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Chapter 1

Introduction

Equilibrium, which is the central concept in game theory, is an evolutionary solution
which is reached after players have corrected their biased beliefs and adjusted their
strategies. Basically, equilibrium models require three components: strategic thinking
(formation of beliefs about others’ behaviors); optimization (choosing a best response to
those beliefs); mutual consistency (adjustment of beliefs and best responses until they are
mutually consistent) (Camerer et al., 2004). However, it is often the case that solutions of
equilibrium models are not supported by data in lab or the phenomena in the real world.
For example, in the Beauty Contest Game, seldom players choose the unique Nash
Equilibrium (Camerer, 2003); in the Prisoners’ Dilemma, players cooperate about half the
time (Sally, 1995); in the Ultimatum Game, low offers are frequently rejected (Camerer
& Richard, 1995). Such abnormalities in players’ behaviors initiate the exploration of
Behavioral Game Theory.

Roughly speaking, development in Behavioral Game Theory has been made in three
directions. Firstly, social force and cognitive mechanism are introduced into game-
theoretical models. For example, the concepts such as reciprocity (e.g., Fehr & Gachter,
2000; Song, 2008; Neilson, 2009; Regner, 2014), betrayal aversion (Bohnet et al., 2008)
and guilty aversion (Beck et al., 2013) are utilized and the incentive mechanism in
decision-making is taken into account (Post et al., 2008). Secondly, learning models in
games are proposed (Schlag, 1998; Camerer & Ho, 1998, 1999; Camerer et al., 2002).

Thirdly, as the gaming situation becomes more complex than individual decision making



problems and deviations from the sharp predictions are more likely to happen in reality,
the Behavioral Game Theory also utilizes a non-equilibrium approach to model players’
behaviors. Several non-equilibrium approaches have been proposed in literature. For
example, Nagel (1995), Stahl and Wilson (1995) propose the level-k (LK) model, in
which players are divided into different levels corresponding to different depths of
reasoning. Following the level-k model, Camerer, Ho and Chong (2004) propose the
Cognitive Hierarchy (CH) model to handle the degeneracy of beliefs in LK models, and
Goeree and Holt (2004) propose the Noisy Introspection model to consider the reasoning
process reversely, i.e. from a sufficiently large order of belief. In summary, these
approaches share the same idea of weakening the mutual consistency assumption, in other
words, players are assumed to play according to some beliefs at first and learn to play the
equilibrium strategies.

The other key common argument of the above three non-equilibrium model is that
players are assumed to think ‘k’ step. However, this raise the question that which step an
involved player should stop at. It is rather untraceable and arbitrary. A natural thinking is
that a player doesn’t take the iterative thinking at all, or once a player started iterative
thinking, he/she will continue this process until equilibrium is reached. So we argue the
‘k’> step thinking way is relatively far from real players’ decision making process in a
game.

In this research, we propose a new theoretical model — the One-Shot Game Model to
character real player’s decision making process as well as handle deviations in several
typical games. Simply speaking, in our model, the decision process of a player consists
of two steps. Firstly, a player formulates his/her belief about his/her opponents’ actions.

Secondly, based on the formulated belief, a player decides his/her optimal choice. It is a



non-equilibrium approach because it is not necessary that each player should correctly
predict his/her opponents’ actions. We share the same idea with the existing non-
equilibrium approaches that the mutual consistency assumption is relaxed, but we
distinguish our approach in mainly the following two aspects.

Firstly, we enrich the methods of belief formulation. Speaking in detail, we propose
several alternatives possibly reflecting real players’ thinking process when formulating
his/her belief. For example, a player may deduce that his/her opponent should adopt an
action which generates a higher average payoff with a higher probability; also, we
introduce other alternatives for belief formulation and show how they work in specific
games.

Secondly, in solving each player’s decision problem, we distinguish us in by seeking a
way to capture the mental procedure of a player’s decision making process. There are two
steps: In the first step, for his/her each possible action, say «, the player evaluates every
action chosen by the other players, say b, with considering the likelihood degree of b
and the satisfaction level generated by ¢ and b; amongst all possible actions chosen by
the other players, the player chooses one which is called as the focus point of the action
a (an imagined scenario corresponding to «). In the second step, the player evaluates
each action based on its focus point (imagined scenario) and determines the optimal one
which can generate the highest satisfaction level when its focus point (imagined scenario)
occurs. The reason why the player thinks in this way is that one and only one action
(scenario) will be chosen by his/her opponent even if he/she knows the probability
distribution of all possible actions. This is the One-Shot Decision Theory based thinking.

The One-Shot Decision Theory is initially proposed by Guo (2011) which argues that

a person makes a decision under uncertainty based on his/her imagined scenario which is



most consistent with his/her personality. Different from the existing Expected Utility
Theory, the One-Shot Decision Theory argues that a decision maker focuses on a specific
state in the future rather than takes all possible states into consideration (Guo, 2014). In
order to understand the core argument, let us examine several well-known examples. The
Expected Utility Theory tells us that the reason why a person buys a lottery is that his/her
utility function is convex while the reason why a person buys insurance is that his/her
utility is concave. The One-Shot Decision Theory manifests that the lottery buyer is a
decision maker who takes into account the scenario which has a low probability to happen
but can bring about a large benefit and the insurance buyer is a decision maker who takes
care of the scenario which can cause a large loss even with a low probability. Clearly, the
One-Shot Decision Theory based explanation is intuitively acceptable. The One-Shot
Decision Theory has been utilized for analyzing a duopoly market of a new product with
a short life cycle (Guo, 2010a, Guo et al., 2010), private real estate investment problems
(Guo, 2010b), newsvendor problems for innovative products (Guo & Ma, 2014) and

multistage one-shot decision making problems (Guo & Li, 2014).

In Chapter 2, we make a detailed description of the One-Shot Game Model which
divides a player’s decision process into the following two steps. In the first step, an
involved player formulates his/her belief: different kinds of belief formulation criteria are
introduced, based on which players may formulate different beliefs. In the second step,
based on the formulated belief, a player evaluates his/her every possible actions: instead
of considering all possible actions possibly chosen by his/her opponent, only one of them
is focused (called the focus point); a player chooses an action which yields the highest

satisfaction associating with its focus point. We introduce two kinds of players, namely



the active player and the passive player, an active player focuses on a state yielding high
satisfaction with a high probability and a passive player focuses on a state yielding low
satisfaction with a high probability. Interestingly, in some simple games, players’ choices
are rather robust to the formulated beliefs: players’ choices are only whether he/she is an

active or a passive decision maker.

In Chapter 3, we utilize the proposed One-Shot Game Model to examine a typical
static game with complete information - the Capacity Allocation Game (Guo & Wang,
2017). In a supply chain, the capacity shortage refers to the situation that retailers’ demand
is higher than the supplier’s inventory, as modifications are infeasible in a short term, the
supplier has to divide the limited inventory to each retailer. A classical method is to divide
the limited capacity to each retailer proportional to his/her order quantity. In this game,
the unique Nash equilibrium is that each retailer submits an infinite order quantity, which
is far from experimental findings as well as people’s intuition. What is worse, the
equilibrium stays the same even if we change the shape of the utility function and
parameters of the model. Instead, we utilize the proposed One-Shot Game Model to

analyze such a game and analytical results are consistent with the experimental findings.

In Chapter 4, we further investigate a static game with incomplete information - First
Price Sealed Bid auctions by utilizing the One-Shot Game Model (Wang & Guo, 2015).
In the auction model, each bidder is thought to face a decision problem under uncertainty
which origins from other bidders’ bidding prices. The action set is his/her bidding price
and the uncertain factor is his/her opponents’ bidding prices. Taking into account the one-

time feature of auctions, it is intuitively acceptable that a bidder only imagines one



bidding price presented by his/her opponents amongst all possible prices for determining
his/her auction price rather than take any kind of average of all possible prices. Analytical
results obtained within our framework well explain the deviations observed in first price
sealed bid auctions: bidders tend to bid randomly upon drawing a low value and tend to

overbid when their valuation is relatively high.

In Chapter 5, we make a conclusion of the work mentioned above as well as consider
the future path of the proposed framework. Two kinds of games are still unsolvable within
our framework: One is the Prisoner’s Dilemma, in which dominated strategies are
observed about half the time; the other is dynamic games, solutions of which are obtained
by backward induction but sometimes are inconsistent to the experimental findings. We
potentially improve our approach to handle games in more general horizon and we leave

it for the future work.



Chapter 2

One-Shot Game Model

2.1 Belief Formulation

In this section, we describe the belief formulation process of a player. For simplicity,
we confine us to a game with two players and investigate how player 1 formulates his/her
belief about player 2’s actions. Extension to multi-player case is trivial and we omit it to

save space.
In a game with complete information, player 1 knows both player 2’s actions and player

2’s payoffs generated by both players’ decisions. Let us make the following notations:

A: Player 1’s action set, with a,(i =1,...,n) a specific element in it;
B: Player 2’s action set, with b,(j =1,...,m) a specific element in it;
vi(a;,b;): Player k’s (k=1,2) payoff.

Based on the above definition, we give the following three methods for Belief

Formulation.

1. Belief Formulation based on the minimum payoff of an action
In this method, player 1 deduces that the larger the minimum payoff an action can
generate, the more possible for it to be chosen by player 2. The belief can be written as

follows:



eXpr?Eil/}{ w( a,b,)}

Sexpmin{ (ah)] ey

B0 n)=

For example, let us consider the following 2x2 game, the row player is player 1 and

the column player is player 2. The payoff matrix is given in Table 1.

Table 1
b, b,
a, (0,5) (5,4)
a, (2,-1) (3,1)

For player 2, by choosing b,, his/her minimum payoff is -1; by choosing b, , his/her
minimum payoff is 1. Utilizing (2.1), we can obtain player 1’s belief about player 2’s

actions is as follows:

exp(-1)
= =0.12 :
Ab) exp(—1) +exp(1) 0 22
p(b)=—PD _gg 2.3)

exp(—1) +exp(l)
Comment
We utilize ‘ exp ’ here to transform the payoff into a strictly positive number. In the

above example, as the minimum payoff is a negative number and a positive number

respectively, it is difficult to directly handle it without transformation.

