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Chapter 1  
 

Introduction

 

Equilibrium, which is the central concept in game theory, is an evolutionary solution 

which is reached after players have corrected their biased beliefs and adjusted their 

strategies. Basically, equilibrium models require three components: strategic thinking 

(formation of beliefs about others’ behaviors); optimization (choosing a best response to 

those beliefs); mutual consistency (adjustment of beliefs and best responses until they are 

mutually consistent) (Camerer et al., 2004). However, it is often the case that solutions of 

equilibrium models are not supported by data in lab or the phenomena in the real world. 

For example, in the Beauty Contest Game, seldom players choose the unique Nash 

Equilibrium (Camerer, 2003); in the Prisoners’ Dilemma, players cooperate about half the 

time (Sally, 1995); in the Ultimatum Game, low offers are frequently rejected (Camerer 

& Richard, 1995). Such abnormalities in players’ behaviors initiate the exploration of 

Behavioral Game Theory.  

Roughly speaking, development in Behavioral Game Theory has been made in three 

directions. Firstly, social force and cognitive mechanism are introduced into game-

theoretical models. For example, the concepts such as reciprocity (e.g., Fehr & Gachter, 

2000; Song, 2008; Neilson, 2009; Regner, 2014), betrayal aversion (Bohnet et al., 2008) 

and guilty aversion (Beck et al., 2013) are utilized and the incentive mechanism in 

decision-making is taken into account (Post et al., 2008). Secondly, learning models in 

games are proposed (Schlag, 1998; Camerer & Ho, 1998, 1999; Camerer et al., 2002). 

Thirdly, as the gaming situation becomes more complex than individual decision making 
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problems and deviations from the sharp predictions are more likely to happen in reality, 

the Behavioral Game Theory also utilizes a non-equilibrium approach to model players’ 

behaviors. Several non-equilibrium approaches have been proposed in literature. For 

example, Nagel (1995), Stahl and Wilson (1995) propose the level-k (LK) model, in 

which players are divided into different levels corresponding to different depths of 

reasoning. Following the level-k model, Camerer, Ho and Chong (2004) propose the 

Cognitive Hierarchy (CH) model to handle the degeneracy of beliefs in LK models, and 

Goeree and Holt (2004) propose the Noisy Introspection model to consider the reasoning 

process reversely, i.e. from a sufficiently large order of belief. In summary, these 

approaches share the same idea of weakening the mutual consistency assumption, in other 

words, players are assumed to play according to some beliefs at first and learn to play the 

equilibrium strategies. 

The other key common argument of the above three non-equilibrium model is that 

players are assumed to think ‘k’ step. However, this raise the question that which step an 

involved player should stop at. It is rather untraceable and arbitrary. A natural thinking is 

that a player doesn’t take the iterative thinking at all, or once a player started iterative 

thinking, he/she will continue this process until equilibrium is reached. So we argue the 

‘k’ step thinking way is relatively far from real players’ decision making process in a 

game.  

In this research, we propose a new theoretical model – the One-Shot Game Model to 

character real player’s decision making process as well as handle deviations in several 

typical games. Simply speaking, in our model, the decision process of a player consists 

of two steps. Firstly, a player formulates his/her belief about his/her opponents’ actions. 

Secondly, based on the formulated belief, a player decides his/her optimal choice. It is a 
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non-equilibrium approach because it is not necessary that each player should correctly 

predict his/her opponents’ actions. We share the same idea with the existing non-

equilibrium approaches that the mutual consistency assumption is relaxed, but we 

distinguish our approach in mainly the following two aspects. 

Firstly, we enrich the methods of belief formulation. Speaking in detail, we propose 

several alternatives possibly reflecting real players’ thinking process when formulating 

his/her belief. For example, a player may deduce that his/her opponent should adopt an 

action which generates a higher average payoff with a higher probability; also, we 

introduce other alternatives for belief formulation and show how they work in specific 

games.  

Secondly, in solving each player’s decision problem, we distinguish us in by seeking a 

way to capture the mental procedure of a player’s decision making process. There are two 

steps: In the first step, for his/her each possible action, say a , the player evaluates every 

action chosen by the other players, say b , with considering the likelihood degree of b  

and the satisfaction level generated by a  and b ; amongst all possible actions chosen by 

the other players, the player chooses one which is called as the focus point of the action 

a  (an imagined scenario corresponding to a ). In the second step, the player evaluates 

each action based on its focus point (imagined scenario) and determines the optimal one 

which can generate the highest satisfaction level when its focus point (imagined scenario) 

occurs. The reason why the player thinks in this way is that one and only one action 

(scenario) will be chosen by his/her opponent even if he/she knows the probability 

distribution of all possible actions. This is the One-Shot Decision Theory based thinking. 

The One-Shot Decision Theory is initially proposed by Guo (2011) which argues that 

a person makes a decision under uncertainty based on his/her imagined scenario which is 
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most consistent with his/her personality. Different from the existing Expected Utility 

Theory, the One-Shot Decision Theory argues that a decision maker focuses on a specific 

state in the future rather than takes all possible states into consideration (Guo, 2014). In 

order to understand the core argument, let us examine several well-known examples. The 

Expected Utility Theory tells us that the reason why a person buys a lottery is that his/her 

utility function is convex while the reason why a person buys insurance is that his/her 

utility is concave. The One-Shot Decision Theory manifests that the lottery buyer is a 

decision maker who takes into account the scenario which has a low probability to happen 

but can bring about a large benefit and the insurance buyer is a decision maker who takes 

care of the scenario which can cause a large loss even with a low probability. Clearly, the 

One-Shot Decision Theory based explanation is intuitively acceptable. The One-Shot 

Decision Theory has been utilized for analyzing a duopoly market of a new product with 

a short life cycle (Guo, 2010a, Guo et al., 2010), private real estate investment problems 

(Guo, 2010b), newsvendor problems for innovative products (Guo & Ma, 2014) and 

multistage one-shot decision making problems (Guo & Li, 2014). 

