

corner suspended with the help of helical springs. Then the system is given an initial displacement 

in the corresponding degrees of freedom. The vertical and torsional displacements can be 

recorded from measurement. The aero-elastic parameter such as the frequency and damping of 

vibration signals are identified by system identification methods. This method is simple and does 

not require a complex device.  The disadvantage of the free vibration method compared with the 

forced vibration method is that the flutter derivatives cannot be obtained directly.  

SID can be classified in two main groups as namely: deterministic system identification 

techniques: Extended Kalman Filter method (Yamada et al. (1992)), Modified Ibrahim Time 

Domain method (Sarkar et al. (1992)), Unifying Least-squares method (Gu et al. (2000)) and 

Iterative Least-Squares method (Gan Chowdhury et al. (2003)). These systems which are only 

applied for free decaying vibration signal or impulse response. Therefore, in these systems the 

buffeting force and their responses are considered as external noise, so this causes more 

difficulties at high wind velocity such as noise increase due to turbulence. Second group is 

stochastic system identification techniques such as covariance block Hankel matrix method 

(CBHM) (Jakobsen et al. (1995)), natural excitation technique (NExT) in combination with 

eigensystem realization algorithm (ERA) (Juang & Papa (1985)) NExT-ERA (Zhang et al. 

(2004)), and stochastic subspace identification (SSI) (Peeter (1999)). These methods, which are 

not only applied for free decaying signal but also buffeting response. In these systems the 

deterministic knowledge of the input is replaced by the assumption that the input is a realization 

of a stochastic process. An advantage of those methods treats buffeting force and response as 

inputs instead of noises. 

 

2.2 Literature reviews on system identification and extract flutter derivatives 

from gust response 

The flutter derivatives of bridge decks are essential parameter necessary to estimate the flutter 

stability of long-span bridges, which can be identified through experimental method. There are 

two kinds of techniques to obtain the parameters with section model of bridge deck: the forced 

vibration test and free vibration technique by using system identification method. 

 Scanlan et al. (1971) proposed a method to extract the flutter derivatives of bridge deck with 

free vibration decay, but Scanlan’s method requires three steps of test. Separated torsional and 

vertical bending motions have to be constrained modes corresponding, respectively to obtain 
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uncoupled derivatives (direct derivatives). Then, the coupled terms are obtained from couple 

vibration where the vertical and torsional motions of the model must have same frequency at each 

wind velocity. The main problem in this technique is a proper excitation of the couple motion and 

a length of time history records with increase in wind speed due to aerodynamic damping. In 

addition, large initial amplitude often includes nonlinear damping force effect. 

 Yamada et al. (1992) developed a technique of simultaneous identified all eight flutter 

derivatives from coupled vibration by using the Extended Kalman filter method. In this study, 

wind tunnel test conducted at high reduced wind speed near flutter onset where aerodynamic 

vibration tends to have coupled. When the wind velocity is closely or above the flutter critical 

wind velocity the coupled vibration was excited during free vibration, and the system 

identification seem to be worked well. However at low wind speed range, the uncoupled vibration 

is dominant the system identification does not give a good results. 

 Iwamoto and Fujino (1995) used a similar method with Yamada (1992) to extract all eight 

flutter derivatives from free vibration technique. This study proposed the method to solve two 

problems that are 1) How to reduce the number of flutter derivatives in a two degree-of-freedom 

system. The free vibrations of one DOF systems contain four parameters: modal frequencies, 

modal damping, amplitude ratio and phase lag. Therefore, it is impossible to extract all eight 

flutter derivatives from one mode vibration because lack of condition. This study proposed 

method to reduce the number of flutter derivatives to eight in 2 DOF system heaving and torsional 

mode. 2) The drawback of free vibration technique is that at high wind velocity because the 

aerodynamic damping of the vertical-dominant mode is too high to obtain vibration data which 

are long enough for the identification. The accurately of identification is reduced. In order to solve 

this problem wind tunnel test are conducted with section models which is increased of mass and 

inertial moment at high wind velocity. 

 Sarkar et al. (1994) conducted a single section model test under both smooth and turbulence 

flows (turbulence intensity around 2.44% to 3.42%) and applied system-identification method 

Modified Ibrahim Time Domain (MITD) (Sarkar 1992). This method was found to be easy 

applied to the free decaying time history data.  The bridge model using in this study was the 

streamlined steel box girder. This study shown two significant conclusions: 1) The flutter 

derivatives obtained from turbulent flow fluctuate those value under smooth flow. The turbulence 

flow seems to be insignificant affect the self-excited forces through the flutter derivatives, 2) The 

MITD method is a deterministic system which is applied to free vibration technique there is no 

external excitation of the system. Under turbulent flow case, where the buffeting forces and their 

response are same external excitation, the MITD method consider the resulting forced response as 
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additional noise is present in the signals. This made the identification flutter derivatives process 

more difficult and reduced the accuracy. The presence of turbulence in flow this is equivalent to 

add a noise into a signal and signal become more noisy input to the system identification method. 

The MITD method treats a free response rather than force vibration. This reason made the 

extraction process more complicated and reduced the accuracy of the identified flutter derivative. 

 Jakobsen et al. (1995) presents a method based on application of a Covariance Block Hankel 

Matrix (CBHM) method for the identification flutter derivatives by using ambient vibration. The 

flutter derivatives extracted for the streamlined bridge cross section show that the method is 

efficient in returning reliable estimate.  

 Boonyapinyo et al. (2010) applied a stochastic subspace identification technique to 

extract FDs of a thin bridge deck from wind tunnel test in both smooth and turbulent flows. 

The conclusion of this paper is that the proposed system can be used to estimate flutter 

derivatives from buffeting responses with reliable results and an advantage of the stochastic 

system considers the buffeting force and response as input instead of noise. Therefore, the 

ratio of signal to noise is not affected by wind speed and the flutter derivatives at high wind 

speeds are readily available. 

 Jones et al. (1995) presents an overview of a Kalman filter method for assessing dynamic 

characteristics of bridges under wind excitation on full-scale model (ambient vibration). The 

identification routine was found to be reliable when tested using simulated data. Nikitas et al. 

(2011) extracted FDs from ambient vibration data from full-scale monitoring data using a 

covariance block Hankel matrix method (Jakobsen et al. (1995)). The advantage of extract flutter 

derivatives from ambient vibration is that the responses reflect real structure response such as 

natural coupling between the vertical and torsional mode and atmospheric effect.  The limitation 

of this method is related to angle of attack, skew angle as well as uncertainties in the modal 

masses distortion from traffic effect, etc. 

 

2.3 Formulation of self-excited force 

Consider a section of a bridge deck (figure 2.1) subjected to the action of a smooth 

oncoming flow. The system is assumed to have two degrees of freedom (DOF): bending 

displacement and twist (torsional displacement) denote by h and respectively. A unit of 

the system has mass m, mass moment of inertia I.  
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Figure 2.1 Bluff body shape 

 

The equation of motion can be written as: 
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where m and I are mass and mass moment of inertial per unit length, respectively; h=2fh 

and a=2fa are circular frequencies of heaving and pitching mode (in still air), respectively; 

h and a are heaving and torsional damping ratio to critical, respectively; Lse and Mse are the 

aerodynamic self-excited lift and moment, respectively. 

 For small oscillations the self-excited lift and moment on a bluff body may be calculated 

as linear in the structural displacement, rotation and their first two derivatives, and that it is 

possible to measure the aerodynamic coefficients by wind tunnel test. There are various 

forms for the linear expressions for self-excited forces.  

Scanlan and Tomko (1971) introduced the real form of the self-excited aerodynamic lift 

force Lse and moment Mse which act on a bridge deck oscillating sinusoidal are written as 
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Where  is the air density; the reduced frequency is defined as K=B/U=B(2f)/U; B is deck 

width; U is the uniform approach velocity of the wind, and  is the circular frequency of 

oscillation (f is the frequency of oscillation). H*
i and A*

i (i =1,2,3,4) are non-dimensional 

h 

B 



U 
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function of K  namely as flutter derivatives. The quantities , /h U , and /B U are effective 

of angle of attack and therefore also dimensionless.  

 In France, the self-excited force written in the form as: 
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where the notation 
' '' ' '' ' '' ' '', , , , , ,a a b b a a b bk k k k and m m m m  are called the “ Kussner coefficients”; 

b is haft chord. 

 Yamada et al. (1992) used formulation in the complex form as: 
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where LhR, LR… are the flutter derivative 

The flutter derivatives in Eqs.(2.2&2.3&2.4) to make compare with the Theodosen’s coefficient 

as flow: 
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Where F(k) and G(k) are the real and imaginary parts of Theodorsen’s circulation function; 

k=b/U is reduced frequency; b is the haft-chord 
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2.4 Problematic in formulation of self-excited force  

The aerodynamic lift force and moment in this study follow by Tomko and Scanlan (1971) is 

expressed by 
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where h and  are the vertical and torsional displacement, respectively. H*
i and A*

i (i=1,2,3,4) 

are the flutter derivatives that are function of the reduced frequency K = B/U. According to 

Eq. (2.1) the equation of motion used for identification flutter derivatives as follow 
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    (2.7) 

In the Eq. (2.7), there are eight unknown parameters (H*
i and A*

i (i=1,2,3,4)) from free vibration 

data. Suppose the model is oscillating in two degree of freedom such as vertical h and torsional 

dominant modes which whose circular frequencies are h and , respectively. Therefore, 

exist two modal frequencies which is corresponding two reduced frequencies Kh = Bh/U and K 

= B/U and whose components are (h1, a1) and (h2, a2), respectively.  

 The aerodynamic forces is acting on a two DOF of a bridge deck section oscillating are 

given from Eq. (2.6) can be detailed as follows 
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   (2.8) 

The Eq. (2.8) contains sixteen flutter derivatives and it is cannot to identify all of them from two 

modes vibration because the response motion contains only eight parameters of information: two 

set of modal frequency, modal damping, amplitude ratio, and phase lag.  

In order to solve the problem for lack of information, various researchers proposed different 



19 
 

method. Scanlan and Tomko (1971) conducted experimental test with two steps: first, uncoupled 

derivatives are identified separately by pure vertical and torsional free vibration test; and second, 

coupled derivatives are obtained by coupled free vibration test of the model must have the same 

frequency at all wind velocities.   

Iwamoto and Fujino (1995) proposed method to reduce the number of unknown parameters 

from sixteen to eight bases on the observation evidence of their wind tunnel test.  