2. Belief Formulation based on the maximum payoff of an action
In this method, player 1 deduces that the larger the maximum payoff an action can
generate, the more possible for it to be chosen by player 2. The belief can be written as

follows:



expmax{ u a,b)}
ZeXprrg{ u( a,b,)}

p,:B—=[0]] nb)= (2.4)

Let us also consider the 2x2 game given in Table 1. For player 2, by choosing b,,
his/her maximum payoff is 5; by choosing b, , his/her maximum payoff is 4. Utilizing

(2.4), we can obtain player 1’s belief about player 2’s actions is as follows:

B exp(5) B
Pib) = exp(5) + exp(4) 073 @5
exp(4)
- =02 .
P() exp(5) + exp(4) 027 26)

3. Belief Formulation based on the average payoff of an action
In this method, player 1 deduces that the larger the average payoff an action can
generate, the more possible for it to be chosen by player 2. The belief can be written as

follows:

expl Y u4b)
Sexpl S db)

p:B-[0]] nob)= 2.7)

Let us also consider the 2x2 game given in Table 1. For player 2, by choosing b,,
his/her average payoff'is 2; by choosing b, , his/her average payoffis 2.5. Utilizing (2.7),

we can obtain player 1’s belief about player 2’s actions is as follows:

_ exp(2) B
pib)= exp(2) +exp(2.5) =038 8)
exp(2.5)
= =0.62 .
p(b:) exp(2) + exp(2.5) @3)



So far, we have discussed several belief formulation methods, it should be mentioned
that the above methods can be directly extended to the multi-player case, however, it is
difficult to extend the above methods to the continuous case, i.e., player’s action set is
continuous, for the continuous case, we will discuss it in the following two chapters
combining specific games. In the following, we will introduce the One-Shot Decision

Theory to character player’s decision making process.
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2.2 One-Shot Decision Theory
Following the above setting, let us consider player 1’s decision process. For preparation,

we make the following normalizations.
Firstly, we normalize the probability distribution function p,(b;) as the following
relative likelihood function p,(b;):

N G (2.10)
7 max, p(b)

Secondly, we normalize the payoff function v (a,,b;) as the following satisfaction
function u,(a,,b;):

Vi (ai’bj) — min a;.b; Vi (ai’bj)

u(a,,b;)= (2.11)

max., , v, (al.,bj) —min wi, Vi (al.,bj)

The decision process of player 1 consists of the following two steps:

Step 1. Determine the focus point

In this step, for each action a, € 4, player 1 focuses on one b, , the reason is that
although player 2 has many alternatives, for player 1, only one of them will be realized.
Instead of taking an average, player 1 focuses on only one b ;and we call such a b i

the focus point of a,. Player 1 of different personalities may have different focus
points, generally, we suggest the following two criteria for choosing the focus point.

Criterion 1: b;(a,) =argmax min(u,(a,,b,),7,(b,)) (2.12)
_ a !

J

Player 1 using this criterion focuses on the situation with a higher relatively likelihood

level and a higher satisfaction level, and we refer this kind of player 1 as an active decision

11



maker.

Criterion 2: b’(a,) = arg m:n max (u,(a,,b,),1 - 7,(b,)) (2.13)

J

Player 1 using this criterion focuses on the situation with a higher relatively likelihood
level and a lower satisfaction level, and we refer this kind of player 1 as a passive decision

maker.

Step 2. Obtain the optimal action

After determining the focus point, player 1 evaluates his/her each action under its
corresponding focus point. The optimal actions under the proposed 2 criteria are defined
as follows respectively:
Optimal action under criterion 1:

1

a’ = argmax u, (a,,b,(a,)) (2.14)

Optimal action under criterion 2:

2

a> = argmaxu, (a,,b(a,)) (2.15)

Example.

We utilize the example given in Table 1 to illustrate player 1’s decision process.
Assume player 1 formulates his/her belief based on the maximum payoff of player 2,
that is, for player 1, the probability distribution of player 2 choosing b, and b, is

given in Table 2.

12



Table 2

P1(bj) 0.73 0.27

Based on the probability distribution and (2.10), we can obtain the relative likelihood
function in Table 3.

Table 3

ﬁl(bj) 1 0.37

Based on Table 1 and (2.11), player 1’s satisfaction is given in Table 4.

Table 4
b, b,
a, 0 1
a, 0.4 0.6

Assume player 1 is an active decision maker, now we can obtain player 1’s focus

point of @, in Table 5.

Table 5
b, b,
m(b;) 1 0.37
uy(ay,b;) 0 1
min( u,(a,,b;),7,(b;)) 0 0.37

13



Based on Table 5, we know the focus point of @, is b, and by choosing a,, the
satisfaction of player 1 is u,(a,,b,) =1.

Similarly, we can obtain player 1’s focus point of a, in Table 6.

Table 6
b, b,
m(b;) 1 0.37
uy(ay,b;) 0.4 0.6
min( u, (a,,b;), 7,(b;)) 0.4 0.37

Based on Table 6, we know the focus point of a, is b, and by choosing a,, the
satisfaction of player 1is u,(a,,b)=04.

Based on the above analysis, we know for an active player 1, choosing a, yields a
satisfaction of 1 while choosing a, yields a satisfaction of 0.4, so for an active player
1, a, is his/her optimal choice. Readers can also verify that a passive player 1’s

optimal choice is a, .

14



2.3 Belief Independent Decision

In this section, we further consider several simple games within our framework,
however, in those games, the involved players’ choices are only determined by whether
the player is an active decision maker or a passive decision maker, which is to say, players’

actions are independent of their initial beliefs.

1 The Stag Hunt Game
In game theory, the stag hunt game describes a situation as follows:

Two hunters are going out on a hunt. They must decide whether to hunt a stag or a
hare without knowing the choice of the other. The cooperation is necessary in succeeding
in hunting a stag while each hunter can succeed in hunting a less valuable hare

individually. The payoff of such a 2x2 game is given in Table 7

Table 7
S H
S (3,3) (0,2)
H (2,0) (2,2)

We will show that the following result holds within our framework.
Theorem 1 Whatever initial belief an active player holds, he/she will choose S; in contrast,
whatever initial belief a passive player holds, he/she will choose H.
Proof. Assume the belief of an active player is p®(x) x e {S,Z} , after the
normalization procedure, the relatively likelihood function is then given as 7““(x), for

an active player, his/her payoff matrix is given in Table 8.

15



Table 8

S H
S 3 0
H 2 2

So the satisfaction matrix is then given in Table 9.

Table 9
S H
S 1 0
H 0.67 0.67

Let us then examine the active focus point of S.
It is easily to verify the following equalities:
min( u(S, H), 7" (H)) <u(S,H)=0 (2.16)
min( u(S,S), 7 (S)) = 7°(S) > 0 (2.17)
So the active focus point of S is given as follows:

x““(S) = argmax _ ,, min( u(S,x), 7" (x)) = S (2.18)

So for an active player, by choosing S, his/her (imagined) satisfaction is:

u(S,x*'(8)) =u(s,S) =1 (2.19)
However, by choosing H, his/her satisfaction is 0.67.
Based on the above analysis, for an active player, he/she chooses S independent of the
initial beliefs.
Assume the belief of a passive player is p”“(x), x € {S, H} , after the normalization
procedure, the relatively likelihood function is then given as 77“(x), let us examine the
passive focus point of S.
It is easily to verify the following equalities:

16



max(u(S,S),1 —z7“(S)) =u(S,S) =1 (2.20)
max(u(S,H),1-z""(H))=1-z""(H) <1 (2.21)
So the passive focus point of S is given as follows:

xP(S) =argmin g, max(u(S,x).1 - 77“(x)) = H (2.22)

So for a passive player, by choosing S, his/her (imagined) satisfaction is:
u(S,x"(8)=u(S,H)=0 (2.23)

However, by choosing H, his/her satisfaction is 0.67.

Based on the above analysis, for a passive player, he/she chooses H independent of the

initial beliefs.

The proof is completed. i

Analysis

From the above result, we can see in the stag hunt game, two active players can achieve
the payoff dominant equilibrium while two passive players can achieve the risk dominant
equilibrium. However, an active player and a passive player can’t reach any equilibrium

and in this situation, an active player suffers more.

2 The Chicken Game
In game theory, the chicken game describes a situation as follows:

Two drivers are heading for a single line bridge. Each driver can choose to swerve
or to go straight. The best situation for a driver is that he/she goes straight while his/her
opponent swerves and the worst situation is that both drivers go straight, which leads to

a conflict. The payoff of sucha 2x2 game is given in Table 10.

17



Table 10

S G
S (2,2) (1,4)
G 4,1) (0,0)

We will show that the following result holds within our framework.

Theorem 2 Whatever initial belief an active player holds, he/she will choose G; in
contrast, whatever initial belief a passive player holds, he/she will choose S.

Proof. Assume the belief of an active player is p“/(x) , x e {S,G} , after the
normalization procedure, the relatively likelihood function is then given as 7°“(x), for

an active player, his/her payoff matrix is given in Table 11.

Table 11
S G
S 2 1
G 4 0

So the satisfaction matrix is then given in Table 12:

Table 12
S G
S 0.5 0.25
G 1 0

Let us then examine the active focus point of G.

It is easily to verify the following equalities:
min( u(G,G), 7 (G)) <u(G,G) =0 (2.24)
min( u(G,S), 7*“(S)) = z*“(S) >0 (2.25)

So the active focus point of G is given as follows:

18



x““U(G) = argmax g g, min(u(G,x),7(x)) = S (2.26)

So for an active player, by choosing G, his/her (imagined) satisfaction is:
u(G,x*“"(G)) =u(G,S) =1 (2.27)

However, by choosing S, his/her satisfaction is 0.25 or 0.5, both of which are below 1.
Based on the above analysis, for an active player, he/she chooses G independent of the
initial beliefs.
Assume the belief of a passive player is p”“(x),x e {S, G}, after the normalization
procedure, the relatively likelihood function is then given as 77 (x), let us examine the
passive focus point of G.
It is easily to verify the following equalities:

max(u(G,S),l-77“(S)) =u(G,S) =1 (2.28)

max(u(G,G),l -7 (G)) =1-7""(G) <1 (2.29)
So the passive focus point of G is given as follows:

x?*(G)=argmin g ;, max(u(G,x),l - 7"“(x))=G (2.30)

So for a passive player, by choosing G, his/her (imagined) satisfaction is:

u(G,x"(G)) =u(G,G)=0 (2.31)
However, by choosing S, his/her satisfaction is 0.25 or 0.5, both of which are above 0.
Based on the above analysis, for a passive player, he/she chooses G independent of the
initial beliefs.

The proof is completed. O

Analysis

From the above result, we can see in the chicken game, neither two active players nor

19



two passive players can achieve any equilibrium. Among them, two active players yield
the worst conflict result. In contrast, an active player and a passive player can an

equilibrium which makes the active player better off.

3 The Battle of Sex
In game theory, the battle of sex game describes a situation as follows:

A couple are going out for a date this evening. However, they forget what event they
have decided: an opera or a football match. The wife prefers the opera while the husband
prefers the football match. Both of them prefer to go to the same place. The payoff of

sucha 2x2 game is given in Table 13.

Table 13
O F
O (2,3) (0,0)
F (0,0) (3,2)

We will show that the following result holds within our framework.

Theorem 3 Whatever initial belief an active husband (or wife) holds, he/she will choose
F (or O); whatever initial belief a passive husband (or wife) holds, his/her focus point by
choosing F (or O) will be O (or F).