 

In Chapter 2, we make a detailed description of the One-Shot Game Model which 

divides a player’s decision process into the following two steps. In the first step, an 

involved player formulates his/her belief: different kinds of belief formulation criteria are 

introduced, based on which players may formulate different beliefs. In the second step, 

based on the formulated belief, a player evaluates his/her every possible actions: instead 

of considering all possible actions possibly chosen by his/her opponent, only one of them 

is focused (called the focus point); a player chooses an action which yields the highest 

satisfaction associating with its focus point. We introduce two kinds of players, namely 
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the active player and the passive player, an active player focuses on a state yielding high 

satisfaction with a high probability and a passive player focuses on a state yielding low 

satisfaction with a high probability. Interestingly, in some simple games, players’ choices 

are rather robust to the formulated beliefs: players’ choices are only whether he/she is an 

active or a passive decision maker.  

 

In Chapter 3, we utilize the proposed One-Shot Game Model to examine a typical 

static game with complete information - the Capacity Allocation Game (Guo & Wang, 

2017). In a supply chain, the capacity shortage refers to the situation that retailers’ demand 

is higher than the supplier’s inventory, as modifications are infeasible in a short term, the 

supplier has to divide the limited inventory to each retailer. A classical method is to divide 

the limited capacity to each retailer proportional to his/her order quantity. In this game, 

the unique Nash equilibrium is that each retailer submits an infinite order quantity, which 

is far from experimental findings as well as people’s intuition. What is worse, the 

equilibrium stays the same even if we change the shape of the utility function and 

parameters of the model. Instead, we utilize the proposed One-Shot Game Model to 

analyze such a game and analytical results are consistent with the experimental findings.          

 

In Chapter 4, we further investigate a static game with incomplete information - First 

Price Sealed Bid auctions by utilizing the One-Shot Game Model (Wang & Guo, 2015). 

In the auction model, each bidder is thought to face a decision problem under uncertainty 

which origins from other bidders’ bidding prices. The action set is his/her bidding price 

and the uncertain factor is his/her opponents’ bidding prices. Taking into account the one-

time feature of auctions, it is intuitively acceptable that a bidder only imagines one 
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bidding price presented by his/her opponents amongst all possible prices for determining 

his/her auction price rather than take any kind of average of all possible prices. Analytical 

results obtained within our framework well explain the deviations observed in first price 

sealed bid auctions: bidders tend to bid randomly upon drawing a low value and tend to 

overbid when their valuation is relatively high. 

 

In Chapter 5, we make a conclusion of the work mentioned above as well as consider 

the future path of the proposed framework. Two kinds of games are still unsolvable within 

our framework: One is the Prisoner’s Dilemma, in which dominated strategies are 

observed about half the time; the other is dynamic games, solutions of which are obtained 

by backward induction but sometimes are inconsistent to the experimental findings. We 

potentially improve our approach to handle games in more general horizon and we leave 

it for the future work. 
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Chapter 2 

 

One-Shot Game Model 

 

2.1 Belief Formulation 

In this section, we describe the belief formulation process of a player. For simplicity, 

we confine us to a game with two players and investigate how player 1 formulates his/her 

belief about player 2’s actions. Extension to multi-player case is trivial and we omit it to 

save space. 

In a game with complete information, player 1 knows both player 2’s actions and player 

2’s payoffs generated by both players’ decisions. Let us make the following notations: 

A :  Player 1’s action set, with ),...,1( niai   a specific element in it; 

B :  Player 2’s action set, with ),...,1( mjb j   a specific element in it; 

),( jik bav :  Player k ’s )2,1( k  payoff. 

Based on the above definition, we give the following three methods for Belief 

Formulation. 

 

1. Belief Formulation based on the minimum payoff of an action 

In this method, player 1 deduces that the larger the minimum payoff an action can 

generate, the more possible for it to be chosen by player 2. The belief can be written as 

follows: 
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]1,0[:1 Bp       







j
jiAa

jiAa
j bau

bau
bp

i

i

)},({minexp

)},({minexp
)(

2

2

1          (2.1) 

For example, let us consider the following 22  game, the row player is player 1 and 

the column player is player 2. The payoff matrix is given in Table 1. 

Table 1 

 1b  2b  

1a  (0,5) (5,4) 

2a  (2,-1) (3,1) 

For player 2, by choosing 1b , his/her minimum payoff is -1; by choosing 2b , his/her 

minimum payoff is 1. Utilizing (2.1), we can obtain player 1’s belief about player 2’s 

actions is as follows: 

12.0
)1exp()1exp(

)1exp()( 11 



bp            (2.2) 

88.0
)1exp()1exp(

)1exp()( 21 


bp            (2.3) 

Comment  

We utilize ‘ exp ’ here to transform the payoff into a strictly positive number. In the 

above example, as the minimum payoff is a negative number and a positive number 

respectively, it is difficult to directly handle it without transformation. 

 

2. Belief Formulation based on the maximum payoff of an action 

In this method, player 1 deduces that the larger the maximum payoff an action can 

generate, the more possible for it to be chosen by player 2. The belief can be written as 

follows: 
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]1,0[:1 Bp       







j
jiAa

jiAa
j bau

bau
bp

i

i

)},({maxexp

)},({maxexp
)(

2

2

1             (2.4) 

Let us also consider the 22  game given in Table 1. For player 2, by choosing 1b , 

his/her maximum payoff is 5; by choosing 2b , his/her maximum payoff is 4. Utilizing 

(2.4), we can obtain player 1’s belief about player 2’s actions is as follows: 

73.0
)4exp()5exp(

)5exp()( 11 


bp                (2.5) 

27.0
)4exp()5exp(

)4exp()( 11 


bp                (2.6) 

 

 

3. Belief Formulation based on the average payoff of an action 

In this method, player 1 deduces that the larger the average payoff an action can 

generate, the more possible for it to be chosen by player 2. The belief can be written as 

follows: 

]1,0[:1 Bp       
 








j Aa
ji

Aa
ji

j

i

i

bau
m

bau
mbp

}),(1e x p {

}),(1e x p {
)(

2

2

1         (2.7) 

Let us also consider the 22  game given in Table 1. For player 2, by choosing 1b , 

his/her average payoff is 2; by choosing 2b , his/her average payoff is 2.5. Utilizing (2.7), 

we can obtain player 1’s belief about player 2’s actions is as follows: 

38.0
)5.2exp()2exp(

)2exp()( 11 


bp                (2.8) 

62.0
)5.2exp()2exp(

)5.2exp()( 21 


bp                (2.9) 
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So far, we have discussed several belief formulation methods, it should be mentioned 

that the above methods can be directly extended to the multi-player case, however, it is 

difficult to extend the above methods to the continuous case, i.e., player’s action set is 

continuous, for the continuous case, we will discuss it in the following two chapters 

combining specific games. In the following, we will introduce the One-Shot Decision 

Theory to character player’s decision making process. 
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2.2 One-Shot Decision Theory 

Following the above setting, let us consider player 1’s decision process. For preparation, 

we make the following normalizations.  