 

 

Figure 2.2 Free decay response at wind speed of 8 m/s; a) vertical displacement, b) torsional 

displacement (From Iwamoto and Fujino (1995)) 

 

Figure 2.2 shows uncouple phenomenon between vertical and torsional modes at mediate wind 

velocity. In figure 2.2a h1 is dominant while 1 is very small in figure 2.2b and vice versa with 

h2 and 2. Base on this observation they neglected the terms related to 1 and h2, and Eq. 

(2.8) can be rewritten as 
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        (2.9) 

Eq. (2.9) also saying that h should be used for Hi
* related to vertical motion, and a for Ai

* 

related to torsional motion. 

This verification is still not clearly because of the explanation base on amplitude of two modes 

oscillation; while in free vibration method the amplitude of vibration depend on initial amplitude. 

Therefore, in this study will be introduced another method to make this issue. 
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The equation of motion due to aerodynamic force can be written as 

0 00
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h h se
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         (2.10) 

where M and I are mass and mass inertial moment, respectively; Ch and Ca are mechanical 

damping of vertical and torsional modes, respectively; Kh and Ka are mechanical stiffness of 

vertical and torsional modes, respectively; Lse and Mse are self-excited force given as Eq. (2.6) 

By substituting Eq. (2.6) into Eq. (2.10) and moving the aerodynamic damping and stiffness terms 

to the left hand side, Eq. (2.10) can be rewritten as follow:  
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Where  
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Under free vibration condition and eigenvalue problem of Eq. (2.11), the natural frequency and 

mode shape can be calculated as follows 
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         (2.13) 

Where and  are natural modes  

Hence, the system characteristic equation is  
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Having the solutions 
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Let  2 211 22;h

K K

M I
    and substitute into Eq. (2.15) 
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where        2 12 21
h

K K

MI
                    (2.17) 

The mode shape of the 2 DOF systems can be calculated by inserting 
2
1 from Eq. (2.16) into the 

first row of Eq. (2.13) and 
2
2 from Eq. (2.16) into the second row of Eq. (2.13); Eq. (2.16) can be 

expressed by Mohr circle as show in figure 2.3. 

 

Hence, letting arbitrarily 11 = 1 and 22 = 1, the natural modes become 
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               (2.18) 

12
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2 11
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              (2.19) 

The responses of two modes vertical and torsional can be written as follow 

   h=11 z1+12 z2 

=21 z1+22 z2            (2.20) 

where z1 and z2 are natural coordinates. 

 

 

 

Figure 2.3 Mohr circle of vertical and torsional frequency 
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From the previous approve can be given some conclusion as follow: 

1) If the effective stiffness in the of diagonal terms ( 12 21K and K ) are considerably small, 

the value h (Eq. 2.17) is also small, and the value of the frequency  is close to  

(pure torsional oscillation) and the frequency  is close to h (pure vertical oscillation) 

(Eq. 2.16) 

2) From Eqs. (2.18 & 2.19), if  12 21K and K  are significant small, the natural mode 12 

and 21 will be also small, then the responses of h and  in Eq. (2.20) will be dominated 

by 11 and 22, respectively. It can be saying that the responses h and  can assumed 

solely by function of the frequencies andrespectively. 

3) The diagonal stiffness terms 11 22K and K  are much larger compared with 

12 21K and K  because they contain the mechanical stiffness of structure. By this fact and 

the point 1 and 2 aforementioned, the assumption that the responses of two mode h and  

as the solely function of the frequencies andrespectively can be justified. The 

results of this assumption is that the reduced frequency which related to the vertical 

response h or h  should be considered as the function of frequency orhand the 

reduced frequency which related to the torsional response  or   should be considered as 

the function of frequency orTherefore, the aerodynamic forces in Eq. (2.6) can 

be rewritten as 
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CHAPTER 3 

 

APPLICATION OF SYSTEM IDENTIFICATION TO IDENTIFY FLUTTER 

DERIVATIVES 

 

In this chapter the most favored stochastic system identification methods that have been used to 

estimate the modal parameters of vibration structure in operational conditions. The chapter starts 

by presenting the mathematical techniques of stochastic state space models. Then output only 

time domain method which is stochastic subspace identification system utilized to identify 

dynamic properties of the model will be presented. The Covariance driven Stochastic System 

Identification (SSI_cov) method, which is computed the output covariance first as known that is 

impulse response. Thus, SSI_cov can be applied for ambient input or gust response. Second, Data 

driven stochastic subspace algorithms (SSI_data) which avoid the computation the output 

covariances will be presented. Next subsection presents how to extract flutter derivatives from 

modal parameters and final part presents uncertainties exiting and method increase accuracy of 

these methods. 

 

3.1 Stochastic state space models  

Considering a 2 DOF section model of bridge deck in turbulent flow, fluctuating wind 

load that acts on the deck can be expressed by a combination of a selt-excited force and a 

buffeting force: 

bse

bsehhh

MMI

LLhhhm


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]2[

]2[

2
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2
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





                           (3.1) 

where m and I are mass and mass moment of inertial per unit length, respectively; h=2fh 

and a=2fa are circular frequencies of vertical and torsional mode (in still air), respectively; 

h and a are heaving and torsional damping ratio to critical, respectively; 

 

Another form dynamic equation of motion can be expressed likely that 

.. .

.. .

h h se b

se b

m h C h K h L L

I C K M M   

   

   

                              (3.2) 

where Ch = 2(mhh) and C = 2(Iaa) are mechanical damping of vertical and torsional modes, 

respectively; Kh = mh
2 and Ka = I

2 are mechanical stiffness of vertical and torsional modes, 
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respectively. 

Lse and Mse are the aerodynamic self-excited lift and moment, respectively, given by 
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      (3.3) 

where  is the air density; U is the mean wind velocity; B is the width of bridge deck; 

Ki=iB/U is the reduce frequency (i=h, ); H*
i and A*

i (i =1,2,3,4) are flutter derivatives. 

Lb and Mb are buffeting forces in the vertical and torsional directions, respectively, given by 
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                     (3.4) 

where D is the height of bridge deck; u and w are along and vertical turbulent components, 

respectively. CD, CL and CM are shape factors depending on the angle of incidence. dCL/d 

and dCM/dare the slope of aerodynamic lift and moment, respectively. 

 

By substituting Eq. (3.3) into Eq. (3.2) and moving the aerodynamic damping and 

stiffness terms to the left hand side, Eq. (3.2) can be rewritten as follow:  

)()}({)}(]{[)}(]{[)}(]{[ 2
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tuBtftqKtqCtqM ee                     (3.5) 

where {q(t)}={h(t) (t)}T is the displacement vector; {f(t)} ={Lb  b}
T is the buffeting force 

vector; {f(t)} is factorized into matrix B2 and input vector u(t); [M] is mass matrix; [Ce] is 

gross damping matrix including the structural damping and aerodynamic damping; [Ke] is 

gross stiffness matrix including the structural stiffness and aerodynamic stiffness. With the 

following definitions 
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The second-order differential equation Eq. (3.5) can be transformed into a first-order state 

equation Eq. (3.8).  

.
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Ac is designated state matrix with size 4-by-4; x(t) is the state vector; Bc is the input matrix; 

Iu is a unit matrix 

 

The combination of the state equation and the observation equation fully describes the 

input and output behaviors of the structural system and are named a state-space system.  

.
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                                  (3.10) 

Cc is the output matrix and Dc is the direct transmission matrix at continuous time. 

Eq. (3.10) is a deterministic state space model in a continuous time. Continuous time means 

that the expression can be evaluated at each time instant, deterministic means that the input 

and output quantities can be measured exactly. This is not practical; the measurements are 

mostly sampled at discrete-time. In addition, it is impossible to measure all DOFs and 

measurements always have disturbance effects. For all these reasons, the continuous 

deterministic system is converted to a suitable form: discrete-time combined deterministic-

stochastic state-space model as follow: 

1k k k k

k k k k

x Ax Bu w

y Cx Du v
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                             (3.11) 

where xk=x(kt)={ }T
k kq q is the discrete-time state vector containing the discrete sample 

displacement qk and velocity kq ; wk and vk is the process noise due to disturbances and 

modelling inaccuracies and the measurement noise due to sensor inaccuracy respectively. 
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Assuming that wk and vk being zero mean and covariance matrix as  
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where the indices p and q are time-instants; E is the expectation operator; pq is the 

Kronecker delta. The correlation E(wp wq
T) and E(vp vq

T) are equal to zero in case of different 

time-instant. ( ) ; ( ) ; ( )T T T
k k k k k kQ E w w R E v v S E w v      

 

3.2 Stochastic system identification 

In the modal analysis, the input is sometimes unknown and the system will be excited by 

white noise. The stochastic state-space model can be expressed as 

1k k k

k k k
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                                       (3.13) 

Assumption, the stochastic model assumes that {xk}, {wk} and {vk} are mutually independent, 

and they are zero mean. 

Hence, ( ) 0; ( ) 0; ( ) 0; ( ) 0; ( ) 0T T
k k k k k k kE x E w E v E x w E x v        

The state covariance matrix is defined as 

( )T
k kE x x             (3.14) 

The output covariance matrix is as following 

( )T
i k i kE y y            (3.15) 

The state-output covariance matrix is defined as 

1( )T
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From Eqs.(3.13)-(3.16), the following are obtained 

 0

T

T

T

A A Q

C C R

G A C S

   

   

  

           (3.17) 

1i
i CA G                      (3.18) 

Eq. (3.18) is called Lyapunov equation which means that the output covariance can be 

considered as impulse responses. 

Therefore, the theoretical application of stochastic system can go back to Eigen-system 

realization algorithm (ERA) method (Juang & Pappa 1985).  
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Three figures (3.2-3.3) show the linear time-invariant deterministic system, combined 

deterministic-stochastic system and stochastic system problems, respectively.  

 

 

Figure 3.1 A linear time-invariant deterministic system illustrate Eq. (3.10) 

 

 

Figure 3.2 A linear time-invariant combined deterministic-stochastic system illustrate Eq. (3.11) 

 

 

 

Figure 3.3 A linear time-invariant stochastic system illustrate Eq. (3.13) 
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3.3 Covariance driven Stochastic System Identification (SSI_cov) 

The heart of SSI_cov method is the ERA developed by Juang & Pappa (1985). It is the 

famous technique for modal parameter identification from free vibration response or impulse 

response.  