Proof. Assume the belief of an active husband is p““(x), x € {O, F'} , after the
normalization procedure, the relatively likelihood function is then given as 7°“(x), for

an active husband, his payoff matrix is given in Table 14:

20



Table 14

O F
O 2 0
F 0 3

So the satisfaction matrix is then given in Table 15.

Table 15
O F
O 0.67 0
F 0 1

Let us then examine the active focus point of F.
It is easily to verify the following equalities:
min( u(F,0),z°“(0)) <u(F,0)=0
min( u(F,F), 7 (F))=z*(F) >0
So the active focus point of F is given as follows:

x“U(F) =argmax o, min(u(F,x),7(x)) = F

So for an active husband, by choosing F, his (imagined) satisfaction is:

u(F,x“ (F))=u(F,F)=1

(2.32)

(2.33)

(2.34)

(2.35)

However, by choosing O, his/her satisfaction is 0 or 0.67, both of which are below 1.

Based on the above analysis, for an active husband, he chooses F independent of the initial

beliefs.

Assume the belief of a passive husband is p”*(x) x e {F, O}, after the normalization

procedure, the relatively likelihood function is then given as 7”“(x), let us examine the

passive focus point of F.
It is easily to verify the following equalities:

21



max(u(F,F)1-7""(F))=u(F,F)=1 (2.36)
max(u(F,0),1 -7 (0)) =1-7""(0) <1 (2.37)
So the passive focus point of F is given as follows:

xP(F)=argmin _, , max(u(F,x),l =727 (x))= O (2.38)

So for a passive husband, by choosing F, his focus point is O.

The proof is completed. i

Analysis

From the above result, we can see in the battle of sex, two active players lead to the
worst result. As a passive husband (or wife) tends to choose O (or F), two passive players
also bears a relatively higher risk to miss each other. In contrast, an active player and a

passive player probably achieve an ideal (also equilibrium) result.
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2.4 Summary

In this section, we make a detailed description of the One-Shot Game Model. Generally
speaking, it is a non-equilibrium approach and consists of two steps: belief formulation
and one-shot decision making. When formulating belief, a player takes his/her opponent
payoff into account and deduces that his/her opponent should choose an action which can
generate a higher payoff (maximum, minimum or average) with a higher probability. In
deciding his/her optimal action, a player evaluates his/her each alternative focusing on
only one action possibly chosen by his/her opponent (the focus point), which is the one-
shot decision based thinking. Players with different personalities have different focus
points, which results in different optimal choices. Although a player formulates different
belief based on different belief formulation criteria, we show that in some simple 2x2
games, players’ choices are independent of formulated beliefs and is determined only by
whether the player is active or passive. The optimal actions of players in those games
possess strong robustness and the obtained solutions within our framework is intuitively

acceptable.
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Chapter 3

Capacity Allocation Game

3.1 Preliminary in Capacity Allocation Game

In a supply chain, the capacity shortage refers to the situation that retailers’ demand is
higher than the supplier’s inventory, as modifications are infeasible in a short term, the
supplier has to divide the limited inventory to each retailer. Different allocation
mechanisms have been proposed and examined so far (Cachon & Lariviere, 1999(a) (b)
(c); Hall & Liu, 2010; Lu & Lariviere, 2012), among them, the proportional allocation
method, which says the supplier provides each retailer the quantity proportional to his/her
order, is the most intuitive and prevalent in practice. Under such an allocation rule and
the assumption that each retailer is completely informed of the states (including the
demand, the shortage and wastage cost, etc.), such a problem can be formulated as a static
game with complete information among retailers (Cachon & Lariviere, 1999(a)).
Although simple, the Nash equilibrium of such a game is that each retailer submits an
order of infinity, which is in contrary to people’s intuition as well as deviates from
experimental findings (Chen et al., 2012; Cui & Zhang, 2016). What is worse, such an
unacceptable equilibrium is rather robust to the change of the shape of the utility function
and model’s parameters, which obviously increases the difficulty of solving such an
abnormality.

In this section, we firstly make a brief review of the capacity allocation game. For

simplicity, we consider a supply chain with one supplier and two retailers, indexed by 1,
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i=12. The supplier can provide at most K units’ commodities to retailers and each
retailer’s demand is D units. The capacity shortage refers to the situation that the
supplier can’t meet both retailers’ demands, i.e. K <2D. The wholesale price is ¢ per
unit and the market price is p per unit. It is assumed that all the parameters mentioned
above are exogenous and common knowledge. Under this assumption, the supplier’s
problem can be ignored here and this problem is a simple static game with complete
information between two retailers. During this game, the following events occur
sequentially. First, each retailer submits an order quantity ¢, with an upper bound Q
to the supplier, the upper bound O can be regarded as a regulation in such a competition.
Second, the supplier divides his/her capacity to each retailer according to the following
proportion allocation mechanism:

If the supplier has sufficient capacity, 1.e. K =g, +¢,, then each retailer’s order will

be filled;

If the supplier doesn’t have sufficient capacity, i.e. K <g,+g¢,, then each retailer will

receive an allocation proportional to her order quantity, specifically, retailer 1 will receive

LK and retailer 2 will receive LK . Mathematically, if we denote the

9,49, 9,49,

capacity allocated to retailer i as z,, then

, K
z, =min(g,, 9 ). (3.1)
q9: +49.

For retailer i, the material payoff function is given as follows:

D—cz. z.>2D
P ’ ’ . (3.2)

vi(q;,9_;) =
(4:.9-) {(p_c)zi 2 <D

The unique Nash equilibrium of the above game is that each retailer orders the upper
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bound @ independent of p and c. Such an equilibrium is practically problematic
and doesn’t match players’ behaviors in experiment (Chen et al., 2012; Cui & Zhang,
2016). Speaking in detail, Chen, Su and Zhao (2012) find that retailers only submit a large
order quantity (or the regulated upper bound in the experiment) when the cost of the
commodity is very low while decrease their orders when the cost of the commodity is
higher. Cui and Zhang (2016) find that retailers don’t order the upper bound at first stages
of the games and that their order quantities increase to the upper bound with the same
game being repeated. Those abnormalities raise an interesting question why such a
deviation occurs. The general answer in the two papers are that the classical game theory
suppose each retailer is perfect rational, while a retailer in reality is not perfect rational.
Specifically, Chen Su and Zhao (2012) argue that retailers are bounded rational in
deciding his/her optimal order quantity and Cui and Zhang (2016) rationalize the
experimental findings by utilizing the Cognitive Hierarchy Model, the core argument of
which is that an involved player may wrongly predict his/her opponents’ actions.

In the following, we utilize the One-Shot Game Model to describe the decision-
making process of an individual retailer involved in such a situation. Generally speaking,
two steps are thought to be required for a retailer to accomplish his/her decisions. First, a
retailer formulates a subjective belief about the action of his/her rival; second, a retailer
chooses an order quantity best fitting his/her objective. In the next section, we will discuss

the belief formulation process in detail.
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3.2 Belief Formulation Process

In this section, we consider retailer i ’s belief formulation process. In retailer i’s eyes,
which order quantity ¢ , is more likely to be chosen by his/her rival? To answer this
question, let us firstly verify the following dominating relation:

q; =D dominatesany g ,=d <D. (3.3)

The above domination says whatever order quantity retailer i chooses, his/her rival
choosing D is always better than choosing an order quantity less than D . This fact can
be verified by considering the following two cases:

(a) If g, < K—D, then the allocated capacity to his/her rival is as follows:

{Da lf q—i:D 5
z . =

: 3.4
Ve gd (34
It is obvious that v ,(g;,,D)>v_.(q,,d) for ¢ < K-D;
(b) If ¢, > K — D, then the allocated capacity to his/her rival is as follows:
DK
. I =D :
Dt if q,
dK
z, = , if q,=d and g, >K-d ; (3.)5)
d+q,
d, if q,=d and q,<K-d

On one hand, noticing that d <

for g, < K—d, we know the following relation
d+gq,

holds:

<

for g ,=d <D. (3.6)

—i

d+gq,

On the other hand, we have the following relation:
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DK
D+gq,

z for ¢ =D. (3.7)

—i

Further, considering ¢, > K—D and d < D, we can verify the following relation holds:

dK - DK
d+q. D+gq,

<D. (3-8)

The above relations imply that v (g,,D) >v_(g,,d) for ¢, >K-D.Combining (a) and
(b), we know ¢ ,=D dominates any ¢,=d<D . In the same way, we know for
0<d <d,<D, q,=d, dominates ¢, =d,.

In summary, within the interval ¢, €[0,D], the smaller ¢, is, the more order quantity
it is dominated by. In other words, it can be said that a smaller order quantity is more
easily to be identified as a dominated one by retailer i’s rival, so it is reasonable for
retailer 7 to deduce that the smaller an order quantity is, the lower probability for it to

be chosen by his/her rival.
However, domination only occurs within the interval ¢, €[0,D], then how should

retailer i deal with ¢, beyond [0, D]? To solve this question, let us firstly clarify the

following statement:

2 2

dominates an =de[D,
D y 4, [ <D

If g, e[D,01, 4. = ). (3.9

2
D" . p.Inthis case, the allocated capacity

Bearing in mind that D > § , we know

to his/her rival is as follows:

D’K D’

D i = s
D +(K - D)q. 4 = k_D
2= K D? (3-10)
, i . =d e|[D,
d+q, /4 L
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2
), we have the following relations:

For ¢ >p and g e[D, D
' K

2 2
dK - D°K - D°K _ (3.11)
d+q. D’+(K-D)q, D?>+(K-D)D
2 2
from (3.11) we know v_.(q,, >v .(q.,d) for o and D ,
( )W W —I(QZ K—D) —I(QI ) q,ZD dE[D,K_D)

which is the dominating relation (3.9).

Noticing that the above dominating relation holds under the condition that retailer I
doesn’t choose his/her dominated order quantities, we can say that in order to recognize
this dominating relation, retailer i’s rival should at least think one step more, which

obviously requires more computation and higher reasoning ability, so the dominated order

2

quantities within the interval [D, ) is more difficult to be abandoned than those

K —-D

within the interval [0, D), and it is natural for retailer i to deduce his/her rival adopts
2
an order quantity within [D,KD—D) with higher probability than adopting one within

[0, D). Also, in the same way, we can obtain the following relations:

D2

If 4, e[D,0] and D<d <d,<——

, q_, =d, dominates ¢ =4, . (3.12)

D>
K-D

Utilizing the same logic, within the interval [D, ), a higher order quantity is more

difficult to be identified as a dominated one, so the higher an order quantity is, the higher
probability for it to be chosen. Likewise, we can verify the following sequence of

dominating relations:

l)3 . D2 D3
g, = _ dominates any g, =del i )
(K — D) K —D’ (K —D)
D' dominat D? D*
q., = - ominates any q.,= d e [ —, - ) ,
(K —-D) (K—-D) (K—D)
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q.. D dominates any , —gef D! D" ,.(3.13)

(K-D)" (K—D)” (K—-D)""
As Im, (KDW = , there  exists an N such  that
DN—I DN
O€| ) . Also, within each interval, a higher order quantity

(K -D)"?" (K -D)""

corresponds to a larger dominating set, so a higher order quantity is chosen with a higher
probability.