Firstly, we normalize the probability distribution function )(1 jbp  as the following 

relative likelihood function )(1 jbp : 

)(max
)(

)(
1

1
1

jb

j
j bp

bp
b

j

                       (2.10) 

Secondly, we normalize the payoff function ),(1 ji bav  as the following satisfaction 

function ),(1 ji bau : 

),(min),(max
),(min),(

),(
1,1,

1,1
1

jibajiba

jibaji
ji bavbav

bavbav
bau

jiji

ji




             (2.11) 

The decision process of player 1 consists of the following two steps: 

 

Step 1. Determine the focus point 

In this step, for each action Aai  , player 1 focuses on one jb , the reason is that 

although player 2 has many alternatives, for player 1, only one of them will be realized. 

Instead of taking an average, player 1 focuses on only one jb  and we call such a jb  

the focus point of ia . Player 1 of different personalities may have different focus 

points, generally, we suggest the following two criteria for choosing the focus point. 

Criterion 1: ))(),,((minmaxarg)( 11
1

jji
b

ij bbauab
j

                      (2.12)                                          

Player 1 using this criterion focuses on the situation with a higher relatively likelihood 

level and a higher satisfaction level, and we refer this kind of player 1 as an active decision 
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maker. 

Criterion 2: ))(1),,((maxminarg)( 11
2

jji
b

ij bbauab
j

                   (2.13)                          

Player 1 using this criterion focuses on the situation with a higher relatively likelihood 

level and a lower satisfaction level, and we refer this kind of player 1 as a passive decision 

maker. 

 

Step 2. Obtain the optimal action 

After determining the focus point, player 1 evaluates his/her each action under its 

corresponding focus point. The optimal actions under the proposed 2 criteria are defined 

as follows respectively: 

Optimal action under criterion 1: 

))(,(maxarg 1
1

,1
ijiAa
abaua

i

                            (2.14) 

Optimal action under criterion 2: 

))(,(maxarg 2
1

,2
ijiAa
abaua

i

                            (2.15) 

 

Example.  

We utilize the example given in Table 1 to illustrate player 1’s decision process. 

Assume player 1 formulates his/her belief based on the maximum payoff of player 2, 

that is, for player 1, the probability distribution of player 2 choosing 1b  and 2b  is 

given in Table 2. 
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Table 2 

 1b  2b  

)(1 jbp  0.73 0.27 

Based on the probability distribution and (2.10), we can obtain the relative likelihood 

function in Table 3. 

Table 3 

 1b  2b  

)(1 jb  1 0.37 

Based on Table 1 and (2.11), player 1’s satisfaction is given in Table 4. 

Table 4 

 1b  2b  

1a  0 1 

2a  0.4 0.6 

Assume player 1 is an active decision maker, now we can obtain player 1’s focus 

point of 1a  in Table 5. 

Table 5 

 1b  2b  

)(1 jb  1 0.37 

),( 11 jbau  0 1 

))(),,(min( 111 jj bbau   0 0.37 
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Based on Table 5, we know the focus point of 1a  is 2b  and by choosing 1a , the 

satisfaction of player 1 is 1),( 211 bau . 

Similarly, we can obtain player 1’s focus point of 2a  in Table 6. 

Table 6 

 1b  2b  

)(1 jb  1 0.37 

),( 21 jbau  0.4 0.6 

))(),,(min( 121 jj bbau   0.4 0.37 

Based on Table 6, we know the focus point of 2a  is 1b  and by choosing 2a , the 

satisfaction of player 1 is 4.0),( 121 bau . 

Based on the above analysis, we know for an active player 1, choosing 1a  yields a 

satisfaction of 1 while choosing 2a  yields a satisfaction of 0.4, so for an active player 

1, 1a  is his/her optimal choice. Readers can also verify that a passive player 1’s 

optimal choice is 2a . 
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2.3 Belief Independent Decision  

In this section, we further consider several simple games within our framework, 

however, in those games, the involved players’ choices are only determined by whether 

the player is an active decision maker or a passive decision maker, which is to say, players’ 

actions are independent of their initial beliefs.  

 

1  The Stag Hunt Game 

In game theory, the stag hunt game describes a situation as follows: 

Two hunters are going out on a hunt. They must decide whether to hunt a stag or a 

hare without knowing the choice of the other. The cooperation is necessary in succeeding 

in hunting a stag while each hunter can succeed in hunting a less valuable hare 

individually. The payoff of such a 22  game is given in Table 7 

Table 7 

 S H 

S (3,3) (0,2) 

H (2,0) (2,2) 

We will show that the following result holds within our framework. 

Theorem 1 Whatever initial belief an active player holds, he/she will choose S; in contrast, 

whatever initial belief a passive player holds, he/she will choose H. 

Proof. Assume the belief of an active player is )(xpact  },{ HSx , after the 

normalization procedure, the relatively likelihood function is then given as )(xact , for 

an active player, his/her payoff matrix is given in Table 8. 
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Table 8 

 S H 

S 3 0 

H 2 2 

So the satisfaction matrix is then given in Table 9. 

Table 9 

 S H 

S 1 0 

H 0.67 0.67 

Let us then examine the active focus point of S. 

It is easily to verify the following equalities: 

0),())(),,(min(  HSuHHSu act                   (2.16) 

0)())(),,(min(  SSSSu actact                      (2.17) 

So the active focus point of S is given as follows: 

SxxSuSx act
HSx

act   ))(),,(min(maxarg)( },{             (2.18) 

So for an active player, by choosing S, his/her (imagined) satisfaction is: 

1),())(,(  SSuSxSu act                          (2.19) 

However, by choosing H, his/her satisfaction is 0.67. 

Based on the above analysis, for an active player, he/she chooses S independent of the 

initial beliefs. 

Assume the belief of a passive player is )(xp pas , },{ HSx , after the normalization 

procedure, the relatively likelihood function is then given as )(xpas , let us examine the 

passive focus point of S. 