The output measurement data obtained from l sensors (in this study l=2) 

 y = (y0, y1, y2, y2… yn) 
xl nR           (3.19) 

The output data are assembled in block Hankel matrix with 2i block rows, and j column as  

 

0 1 1

1 2

1 2 0| 1

1 1 |2 1

1 2

2 1 2 2 2 2 x

j

j

i i i j i p

i i i j i i f

i i i j

i i i j i j

y y y

y y y

y y y Y Y li
H

y y y Y Y li

y y y

y y y



   

   

  

  

   
 
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      
      

           
   
 
         
 

   




      (3.20) 

 

where 2i is the number of block rows, j is the number of data points, l is the number of 

output sensors. The Hankel matrix can be divided into two parts, the upper is the past output 

and lower is the future output.  

The number of block row (i) is a user defined index which large enough but it should at 

least be larger than the maximum order of the system one want identify. One block contain l 

rows (number of output (l=2)), the matrix H consist 2il rows. 

The number of columns j is typically equal to s-2i+1 (s is length of data), which mean that 

all of data s are used  

The key step in the SSI_cov system is the computation of output covariance that is 

similarly compared with CBHM (Jakobsen 1995).which can be expressed assuming 

ergodicity process as:  

1 1

1
0 0

1 1
[ ] lim

N N
T T T

i k k k i k k i k
N k k

E y y y y y y
N N

 

  
  

                      (3.21) 

where i is time lag; N is finite number of data  

All output covariance i  in Eq. (3.21) is stored in block Toeplitz matrix as: 



29 
 

1 1
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                                 (3.22) 

Combining Eq. (3.18) and Eq. (3.22), then block Toeplitz matrix can be decomposed as 

follows 

ii
ii

i

i COGAGGAGA
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
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][ 21

1

|1
                  (3.23) 

On the other hand, observability matrix Oi and controllability matrix Ci can be obtained from 

singular value decomposition (SVD) of the Toeplitz matrix: 

  T

T

T

i VSU
V

VS
UUT 111

2

11

21|1
00

0
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














                        (3.24) 

where U, V are orthonormal matrices and S is a diagonal matrix containing singular values. 

The number of non-zero give the rank of the decomposed matrix and coincide with the size n 

(n=2xDOF=4) of the state-space matrix A. Comparing with the Eq. (3.23) and Eq. (3.24), we 

can be rewritten that  

T
i

i

VSC

SUO

1

2/1
1

2/1
11




                                        (3.25) 

Now the realization of state matrix A and controllability matrix C are achieved. The state 

matrix A can be obtained by decomposing a shift block Toeplitz matrix:  

iii ACOT 1|2
                                         (3.26) 

Combining the Eq. (3.25) and Eq. (3.26) gives: 

† 1/2 1/2
2| 1 1 2| 1 1 1

i

T
i i i iA O T C S U T V S 
                             (3.27) 

where (.)u is the pseudo-inverse of a matrix. The output matrix C equals the first l rows of Oi 

where l number of outputs (in this study l=2 for 2 DOF system).   

 

3.4 Data driven Stochastic System Identification (SSI_data) 

The Stochastic Subspace Identification (SSI) algorithm was originally introduced by Van 

Overschee and De Moor (1991) and then developed (SSI_data method) by Peeters and De 
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Roeck (1999). 

SSI_data implement directly with output of experimental data, without need to convert 

output data to correlation, covariance or spectra. The main step of SSI_data is a projection of 

the row space of the future outputs into the row of past outputs. The orthogonal projection Pi 

is defined as:  

1/ ( )T
i f p f p p p pP Y Y Y Y Y Y Y                               (3.28) 

where the matrix Yf and Yp are the lower and upper half part of a bock Hankel matrix H. 

 

QR factorization of the block Hankel matrix Eq. (3.20) is defined as 

p T

f

Y
H RQ

Y

 
  

  
          (3.29) 

Where Q xj jR  is an orthogonal matrix QTQ =  QQT = Ij and R 2 xli jR is a lower triangular 

matrix. Because 2li < j so it can reject the zeros in R and the corresponding zeros in Q 
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     (3.30) 

Substituting the QR factorization of the output Hankel matrix (3.30) into Eq. (3.28) will be 

obtained the simple expression of the projection 

21
1

31

T
i

R
P Q

R

 
  

 
             (3.30) 

Stochastic subspace identification has been an exited the main theorem is that the projection 

Pi can be factorized as the product of observability matrix Oi and the Kalman filter state 

sequence ˆ
iX  (Peeters & Roeck 1999):  

 1 1

1

ˆˆ ˆ ˆ. . .
. . .i i i j i i

i

C

CA
P x x x O X

CA

  



 
 
  
 
  
 

                     (3.31) 

The observability matrix Oi and the Kalman filter sequence ˆ
iX  are obtained by applying 

SVD to the projection matrix: 
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T

i VSUP 111                                         (3.32) 

Comparing Eq. (3.31) and Eq. (3.32) gives: 

1/2 †
1 1

ˆ,i i i iO U S X O P                                (3.33) 

If the past and future outputs of Hankel matrix are shifted, time-shift projection is achieved: 

1 1 1
ˆ/

pi f i iP Y O X 
   Y                               (3.34) 

where 
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 

           (3.35) 

Oi-1 is obtained from Oi after deleting the last l rows and the shifted state sequence can be 

computed in Eq. (3.34) as: 

†
1 1 1

ˆ
i i iX O P                                          (3.36) 

From Eq. (3.33) and Eq. (3.36), the Kalman state sequences 1
ˆ ˆ,i iX X   are calculated using 

only output data. The state and controllability matrices can be recovered from over 

determined set of linear equations, obtained by extending Eq. (3.13): 
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                             (3.37) 

where Yi/i is a Hankel matrix with only one block row. Since the Kalman state sequence and 

the outputs are known, and the residual (T
w T

v)
T are uncorrelated with ˆ

iX , the set of 

equation can be solved for A and C in a least-squares: 

 
†1

|

ˆ
ˆi

i
i i

A X
X

C Y


  

        

                                (3.38) 

 
 Kalman filter state: Kalman filter plays an important role for stochastic system identification (

more detail can be found from Appendix B). The Kalman filter provides an optimal prediction 

of the states xk+1 are estimate by using the observation of the outputs up to time k and the 

available system matrices to gather with the known noise cavariances. If the initial state is

0ˆ 0x  , the corresponding covariance is given by 0 0 0ˆ ˆ 0TP E x x    and the output 

measurements (y0, …, yk,) are given the non-steady- state Kalman filter states 1ˆkx   by the 

following formula: 
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                  (3.39) 

where Kk is the Kalman filter gain and Pk is the Kalman state covariance matrix. The Kalman 

filter state are gathered to form of Kalman filter state sequence, such as 

1 1
ˆ ˆ ˆ ˆ( ... )i i i i jX x x x               (3.40) 

 

3.5 Identification of flutter derivatives  

The modal parameters of the system can be obtained by solving the eigenvalue problem 

for the state matrix A from Eqs. (3.27 & 3.38): 

1 ;A C                                    (3.41) 

where  is the complex eigenvector;  is the complex eigenvalue; Φ is the mode shape 

matrix. When the complex modal parameters are known, the gross damping Ce and gross 

stiffness Ke in Eq. (3.6) are determined by    
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where C0 and K0 are the physical damping and stiffness matrices of the model under the no-

wind condition, the flutter derivatives of 2 DOF can be defined as: 
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            (3.44) 

 

The flowchart of these procedures to be follow to use the stochastic system identification 

flutter derivatives are presented in figures 3.4&3.5 
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Figure 3.4 Flow chart of the SSI_cov method 
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Figure 3.5 Flow chart of the SSI_data method 
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3.6 Elimination noise effects  

In the output-only system identification method, which assumption the system will be 

excited by white noise. If this white noise assumption is violated, such as if the output data 

contains some dominant frequency components, these frequency components cannot be 

separated from Eigen-frequency of the system and then spurious modes will appear in the 

state matrix A. System order to remove spurious modes can be decided by a stabilization 

diagram (Reynders et al. 2008). The spurious modes can be rejected by selecting the mode at 

a model order that is high enough.  

The stochastic system identification does not yield exact values for the parameters but only 

estimates with uncertainties. The origins of these uncertainties (Reynders 2008) can be 

described as follow: 

From the experimental point of view: the number of data samples is finite for stochastic 

problem; the input might not be white noise and non-stationary effect. 

From a statistical point of view: an uncertainty can be induced by the bias of the model or 

by the bias of the modes and the variance of the modes. 

These uncertainties are caused by the appearance of spurious modes. The stabilization 

diagram can be detected spurious modes if sufficiently high values of the model order are 

taken into account. 

The stabilization diagram is a graphical tool method used to help in the selection of the order 

of system. The quality of a stabilization diagram depends on the algorithm used in the 

identification, on the values of the input parameters of the algorithm, and also on noise ratio 

of the time series under analysis.  

There are three ways to construct a stabilization diagram: 

1. Fix the dimension of Toeplitz matrix an increase the system order. The advantage of 

this method is computational time saving. The drawback is that the required 

dimension of Toeplitz matrix is unknown, the computed pole increase with the system 

order, if the additional criteria is not used.   
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    (3.45) 

2. Fix the system order and increase the size of Toeplitz matrix (square matrix). The 

fix 

Increase system order 
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advantage of this method is larger the size and more components the Toeplitz matrix 

be decomposed, therefore more effectives noise elimination is achieve increasing the 

size of Toeplitz matrix. Main drawback is time consuming and determination of 

system order. 

 

1 1

1 2 11
1| 1 2

2

2 1 2 2

0
(U U )

0 0

i i
T

i i T
i T

i i i ixi

VS
T USV

V





 

     
                                
      

    (3.46) 

3. Fix the system order and increase the only rows of Toeplitz matrix (rectangular matrix) 
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    (3.47) 

4. The advantage of this method is less time consuming than second method, the 

drawback is required the number of columns depend on the signal content, and also 

determination of system order. 

 
Figure 3.6 Stabilization diagram 

 

In this dissertation, based on section model wind tunnel test that is a real order of system 

always known before (equal a number degree of freedom of model testing). The elimination 
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SSI_cov) or fix the size Hankel matrix (with SSI_data), and changing the order of system 

will be obtained stabilization diagram (model order versus frequency) (figure 3.6).  Base on 

this diagram, the real model order can be chosen by selecting the mode at an order high 

enough. 
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CHAPTER 4 

 

WIND TUNNEL EXPERIMENT 

 

This chapter describes the equipment used in this study including the wind tunnel, the model 

bridge deck and grid for turbulent generation and data acquisition system.  

 

4.1 Experiment set-up  

 

4.1.1 The Atmospheric Wind Tunnel 

 The atmospheric wind tunnel is close-circuit wind tunnel located at Yokohama National 

University as shown in Figure. (4.1). The working section is 1.8m wide and 1.8m high, maximum 

wind velocity is 35m/s.  