In summary, retailer i’s probabilistic belief p,(g,) should satisfies the following two
principles:

(1) p(q,) increases within each sub-interval,
(2) p,(q,) increases over sub-intervals.

Without loss of generality and for the simplicity of analysis, we use an increasing
continuous function p,(x) to serve as the probabilistic belief of retailer i in this
situation.

So far we have finished the belief formulation procedure. In the next section, let us

consider retailer i’s decision making process.
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3.3 Decision Making Process

In this section, we utilize the one-shot decision theory thinking to character a retailer’s
decision making process. As one and only one order quantity of his/her rival will be
realized after the game, it is natural for retailer i to imagine only one order quantity
submitted by his/her rival before deciding whether to adopt an order quantity or not. In
other words, when retailer I evaluates an order quantity, he/she doesn’t regard this order
quantity as a lottery whose value equals its expectation, instead, he/she imagines a
specific order quantity possibly chosen by his/her rival and evaluates this order quantity
as if his/her imagined scenario comes true. The above argument is in line with human
intuitive cognitive phycology as well as matches the one-shot feature of retailer i’s
decision making situation. We also consider two kinds of retailers, namely the active

retailer and the passive retailer, which correspond to different attitudes in decision making

process. Speaking in detail, for each order quantity ¢,, an active retailer i contemplates
a ¢, making him/her better off with a relatively high likelithood, mathematically, such
an imagined ¢, can be interpreted as a solution of the following bi-objective

optimization problem:
max,, v,(¢;,q)-max, p,(q_)- (3.14)
In this problem, the satisfaction function u,(g,,q,) can be obtained by a simple linear

transformation as follows:

vi(q:,9,;)-L
ui(q,-,ql-)=’(q2]q_L) : (3.15)

where L is the lowest possible material payoff and U 1is the highest one. Obviously,
for retailer i, he/she earns the most when receiving exactly his/her demanding quantities,

so the highest possible material payoffis U =(p—c)D; as for the lowest one, retailer i
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is the worst off when he/she receives all the capacity K or when he/she receives nothing,
the material payoffis pD —cK inthe former case and 0 in the latter case. For simplicity,
we first make the assumption that pD —cK > 0 here and thus the lowest material
payoffis L=0. Based on the above analysis and the expression of v.(¢,,q,), u,(q,,9.,)
can be explicitly given as follows:
pD—cz;
u(qq.)=1 PP , (3.16)

o |

where z, is givenin (3.1).
As the probability density function p,(¢q,) is anincreasing function with p,(0)=0, the

relative likelihood function 7,(q,) is given in the following form:

(¢ =Pl 3.17
4=, 0 G147

Based on (3.15)-(3.17), problem (3.14) can be equally written in the following form:
max,, u,(q;,q_),max, 7,(q.) (3.18)
Further we know u.(¢,,q,) and 7,(q,) bothrangeover [0,1], we utilize the following
operator to find out an un-dominated solution of problem (3.14) as well as problem (3.18):
q',(q;) eargmax, min, [u,(q;,9_,),7,(q.,)] (3.19)
In the above formula, as u,(g,,q,) and 7,(q,) are both canonical numbers, making

comparison between them is acceptable. min [u,(g,.q,).7,(¢,)] stands for the lower

bound of the relative material payoff and the relative likelihood, and increasing the lower
bound of them means increasing them simultaneously, resulting in picking out a scenario
with relatively high likelihood and relatively high satisfaction, the chosen scenario is

called the active focus point, which reflects the tendency of an active retailer. Denoting
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the set of active focus points as Q',(q,), the optimal order quantity for an active retailer
is the one bringing him/her the highest material payoff (or the highest satisfaction) under

the focus point, which can be expressed as follows:

1

qi,* € arg max q; max ‘lli(‘li)tex(%) ui (qz > qi (Q1 )) (3'20)
In (3.20), when multiple active focus points exist, we choose the one leading to the largest

satisfaction, which is max q' (g,)), to reflect the optimistic attitude of an

u.(q.
a':(g)e0" (4) ,(q, >

active retailer.
Besides the active retailer with an optimistic attitude, we also consider another kind of
retailer with pessimistic attitude, which we call the passive retailer. Different from the

active retailer, for each order quantity ¢,, a passive retailer [ focusesona ¢ bringing
him/her a relatively bad result with a relatively high likelihood. Also, we can use the
following bi-objective optimization problem to identify the focus point of a passive

retailer:

min, v,(q;,9),max, p,(q.) : (3.21)
The above problem also equals to:

min , u,(q;,9;),max, 7,(q_;) : (3.22)

Also, we utilize the following formula to find out an un-dominated solution of problem

(3.21) as well as problem (3.22):
qgi(q[) € argminq,i max [u;(9;,9_).1 - 7;(q_)]. (3.23)
In the above formula, max, [u,(q;,¢,).1-7(q )] stands for the upper bound of the

relative material payoff and the inverse of relative likelihood, and decreasing the upper

bound of them means decreasing them simultaneously, or decreasing the satisfaction
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level and increasing the relatively likelihood simultaneously. The scenario obtained in
this way is likely to happen in the future and will bring retailer i an undesirable result
upon happening. As a passive retailer can be imagined as a conservative one, such a
scenario reflects his/her concern well. Denoting the set of passive focus points as

02 (g,) the optimal choice for a passive retailer is the one with the highest satisfaction

level associating its focus point, which can be expressed as follows:

2, .
g~ €argmax, min

2
i(qi)GQEi(q:) Z’li (Qiaqﬂv (qz)) (324)

q’
In (3.24), when multiple passive focus points exist, we choose the one leading to the

lowest satisfaction, which is min u,(q,,9° (q,)) , to reflect the pessimistic

7:(4)<Q%(4:)
attitude of a passive retailer.

In summary, in this section, we describe a retailer’s decision making process by seizing
the one-time feature of the problem as well as considering the impact of decision makers’
personalities. Different from the existing expected theory, a retailer makes his/her
decision relying on only one specific imagined scenario in the future, it is closer to the
real decision making process, also, the obtained optimality conditions show the
reasonability and effectiveness of our framework and we will show them in the following

section.
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3.4 Analytical Results and Explanation

For an active retailer, we have the following result.
Theorem 1. For an active retailer, his/her optimal order quantity is ¢;" =Q.
Proof. In the first step, let us examine the focus point for each ¢, €[0,0]. For a fixed ¢,,

let us consider maxmin(r;(q_,),u,(q;,q_;)) Wwithin [O,%ql. —¢;]1 and [% q,-¢:,0] »
q-i

respectively. As D<K <2D and 0<¢,<Q , we know 0< %ql. —gq,<Q , which

guarantees the feasibility of such a division.

q.; € [0,%% —g,]: Bearing in mind that 7,(¢_;) is an increasing function, it is obvious

that the following relation holds:

. K
m]?X min(7,(q_;),u;(q;,9_;)) < mI?X (g ) =7 (=9 —9q)- (325)
q-i E[O,B‘I,‘_‘L‘] q-i E[O’qu_qi] D

q.; e[% q; —q,,0]: Firstly, it can be verified that u,(g,,4_;) is a decreasing function of

g, within this interval and that u; (qi,qu —q,)=1. Secondly, 7,(¢_;) 1is an increasing

function and 7,(Q)=1. We can then obtain the following relations:

K K
l—u[(qi,Bq[—q,«)>7ri(54i—qi), (3.26)
@ xr @)=1. (3.27)

Considering the monotonicity of u,(¢;,,q_;,) and 7x,(¢_;), we know

max min(z,(q_,),u,(4;:4-)) = 7,(4-) = ,(4,:4-,) » (3.28)

J=q.—q
q. [Dq, q;]

where ¢, is the unique solution of 7,(¢,)=u,(g;.q ;) within q., e(%qi—qi,Q). As

Ze(%qi—qi,Q) and 7(¢,) 1s an increasing function, we know
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7.(q.)> 7, (% q; —q,) , from which we can obtain

max min(7z,(q_,),4;(4:,q_)) = 7,(q_) = (q;,4_) » (3.29)
arg max min(7 (9, €,4,9.))=q.; - (3.30)
¢;€[0,0]

As ¢_, is the unique solution of 7,(¢,)=u,(g;.q ), specifically, q_ satisfies the

following equation:

— Kq,
(g V)=—F—2L___, 3.3
7(q;) DG a0 (3.31)

Differentiating both sides with respect to ¢,, we know
— KDgq_,

q.; (q,)= 2 e >0. (3.32)
KDq;+D"(q;+q_;) 7 (q_;)

The above relation shows that q__, increases with increasing g¢,, as 7, (q__i) is an

increasing function of u;(q,;,q_;) 1is an increasing function of ¢,, we know the

optimal order quantity in this case is ¢,”" = Q. It proves theorem 1. O
Comment 1

From the proof of Theorem 1, we know that for an order quantity ¢;, an active retailer
ignores his/her rival’s order quantities with relatively low likelihood (i.e.

q.; e[O,Bq[—qi] ); within the interval ¢, E[%%—%Q] , retailer 1 ’s satisfaction

decreases while the likelihood of ¢_; increases with increasing ¢_;, as an active retailer

I subconsciously seeks a more possible and more beneficial state, making a balance
between the two factors , or mathematically choosing the intersection point of those two

functions as the focus point, is intuitively acceptable in this situation.
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For a passive retailer, we have the following theorem.