It is easily to verify the following equalities: 
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1),())(1),,(max(  SSuSSSu pas                   (2.20) 

1)(1))(1),,(max(  HHHSu paspas                (2.21) 

So the passive focus point of S is given as follows: 

HxxSuSx pas
HSx

pas   ))(1),,(max(minarg)( },{        (2.22) 

So for a passive player, by choosing S, his/her (imagined) satisfaction is: 

0),())(,(  HSuSxSu pas                           (2.23) 

However, by choosing H, his/her satisfaction is 0.67. 

Based on the above analysis, for a passive player, he/she chooses H independent of the 

initial beliefs. 

The proof is completed.                                                  □ 

 

Analysis 

From the above result, we can see in the stag hunt game, two active players can achieve 

the payoff dominant equilibrium while two passive players can achieve the risk dominant 

equilibrium. However, an active player and a passive player can’t reach any equilibrium 

and in this situation, an active player suffers more. 

 

2  The Chicken Game 

In game theory, the chicken game describes a situation as follows: 

Two drivers are heading for a single line bridge. Each driver can choose to swerve 

or to go straight. The best situation for a driver is that he/she goes straight while his/her 

opponent swerves and the worst situation is that both drivers go straight, which leads to 

a conflict. The payoff of such a 22  game is given in Table 10. 
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Table 10 

 S G 

S (2,2) (1,4) 

G (4,1) (0,0) 

We will show that the following result holds within our framework. 

Theorem 2 Whatever initial belief an active player holds, he/she will choose G; in 

contrast, whatever initial belief a passive player holds, he/she will choose S. 

Proof. Assume the belief of an active player is )(xpact , },{ GSx , after the 

normalization procedure, the relatively likelihood function is then given as )(xact , for 

an active player, his/her payoff matrix is given in Table 11. 

Table 11 

 S G 

S 2 1 

G 4 0 

So the satisfaction matrix is then given in Table 12: 

Table 12 

 S G 

S 0.5 0.25 

G 1 0 

Let us then examine the active focus point of G. 

It is easily to verify the following equalities: 

0),())(),,(min(  GGuGGGu act                 (2.24) 

0)())(),,(min(  SSSGu actact                   (2.25) 

So the active focus point of G is given as follows: 
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SxxGuGx act
GSx

act   ))(),,(min(maxarg)( },{         (2.26) 

So for an active player, by choosing G, his/her (imagined) satisfaction is: 

1),())(,(  SGuGxGu act                        (2.27) 

However, by choosing S, his/her satisfaction is 0.25 or 0.5, both of which are below 1. 

Based on the above analysis, for an active player, he/she chooses G independent of the 

initial beliefs. 

Assume the belief of a passive player is )(xp pas , },{ GSx , after the normalization 

procedure, the relatively likelihood function is then given as )(xpas , let us examine the 

passive focus point of G. 

It is easily to verify the following equalities: 

1),())(1),,(max(  SGuSSGu pas                  (2.28) 

1)(1))(1),,(max(  GGGGu paspas                (2.29) 

So the passive focus point of G is given as follows: 

GxxGuGx pas
HSx

pas   ))(1),,(max(minarg)( },{      (2.30) 

So for a passive player, by choosing G, his/her (imagined) satisfaction is: 

0),())(,(  GGuGxGu pas                        (2.31) 

However, by choosing S, his/her satisfaction is 0.25 or 0.5, both of which are above 0. 

Based on the above analysis, for a passive player, he/she chooses G independent of the 

initial beliefs. 

The proof is completed.                                                  □ 

 

Analysis  

From the above result, we can see in the chicken game, neither two active players nor 
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two passive players can achieve any equilibrium. Among them, two active players yield 

the worst conflict result. In contrast, an active player and a passive player can an 

equilibrium which makes the active player better off. 

 

3  The Battle of Sex  

In game theory, the battle of sex game describes a situation as follows: 

A couple are going out for a date this evening. However, they forget what event they 

have decided: an opera or a football match. The wife prefers the opera while the husband 

prefers the football match. Both of them prefer to go to the same place. The payoff of 

such a 22  game is given in Table 13. 

Table 13 

 O F 

O (2,3) (0,0) 

F (0,0) (3,2) 

We will show that the following result holds within our framework. 

Theorem 3 Whatever initial belief an active husband (or wife) holds, he/she will choose 

F (or O); whatever initial belief a passive husband (or wife) holds, his/her focus point by 

choosing F (or O) will be O (or F). 

Proof. Assume the belief of an active husband is )(xpact , },{ FOx , after the 

normalization procedure, the relatively likelihood function is then given as )(xact , for 

an active husband, his payoff matrix is given in Table 14: 
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Table 14 

 O F 

O 2 0 

F 0 3 

So the satisfaction matrix is then given in Table 15. 

Table 15 

 O F 

O 0.67 0 

F 0 1 

Let us then examine the active focus point of F. 

It is easily to verify the following equalities: 

0),())(),,(min(  OFuOOFu act                 (2.32) 

0)())(),,(min(  FFFFu actact                  (2.33) 

So the active focus point of F is given as follows: 

FxxFuFx act
FOx

act   ))(),,(min(maxarg)( },{         (2.34) 

So for an active husband, by choosing F, his (imagined) satisfaction is: 

1),())(,(  FFuFxFu act                       (2.35) 

However, by choosing O, his/her satisfaction is 0 or 0.67, both of which are below 1. 

Based on the above analysis, for an active husband, he chooses F independent of the initial 

beliefs. 

Assume the belief of a passive husband is )(xp pas  },{ OFx , after the normalization 

procedure, the relatively likelihood function is then given as )(xpas , let us examine the 

passive focus point of F. 

It is easily to verify the following equalities: 



22 

 

1),())(1),,(max(  FFuFFFu pas              (2.36) 

1)(1))(1),,(max(  OOOFu paspas             (2.37) 

So the passive focus point of F is given as follows: 

OxxFuFx pas
FOx

pas   ))(1),,(max(minarg)( },{      (2.38) 

So for a passive husband, by choosing F, his focus point is O. 