 

 

Figure 4.1 Three dimension model of YNU wind tunnel 

 

 Turbulent flows used in this study were generated by using biplane wooden grid. The grid with 

bar size is 6 cm and bar spacing is 24 cm as show in Figure 4.2. Turbulence properties are 

controlled by changing the distance to model. In this study, three grid positions to model 
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corresponding to three different turbulent intensities are generated. I = 6.2%, I = 9.1% and I = 

15.6% corresponding grid position to the model is 4.84 m, 3.34 m and 1.97 m, respectively.  

 

a. Biplane wooden grid b. Installation grid in wind tunnel 

Figure 4.2 Grid generates turbulent flow 

 

4.1.2 Section Model  

The prototype of bridge deck section is truss deck which the cross-section dimension is shown 

in figure. (4.3).  

 

Figure 4.3 Prototype trussed deck section 
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The prototype cross section includes two layers, the upper use for vehicle and lower for train. The 

orthotropic slab which the grating located at middle and both side of vehicle layer.    

 

 

 

Figure 4.4 Original slab of trussed deck section 

 

Identification of flutter derivatives of long span bridge deck are through the section bridge 

which is designed a certain length. The section model is used in this study base on section of 

bridge shown in figure 4.4 which the grating will be covered and noise fence installed under the 

rail way as shown in figures (4.5 &4.6).  

The model section is scaling down from prototype much be considered some scale factors, 

such as length scale, velocity scale and density scale. 

The model was fabricated by wood with a scale of 1:80. The length of section model is 1.25m. 

The width and depth of the section model are 363 mm and 162.5 mm, respectively. The unit mass 

and moment of inertia are 8.095 kg/m and 0.2281 kgm2/m, respectively. The detail test condition 

is described into table 4.1 

Grating 



41 
 

Table 4.1 Model property 

 Prototype Model 
requirement 

Real model Deviation 

Width B (m)  30.0 0.375 0.375 0 (%) 

Height D (m) 13.0 0.1625 0.1625 0 (%) 

Mass m (kg/m) 
40.63x103 6.348 

(7.936 kg) 
(8.095) 

+2 (%) 
(≤2%) 

Moment of inertia (kgm2/m)  
7.63 x103 

0.1863 
(0.2328 kgm2) 

(0.2281) 
-2 (%) 
(≤22%) 

Frequency 

(Hz) 

Vertical 0.166  1.869 7.11 

Torsional 0.329  3.296 7.99 

Ratio 
1.98 1.98 1.76 

-11% 
(≤5%) 

Damping 
(logarithm 
decrement) 

Vertical 
0.03 0.03 0.0322 

+0.0022 
(±0.005%) 

Torsional 
0.03 0.03 0.0263 

+0.0037 
(±0.005%) 

 

 

 

Figure 4.5 Covered the grating and noise fence installed under the rail way 

 

 

a. Elevation 

Figure 4.6 Trussed deck section model (cont.) 
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b. Leading edge  c. Trailing edge 

Figure 4.6 Trussed deck section model 

 

4.1.3 Experimental setup  

The model is attacked to a rigid test frame and suspended across wind tunnel by eight equal 

helical springs with stiffness k which arranged at arm distance equal from upstream and 

downstream of the geometric centerline. The contributions of spring mass to total mas and inertia 

are accounted by adding one-third of their mass at their point of attachment. Piano wires were also 

used to arrest motion in a desired degree of freedom. The configuration set-up can be seen in 

Figures (4.7 & 4.8). Vertical and torsional displacement obtained by laser transducers.  

 

 

Figure 4.7 Suspension systems for wind tunnel test on the section model 

 

 

Laser 
transducer 

Piano wire Spring 

Model 

Displacement 
located 
measurement 
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Figure 4.8 Experimental model setup 

 

1. Model section 

2. Thin plate 

3. Extension rigid aluminum connecting the model to lateral bar 

4. Lateral bar connecting to the spring 

5. Target laser sensor for measurement vertical and torsional oscillation 

6. Vertical spring mounted model 

7. Horizontal confine motion 

Other instrumentation supported in observation process included the following: 

- A pitot tube measure air pressure 

- A set laser displacement measurement  

- Multichannel analog digital convert 

- Microcomputer and data acquisition software 

- Pen record 

- Hotwire anemometer  

 

4.2 Experimental procedure 

The experimental measurement of time history of section model in wind tunnel can be briefed as 

U 

1 

5 

4
6 

3 

2 

7 
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follow: 

1. The wind flow is generated by the propeller driven by electronic power with desired wind 

velocity. A pitot tube is placed under of the section model and connected to an electronic 

manometer with an analog output and the relative pressure will be displayed. The mean 

wind velocity can be calculated from pressure by the equation 

2 p
U




             (4.1) 

Where U is mean wind speed, p is air pressure, and  is air density 

2. In this study, the oscillation of the model will be achieved by two techniques, free 

vibration and random vibration (gust response). In free vibration technique, the model will 

be excited oscillation with the initial amplitude and relived for free vibration under a 

certain wind velocity. In random vibration technique, the model will be excited by 

turbulent flow without necessary initial excitation. 

3. The vertical and torsional displacements time history can be obtained through at a certain 

located by laser device measurement (figures (4.7 & 4.8)). 

4. The time history measurement of vertical h (heaving) and torsional  (pitching) responses 

can be calculated by  

1 2

1 1 2

2

tan
2

h h
h

h h
 




 
  

 

           (4.2) 

where h1 and h2 are the displacement time history measured by laser 1 and laser 2, 

respectively.  

5. The data obtained by laser device need to convert to time history displacement by 

multiply by calibration factor. 

 

 

 

 

 

 

 

 

Figure 4.9 Data acquisition 

Section model 
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4.3 Determination of mechanical frequency and damping 

4.3.1 Determination of mechanical frequency 

In order to calibration the required frequency and mass of model system, the additional mass 

method will be applied.  The torsional oscillation can be controlled by adding a certain mass at a 

certain distance from the center of gravity of section model. The vertical oscillation and mass of 

model can be control by adding a certain mass at both including in first case and placing at center 

of gravity of section model. The mass will be varied and each mass will be determined frequency 

by free vibration technique. 

 

Vertical frequency and mass: the vertical natural frequency of model is expressed as follow 

K

m
               (4.3) 

where K is stiffness of model system; m is mass of model. 

If the additional mass mi; the vertical frequency of the system can be written as  

i
i

K

m m
 

 
             (4.4) 

The frequency i can be identified from free vibration response of the model with adding 

mi mass. 

Eq. (4.4) can be rewritten as  

2

1 1
i

i

m
m

K K
               (4.5) 

Eq. (4.5) is the linear equation with the variable 
2

1

i
 and im ; 

m

K
 and 

1

K
are a constants. 

When the adding mass is varied the frequency will be determined and obtained linear regression 

between  
2

1

i
 and im  (figure 4.11) 

From figure (4.11) frequency and mass can be calculated as follow 

1

m
c

K

c






              (4.6) 

 

tanm c               (4.7) 
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Figure 4.10 Regression linear of additional mass 

 

Torsional frequency and moment of inertial of mass:  

Determination of the torsional frequency and moment inertial of mas is similar compared with 

vertical frequency. The difference is additional mass located distance from center of gravity of 

section model. The moment inertial of mass of additional mass is defined as 

2
i i iI d m                (4.8) 

where di is distance from center of gravity of model to additional mass 

Torsional frequency is defined as 

K

I
               (4.9) 

 Linear equation of torsional frequency and additional moment inertial of mass can be 

defined 

2

1 1
i

i

I
I

K K
               (4.10) 

Similarity with previous process, the torsional frequency and moment inertial of mass will be 

obtained. 

 

 4.3.2 Determination of mechanical damping 

Base on free vibration of damped system, the logarithmic decrement can be calculated as follow 

1

1
ln lnn n

n n j

x x

x j x


 

             (4.11) 

m 

2

1

i

 
c 

0 
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Figure 4.11 Damped free vibration 

where xn and xn+j are amplitudes of responses corresponding to the time tn and tn+j (tn+j=tn+jT 

where T is the period; j is and integer)  (figure 4.12 ). 

The damping ratio can be obtained by 

 2 2 22

 


 
 


           (4.12) 

 

 

4.4 Turbulence property 

 

The turbulent flows used in this study were generated by biplane wooden grids (Figure. 4.2). The 

turbulent properties are controlled by changing the distance to the model. Hotwire anemometer 

attacked at different location along the model (figure. 4.13). Hotwire anemometer can be 

measured two dimensions those are along wind turbulence and vertical wind turbulence with 

sample frequency 2000 (Hz). The data achieved at very along mean wind velocity. 

The turbulence properties are described below by means of their standard deviation, integral 

length scale, power spectrum density function and correlation between turbulence at two points.   

 

xn 

xn+j 

j 
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Figure 4.12 Hotwire anemometer 

 

 

4.4.1 Standard deviation of turbulence component 

Probability density function 

The probability density function of fluctuated wind speed is customarily with Gauss 

distribution. Figure 4.14 shows both longitudinal and vertical wind speed fluctuation fairly 

good agreement with Gauss distribution.  

 

(a) along wind turbulence (b) vertical wind turbulence 

Figure 4.13 Probability density function of longitudinal and vertical velocity fluctuation 
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Turbulence intensity 

The turbulence intensity Ii (%) for the along wind turbulence component u and across-

wind w is defined as: 

(i u, w)i
iI

U


             (4.12) 

where: U is the horizontal average wind speed; i is the standard deviation of the fluctuating 

components. 

 

Turbulence integral length scale 

Turbulence integral length scales are a measure of the size of the vortices in the wind, or 

in other words the average size of a gust in given direction. Base on the measured wind 

speed with time interval of 10 minutes, the turbulence integral length scale was calculated 

using autocorrelation function integral method as follows: 

2
0

( ) (i u, w)x
i i

i

U
L R d 





           (4.12) 

where U is the horizontal average wind speed; i is the standard deviation of the fluctuating 

components; Ri() is the autocorrelation function of turbulence components (figure 4.14a&b). 

 

Figure 4.14a Autocorrelation function of horizontal turbulent component  
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Figure 4.14b Autocorrelation function of vertical turbulent component  

 

The length scale calculated from Eq. (4.12) in some cases is large value, because the 

autocorrelation of turbulence component in several cases is just asymptotic to abscissa due to 

the area under autocorrelation curve and abscissa quite large. 

 

 

In this study the integral scale is defined as: 

1

2
x
u

peak

U
L

n
                                 (4.13) 

Where npeak is the frequency at which the curve reduced spectrum reaches a maximum. 
 