Theorem 2. For a passive retailer, his/her optimal order quantity ¢>*satisfies

'K o cKq;" (g +O) ~
(¢>"+0)D " pD(qF +0)—(p—c)Kq}”

Proof. Firstly, for 4 [0, D], utilizing the monotonicity of 7 (g .,) and wu (q,.q_,) -

g). (3.33)

we know the following relation hold:

Q arg qiiE[O’Q] l(q—l) ( )
_ i . . . . 3.35
Q=arg min u,(g,.9-,) (3.35)

Based on (3.21) and (3.22), we know in this case, the focus point of ¢, is qi (g)=0

and ui(qi,qi (qi))zui(qi,Q):L . Considering the monotonicity of

(¢, +O)D

u.(q;,0) , we know the optimal order quantity within [0, D] is D and the satisfaction

K
(D+0)

is

. . - K
Secondly, for ¢, €(D,(Q], let us consider the focus point for each ¢, within [0, 54~ q;]

and [% q; —q;,0], respectively.

q.; € [O,%q[ —q,]: Firstly, it can be verified that u(q,,q ;) 1sastrictly increasing function
e .o K .
of 4 within this interval and that (%’B% —q,)=1. Secondly, 1—7,(g_,) 18 a

decreasing function and 1-7,(0)=1. We can then obtain the following relations:

0 (g0 <1-70)=1 , (3.36)

g5 q @ P ks ama)- (337)

Considering the monotonicity of u,(q,,q,) and 1-7,(q,), we know
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H]i]}'l rnax(l_ﬂi(qﬂ‘)’ui(qisqﬂ‘))zl_ﬂ-i(éﬂ‘):ui(qﬂéﬂ‘)’ (338)

q,fe[O,Bq,-—q,‘]
where ¢, is the unique solution of 1-7,(q,)=u,(q,q,)  within
l-7(q.,)=u(q,,q,).
K e .
q.; € [B q; —¢q;,0]: Within this interval, both u,(g;,q ;) and 1-7,(q_,) are decreasing

function of ¢_,, combining the fact that 1 — ~ (Q) = 0, we can obtain the following

relation:

min  max(1-7,(q_,),u,(¢,,9_)) = max(1-7,(0),u,(¢,,0)) =u;(q;,0) - (3.39)

‘L,E[B‘L‘—qi’Q]
Based on the above analysis, we know the focus point of an order quantity ¢, can be

expressed in the following form:

q. s it u(q,9-)<u(q;,0)
qz. (9,)= 0 > if ui(q;,9-)>u(q;,0), (3.40)
{(}7[7Q} 5 if ui(qiaé—[):u[(q[’Q)
where u,-(q,-,qi(q,»))=min(u,»(q,-,é,,»),u,-(qi,Q)) . As g, is the unique solution of

1-7,(q.)=u,(q,.q_,)»specifically, g satisfies the following equation:

1-7(g)=—2—- Kg, (3.41)
p—c (p_C)D(Qiﬂ_qﬂ')
Differentiating both sides with respect to ¢ , we know
.y - c)KDq ,
(4.)(q,) = p(p = ©)KDq >0 (3.42)

p(p—=c)KDg, +(p—c)’D*(q; +q.)’7(q.,)
The above relation shows that 4 = increases with increasing ¢,, as 1—,(g_,) 1s a

decreasing function of § , u.(q,,4,) 18 a decreasing function of ¢, .

As u,(q,,0) = # ,itis obvious that 4 (g,,©) isanincreasing functionof ¢ .
q. +

i
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So u,(q, qi (¢;))=min(u,(g;,4_;),u,(¢;,0)) attains its minimum at the intersection point of
the two functions « (g,,4,) and u,(q,,Q). denoting the optimal order quantity as

g’ , it should satisfy the following condition:

ui(qizw*9é—i):ui(qizw*9Q)' (3.43)

From (3.16), we know u,(¢>",4,) and u,(g>",Q) are as follows:

2.%
pD—C zlfqi ~
v~ q; +9_;
u(q;",4.) = L (3.44)
(p—o)D
Kq}”
2%
# P
u(g>,0) =1 "% Q (3.45)
D
(3.43) (3.44) (3.45) leads to the following relation:
: cKg (g + :
» ql ((’II Q) = _qi2, (346)

pD(g;" +0)~(p—)Ky;
Further, as 4 is the unique solution of 1—7,(g_,)=u,(g,,q_,), We have the following

relation:
1_7[1'(‘?4) :ui(qiz’*’éfi)' (347)

(3.43) (3.46) (3.47) together lead to (3.33).

Based on the above analysis, we know the optimal order quantity within (D, O] is

qf’ , and the satisfactions is (2*61% , which is larger than the highest satisfaction by
q:
choosing an order quantity within [0, D]. It proves theorem 2. i
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Comment 2

From the proof of Theorem 2, we know that for an order quantity ., , a passive retailer
I possibly focuses on two situations, one is that his/her rival orders too much (i.e.
g, =0 ), in this case, retailer i receives too little and suffers from the largest
opportunity cost, so it is an undesirable situation. Considering the character of a passive
retailer, worrying about this situation is understandable. The other situation that may draw
retailer i’s attention is that his/her rival orders too less, which will cause retailer i a
larger wastage loss. However, as the likelihood that his/her rival orders too less is not
high, considering the low possibility, retailer i may ignore the a very low 4 , instead,
retailer i tends to concentrate on a low 4 relative probably chosen by his/her rival,

which is the 4 in theorem 2. Pessimistically, a passive retailer makes a comparison

between the two situations and chooses a worse state as the focus point.

Based on Theorem 2, we can also obtain the following results.

oge . . . . . 2% . . .
Proposition 3 For a passive retailer, his/her optimal order quantity ¢;” is an increasing

function of the upper bound @ and his/her demand D ; his/her optimal order quantity

2% . . . .
q;" s a decreasing function of the capacity K.

Kq''(g7"+O)
pD(g”" +0)—(p-c)Kq}”

Proof. Bearing in mind that ¢_; = qiz ™, the optimal condition

(3.33) can be written as follows:
g9 K

2 " 11—z (d . 3.48
@ +O)D 7,(q_,) (3.43)

Fixed D and K, differentiating both sides of (3.48) with respect to qlg,* , utilizing

the implicit function theorem, we know the derivative of @ with respect to qf’* is as
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follows:

_OKD +D*(g+0)’ 7/(§.)4",(q;") (3.49)

0'(q;") JKD

As 7(g,) is an increasing function, 7/(g,)>0 ; from (3.42), we know

§'.(¢”") > 0, those two relations leads to the result that Q'(¢>") > 0, in other word, O

. . . . 2,% . . 2% . . .
is an increasing function of ¢;” , which is equal to say that ¢;” is an increasing
function of Q.

Similarly, by fixing the other two parameters, we can obtain the derivatives of D and

. 2,%
K with respectto ¢q;’ are as follows:

Di(gry = LKD + D (g + Q) 7/(q )9 (a) (3.50)
9K(Q+q)

K(q>) = — KD+ D*(q + O) /(G4 (4"") (3.51)
qD(Q +q)

Based on the analysis of Q'(¢”") and (3.50), (3.51), it is easy to check that

D'(g7”")>0 and K'(g”") <0, which imply that 6],.2 " is an increasing function of D

and a decreasing function of the K .The proof'is completed. O

Comment 3

The results in Proposition 3 are also intuitive. Firstly, when the capacity is low, it is
natural for a retailer to raise his/her order quantity to gain a larger share of the total
capacity. Secondly, when the demand is high, a retailer should increase his/her order
quantity to guarantee a larger allocation. Thirdly, when the upper bound is high, as the
opponent can order more, a retailer should also raise his/her order quantity to make

him/her more competitive.
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Explanations of the experiment findings

Utilizing the above analytical results, we can provide a unified explanation for the
experimental findings in the literature.
Explanation of the experimental findings of Chen, Su and Zhao

In the work of Chen, Su and Zhao (2012), the experiments show that when the

wholesale price is very low (¢ =2 in the experiment), most retailers’ choices are close

to O . Theorem 1 suggests that regardless of 7, , an active retailer’s optimal order
quantity is Q. As it is acceptable that a retailer adopts an active attitude when facing a
commodity of low cost, our result is in consistent with the experimental findings. When
the wholesale price is very high (¢ = 20 in the experiment), retailers’ order quantities are
distributed in the interval [D,Q], in other words, in this case, a retailer also orders more

than his/her demand, but don’t order the highest O for a fear of possible large loss.
From Theorem 2, we know the optimal order quantity of a passive retailer ql_z,* lies in

the interval [D,Q], further, by assuming different initial beliefs p (g_.), ql-2 " canbe
different values within [D, Q]. It is also acceptable that a retailer is passive when facing

a commodity of high cost, so we can say our results match the experimental data to some

extent.

Explanation of the experimental findings of Cui and Zhang

The experiments conducted by Cui and Zhang (2016) also show some tendencies of
retailers’ behaviors in the capacity allocation game. Firstly, a retailer orders more when
the capacity is more restricted (i.e. K is low). Secondly, a retailer doesn’t order the

upper bound at first, however, when the game is repeated, a retailer’s order quantity
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increases to the upper bound. These phenomena can be also explained by our model.
Firstly, in Proposition 3, we show that the optimal order quantity is increasing with
decreasing the capacity, what is more, we also show that the optimal order quantity is
increasing with increasing the demand and the upper bound, which are both consistent
with human’s intuition. Secondly, at first stage, retailers have no experience of such a
game, in other word, a retailer finds him/herself in an unfamiliar environment. In such an
environment, it is probable that the retailer is passive (or less confident), so the retailer
chooses an order quantity less than the upper bound, which is consistent with the choice
of a passive retailer in our model; however, with repeating playing the same game, a
retailer gains more experiences and becomes more confident (or active), and the order
quantity gradually increases to the upper bound, which is the choice of the active retailer

in our model.
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3.5 Summary

In this section, we utilize the One Shot Game Model to examine the capacity allocation
game. Firstly, each retailer forms the belief based on strategy dominance. Secondly,
optimal choices are made based on the form belief. As there is one and only one chance
for a retailer to submit an order quantity and one and only one order quantity will be
chosen by his/her rival, it is a typical one-shot decision problem for each retailer, so we
utilize the one-shot decision theory to analyze the decision making process of an retailer.
The obtained analytical results are more intuitive than the classical Nash Equilibrium and
match the experimental findings in literature.

Moreover, the proposed framework in this section can be potentially extended to
investigate games resembling the capacity allocation game in the following two aspects:
firstly, the unique equilibrium is obtained by iteration of elimination of dominated
strategies; secondly, the equilibrium is an implausible extreme value.

One example is the Traveler’s Dilemma proposed by Kaushik Basu in 1994. The story
is that two travelers fly home, each bring a souvenir of the same price. Their luggage is
lost and the airline company asks them to make independent claims for compensations.
If their claims differ, each will get the minimum of the two claims. In addition, the traveler
making the lower claim will be paid a fixed reward, which will be imposed as penalty to
the other traveler. The unique Nash equilibrium obtained after iteration of elimination of
dominated strategies is each traveler submit a 0 claim, which is implausible but robust.

The other example is the p —Beauty Contest Game studied by Nagel in 1995. The
rule is simple: a large number of players simultaneously choose a number between 0 and
100, the more closer a player’s chosen number is to the P (0< p <1)times the average

of all chosen numbers, the more profit he/she gets from the game. When the chosen
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number is restricted to integers, it is one kind of integer games. The p —beauty contest
game is also a dominance solvable game with the unique Nash equilibrium that every
player chooses 0, which is a prediction far from experimental findings.