The proof is completed.                                                  □ 

 

Analysis  

From the above result, we can see in the battle of sex, two active players lead to the 

worst result. As a passive husband (or wife) tends to choose O (or F), two passive players 

also bears a relatively higher risk to miss each other. In contrast, an active player and a 

passive player probably achieve an ideal (also equilibrium) result.  
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2.4 Summary 

  In this section, we make a detailed description of the One-Shot Game Model. Generally 

speaking, it is a non-equilibrium approach and consists of two steps: belief formulation 

and one-shot decision making. When formulating belief, a player takes his/her opponent 

payoff into account and deduces that his/her opponent should choose an action which can 

generate a higher payoff (maximum, minimum or average) with a higher probability. In 

deciding his/her optimal action, a player evaluates his/her each alternative focusing on 

only one action possibly chosen by his/her opponent (the focus point), which is the one-

shot decision based thinking. Players with different personalities have different focus 

points, which results in different optimal choices. Although a player formulates different 

belief based on different belief formulation criteria, we show that in some simple 22  

games, players’ choices are independent of formulated beliefs and is determined only by 

whether the player is active or passive. The optimal actions of players in those games 

possess strong robustness and the obtained solutions within our framework is intuitively 

acceptable. 
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Chapter 3  

 

Capacity Allocation Game 

 

3.1  Preliminary in Capacity Allocation Game 

In a supply chain, the capacity shortage refers to the situation that retailers’ demand is 

higher than the supplier’s inventory, as modifications are infeasible in a short term, the 

supplier has to divide the limited inventory to each retailer. Different allocation 

mechanisms have been proposed and examined so far (Cachon & Lariviere, 1999(a) (b) 

(c); Hall & Liu, 2010; Lu & Lariviere, 2012), among them, the proportional allocation 

method, which says the supplier provides each retailer the quantity proportional to his/her 

order, is the most intuitive and prevalent in practice. Under such an allocation rule and 

the assumption that each retailer is completely informed of the states (including the 

demand, the shortage and wastage cost, etc.), such a problem can be formulated as a static 

game with complete information among retailers (Cachon & Lariviere, 1999(a)). 

Although simple, the Nash equilibrium of such a game is that each retailer submits an 

order of infinity, which is in contrary to people’s intuition as well as deviates from 

experimental findings (Chen et al., 2012; Cui & Zhang, 2016). What is worse, such an 

unacceptable equilibrium is rather robust to the change of the shape of the utility function 

and model’s parameters, which obviously increases the difficulty of solving such an 

abnormality. 

In this section, we firstly make a brief review of the capacity allocation game. For 

simplicity, we consider a supply chain with one supplier and two retailers, indexed by i , 
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2,1i . The supplier can provide at most K  units’ commodities to retailers and each 

retailer’s demand is D  units. The capacity shortage refers to the situation that the 

supplier can’t meet both retailers’ demands, i.e. DK 2 . The wholesale price is c  per 

unit and the market price is p  per unit. It is assumed that all the parameters mentioned 

above are exogenous and common knowledge. Under this assumption, the supplier’s 

problem can be ignored here and this problem is a simple static game with complete 

information between two retailers. During this game, the following events occur 

sequentially. First, each retailer submits an order quantity iq  with an upper bound Q  

to the supplier, the upper bound Q  can be regarded as a regulation in such a competition. 

Second, the supplier divides his/her capacity to each retailer according to the following 

proportion allocation mechanism: 

If the supplier has sufficient capacity, i.e. 21 qqK  , then each retailer’s order will 

be filled; 

If the supplier doesn’t have sufficient capacity, i.e. 21 qqK  , then each retailer will 

receive an allocation proportional to her order quantity, specifically, retailer 1 will receive 

K
qq

q

21

1


 and retailer 2 will receive K

qq
q

21

2


. Mathematically, if we denote the 

capacity allocated to retailer i  as iz , then   

),min(
ii

i
ii qq

Kqqz



 .                       (3.1) 

For retailer i , the material payoff function is given as follows: 








 Dzzcp

DzczpD
qqv

ii

ii
iii )(
),(  .           (3.2) 

The unique Nash equilibrium of the above game is that each retailer orders the upper 
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bound Q  independent of p  and c . Such an equilibrium is practically problematic 

and doesn’t match players’ behaviors in experiment (Chen et al., 2012; Cui & Zhang, 

2016). Speaking in detail, Chen, Su and Zhao (2012) find that retailers only submit a large 

order quantity (or the regulated upper bound in the experiment) when the cost of the 

commodity is very low while decrease their orders when the cost of the commodity is 

higher. Cui and Zhang (2016) find that retailers don’t order the upper bound at first stages 

of the games and that their order quantities increase to the upper bound with the same 

game being repeated. Those abnormalities raise an interesting question why such a 

deviation occurs. The general answer in the two papers are that the classical game theory 

suppose each retailer is perfect rational, while a retailer in reality is not perfect rational. 

Specifically, Chen Su and Zhao (2012) argue that retailers are bounded rational in 

deciding his/her optimal order quantity and Cui and Zhang (2016) rationalize the 

experimental findings by utilizing the Cognitive Hierarchy Model, the core argument of 

which is that an involved player may wrongly predict his/her opponents’ actions. 

 In the following, we utilize the One-Shot Game Model to describe the decision-

making process of an individual retailer involved in such a situation. Generally speaking, 

two steps are thought to be required for a retailer to accomplish his/her decisions. First, a 

retailer formulates a subjective belief about the action of his/her rival; second, a retailer 

chooses an order quantity best fitting his/her objective. In the next section, we will discuss 

the belief formulation process in detail.  
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3.2  Belief Formulation Process 

In this section, we consider retailer i ’s belief formulation process. In retailer i ’s eyes, 

which order quantity iq  is more likely to be chosen by his/her rival? To answer this 

question, let us firstly verify the following dominating relation: 

Dq i   dominates any Ddq i  .          (3.3)   

The above domination says whatever order quantity retailer i  chooses, his/her rival 

choosing D  is always better than choosing an order quantity less than D . This fact can 

be verified by considering the following two cases: 

(a) If DKqi  , then the allocated capacity to his/her rival is as follows: 














 .,
;,

dqifd
DqifD

z
i

i
i                (3.4) 

It is obvious that ),(),( dqvDqv iiii    for DKqi  ; 

(b) If DKqi  , then the allocated capacity to his/her rival is as follows: 

































.,

;,

;,

dKqanddqifd

dKqanddqif
qd

dK

Dqif
qD

DK

z

ii

ii
i

i
i

i   (3.5) 

On one hand, noticing that 
iqd

dKd


  for dKqi  , we know the following relation 

holds: 

i
i qd

dKz





 for Ddq i  .                          (3.6) 

On the other hand, we have the following relation: 
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i

i qD
DKz





  for Dq i  .                         (3.7) 

Further, considering DKqi   and Dd  , we can verify the following relation holds: 

D
qD

DK
qd

dK
ii







.                             (3.8) 

The above relations imply that ),(),( dqvDqv iiii    for DKqi  . Combining (a) and 

(b), we know Dq i 
 dominates any Ddq i 

. In the same way, we know for 

Ddd  210 , 2dq i 
 dominates 1dq i 

. 