 
The flow conditions and turbulence properties of three difference cases are shown in Table 1. 
 

Table 4.1 Turbulence intensity and integral length scale 

 Iu (%) Iw (%) Lu (cm) Lw (cm) 

Case 1 6.2 4. 6 11.3 9.1 

Case 2 9.1 6.9 9.0 8.7 

Case 3 15.6 13.2 6.8 6.4 
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4.4.2 Turbulence power spectral density 

The turbulence intensity and integral length scale do not fully describe a properties of 

turbulent oncoming flows, because thanks to Y. Nakamura and S. Ozono (1987) studied on 

bluff-body aerodynamic shown that small-scale turbulence affects flow fields and 

aerodynamic paremeters more than larger one. Therefore the power spectral distribution of 

turbulence scales was also quantified for this research.  

The frequency distribution of turbulent along-wind velocity component u is described by 

the non-dimensional power spectral density function RN (z, f) defined as: 

2

( , )
( , )

( )
u

N
u

fS z f
R z f

z
            (4.14) 

where f is frequency in hertz and Su(z, f) is the power spectrum for the along-wind turbulent 

component 

The von Karman formula for the dimensionless spectrum of longitudinal component of 

wind turbulence: 

   
2 5/62

4

1 70.8

u L

u L

fS f

f


  

          (4.15) 

where Su is the spectral density function of the longitudinal component, f is the frequency in 

Hertz and 2 is the variance of the longitudinal velocity component. The non-dimension 

frequency is fL=fLx
u(z)/U(z); Lx

u(z) is the integral scale. 

 

The non-dimensional power spectral density function is used in Eurocode 1: 

 
2 5/3

6.8

1 10.2

u L

u L

fS f

f


  

           (4.16) 

 

Figure 4.15 shows the non-dimensional frequency distribution of turbulent along-wind 

velocity component versus non-dimensional power spectral density function and matching 

between the power spectrum of simulated data from wind tunnel and empirical atmospheric 

turbulence von Karman and Eurocode 1. Compared with von Karman spectrum, the 

measured data coinccided well with it in the high frequency and it was a little higher in the 

low frequency. Turbulent energy is generated in larger eddies (low frequency). For most 

structure, these low-frequency fluctuations give no significant response contribution.  
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Figure 4.15 Non-dimension PSD function for the longitudinal turbulence component 

 

In Figure 4.16, three spectra obtained at different reduced turbulent intensity (turbulent 

intensity) are shown. Values of the spectral density function increase as the turbulence 

intensity is increased. In the intermediate region, called the inertial subrange, the spectra is 

the presence with a -5/3 slope, known as Kolmogorov’s spectrum (Figure 4.15), instead of -

2/3 exponent as demonstrated in non-dimensional von Kaman spectrum (Figure 4.16).   

 

 

 

Figure 4.16 Dimension PSD function for the longitudinal turbulence component 

 

4.4.3 Spatial correlation 

The normalized cross-spectrum describes the statistical dependence between the 

Non-dimensional frequency, fL=nLu/U 
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turbulence components at two points at a given frequency f.  

 

 
 

Figure 4.17 Spatial correlation (V=6m/s; Iu=6.2%) 

 

 

Figure 4.18 Spatial correlation (V=6m/s; Iu=9.1%) 
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Figure 4.19 Spatial correlation (V=6m/s; Iu=15.6%) 

 

The root-coherence function is defined as the absolute value of the normalized cross-

spectrum and given by:  

1 2

1 2

( , , )

( , ) ( , )
uu

N
u u

S P P f
Coh S

S P f S P f
           (4.17) 

where Suu is cross-spectrum of the two longitudinal turbulence components at point P1 and 

P2, respectively. 

As shown in figures 4.17 to 4.19 the normalized cross-spectrum decrease when the distance 

between two points increase and coherence decrease as frequency increase. It can be seen 

that coherence does not go to unity when the frequency equal to zero. The comparison of 

coherence at same velocity, turbulence intensity increases the coherence decrease.   

 

4.5 Model dynamic properties 

Tests have been executed under both smooth and turbulence flows. The aim of this testing 

is to quantify the effect of oncoming turbulence flows on the dynamic responses of section 

model. Figures (4.18a & 4.18b) illustrate the displacement of two degree of freedom 

(heaving and torsional modes) versus reduced wind velocities under smooth and different 

turbulence flows. Abbreviation of ‘RSM’ is root-mean-square; ‘Max’ is maximum amplitude 
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of vibration; ‘Smooth’ is smooth flow condition. In smooth flow, the vertical vibration is 

limited when reduced mean wind speed is from 0 to 9 and then considerably increases but 

vertical flutter does not occur in this test (figure 4.18a). On the other hand, the torsional 

displacement is very small till sudden increment and flutter occur at reduced wind velocity 

about 5.7 (figure 4.18b).  

When model is immersed in turbulent flows, the vertical and torsional motions vibrate in 

spite of small reduced wind velocities. The vertical response increases proportionally with Vr 

and when the turbulent intensity increases, the amplitude of vibration lightly increase. In the 

turbulent flows vertical flutter also does not occur.  

 

 

Figure 4.18a Model amplitude (heaving mode) with vary turbulence intensity 

 

Figure 4.18b Model amplitude (torsional mode) with vary turbulence intensity 

 

In cases of Iu = 6.2% and Iu = 9.1%, the torsional vibration gradually increases with Vr 

and flutter occurs at Vr = 7.2 and Vr = 7.7, respectively, which is higher than that in smooth 

flow (Vr = 5.7). On the other hand, in case of Iu = 15.6% flutter occur up to Vr = 8.6 (the 

critical wind speed is defined at the amplitude of 0.5 deg).  
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In order to clearly demonstrate the effect of coupling between two modes heaving and 

torsional non-dimension parameters corresponding heaving and torsional displacement are 

expressed as following (G. Bartoli 2006):  

B

B

B

h
h ndnd

)2/)(tan(
1000;1000


                            (4.18) 

where h and  are the vertical and torsional displacement of section model respectively. The 

two figures (4.19a & 4.19b) illustrate the relationship between two modes heaving and 

torsional in smooth and turbulent flows (I = 6.2%). Two graphs indicate that only pure 

torsional flutter occurs, without exit of coupling flutter. In smooth flow, the torsional flutter 

occurs at reduced wind speed around 5.7 but in turbulent flow (with small turbulent intensity 

I = 6.2%) torsional flutter occurs at larger Vr = 8.3. Considering figure 4.19b, in the turbulent 

flow when Vr  < 7 the motion is mainly due to vertical, but from Vr > 7.5 torsional vibration 

is larger and then divergence occurs.  

In general, the effects of turbulent flows on section model induce larger vibration than 

smooth flow but the vibration proportionally increase with mean velocities and without 

sudden increase occurring like smooth flow. The motions under turbulent flows are known 

as buffeting response which can effect on service state design of bridge (such as fatigue 

problem). Turbulent flows significantly affect dynamic responses of the truss bridge deck 

section. Buffetting raises the amplitude response level progressively in proportion to the 

reduced wind speed and turbulent intensity. Specifically, turbulence induces buffeting 

response but increase flutter critical velocity. 

 

Figure 4.19a Non-dimensional amplitude (smooth flow) 
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Figure 4.19b Non-dimensional amplitude (turbulence flow I = 6.2%) 
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CHAPTER 5 

 

IDENTIFICATION OF FLUTTER DERIVATIVES 

 

This chapter presents the results by application of stochastic system identification method 

for extracting flutter derivatives. The output only time domain analysis stochastic system 

identifications: covariance stochastic system (SSI_cov) and data driven stochastic system 

method (SSI_data) are used to extract simultaneously all flutter derivatives from two degrees 

of freedom system. The output data which gust response is obtained by an experimental 

wind tunnel test and simulation for a trussed deck section with various turbulence intensity. 

The results are also compared with those from smooth flow as well as free decay response.  

 

5.1 General of identification of flutter derivatives  

The decay and buffeting signals are acquired at a sampling frequency 100Hz and these 

samples are set to zero mean before operating with Matlab (figures 5.1&5.2). 

 

Figure 5.1 Free decay response of the bridge deck section model (h-heaving; –torsional) under 

turbulent flow (Iu = 9.1%; U=2.91m/s) 
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Figure 5.2 Buffeting response of the bridge deck section model (h-heaving; –torsional) under 

turbulent flow (Iu = 9.1%; U = 2.91m/s) 

 

First, the numbers of block rows (i) is a user defined index which large enough but it 

should at least be larger than the maximum order of the system one want identify. One block 

contain l rows (number of output (l=2)), the matrix H consist 2il rows. The number of 

columns j is typically equal to s-2i+1 (s is length of data), which mean that all of data are 

used.  

 

Figure 5.3 Modal parameters vs. Numbers of block rows  
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Figure 5.3 Modal parameters vs. Numbers of block rows (cont.) 

 

In this study, numbers of block rows are chosen base on the stable of frequencies and 

damping ratios. Figure 5.3 shows the identified modal frequency and damping ratio of two 

mode heaving and torsional vibration by extracting from buffeting responses with different 

numbers of block rows. The numbers of block rows (i) where the stable of all modal 

parameters is larger than 40. In this study, the numbers of block rows (i) is chosen equal 50.  

 

The SSI_cov is implemented including of the raw time histories of data Hankel matrix are 

converted to the Toeplitz matrix Eq. (3.22) and shifted block Toeplitz matrix Eq. (3.26). 

Computing SVD of block Toeplitz matrix, truncate the SVD to the model order, estimating 

Oi and Ci by splitting the SVD Eqs. (3.25 & 3.26) and finally estimating state matrix A and 

controllability matrix C Eq. (3.27).  

The actual implementation of SSI_data consists of projecting (Pi) the row space of the 

under part outputs (Yf) into the row space of the upper part outputs (Yp) by applying robust 

numerical techniques QR factorization Eq. (3.30) and shifted projecting matrix Pi-1, 

computing SVD of Pi, truncating the SVD into the model order and to eliminate spurious 

poles by using stabilization diagram. The Kalman filter state sequence ˆ
iX is found from Pi 

and splitting the SVD and the state matrix A and C obtained by least square solution Eq. 

(3.38).  

The system order n can be determined from the number nonzero singular values of 

Toeplitz matrix or projecting matrix. In practice, affect by noise thus singular values that are 

all different from zero. Therefore, it is suggested to look at the “gap” between two 

successive singular values (figure 5.4). The order will chose by the maximum number of 

singular values at “gap” occur. Some cases there is no “gap”, the stabilization diagram as 

aforementioned will be applied.  
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Figure 5.4 Number of order  

 

 

5.2 Numerical simulation results 

Before analysis the buffeting response time series, simulated data have been tested first in 

order to check the performance, the stability of the stochastic system identification method. 