Both the two abnormalities mentioned above can be potentially solved by the proposed
framework in this section. On one hand, as dominated strategies can be eliminated
iteratively, a monotone belief can reflect the dominance relation of such games better; on
the other hand, considering the one-time feature of such games, we utilize the one-shot
decision theory to handle a player’s decision process. Players’ action set as well as utility
function in both games are different from those in the capacity allocation game, and

further analysis is left for the future work.
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Chapter 4

First Price Sealed Bid Auction

4.1 Anomalies in First Price Sealed Bid Auction

The classical solution concept in first price sealed bid auctions is the risk-neutral
Bayesian Nash Equilibrium (hereafter RNBNE) (Vickrey, 1961). However, experimental
evidence shows that real bidders don’t follow it at most time. Generally speaking, there
exist two major tendencies. One is that bidders with low valuation tend to bid randomly:
on one hand, Cox, Smith and Walker (1988) point out the ‘throw away’ phenomenon,
which says that some subjects in first price auction experiments, upon drawing a low
value, enter a bid at (or near) zero, or less frequently, a bid at (or near) the value. On the
other hand, overbidding (Pezanis-Christou, 2002) and underbidding (Kirchkamp &
Philipp, 2004), which respectively mean bidding above and below the RNBNE, are also
observed. The other one is that bidders with high valuation tend to overbid (Cox et al.,
1982).

Several explanations have been considered in the literature. For example, the throw
away phenomenon is thought caused by the fact that bidders with low evaluation don’t
take the auction seriously (Cox et al., 1992). Overbidding is explained by theoretical
models such as risk aversion (Cox et al., 1983), joy of winning (Cox et al., 1992), ad hoc
bidding strategy (Pezanis-Christou, 2002), quantal response equilibrium (Goeree et al.,
2002), the level-k model (Crawford & Iriberri, 2007), regret averse (Hayashi &

Yoshimoto, 2014), etc. Underbidding is rationalized by the anticipated emotions model
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(Roider & Schmitz, 2007). However, to the best of our knowledge, until now, there exists
no theoretical model providing a unified explanation for those phenomena. In the
following, we utilize the One-Shot Game Model to analyze the first price sealed bid
auction. Instead of treating an involved bidder as a decision making machine, we try to

narrate the real decision making process of him/her.
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4.2 Two Bidders’ First Price Sealed Bid Auction

For easily understanding our models, let us begin with examining the two bidders’ case.
For bidder i e {1,2}, the set of his/her bidding prices is B, =[0,v,] where v, is his/her
valuation of the auctioned subject which is an independent private value; his/her belief —
the probability density function of his/her rivals’ bidding prices is p, where
i#je{l2}.

In our models, we not only take into account the simple gain achieved by the bidding
price but also the regret caused after knowing the result. The effect of regret on bidders’
behaviors is initially examined by Engelbrecht-Wiggans (1989) and further studied by
Filiz-Ozbay & Ozbay (2007), Engelbrecht-Wiggans & Katok (2007, 2009) and Hayashi
& Yoshimoto (2014). The winner in a first-price sealed-bid auction is the bidder with the
highest bidding price. However, it is always the case that the winner finds himself/herself
bid too high after the revelation of all the other bidders’ bidding prices. In this situation,
we say that the winner suffers from ‘winner’s regret’. In contrast, after an auction, a loser
may find that the winner’s bidding price is below his/her valuation of the auctioned object.
In this case, the loser actually misses an opportunity to gain and we say that the loser

suffers from ‘loser’s regret’. The evaluation function is given as follows:

(Vi_bi)_ki,l(bi_bj) > b, >b, >
fi(b;,b;) = —ki, (v, =b;) , v,2b, 2b, 4.1)
0 , b, >v ;

where k,, isbidder i's winning regret parameter and k,, isbidder i's losing regret

parameter. Here we assume k,,,k,, €(0,C] where C is a positive real number. This

assumption is reasonable and can be interpreted as follows: on one hand, the empirical

study (Engelbrecht-Wiggans & Katok, 2007) shows both winning regret and losing regret
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have effect on the bidder’s evaluation; on the other hand, neither winning regret nor losing
regret is so large that the direct profit can be ignored in the bidder’s evaluation. The

evaluation function (1) involves the following three cases. Case 1 is that bidder i wins

the auction (b, >b;). In this case, the evaluation value is the gain v, —b, offsetting by
the weighted winning regret k,,(b, —b,). Case 2 is for the situation v, 25, 2, . In this
case, the bidder i feels regret because if he presents a little higher than b, he could

gain v, —b; so that the evaluation value is —k,,(v,—b;), it should be mentioned here

that we treat the tie case as lose in (1) to reflect a relatively conservative attitude of an

involved bidder; In Case 3, that is, b ; >V, bidder i loses the auction. However, there

is neither regret nor gain for him/her.

The satisfaction function can be obtained through the following transformation:

Ji — LB,

D= o

(4.2)

where LBf, and UPf, are alower bound and a upper bound of f;, respectively. Since
—Cv, < f, <v, always holds, we take v, and —Cv, as the upper bound and lower

bound of £, respectively, and rewrite (4.2) as follows:

v, =b) =k, (b—b)/A+C)v, , b>b
w(b,b)=1 —k,(,~b)/A+Cy,  , v,2b 2b ; . (4.3)
C/(1+C) . b>v

For simplicity, we set

(v, =b)- ki,l (b; _b_/) + Cvi)/(l +C)v, = uil(bi 7b_;) 5 (4.4)

(—k,, (v, =b,))+Cv,) J(1+C)v, =u} (b)), (4.5)

49



and u;(b,,b;) and u](b,) areused henceforward.
Usually, bidder i's valuation v, is assumed to be a real number within [0,1] and

bidder i's belief on his/her rival’s bidding prices b, is assumed to be uniformly

distributed within [0,1] (Engelbrecht-Wiggans, 1989; Crawford & Iriberri, 2007), that

is,

0, b,<0 ;
p(b)=11,0<b <1; (4.6)
0, bj >1 ;

The relative likelihood function is then given as follows:

0, b,<0 ;
7 (b)) =41,0<b,<1; . 4.7)
0, b,>1 ;

We argue that a bidder determines his/her bidding price based on his/her imagined
scenario which is consistent with his/her personality. Let us consider that the bidder takes

a conservative attitude to the imagined scenario. Speaking in detail, for each available

bidding price b,, the bidder i contemplates a scenario b, which can bring him/her a
relatively low satisfaction level u,(b,,b;) with a relatively high relative likelihood
degree 7,(b,). It can be represented by the following bi-objective optimization problem.

max, 7,(b;), min, u;(b,b,), (4.8)
where b, €[0,v,]. Regarding u,(),,b;) and 7,(b;) equally important, we can find out

one Pareto optimal solution of (4.8) from the set of all undominated solutions as follows:

b;(b;) € argmin, max(1—7,(b;),u,(b;,b,)). 4.9
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b;(b;) is a focused scenario amongst all scenarios b, when bidder i presents the

bidding price b, and called as the focus point of b,.
A bidder aims to find out a bidding price whose focus point associates with the largest

satisfaction level. Such a bidding price is regarded as an optimal one. Denoting the set of

focus points of b, as B(b,) and an optimal bidding price as b, we have

b’ e argmax, min, ., u,(b,b,). (4.10)
(4.10) s for the case that multiple focus points of b, exist. In this case, different focus
points bring different satisfaction levels. We take a conservative attitude to evaluate the

satisfaction levels so that we take a minimum, that is, min, _,.,,u,(b,,b,). If a unique

focus point b, (b;) exists for b,, then (4.10) becomes b; € argmax, u,(b,,b,(b,)).

Let us make a brief summary of a bidder’s decision procedure described by (4.6)-(4.10).
The first step is the formulation of his/her belief about his/her rival’s bidding price, that
is the formulas (4.6) and (4.7); the second step is determining the focus point (one
imagined bidding price offered by his/her rival) of his/her each bidding price, that is the
formulas (4.8) and (4.9); the third step is to evaluate his/her each bidding price by the
focus point and determine his/her optimal bidding price. Clearly, different from the
existing auction models where the bidding price is evaluated by the expected utility
resulted by all possible bidding prices of the rival, our model evaluates the bidding price
only by the satisfaction level resulted by its focus point. The following theorem is for the

optimal bidding price.
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Theorem 1.

The optimal bidding price of bidder ; is given as follows:

. (I+k ),
"Lk, k,

Proof.

Firstly, let us examine the focus point for each b, €[0,v,].
Since 7,(b;)=1 and u,(b,b;)>0 always hold, we have
max(1-7,(b;),u;(b;,b;)) =u,(b,,b,)
so that we know
min , o max(l—7,(b,),u,(b;,b;)) =min, ,,1;(b;,b;).
Using (4.4) and (4.5), (4.3) can be rewritten as
u,(b,,b;) =u;(b,b,) for b, €[0,b,),
u,(b,,b,) =u’(b;) for b, e[b,v,],
u,(b,,b;)=C/(1+C) for b, e(v,1].

Since u, (b,,b;) and u(b,) areincreasingin b, we know

min by el0.6)) u, (b,,b;)= u; (b,,0) ,

min, _, 4 (b)) =u; (b) = (k,(v, =b) + Cv,) /(1+ C)v, < C/(1+C).

From (4.13), (4.17) and (4.18), we know

min max(1-7,(b,),u,(b,,b,)) =min , 4, yu,(b,,b;) =min(u; (5,0),; ().

So for each b,, its focus point, denoted as b,(b;) is given as follows:
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(4.14)
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(4.16)

(4.17)

(4.18)
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0y, w0 <ui(B) ;
bj(bi)e {0,6,} uz‘l(biso):uiz(bi) ;

4.20
o) uzl (,,0) > uiz ®) ( )
Secondly, let us examine the optimal bidding price. From (4.19), we know
min by eB(by) Ui (biabk) = mm( ”zl (biao)’uiz (bi ) - (421)
As ul.1 (0,0)=1>(C—k,,)/1+C)= uf (0) and
u;(v,0)=(C—k, ) /1+C)<C/1+C)=u}(v,) hold, considering that

u;(b,,0)=(1+C)v,—(1+k,,)b)/(1+C)v, is a decreasing function of b, and
ul (b)) =((C—k,,)v,+k,,b)/(1+C)v, is an increasing function of b,, it is obvious that
min(u; (b,,0),u} (b,)) attains its maximum when the following equation is satisfied:

u; (b;,0) =u} (b,). (4.22)

Solving (4.22), we can obtain the optimal bidding price as follows:

1+k ,)v,

; _ Lrkaly (4.11)
I+k;, +k,,

It proves Theorem 1. i

From the proof of Theorem 1, we know that for a bidding price b,, the following two
situations draw attention of bidder ;: one is that his/her rival gives a bidding price 0, and

in this case, bidder ; suffers from the largest winning regret; the other one is that his/her

rival offers the same bidding price with his/her bidding price, that is, b, =b,, and in this

case, bidder ; has the largest losing regret. By making a comparison between the above
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two situations, bidder ; eventually chooses a worse scenario which brings him/her a
lower satisfaction as the focus point of b,. The focus point is bidder ;’s imagining
scenario which will happen when he /she offers a bidding price b,.

Since bidder i’s winning regret increases but losing regret decreases with increasing
his/her bidding price, bidder i should make a trade-off between them when he/she
decides the optimal bidding price. As a result, the optimal bidding price makes the bidder
have equal satisfaction levels in winning and losing situations.