In summary, within the interval ],0[ Dq i 
, the smaller iq  is, the more order quantity 

it is dominated by. In other words, it can be said that a smaller order quantity is more 

easily to be identified as a dominated one by retailer i ’s rival, so it is reasonable for 

retailer i  to deduce that the smaller an order quantity is, the lower probability for it to 

be chosen by his/her rival. 

However, domination only occurs within the interval ],0[ Dq i 
, then how should 

retailer i  deal with iq  beyond ],0[ D ? To solve this question, let us firstly clarify the 

following statement: 

If ],[ QDqi  , 
DK

Dq i





2

 dominates any ),[
2

DK
DDdq i



 .   (3.9) 

Bearing in mind that 
2
KD  , we know D

DK
D




2
. In this case, the allocated capacity 

to his/her rival is as follows: 






























.),[,

;,
)(

2

2

2

2

DK
DDdqif

qd
dK

DK
Dqif

qDKD
KD

z
i

i

i
i

i    (3.10) 
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For Dqi   and ),[
2

DK
DDd


 , we have the following relations: 

D
DDKD

KD
qDKD

KD
qd

dK
ii








 )()( 2

2

2

2

.          (3.11) 

from (3.11) we know ),(),(
2

dqv
DK

Dqv iiii  


 for Dqi   and ),[
2

DK
DDd


 , 

which is the dominating relation (3.9). 

Noticing that the above dominating relation holds under the condition that retailer i  

doesn’t choose his/her dominated order quantities, we can say that in order to recognize 

this dominating relation, retailer i ’s rival should at least think one step more, which 

obviously requires more computation and higher reasoning ability, so the dominated order 

quantities within the interval ),[
2

DK
DD


 is more difficult to be abandoned than those 

within the interval ),0[ D , and it is natural for retailer i  to deduce his/her rival adopts 

an order quantity within ),[
2

DK
DD


 with higher probability than adopting one within 

),0[ D . Also, in the same way, we can obtain the following relations: 

If ],[ QDqi   and 
DK

DddD



2

21
, 

2dq i 
 dominates 

1dq i 
.  (3.12) 

Utilizing the same logic, within the interval ),[
2

DK
DD


, a higher order quantity is more 

difficult to be identified as a dominated one, so the higher an order quantity is, the higher 

probability for it to be chosen. Likewise, we can verify the following sequence of 

dominating relations:  

2

3

)( DK
Dq i





 dominates any )
)(

,[ 2

32

DK
D

DK
Ddq i





, 

3

4

)( DK
Dq i





 dominates any )
)(

,
)(

[ 3

4

2

3

DK
D

DK
Ddq i





, 

…… 
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1)( 


 n

n

i DK
Dq  dominates any )

)(
,

)(
[ 12

1








 n

n

n

n

i DK
D

DK
Ddq . (3.13) 

As 
  1)(

lim n

n

n DK
D , there exists an N  such that 

)
)(

,
)(

[ 12

1






 N

N

N

N

DK
D

DK
DQ . Also, within each interval, a higher order quantity 

corresponds to a larger dominating set, so a higher order quantity is chosen with a higher 

probability.  

In summary, retailer i ’s probabilistic belief )( ii qp 
 should satisfies the following two 

principles: 

(1) )( ii qp 
 increases within each sub-interval, 

(2) )( ii qp 
 increases over sub-intervals. 

Without loss of generality and for the simplicity of analysis, we use an increasing 

continuous function )(xpi  to serve as the probabilistic belief of retailer i  in this 

situation. 

So far we have finished the belief formulation procedure. In the next section, let us 

consider retailer i ’s decision making process. 
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3.3  Decision Making Process 

In this section, we utilize the one-shot decision theory thinking to character a retailer’s 

decision making process. As one and only one order quantity of his/her rival will be 

realized after the game, it is natural for retailer i  to imagine only one order quantity 

submitted by his/her rival before deciding whether to adopt an order quantity or not. In 

other words, when retailer i  evaluates an order quantity, he/she doesn’t regard this order 

quantity as a lottery whose value equals its expectation, instead, he/she imagines a 

specific order quantity possibly chosen by his/her rival and evaluates this order quantity 

as if his/her imagined scenario comes true. The above argument is in line with human 

intuitive cognitive phycology as well as matches the one-shot feature of retailer i ’s 

decision making situation. We also consider two kinds of retailers, namely the active 

retailer and the passive retailer, which correspond to different attitudes in decision making 

process. Speaking in detail, for each order quantity iq , an active retailer i  contemplates 

a iq  making him/her better off with a relatively high likelihood, mathematically, such 

an imagined iq  can be interpreted as a solution of the following bi-objective 

optimization problem: 

)(max),,(max iiqiiiq qpqqv
ii  

.                      (3.14) 

In this problem, the satisfaction function ),( iii qqu 
 can be obtained by a simple linear 

transformation as follows: 

LU
Lqqvqqu iii

iii



 



),(),( ,                        (3.15) 

where L  is the lowest possible material payoff and U  is the highest one. Obviously, 

for retailer i , he/she earns the most when receiving exactly his/her demanding quantities, 

so the highest possible material payoff is DcpU )(  ; as for the lowest one, retailer i  
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is the worst off when he/she receives all the capacity K  or when he/she receives nothing, 

the material payoff is cKpD   in the former case and 0 in the latter case. For simplicity, 

we first make the assumption that 0 cKpD  here and thus the lowest material 

payoff is 0L . Based on the above analysis and the expression of ),( iii qqv 
, ),( iii qqu 

 

can be explicitly given as follows: 



















Dz
D
z

Dz
Dcp
czpD

qqu
i

i

i
i

iii
)(),(  ,                   (3.16) 

where iz  is given in (3.1).  