 

5.2.1  Validation to a white noise excitation  

A validation of the stochastic system identification technique for application to extract 

flutter derivatives of bridge deck section have been achieved by comparing the result from 

the numerical simulation with experimental ones. The assumption of output only system is 

the input white noise. Base on this assumption, the buffeting response time-series of section 

model excited by lift and moment white-noise was computed by numerical integration 

method. The section model properties assumed following (Jakobsen and Hjorth-Hansen, 

1995): 

0 0 0

2.6526 0 0.3616 0 397.0573 0
; ;

0 0.0189 0 0.0072 0 24.7315
M C K

     
       

     
 

fh=1.947 Hz; f=5.76 Hz; logarithm decrements h=0.035 and a=0.033.  

 

At the mean wind velocity U=10.26 m/s, air density 1.181 kg/m3. The effective stiffness and 

No. order 

Gap 
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damping were pre-set at: 

0

2.6526 0 8.9308 0.0799 420.1002 59.1805
; ;

0 0.0189 0.4345 0.0386 1.7552 19.6592
e eM C K

      
       

     
 

 

The buffeting responses were computed by the constant acceleration method of numerical 

integration (Newmark-with time step t=0.01s, =1/4) under white noise excitation as 

show in figure (5.5b). The numerical simulation procedure as follow figure 5.5a. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5a Numerical simulation diagram 

 

Equation of motion: 
 

( )e eMx C x K x f t     

Buffeting responses: 

Vertical and torsional 
responses  

 

Modal parameters: 

Frequency and damping 
ratio 

Experimental value (pre-set value): 
M:  mass matrix 
Ce:  effective damping matrix 
Ke:  effective stiffness matrix 
f(t): buffeting forces (white noise or  
colored noise) 

Newmark- method: 
=0.01 s 
    =1/4 

Stochastic systems: 
SSI_data 
    SSI_cov 
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Figure 5.5b Buffeting response simulated under white noise excitation 

 

 The SSI method applied to these response data and obtained the effective structural matrix 

and the deviation of identified matrices from the pre-set ones: 

SSI_data: 

8.7996 0.0795 429.7659 53.8006
;

0.5008 0.0358 1.2898 19.3466

1.46 0.6 2.3 9.09
% ; %

15.26 7.25 26.5 1.59

e e
r rC K

C K

    
    

   

     
           

 

SSI_cov: 

8.4351 0.0795 415.5835 54.8856
;

0.2525 0.0339 2.5008 19.47

5.55 23.02 1.07 7.26
% ; %

15.26 12.03 25.38 0.962

e e
r rC K

C K

    
    

   

      
          

 

 

The results are in good agreement to compare with the pre-set values. The direct term related 

to frequency and damping ratio estimated by SSI_data are less than 10%. The differences in 
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the off-diagonal term C21 and K21 are around 25%, these parameters related to A1
* and A4

*, 

but the magnitude value quite are small, those are trivial effect.  

The deviations of estimated system matrices compared with preset value by SSI_cov are 

plausible. The deviation of diagonal parameter are less than 10%, except the parameter 

related to torsional damping term is equal 12%, but this value compared with very small 

value.  

 

 

Figure 5.6a Stability of modal parameters from 100 buffeting response simulations by SSI_data  

 

 
Figure 5.6b Stability of modal parameters from 100 buffeting response simulations by SSI_cov 

(cont.) 
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Figure 5.6b Stability of modal parameters from 100 buffeting response simulations by SSI_cov 

(cont.) 

 

In order to estimate the stability of stochastic system, the frequency and damping ratio of 

pre-set values are simulated under white noise excitation with 100 different cases. Figures 

5.6a & 5.6b show the frequency and damping ratio extracted from both techniques SSI_data 

and SSI_cov, respectively. The parameters obtained by SSI_data technique are in good 

agreements with preset values, the differences of mean values of vertical frequency and 

damping ratio is 0.09% and 1.88% respectively and torsional frequency and damping ratio is 

0.92% and 11.54%, respectively. These parameters obtained by SSI_cov are more scatter, 

with vertical frequency and damping ratio is 0.36% and 6.25% respectively and torsional 

frequency and damping ratio is 0.89% and 11.17%, respectively. The computation time 

required for SSI_cov is longer compared with for SSI_data. 

The stability of stochastic systems was also estimated by adding Gaussian noise to 

buffeting response. The frequency and damping ratio of preset value are simulated under 

white noise excitation and the buffeting response obtained by numerical method will be 

added various noise to signal level (AWGN), then modal parameter will be obtained by 

stochastic system identification.  

 

The procedure of adding white noise as following:  

- The buffeting response x to which an AWGN noise needs to be added for a given 

SNR (specified in dB). 

- Calculate the power of vector x following as: 
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1
2

0

1
[i]

L

s
i

E x
L





     where L=length(x) 

- Convert given SNR in dB to power of signal - linear scale (SNRlin) and find the noise 

vector (from Gaussian distribution with noise variance) following the equation 

(1, L)s

lin

E
noise randn

SNR
   

- Response with added noise to signal  

y= x + noise 

- Final, modal parameters identify by SSI-data 

  

Tables 5.1 to 5.4 show modal parameters by SSI-data and tables 5.5 to 5.8 by SSI-cov and 

the deviation compared with preset values. When SNR decrease up to 40% the results from 

both techniques were changed less than 10%. 

  

Table 5.1 Vertical frequency vs. SNR (SSI-data) 

SNR 90 85 80 75 70 65 60 55 50 40 

fh 2.0002 2.0061 2.0017 2.0009 2.0033 2.0009 2.0012 2.0063 2.0017 2.0195 

fh(%) -0.1356 0.1601 -0.0605 -0.1026 0.0205 -0.1023 -0.0859 0.1696 -0.0603 0.8308 

 

Table 5.2 Vertical damping ratio vs. SNR (SSI-data) 

SNR 90 85 80 75 70 65 60 55 50 40 

h 0.1342 0.1348 0.1342 0.1339 0.1315 0.1375 0.1403 0.1306 0.1274 0.1296 

h(%) -2.5072 -2.0488 -2.4818 -2.7064 -4.4699 -0.1051 1.9300 -5.1108 -7.4474 -5.8367 

 

Table 5.3 Torsional frequency vs. SNR (SSI-data) 

SNR 90 85 80 75 70 65 60 55 50 40 

f 5.0767 5.0558 5.0723 5.0819 5.0420 5.0718 5.0835 5.0629 5.0675 5.0830 

f -1.0963 -1.5041 -1.1821 -0.9958 -1.7725 -1.1917 -0.9655 -1.3656 -1.2764 -0.9740 

 

Table 5.4 Torsional damping ratio vs. SNR (SSI-data) 

SNR 90 85 80 75 70 65 60 55 50 40 

a 0.0281 0.0272 0.0279 0.0278 0.0262 0.0269 0.0264 0.0267 0.0270 0.0265 

 3.3287 -0.1119 2.4578 2.2107 -3.8105 -1.2023 -2.8803 -1.6587 -0.9096 -2.568 
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Table 5.5 Vertical frequency vs. SNR (SSI-cov) 

SNR 90 85 80 75 70 65 60 55 50 40 

fh 1.9652 1.9650 1.9661 1.9659 1.9612 1.9639 1.9612 1.9657 1.9643 2.0339 

fh -1.8830 -1.8942 -1.8377 -1.8477 -2.0841 -1.9459 -2.0825 -1.8580 -1.9257 1.5456 

 

Table 5.6 Vertical damping ratio vs. SNR (SSI-cov) 

SNR 90 85 80 75 70 65 60 55 50 40 

h 0.1339 0.1336 0.1340 0.1335 0.1323 0.1329 0.1402 0.1313 0.1264 0.1331 

h -2.6791 -2.9085 -2.5896 -2.9767 -3.8346 -3.4234 1.8834 -4.6193 -8.1424 -3.2541 

 

Table 5.7 Torsional frequency vs. SNR (SSI-cov) 

SNR 90 85 80 75 70 65 60 55 50 40 

f 5.0845 5.0845 5.0845 5.0845 5.0844 5.0844 5.0846 5.0843 5.0841 5.0844 

f -0.9448 -0.9449 -0.9449 -0.9443 -0.9465 -0.9470 -0.9424 -0.9490 -0.9519 -0.9463 

Table 5.8 Torsional damping ratio vs. SNR (SSI-cov) 

SNR 90 85 80 75 70 65 60 55 50 40 

a 0.0268 0.0268 0.0268 0.0268 0.0268 0.0268 0.0268 0.0268 0.0266 0.0270 

 -1.5775 -1.5698 -1.5614 -1.5974 -1.5595 -1.5024 -1.4547 -1.6020 -2.1231 -0.8717 

 

 

The deviation of identified results compared with pre-set values show in figure 5.7 

 

 

Figure 5.7 Deviation of modal parameters from simulations by SSI (cont.) 
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Figure 5.7 Deviation of modal parameters from simulations by SSI (cont.) 
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5.2.2 Estimate colored noise input effect on modal parameters 

In order to estimate the operating feature of the stochastic systems which the input is 

colored noise, the frequency and damping ratio of preset value are simulated under colored 

noise excitation with 100 different cases. 

The buffeting with colored noise that was generated by sending a white noise sequence y of 

variance 1 through the linear filter:  

0.02 0.041
(z)

0.85

z
H

z




  

 

The power spectrum density function of colored noise illustrate in figure 5.8 

 

 

 

Figure 5.8 PSD of colored noise time series (buffeting force and buffeting moment) 

 

 

The procedure described in Section 5.2.1 was repeated with the buffeting forces is colored 

noise. Figures 5.9 & 5.10 show the frequency and damping ratio extracted from both 

SSI_data and SSI_cov. The modal parameters obtained by SSI_data are in good agreements 

compared with preset values, the differences of mean values of vertical frequency and 

damping ratio is 0.67% and 10.2% respectively and torsional frequency and damping ratio is 
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0.94% and 16.1%, respectively. These modal parameters obtained by SSI_cov, with vertical 

frequency and damping ratio is 1.42% and 10.6% respectively and torsional frequency and 

damping ratio is 0.92% and 17.5%. The estimated results of SSI_data are higher accuracy 

compared with for SSI_cov. 

 

Figure 5.9 Stability of modal parameters from 100 buffeting response simulations by SSI_data  

 

 

 

Figure 5.10 Stability of modal parameters from 100 buffeting response simulations by SSI_cov 

(cont.) 
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Figure 5.10 Stability of modal parameters from 100 buffeting response simulations by SSI_cov 

(cont.) 