Clearly, the above explanation is intuitively acceptable and fits the psychological
behavior of a conservative bidder.

From Theorem 1, the following properties can be easily obtained.

Proposition 2.

Bidder i's optimal bidding price is an increasing function of his/her valuation v,

and his/her losing regret parameter £, ,, respectively; and a decreasing function of his/her

winning regret parameter k.

Proposition 2 shows that if a bidder highly evaluates the auctioned object then he/she
will offer a high bidding price, which is also called the ‘efficiency of auctions’; if a bidder
values losing regret highly, then he/she will increase his/her bidding price to make
winning more possible; if a bidder puts major emphasis on winning regret, then he/she
will decrease his/her bidding price in order to avoid spending too much unnecessary
money on the auctioned object. The above conclusions are quite consistent with the actual
behavior of a bidder and meanwhile support the fundamental hypothesis of this research

that for each bidder he/she faces a one-shot decision problem in which each bidder makes
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a decision based on his/her imagined scenario.

Comment. We have proposed two bidders’ first-price sealed-bid auction models with the
one-shot decision theory. In the proposed model, each bidder tries to obtain the optimal
bidding price with conjecturing that the other bidder randomly decides his/her bidding
price within [0,1]. This idea is the same as the level-k model, in which a level-1 bidder
faces a level-0 bidder (Crawford & Iriberri, 2007). However, our models are scenario-
based whereas the level-k auction models are lottery-based. Moreover, in the level-k
auction model, regret is not considered and overbidding is attributed to higher level
reasoning and bidding prices are raised in the following way: in order to win (or best
respond to) the level-0 bidders, level-1 bidders should submit a higher price; in order to
win the level-1 bidders, bidding prices of level-2 players should be even higher.
Compared to it, it suffices to use level-1 bidders to rationalize overbidding in our model
by considering regret. As shown in Proposition 2, overbidding can be caused by a
relatively large losing regret parameter or a relatively small winning regret parameter, the

same results also hold in the N-bidder’s case, which will be shown in the following section.
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4.3 N-bidders’ First Price Sealed Bid Auction

We further extend the proposed model for the two bidders’ case to the N-bidder’s case.
In the N-bidder’s case, each bidder tries to optimize his/her bidding price with
conjecturing that the other N —1 bidders randomly decide their bidding prices.

For bidder i€ {l,..., N}, his/her greatest concern is the highest price amongst the other
bidders’ bidding prices, denoted as b,. Here we use the same symbol b, as in the two
bidders’ case because for bidder i in essence there are always two prices competing, the
one is his/hers and the other is the highest price of the other bidders. With the assumption

that any bidder i thinks the other N-1 bidders offer the bidding prices which are

mutually independently and distributed uniformly within [0,1], the probability density

function of bj is as follows:

0 , bj <0 ;
p.(b,)=4(N-1b"?,0<b, <1; (4.23)
0 , bj >1 ;

Like (4.7), we have the following normalized probability density function:

0o b, <0 ;
m(b,)=4b"",0<b, <1;. (4.24)
0 , b>1

Knowing (4.24), the N-bidder’s first-price sealed-bid auction problems become the two
bidders’ problems. Speaking in detail, the problem of each bidder facing N —1 other
bidders whose bidding prices are mutually independently and uniformly distributed over
[0,]] can be reduced to the problem of each bidder facing another bidder with the
normalized joint probability density function (4.24). Clearly, the satisfaction function

(4.3) is still appropriate for the N-bidder’s case. Using the same ideas as in 2-2, we have
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the following theorem for the optimal bidding price.

Theorem 3.
M If v,<VI/A+C) (N=3), then bidder i's optimal bidding price is
b’ €[0,v];

(D) If v, >VY1/(1+C) (N > 3), then bidder i's optimal bidding price b’ satisfies the
following equation:

- ki,z (v _bi*) +Cv, —1— ((1 + ki,l + ki,z)bi* -1+ ki,z)vi )N72 . (4.25)
I+ C)v, k;,

Proof.

Firstly, let us also examine the focus point for each b, €[0,v,].
Since u (b ;) 1s a strictly increasing continuous function and 1-(b j)N s a strictly

decreasing continuous function, from the following two inequalities:

ul.z(O)=(C—kl.’z)/(1+C)<1=1—ON‘2, (4.26)
u; (1) =(C—k,,)v, + k,)/(1+C)v, >0=1- 12, (4.27)
we know that there exists a unique solution of u](b,)=1—(b,)"* for b, €[0,1] and
denote it as b_j Considering the relation amongst v,, b, and b_/ , we have four cases,
that is, v, Sb_j, v, >b_j>bi, v, >b, Zb_j and v, =b, >b_j. And for each case, let us
examine (4.9) for the following three subcases: (1) b, €[0,b,), (2) b, €[b,,v,) and

(3) b, €[v;,1], respectively.
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Casel. v, < b_j

For subcase (1), we can obtain

minhj 0.6, Max(1=7,(b;,d),u;(b,,b;)) = minbj qop)(1=m (b)) =1~ CH R (4.28)
For subcase (2), considering the monotonicity of 1-7,(b;)=1-(b j)N ?  and
u;(b,,b;)= u’ (b,) and combining the fact that b_J is the unique solution of
ui(b;)=1-(b))"*, we can obtain

min, i, max(1- 7,5, (b,b ) =min, g, (-7 () =1-()"2 . (4.29)
For subcase (3), As u,(b,b;)=C /(1+C) and Since b_j is the unique solution of
u(b;)=1-(b,)"™*, we know the following relation holds as a result of v, < b_J :

1-(v)"? >u’(v,)=C/1+C). (4.30)
Since 1-(b j)N ~ s strictly decreasing and attains 0 at b ; =1, with considering (4.30),

we know there exists a unique b; €[v,,1] such that the following three conditions hold:

1-(b)" 2 =C/(1+0), (4.31)
1-(b))" > C/(1+C) for v, <b, <b?, (4.32)
1-(b)"? <C/(1+C) for b} <b, <1. (4.33)

Let us divide [v,,1] into [v,,b;) and [b],1], then we have

minb e[v;,b%) maX(l - ”[(bj),u[(b[-,b/)) =
. SRR *\N=2 ) (434)
min, oo (1=7(5)) =1= ;)" = C/(1+C)
i byelbi-ll max(1=7,(b;),u;(5,,5;)) = minh/ elb] 1] u,(b,b)=C/(1+C). (4.35)
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(4.34) and (4.35) yield
min, _(, , max(1—7,(b)).u,(bb)) = C/(1+C). (4.36)
Since b, <v, always holds, itleadsto 1—(v,)"* <1—(b,)"?, and considering (4.28),
(4.29), (4.30) and (4.36), we have
m]'nbj oy max(1=7,(b,),u;(b,b,)) = C/1+0), (4.37)
b,(b) eargmin,, 4, ymax(1-7,(b,),u,(b,b,)) = [b),1]. (4.38)

Case 2. v, >b_j>bi.

The subcase (1) of this case is the same with that of Case 1.

In the subcase (2), considering the monotonicity of 1-7,(b;) and u,(b,,b,)= u’ (b D
it can be verified that the following relation holds:

min, g, . max(1-7,(b,),u,(b,,b;) =1~ b)) =u (). (4.39)

In the subcase (3), it is easy to check that (4.36) also holds. Utilizing the condition that
b_j <v, and considering the monotonicity of 1-7,(b,) and u,(b;,0;), we can obtain the
following relation:

ul (b)) <ul(v,)=C/(1+C). (4.40)
Considering (4.28), (4.36), (4.39) and (4.40), we know

min, o, max(1-7,(b,),u,(b,b,)) =1- ()" =u} (b)), (4.41)

by(b) eargmin , , max(1-7,(b,),u,(b;,b,)) =b, . (4.42)
Case 3. v, >D, Zb_j.

In this case, for the subcase (1), Considering the monotonicity of 1-7,(b;) and
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u,(b;,b;) =u;(b;,b,) , we know max(u;(b,b,)1-(b,)"?) attains its minimum when
u, (b, ,b ) =1- (b j)N > where l;j is the solution of this equation. In other words, we have
min, ., max(1—7,(b,),u,(b,,b;)) =1-(b)" " =u/(b,b,). (4.43)
For the subcase (2), we have
min b, el vy TAX(1 — 7,(b,),u;(b,,b))) = inf,,je[,,‘_,vi) u,(b,b,)= u’(b). (4.44)

For the subcase (3), we have

minbl-e[vl-,l] rnax(l - ﬂ[(bj)au[(bi’bj)) =

_ . (4.45)
min, 1, max(1 — ﬂi(bj),C/(l +C)=C/1+0)
Since u;(b;,b;) is a strictly increasing function and b . <b,, we have
u;(b.b,) <u;(b,.b,) . (4.46)
Meanwhile we know
ul (b)) =(=k,(v,=b)+Cv,)/(1+C), <C/(1+C). (4.47)
It follows from (4.43)-(4.47) that
. w(b) . u(bb)2ul(b):;
min , o, max(1—-7,(b,),u,(b,b;))=4 |~ A o (4.48)
! “i(bi:bj)a ”i(bfab;)<”i (b,);

by, ul(b,b)>ulb) ;
b.(b)eith,b} , ul(b,b)=ul(b) ; (4.49)
by, ul(b.b)<ul(b) ;
Case 4. v,.:bl.>b_j.

In this case, subcases (1) — (3) are the same as Case 3 except that (4.44) becomes

W2 (b)) = u? (v,) = (~k,, (v, =v,)+ Cv,) [(1+ C)y, = C/(1+C) . (4.50)
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Instead of making a comparison between u'(b,,b ) and u’(b,), we need to make a
comparison between u/ (b, ,b ) and C/(1+C), which leads to the following conclusion:

C/A+C),  ul(h,b,)>C/(1+C);

A " , 4.51
u; (b,b,), u; (b,,b;) < C/(1+C); (31

min b, el0.1] max(l—7,(b;),u,(b,b,)) = {

vl . ul(b.b)>C/1+C) ;
bbyey b} , ul(b.b)<C/1+C) ;. (4.52)
b yulvll, ul(b,b)=C/1+C) ;

Secondly, let us examine the optimal bidding price.