As the probability density function )( ii qp 
 is an increasing function with 0)0( ip , the 

relative likelihood function )( ii q  is given in the following form: 

)(
)()(

Qp
qpq

i

ii
ii


  .                                (3.17) 

Based on (3.15)-(3.17), problem (3.14) can be equally written in the following form: 

)(max),,(max iiqiiiq qqqu
ii  
                          (3.18) 

Further we know ),( iii qqu 
 and )( ii q  both range over ]1,0[ , we utilize the following 

operator to find out an un-dominated solution of problem (3.14) as well as problem (3.18): 

)](),,([minmaxarg)(1
iiiiiqqii qqquqq

ii  
                 (3.19) 

In the above formula, as ),( iii qqu 
 and )( ii q  are both canonical numbers, making 

comparison between them is acceptable. )](),,([min iiiiiq qqqu
i    stands for the lower 

bound of the relative material payoff and the relative likelihood, and increasing the lower 

bound of them means increasing them simultaneously, resulting in picking out a scenario 

with relatively high likelihood and relatively high satisfaction, the chosen scenario is 

called the active focus point, which reflects the tendency of an active retailer. Denoting 
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the set of active focus points as )(1
ii qQ

, the optimal order quantity for an active retailer 

is the one bringing him/her the highest material payoff (or the highest satisfaction) under 

the focus point, which can be expressed as follows: 

))(,(maxmaxarg 1
)()(

,1
11 iiiqQqqq qqquq

iiiiiii  

           (3.20) 

In (3.20), when multiple active focus points exist, we choose the one leading to the largest 

satisfaction, which is ))(,(max 1
)()( 11 iiiqQqq

qqqu
iiiii  

, to reflect the optimistic attitude of an 

active retailer.  

Besides the active retailer with an optimistic attitude, we also consider another kind of 

retailer with pessimistic attitude, which we call the passive retailer. Different from the 

active retailer, for each order quantity iq , a passive retailer i  focuses on a iq  bringing 

him/her a relatively bad result with a relatively high likelihood. Also, we can use the 

following bi-objective optimization problem to identify the focus point of a passive 

retailer: 

)(max),,(min iiqiiiq qpqqv
ii  

     .                     (3.21) 

The above problem also equals to: 

)(max),,(min iiqiiiq qqqu
ii  
     .                      (3.22) 

Also, we utilize the following formula to find out an un-dominated solution of problem 

(3.21) as well as problem (3.22): 

)](1),,([maxminarg)(2
iiiiiqqii qqquqq

ii  


 .           (3.23) 

In the above formula, )](1),,([max iiiiiq qqqu
i    stands for the upper bound of the 

relative material payoff and the inverse of relative likelihood, and decreasing the upper 

bound of them means decreasing them simultaneously, or decreasing the satisfaction 
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level and increasing the relatively likelihood simultaneously. The scenario obtained in 

this way is likely to happen in the future and will bring retailer i  an undesirable result 

upon happening. As a passive retailer can be imagined as a conservative one, such a 

scenario reflects his/her concern well. Denoting the set of passive focus points as 

)(2
ii qQ


, the optimal choice for a passive retailer is the one with the highest satisfaction 

level associating its focus point, which can be expressed as follows: 

))(,(minmaxarg 2
)()(

,2
22 iiiqQqqq qqquq

iiiiiii  

            (3.24) 

In (3.24), when multiple passive focus points exist, we choose the one leading to the 

lowest satisfaction, which is ))(,(min 2
)()( 22 iiiqQqq

qqqu
iiiii  

, to reflect the pessimistic 

attitude of a passive retailer. 

In summary, in this section, we describe a retailer’s decision making process by seizing 

the one-time feature of the problem as well as considering the impact of decision makers’ 

personalities. Different from the existing expected theory, a retailer makes his/her 

decision relying on only one specific imagined scenario in the future, it is closer to the 

real decision making process, also, the obtained optimality conditions show the 

reasonability and effectiveness of our framework and we will show them in the following 

section.  
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3.4  Analytical Results and Explanation 

For an active retailer, we have the following result. 

Theorem 1. For an active retailer, his/her optimal order quantity is Qqi ,1 . 

Proof. In the first step, let us examine the focus point for each ],0[ Qqi  . For a fixed iq , 

let us consider )),(),(min(max iiiiiq
qquq

i




  within ],0[ ii qq
D
K

  and ],[ Qqq
D
K

ii  , 

respectively. As DKD 2  and Qqi 0 , we know Qqq
D
K

ii 0 , which 

guarantees the feasibility of such a division. 

],0[ iii qq
D
Kq 

: Bearing in mind that )( ii q  is an increasing function, it is obvious 

that the following relation holds: 

)()(max)),(),(min(max
],0[],0[

iiiii
qq

D
Kq

iiiii
qq

D
Kq

qq
D
Kqqquq

iiiiii

 





 

 .      (3.25) 

],[ Qqq
D
Kq iii 

: Firstly, it can be verified that ),( iii qqu   is a decreasing function of 

iq  within this interval and that 1),(  iiii qq
D
Kqu . Secondly, )( ii q  is an increasing 

function and 1)( Qi . We can then obtain the following relations: 

)(),(1 iiiiiii qq
D
Kqq

D
Kqu   ,                             (3.26) 

   1)(),(  QQqu iii  .                                        (3.27) 

Considering the monotonicity of ),( iii qqu   and )( ii q , we know 

),()()),(),(min(max
][

iiiiiiiiii
qq

D
Kq

qquqqquq
iii







 ,                (3.28) 

where iq  is the unique solution of ),()( iiiii qquq    within ),( Qqq
D
Kq iii 

. As 

),( Qqq
D
Kq iii 

 and )( ii q  is an increasing function, we know 
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)()( iiiii qq
D
Kq   , from which we can obtain 

),()()),(),(min(max
],0[ iiiiiiiiiiQq

qquqqquq
i







 ,       (3.29) 

                   iiiiiiQq
qqquq

i







)),(),(min(maxarg
],0[

  .                (3.30) 

As iq  is the unique solution of ),()( iiiii qquq   , specifically, iq  satisfies the 

following equation: 
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i
ii qqD

Kqq
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Differentiating both sides with respect to iq , we know 
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The above relation shows that iq  increases with increasing iq , as )( ii q  is an 

increasing function of iq ,  ),( iii qqu   is an increasing function of iq , we know the 

optimal order quantity in this case is Qqi ,1 . It proves theorem 1.               □ 

Comment 1 

From the proof of Theorem 1, we know that for an order quantity iq , an active retailer 

ignores his/her rival’s order quantities with relatively low likelihood (i.e. 