 

 
5.3 Extraction flutter derivatives from experiment data 

5.3.1 Comparision flutter derivatives between SSI_cov and SSI_data 

The process for extracting FDs by SSI_cov and SSI_data methods are mentioned before. 

Figure 5.11a&b shows the frequency and damping ratio of heaving and torsional mode 

obtained from both techniques. The value of frequency and damping ratio of heaving and 

torsional mode are in good agreement from both techniques. 

 

Figure 5.11a Frequency and damping ratio of heaving mode from free decay response under 

turbulent flow (Iu = 9.1%) 
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Figure 5.11b Frequency and damping ratio of torsional mode from free decay response under 

turbulent flow (Iu = 9.1%) 

 

 

 

Figure 5.12 FDs (Hi) of the bridge section model under turbulent flow (Iu=9.1%) from free decay 

response 
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Figure 5.13 FDs (Ai) of the bridge section model under turbulent flow (Iu=9.1%) from free decay 

response 

 

Figures (5.12 & 5.13) show FDs with respect to reduced wind speed. In general, the 

results from two methods show the same trend and both techniques are working well. The 

method SSI_cov shows the results (H*
1 and A*

2) somewhat scattering than those obtained by 

SSI_data. The SSI_data method is appreciably faster than the SSI_cov. Both methods start 

with data reduction step. In the SSI_cov, the reduction is due to take covariance of output of 

the Toeplitz matrix, while SSI_data algorithm is obtained by projecting the row space of the 

future outputs into the row of the past output. However SSI_data avoid the calculation of 

covariance between the outputs data.  

 

5.3.2 Extract of flutter derivatives from buffeting response 

In general, at high wind velocity, the aerodynamic damping of heaving mode is too high 

and vertical free response is too short. Therefore, the extraction of FDs cannot be 

accomplished accurately. In addition, free decay mechanism is not practical to describe real 
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bridges behavior in field. On the other hand, the extraction of FDs from buffeting response is 

more closely reflected to a real bridge behavior under turbulent wind field. The bridge deck 

section model will vibrate under the excitation of turbulent flow even at small wind velocity. 

The method is simpler than free vibration technique because of no operator corrupts by 

exciting the section model. It is reasonable to extract FDs from buffeting response.  

Figures 5.14 & 5.15 show the flutter derivatives of the bridge deck to obtained by the 

SSI_data from both decaying response and buffeting responses of 1DOF and 2DOF systems 

under turbulent flow (Iu=9.1%).  

Generally, most FDs are in agreement with both free decay and buffeting response of 1DOF 

and 2DOF systems. The flutter derivative H1
* extracted from buffeting response is slightly 

higher than that obtained from free decay response. Coupled terms (H2
* and H3

*) extracted 

from buffeting responses are more scattering than those from free decay, particularly at high 

reduced wind velocity.  

Figure 5.14 FDs (Hi) of the bridge section model by single mode and coupled mode from free 

decay and buffeting responses (Iu=9.1%) 
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Figure 5.15 FDs (Ai) of the bridge section model by single mode and coupled mode from free 

decay and buffeting responses (Iu=9.1%)  

 

In this study, the sectional profile is truss bridge deck section, which is only pure torsional 

flutter occurred, A2
* is the most important derivative. The A2

*
 extracted from buffeting 

response is scatter at small reduced wind velocities, but scatter become smaller at high 

reduced wind speed compared with that obtained from free decay response.  

 

5.3.3 The effects of turbulence on flutter derivatives 

In order to clarify the effects of oncoming flow turbulence on FDs, the SSI_data method 

is applied to extract FDs from buffeting response with different turbulence intensity. Figures 

(5.16 & 5.17) show the damping ratio of heaving and torsional mode versus reduced wind 

speed. Compared with in smooth flow, the damping ratio of heaving mode increase more 

slowly, at certian reduced velocity, torsional damping ratio decrease when increase tubulence 

intnesity. Figures (5.18 & 5.19) show the flutter derivatives under smooth and turbulent 

flows with the difference turbulence intensity versus reduced wind speed. 
* * * *
1 4 1 4, , ,H H A A  
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associated with vertical oscillation were identified using the vertical frequency and 

* * * *
2 3 2 3, , ,H H A A associated with torsional oscillation were calculated using torsional frequency.  

In addition, the flutter derivatives obtained in both of these cases are shown in figures (5.20 

& 5.21) by free decay responses. In general, the extraction of FDs in the both cases from 

buffeting and free decay responses are almost similar. The torsional damping term A2
* plays 

an important role on torsional flutter instability since its positive/negative value corresponds 

to the aerodynamic instability/stability of torsional fluter. On the other hand, the coupled 

term, H3
* and A1

* together with the aerodynamically uncoupled term A2
* have significant role 

on heaving-torsional 2 DOF coupled flutter instability (Matsumoto 2001). In this experiment, 

the onset flutter is defined as zero cross of reduced velocity axis with the A2
*. 

 

 

Figure 5.16 Damping ratio of heaving mode of the bridge section model under smooth and 

turbulence flows  

 

Figure 5.17 Damping ratio of torsional mode of the bridge section model under smooth and 

turbulence flows (solid curves are fitted polynomial) 
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Figure 5.18 FDs (Hi) of the bridge section model under smooth and turbulent flows by buffeting 

response (solid curve are fitted polynomial of smooth case) 

 

Figure 5.19 FDs (Ai) of the bridge section model under smooth and turbulent flows by buffeting 

response (solid curve are fitted polynomial of smooth case) (cont.) 
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Figure 5.19 FDs (Ai) of the bridge section model under smooth and turbulent flows by buffeting 

response (solid curve are fitted polynomial of smooth case) (cont.) 

 

 

  

Figure 5.20 FDs (Hi) of the bridge section model under smooth and turbulent flows by free decay 

response (solid curve are fitted polynomial of smooth case ) 
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Figure 5.21 FDs (Ai) of the bridge section model under smooth and turbulent flows by free decay 

response (solid curve are fitted polynomial of smooth case ) 

 

From figures (5.18 & 5.20) it can be found that, in smooth flow the flutter derivative H1
* 

increase faster than that extracted from turbulent flows. This equivalence that damping ratio 

of heaving mode under smooth flow is higher compared with in turbulent flow. Turbulence is 

very small effect on vertical and torsional frequency terms H4
* and A3

*, these values 

extracted from buffeting are somewhat less than in smooth flow.  

As shown in figures (5.19 & 5.21), under smooth flow the positive value A2
* at reduced wind 

speed (Vr = 5.2) coincides with the negative total torsional damping. The significant effects 

of turbulence flows on flutter derivatives are also illustrated particularly for aerodynamic 

torsional damping term A2
*, the positive value correspond to the Vr  around 6.5 to 7.8 under 

Iu = 6.2% and Iu = 9.1% respectively, whereas in case of Iu = 15.6% flutter does not occur up 

to Vr = 9. On the other hand, the effects of different turbulent intensities on FDs are fairly 

modest. This results is also suitable compared with model dynamic in previous section 4.5. 

Slight difference can been seen that A2
* tends to be lower in a high reduced velocity range as 
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turbulence intensity increases. The influence of turbulence on FDs will depend on the section. 

Sarkar (1994) found small effect for a streamlined section, while tests on a truss section 

showed appreciably effect which is shown clearly by torsional damping term A2*.   

The off diagonal terms H2*,  H3*,  A1* and A4* are fluctuated around zero value, which 

means that in this experiment, the coupled vibration is not appear at small wind velocity. The 

figures (5.22a & 5.22b) show the power spectrum density of free decaying responses at small 

wind velocity (5.6ms) and larger (8.8 m/s) in smooth case, which torsional frequency does 

not appear in vertical response and vertical frequency does not appear in torsional response. 

It may be sad that there is not coupling occured in smooth case.    

In turbulent flows (figures (5.23-5.25)) at all a wind velocity, there is not vertical frequency 

appeared in torsional vibration. At small and medium wind velocity there is no torsional 

frequency appeared on vertical vibration. Therefore, in this experiment can be caculated 

flutter derivatives with separeted reduced frequency corresponding to heaving and torsional 

mode. On the other hand, the coupling flutter derivatives at very high wind speed should be 

calculated with a same reduced frequency of both heaving and torsional mode.  

 
Figure 5.22a PSD of free decay response (smooth flow V=5.6 m/s) 
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Figure 5.22b PSD of free decay response (smooth flow V=8.8 m/s) 

 
 

 
Figure 5.23a PSD of buffeting response (Iu=6.2%; V=2.9 m/s) 
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Figure 5.23b PSD of buffeting response (Iu=6.2%; V=6.1 m/s) 

 
 
 

 
Figure 5.23c PSD of buffeting response (Iu=6.2%; V=8.05 m/s) 
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Figure 5.24a PSD of buffeting response (Iu=9.1%; V=4.1 m/s) 

 

 
Figure 5.24b PSD of buffeting response (Iu=9.1%; V=8.45 m/s) 
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Figure 5.24b PSD of buffeting response (Iu=9.1%; V=9.14 m/s) 

 

 
Figure 5.25a PSD of buffeting response (Iu=15.6%; V=6.06 m/s) 
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Figure 5.25b PSD of buffeting response (Iu=15.6%; V=9.03 m/s) 

 
 
5.3.4 Estimation of variation in identification result 

In order to estimate the variation in identification results, five data sets have been 

calculated with SSI_data which is same procedure aforementioned. The mean value, 

standard deviation and coefficient of variation of flutter derivatives at several certain reduced 

wind velocity show in tables (5.1-5.3) and display by figure 5.26.  