N | —

If v, < b_j , then for any b, €[0,v,] b;(b,)) 2V, so that we haveu,(b;,b,(),),d(),)) =
and b €[0,v,] which is Theorem 3(I).
If v,> b_] , let us examine u,(b,,b;(b,)) for b, €0, b_J ) and b, € [b_j,vl.] , respectively.
In the former case, we know

u,(b,.b;(b)) =1 (b)) (4.53)
In the latter case, we know

(b, b; (b)) = minl u; (b, b; (b)), 14} (B,)] . (4.54)
For (4.54), on one hand, we have

4} (b, b, (b)) =1=7,(b;(b,)) > 1-7,(b,) =1} (b)), (4.55)
where the inequality in (4.55) holds as a result of b ; (b_] )< b_j ; on the other hand, we have

u (v, b,(v)) = (~k,, (v, = b, (v ) + Cv) [(1+ C), < C/(1+ C) =} (v,) - (4.56)

Further, let us check the continuity and monotonicity of u; (bl.,l;j(bi)) and u’(b,) .
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Obviously, u;(b,) isastrictly increasing continuous function of b,.For u; (bi,Bj b)),

as u'(b,,b () =1-(b (b,))"™* holds, differentiating both sides of the equation with
respect to b, we can obtain

1+ k,.’1

b'(b) = _ 0
o ki + (N =2)1+C)b;(5)" 7y, ”

(4.57)

From (4.57) we know l;j (b,) 1s a strictly increasing continuous function of b,, which
implies that 1—(13./. (b,))"? (and also u/ (bi,l;j (b)) is a strictly decreasing continuous
function of b, . From (4.55), (4.56) and the monotonicity of u; (b,.,l; (b)) and u’(b,),
we know min( u; (bl.,l;j(bi)),uf (b)) attains its maximum at b, where b, is the solution
of u (bl.,l;_ (b)) = u’(h,). As a result, the following conditions hold:

max, ot (b,,b,(b)) = u (bl.*,l;j B =ul (b)), (4.58)

argmax,

- u,(b,,b,(b))=b;. (4.59)
As b’ > b_J holds and u (b ;) 1s astrictly increasing function, we know

ul (b )>ul(b)). (4.60)
It follows from (4.53) and (4.58)-(4.60) that the optimal bidding price is b;,and b, and
b,(b]) satisfy

uy (b, b,(B)) =1} (B)). (4.61)

u! (6] ,b;(6)) =1~ (b, (b)) (4.62)

From (4.61), we can obtain
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(I+k;, +k, )b —(1+k ,)v,

b(b))= p (4.63)
il
From (4.61) and (4.62) we know
ul (b)) =1-(b,(b; )" (4.64)

Substituting (4.63) into (4.64) leads to (4.25).
Thirdly, let us show the following equivalence conditions to make our conclusion more

tractable:
v, <b, < v, <M /(1+0) (4.65)

As (—k,(v,— b_j) +Cv,)) / ((I+Cyv,)=1- (b_j )*? holds, by algebraic transformation, we
obtain the following equation:

(1+k,,)/(1+C) = (k,,b,) [(1+C,) = (b)) . (4.66)
If v, <¥321/1+C) and v, > b_j, then the left side of (4.66) is

(1+k,,)/(1+C)~(k,,b,) [(1+C)v,) 21/(1+C) (4.67)
and the right side of (4.66) is

(0,)" < ()" < 1/(1+C). (4.68)

The contradiction between (4.67) and (4.68) shows that (4.65) holds.

It proves Theorem 3(I1). ]

From the proof of Theorem 3 (I) (Case 1), the following insights can be gained. When
v, is small (v, <NJ1/(1+C)), for any bidding price b,, bidder i focuses on &,(5,) (a

bidding price provided by the rivals) which is larger than v,. In this case, losing without
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regret is always the result for bidder i so that any b, €[0,v,] does not make any
difference. Interestingly, it matches bidders’ behaviors well. When a bidder’s valuation is
relatively small, several experimental findings have been reported in the literature. Firstly,
the throw away phenomenon says that some subjects in first price auction experiments,
upon drawing a low value enter a bid at (or near) zero, or less frequently, a bid at or near
the value (Cox et al., 1992). Secondly, overbid (Pezanis-Christou, 2002) and underbid
(Kirchkamp & Philipp, 2004) are also observed. In summary, we can say bidders with
low valuation tend to bid randomly. However, there exists no model able to match such
behaviors. Our model provides a better description of bidders’ behaviors as well as an
intuitive explanation.

As in two bidders’ case, we examine the properties of the optimal bidding price for the
N-bidder’s case.

Proposition 4.

(I) The optimal bidding price b  1is a decreasing function of the winning regret
parameter k,, and an increasing function of the bidder’s valuation v,, the losing

regret parameter k,, and the number of bidders N , respectively.

(I+k;5)v

<b <v, when N>3.
l+k ) +k ,

(IT) The optimal bidding price b, satisfies

(I1) The optimal bidding price b, — v, when N — 0.

Proof.

4(I): Denoting A as ((1+k,, +k )b —(1+k ,)v,) / k., ,(4.62), (4.63) together with the

il »

fact that 0<u;(b,b;)<1yield A e (0,1). From the proof of Theorem 3, we know that 5
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is the unique solution of u,.l(bi,l;j (b)) =u’(b) within [b_j,vi] , combining the fact that
ul (v;,b,(v))<u}(v) (see (4.56)), we know b <v,. Differentiating both sides of (4.14)
with respect to v,, k,,, k;,and N, respectively, we obtain

ob;  kikiobl + (N —=2)(1+ CW' A" (1+k,,)

= S 0, (4.69)
ov, ki,lki,zvi +(N=-2)A+Cpw 4"+ ki’1 + ki,Z)
y N-=-2)1+Cw,A" (1 +k, )b —v,
ab, — - ( )( )vl ( N1123)( i vl) O , (4'70)
Ok kitki v + (N =2)A+ O, v, A" (I + k;  + k)
Ny N-2)1+Cw A" (1+k ) +k v, —b'
abl _ (( )( )vl ( 1,2) l,l)(vl 1 ) > 0 , (4'71)

Oy hyki v, + (N =2)(1+Cwd" > (4 kyy +k, )

ob; —b (I+ky +ki )b —(1+k,)v)n 4

1

= >
ON  (I+k;+ ki,z)bi* —(I+k )y +(N - 2)b; (1+ kiy +kis)

(4.72)

It proves 4 (I).

4 (II): On one hand, from the proof of Proposition 4 (I) we know 4>0 holds, which

I+ ki,Z)v[

leads to b > ; on the other hand, it has been shown that 5 <v, in the proof

i1t K
of Proposition 4 (I). It proves 4 (II).

4 (III): We need to prove the following condition:

¥8>0, AN'(5), YN>N'(S), b (N)>v, &, (4.73)
where b (N) is the solution of

- kl.’2 (v, =x)+Cv, 1 ((1 + k,-,1 + k,‘,z )x—(1+ k[,Z )V, )N—Z . (4.74)
(1+C)v, ki,

On one hand, as
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(I+ky+k ), —0)—(+k v kv —(+k, +k,)0
SHE 20 = LR <y,

<1,
ki,l ki,l

Vo >0, AN(5), VN > N"(0), the following condition holds:

- ki,2 (v, = (v, =0))+Cv, <1- ((1 + ki,l + ki,Z)(vi -0)—(1+ ki,z)vi )N—Z ; (4.75)
(1+C)y, ki,

On the other hand, b (N) satisfies the following condition:

- ki,z (v, — bi* (N))+Cv, —1 ((1 + ki,l + ki,z )bi* (N)-(1+ ki,z WV, )N—Z

(4.76)
(I+C)y, ki,l

Considering the monotonicity of both sides of (4.74), we know b (N)>v, - from

(4.75) and (4.76). It proves 4 (III). o

Proposition 4(I) provides us the same intuitive results as those in Proposition 2. From

Proposition 2 and Proposition 4(I), we know whatever the number of bidders is, the

bidder’s optimal bidding price increases with increasing the losing regret parameter £, ,

and decreasing the winning regret parameter k,,. These properties can serve as an

alternative for rationalizing overbidding and underbidding behaviors. Overbidding says
that bidders frequently offer a bidding price above the risk-neutral Bayesian Nash
Equilibrium (BNE). Traditionally, such deviations are explained by theoretical models
such as risk aversion, joy of winning, quantal response equilibrium, the level-k model,
spiteful bidding etc. Not so often, bidders also underbid in some situations. Kirchkamp
and Philipp argue that bidders that follow the simple rules-of-thumb may underbid at low
valuations. Theoretically, such underbidding behavior is rationalized by the ‘anticipated

emotions’ model.
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In our model, we explain overbidding and underbidding as follows: overbidding and
underbidding are caused by bidders’ attitudes towards winning regret and losing regret.
Speaking in detail, bidders will bid high if they value losing regret more and bid less if
they value winning regret more. Such an explanation is straightforward and fits the
mentality of the bidders in the real world.

Proposition 4(Il) and 4(III) tell the effect of the bidders’ number on an individual
bidder’s optimal bidding price. When N >3, the bidder’s optimal bidding price is higher
than that in the case N =2. The bidder’s bidding price approaches his/her valuation with
N — oo, which is consistent with the marketing law that an infinitely large number of

players brings no gains to any involved player.
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4.4 Summary

In this section, we provide a unified explanation for the deviations in first-price sealed-
bid auction. Basically, we reformulate the auction problems as each individual bidder’s
decision problem under uncertainty which also takes regret into consideration.
Procedurally, bidders are thought to focus on only one scenario, which is the one-shot
decision theory based thinking. On one hand, when a bidder’s evaluation is low, he/she
focuses on a bidding price higher than his/her evaluation, which makes every bidding
price indifferent to him/her and explains the throw away phenomenon; On the other hand,
a bidder’s bidding price is partially decided by his/her attitudes towards winning and
losing regret, so overbidding and underbidding can be thought as a reflection of to what

extent regret affects a bidder’s decision.
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Chapter 5

Conclusion

In this research, we propose the One-Shot Game Model to analyze players’ behaviors
in games. Generally speaking, we reformulate games as each individual player’s decision
making problem. Firstly, an individual player forms his/her beliefs about the other
player(s)’ actions, we mainly suggest three kinds of belief formulation. The first is that an
involved player formulates his/her belief based on the payoff of his/her opponents. The
second is that a player formulates his/her belief based on strategy dominance (capacity
allocation game); the third is that a player simply assumes that the other players choose
their actions with equal probability (sealed bid first price auction). Secondly, based on the
formulated belief, the player undertakes his/her decision making process. Different from
the Expected Utility Theory, the decision process within our framework is scenario based
rather than lottery based. Simply speaking, when choosing an action, an involved player
only focuses on a single scenario, under which he/she evaluates the chosen action. Within
this framework, we explain the observed deviation from the predicted equilibrium in the
capacity allocation game and rationalize bidders’ bidding tendencies in sealed bid first
price auction. We also examine the effect of players’ personality on their behaviors as
well as the result of the game. In some simple games, whatever an initial beliefs a player
formulates, his/her decision is the same and is only determined by whether he/she is an
active or a passive decision maker.

Although we utilize the One-Shot Game Model to make a reformulation of players’
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decision making process in games and show the efficiency of the proposed framework,
two kinds of games are still unsolvable within our framework: One is the Prisoner’s
Dilemma, in which the dominated strategy for any prisoner is defect while cooperation is
often reported; the other is dynamic games, solutions of which are obtained by backward
induction but deviate from experimental findings. Inspired by those two kinds of games,
we seek to improve our approach to handle games in more general horizon and leave it

for the future work.
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