 

Table 5.9a: Mean value and standard deviation of flutter derivatives in case Iu=6.2% 

Vr 

A2
* A3

* 

Mean value 

() 

Standard 

deviation 

() 

Coefficient 

of variation 

(Cv=  

Mean 

value 

() 

Standard 

deviation 

()  

Coefficient 

of variation 

(Cv=  

3.45 -0.029 0.026 0.896 0.3137 0.021 0.067 

5.11 -0.0532 0.053 0.996 0.4827 0.032 0.066 

6.73 0.0646 0.013 0.201 0.9594 0.036 0.038 

7.28 0.0736 0.019 0.256 1.2614 0.113 0.0895 
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Table 5.9b: Mean value and standard deviation of flutter derivatives in case Iu=6.2% 

Vr 

H1
* H4

* 

Mean 

value 

Standard 

deviation  

Coefficient 

of variation 

(Cv=  

Mean 

value 

() 

Standard 

deviation 

() 

Coefficient of 

variation 

(Cv=  

4.30 -4.426 0.35 0.079 2.848 0.64 0.225 

6.08 -2.95 0.43 0.146 -6.85 1.12 0.164 

7.84 -7.34 0.97 0.13 0.072 0.032 0.45 

 

 

Table 5.10a: Mean value and standard deviation of flutter derivatives in case Iu=9.1% 

Vr 

A2
* A3

* 

Mean 

value 

() 

Standard 

deviation 

() 

Coefficient 

of variation 

(Cv=  

Mean 

value 

() 

Standard 

deviation 

()  

Coefficient 

of variation 

(Cv=  

2.45 -0.105 0.028 -0.267 0.244 0.038 0.156 

5.63 -0.175 0.031 0.177 0.864 0.026 0.03 

6.72 0.0426 0.028 0.65 1.001 0.031 0.031 

7.43 0.081 0.025 0.309 1.15 0.017 0.015 

 

 

Table 5.10b: Mean value and standard deviation of flutter derivatives in case Iu=9.1% 

Vr 

H1
* H4

* 

Mean 

value 

Standard 

deviation  

Coefficient 

of variation 

(Cv=  

Mean value 

() 

Standard 

deviation 

() 

Coefficient 

of variation 

(Cv=  

4.32 -3.986 0.65 0.163 3.467 1.34 0.387 

6.64 -2.339 0.244 0.104 -2.734 0.562 0.165 

7.82 -3.544 0.788 0.222 -1.629 0.334 0.205 
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Table 5.11a: Mean value and standard deviation of flutter derivatives in case Iu=15.6% 

Vr 

A2
* A3

* 

Mean value 

() 

Standard 

deviation 

() 

Coefficient 

of variation 

(Cv=  

Mean 

value 

() 

Standard 

deviation 

()  

Coefficient 

of variation 

(Cv=  

3.4 -0.139 0.039 0.281 0.052 0.040 0.769 

5.07 -0.138 0.043 0.312 0.65 0.022 0.034 

6.51 -0.074 0.012 0.162 0.943 0.067 0.071 

6.85 -0.015 0.038 2.53 0.937 0.020 0.02 

 

Table 5.11b: Mean value and standard deviation of flutter derivatives in case Iu=15.6% 

Vr 

H1
* H4

* 

Mean 

value 

Standard 

deviation  

Coefficient 

of variation 

(Cv=  

Mean value 

() 

Standard 

deviation 

() 

Coefficient 

of variation 

(Cv=  

3.74 -2.676 0.71 0.265 0.522 0.138 0.264 

6.0 -2.117 0.493 0.233 1.269 0.826 0.651 

7.81 -2.159 0.148 0.068 -4.333 1.945 0.448 

 

 

 

 

 

Figure 5.26 Variation of identification (cont.) 

 

 

 
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Figure 5.26 Variation of identification (cont.) 

 

The flutter derivative A3
* is more stable which is small coefficient of variation. The standard 

deviation and coefficient of variation of A2
* decrease with increase reduced wind velocity.  

There are large scatter in A2
*, however at large reduced wind velocity the standard deviation 

and coefficient of variation are small. Therefore, the A2
* is reliability at high reduced wind 

speed (around onset flutter). 

 

5.3.5 Flutter critical velocity 

Equation of motion of long span suspension bridge to unsteady aerodynamic can be 

written as follows: 

A V DMu Cu Ku F u F u F u                                   (5.1) 

Where:  M is the mass matrix 

   C is the damping matrix 

   K is the stiffness matrix 

  u is the displacement vector 

  FA, FV and FD are the motion-dependent unsteady aerodynamic force matrices 

associated with acceleration, velocity and displacement, respectively and are called flutter 

derivatives.    

The flutter critical velocity can be found by solving the equation of motion with assumption 

dynamic response is harmonic vibration and undamped.  

2

{ }e

/

/

i tu

u u

u i u







 

 





 

                              (5.2) 
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2 2

1
{ }A V D A V D

i
Fu F u F u F u F F F u

 
                               (5.3) 

Inserting Eqs. 5.2 & 5.3 into Eq. 5.1, we have  

1
2

1
[K] [M F]u u


                               (5.4) 

Apply Eigen-solution Eq.5.4 will be obtained complex eigenvalue and eigenvector 

R I

R I

   

   
                            (5.5) 

Damping ratio is  

2 2

R

R I




 



                               (5.5) 

 

The flutter critical wind speed is defined as the cross point of torsional aerodynamic 

logarithmic decrement and torsional structural logarithmic decrement (=0.0263) (figures 

5.27 to 5.30). The flutter critical velocity found from flutter derivatives are in good 

agreement compared with from model dynamic test, only case Iu=15.6% the flutter critical 

wind speed identified from flutter derivatives (Ucr=8.2) that is slightly smaller compared 

with from model dynamic test (Ucr=8.6). 

 

Figure 5.27 Logarithms decrement in smooth flow (Ucr=5.7) 

(Modal dynamic experimental result Ucr=5.7) 

Ucr=5.7 
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Figure 5.28 Logarithms decrement in turbulent flow Iu=6.2% (Ucr=7.2) 

(Modal dynamic experimental result Ucr=7.2) 

 

Figure 5.29 Logarithms decrement in turbulent flow Iu=9.1% (Ucr=7.7) 

(Modal dynamic experimental result Ucr=7.7) 

Ucr=7.2 

Ucr=7.7 
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Figure 5.30 Logarithms decrement in turbulent flow Iu=15.6% (Ucr=8.2) 

(Modal dynamic experimental result Ucr=8.6) 

 
5.3.6 Stationarity tests of Gust response 

 Stationarity tests conducted with vertical gust response at wind velocity V=5.3m/s and 

torsional gust response at V=8.54 m/s in case of maximum turbulence intensity Iu=15.6% 

(figures 5.30 & 5.31). The 6000 data length with sample frequency 100Hz divided in to N = 

20 data sets (1 data set is 3 second), then calculated standard deviation of each data set and 

plot in figures 5.32 & 5.33. The median are calculated also and plot in figure (horizontal 

line). By counting the number of group separated of median line and compared with table 

5.12 (n=N/2=10), the number of groups are 8 and 7 correspond to vertical and torsional gust 

responses, these values fall inside of interval (6 and 15). Therefore, these gust responses are 

stationary.  

 

Ucr=8.2 
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Figure 5.30 Vertical gust responses at V=5.3 (m/s), Iu=15.6%  

 

 

Figure 5.31 Torsional gust responses at V=8.54 (m/s), Iu=15.6% 
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Figure 5.30 Standard deviation and median (horizontal line) vs. time of vertical gust response   

 
 

 

Figure 5.31 Standard deviation and median (horizontal line) vs. time of torsional gust response   
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Table 5.12: Stationarity with exceeding range probability  
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CHAPTER 6 

 

CONCLUSION 

 

Flutter derivatives are utmost important parameters in the estimation of the flutter 

instability and responses of long-span bridges. These parameters can be identified under 

wind tunnel test by a section model. Normally wind tunnel test is conducted with free 

vibration method in smooth flow condition. However, the free vibration method holds a 

shortcoming which at high wind velocity the extraction of FDs may not be obtained 

accurately because the aerodynamic damping of vertical mode is too high and vertical free-

vibration data is too short for the analysis. Furthermore, the wind in the atmospheric 

boundary layer is always turbulence. Therefore any research of wind-induced vibration 

problems must consider this issue. Not many researchers study the effect of turbulence on 

self-excited via flutter derivatives. A past study only dealt with quire small range of 

turbulence intensity, such as Sarkar (1994) with Imax=3.42%. However long-span cable 

supported bridges are often subject to the turbulence intensity up to 20% such as Akashi 

Kaikyo bridge of I = (4%-15%) during typhoon number 7 in 1998 and I = (4%-22%) during 

typhoon number 18 in 1999 (Miyata 2002). 

The objective of study is identification of flutter derivatives of trussed bridge deck by gust 

response. The aim is to clarify the effects of oncoming turbulence on the self-excited force of 

a cable-supported long span bridge deck by using a section model. Moreover, it is aimed at 

developing a mathematic algorithm as namely stochastic system identification method for 

extraction flutter derivatives, which is not only from buffeting response but also from free 

vibration response. The gust responses obtained from wind tunnel test by bilinear wooden 

grid and numerical simulation with turbulence intensity from 6.2% to 15.6%. The flutter 

derivatives were extracted from gust responses by using output only state space stochastic 

system identification technique.  

Both SSI_cov and SSI_data methods show good results even under turbulence flows 

because an advantage of those methods are considered buffeting force and response as inputs 

instead of noises. Both subspace methods identify state-space models from output data by 

applying robust numerical techniques such as QR factorization, SVD and least squares. The 

SSI_data is considerably faster than SSI_cov. 

FDs are reasonable comparison between both free decay and buffeting response of 1DOF 

and 2DOF systems. The A2
* related to torsional damping extracted from buffeting is slightly 
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scatter than from free decay response but the trend line seem to be similar. 

An identification of flutter derivatives from buffeting responses is plausible. The advantage 

of this technique is easier to obtain buffeting response under turbulent flows. This is less 

time consuming than free decay test. Especially at high wind velocity it can be avoided that 

the vertical free decay data is too short causing less accuracy. In addition, mechanism of free 

vibration method is far from real bridges behavior in wind field. On the other hand, the 

extraction of FDs from buffeting response more closely reflects a real bridge behavior under 

turbulent wind field. The bridge deck section model will vibrate under the excitation of 

turbulent flow even at small wind velocity. The method is simpler than free vibration 

technique which is corrupted by exciting the section-model. It is reasonable to extract FDs 

from buffeting response. The flutter derivative H1
*, H4

* and A3
* are more stable which are 

small coefficient of variations. The standard deviation and coefficient of variation of A2
* 

decrease with increase reduced wind velocity.  At large reduced wind velocity range the A2
* 

is reliability because the standard deviation and coefficient of variation are small.  

Turbulent flows significantly affect dynamic responses and flutter derivatives of the truss 

bridge deck section. Buffeting raises the response amplitude level progressively in 

proportion to the reduced wind speed and turbulent intensity. Specifically, turbulence 

induces buffeting response but increase flutter critical velocity, as shown in aerodynamic 

torsional damping term A2
*.  The flutter derivative H1

* extracted from buffeting response 

decrease with the increase of reduced velocity, but decrease a little in turbulence compared 

with that from smooth flow. H4
* found under turbulent flow slightly changes compared with 

that under smooth flow.  The direct FD A3
*seems to be same trend in both cases. 
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