],0[ iii qq
D
Kq  ); within the interval ],[ Qqq

D
Kq iii  , retailer i ’s satisfaction 

decreases while the likelihood of iq  increases with increasing iq , as an active retailer 

i  subconsciously seeks a more possible and more beneficial state, making a balance 

between the two factors , or mathematically choosing the intersection point of those two 

functions as the focus point, is intuitively acceptable in this situation.  
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For a passive retailer, we have the following theorem. 

Theorem 2. For a passive retailer, his/her optimal order quantity ,2
iq satisfies  

)
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i

ii

ii
i q

KqcpQqpD
QqcKq

DQq
Kq

 .          (3.33) 

Proof. Firstly, for ],0[ Dqi  , utilizing the monotonicity of )( ii q  and ),( iii qqu


, 

we know the following relation hold: 

)(maxarg
],0[ iiQq

qQ
i




  ,                          (3.34) 

),(minarg
],0[ iiiQq

qquQ
i




 .                          (3.35) 

Based on (3.21) and (3.22), we know in this case, the focus point of iq  is Qqq ii



)(2  

and 
DQq

KqQquqqqu
i

i
iiiii i )(

),())(,( 2





. Considering the monotonicity of 

),( Qqu ii , we know the optimal order quantity within ],0[ D  is D  and the satisfaction 

is 
)( QD

K


. 

Secondly, for ],( QDqi  , let us consider the focus point for each iq  within ],0[ ii qq
D
K

  

and ],[ Qqq
D
K

ii  , respectively. 

],0[ iii qq
D
Kq  : Firstly, it can be verified that ),( iii qqu 

 is a strictly increasing function 

of 
iq
 within this interval and that 1),(  iiii qq

D
Kqu . Secondly, )(1 ii q  is a 

decreasing function and 1)0(1  i . We can then obtain the following relations: 

1)0(1)0,(  iii qu   ,                            (3.36) 

                )(),(1 iiiiiii qq
D
Kqq

D
Kqu   .                    (3.37) 

Considering the monotonicity of ),( iii qqu 
 and )(1 ii q , we know 
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)ˆ,()ˆ(1)),(),(1max(min
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where iqˆ  is the unique solution of ),()(1 iiiii qquq    within 

),()(1 iiiii qquq   . 

],[ Qqq
D
Kq iii  : Within this interval, both ),( iii qqu   and )(1 ii q  are decreasing 

function of iq , combining the fact that 0)(1  Qi , we can obtain the following 

relation: 

),()),(),(1max()),(),(1max(min
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QquQquQqquq iiiiiiiiii
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D
Kq iii
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Based on the above analysis, we know the focus point of an order quantity iq  can be 

expressed in the following form: 
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where )),(),ˆ,(min())(,( 2 Qquqquqqqu iiiiiiii i 


. As 
iq

ˆ  is the unique solution of 

),()(1 iiiii qquq


 , specifically, 
iq

ˆ  satisfies the following equation: 
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Differentiating both sides with respect to 
iq , we know 
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The above relation shows that 
iq

ˆ  increases with increasing 
iq , as )ˆ(1 ii q  is a 

decreasing function of 
iq

ˆ , )ˆ,( iii qqu


 is a decreasing function of 
iq . 

As 
)(

),(
QqD

KqQqu
i

i
ii


 , it is obvious that ),( Qqu ii

 is an increasing function of 
iq . 
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So )),(),ˆ,(min())(,( 2 Qquqquqqqu iiiiiiii i 


attains its minimum at the intersection point of 

the two functions )ˆ,( iii qqu


 and ),( Qqu ii
, denoting the optimal order quantity as 

,2
iq , it should satisfy the following condition: 

),()ˆ,( ,2,2 Qquqqu iiiii




  .                     (3.43) 

From (3.16), we know )ˆ,( ,2
iii qqu 

  and ),( ,2 Qqu ii
  are as follows: 
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(3.43) (3.44) (3.45) leads to the following relation: 
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Further, as 
iqˆ  is the unique solution of ),()(1 iiiii qquq


 , we have the following 

relation: 

)ˆ,()ˆ(1 ,2
iiiii qquq 



  .                    (3.47) 

(3.43) (3.46) (3.47) together lead to (3.33). 

Based on the above analysis, we know the optimal order quantity within ],( QD  is 

,2
iq , and the satisfactions is 

DQq
Kq

i

i

)( ,2

,2





, which is larger than the highest satisfaction by 

choosing an order quantity within ],0[ D . It proves theorem 2.                    □ 
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Comment 2 

From the proof of Theorem 2, we know that for an order quantity 
iq , a passive retailer 

i  possibly focuses on two situations, one is that his/her rival orders too much (i.e. 

Qq i 
), in this case, retailer i  receives too little and suffers from the largest 

opportunity cost, so it is an undesirable situation. Considering the character of a passive 

retailer, worrying about this situation is understandable. The other situation that may draw 

retailer i ’s attention is that his/her rival orders too less, which will cause retailer i  a 

larger wastage loss. However, as the likelihood that his/her rival orders too less is not 

high, considering the low possibility, retailer i  may ignore the a very low 
iq
, instead, 

retailer i  tends to concentrate on a low 
iq
 relative probably chosen by his/her rival, 

which is the 
iq

ˆ  in theorem 2. Pessimistically, a passive retailer makes a comparison 

between the two situations and chooses a worse state as the focus point.  

Based on Theorem 2, we can also obtain the following results. 

Proposition 3 For a passive retailer, his/her optimal order quantity ,2
iq  is an increasing 

function of the upper bound Q  and his/her demand D ; his/her optimal order quantity 

,2
iq  is a decreasing function of the capacity K . 

Proof. Bearing in mind that 





 



 ,2

,2,2

,2,2

)()(
)(ˆ i

ii

ii
i q

KqcpQqpD
QqcKqq , the optimal condition 

(3.33) can be written as follows: 
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ii qDQq
Kq








          (3.48) 

Fixed D  and K , differentiating both sides of (3.48) with respect to ,2
iq , utilizing 

the implicit function theorem, we know the derivative of Q  with respect to ,2
iq  is as 
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follows: 

qKD
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        (3.49) 

As )ˆ( ii q  is an increasing function, 0)ˆ( 
ii q ; from (3.42), we know 

0)(ˆ ,2  

 ii qq , those two relations leads to the result that 0)( ,2  

iqQ , in other word, Q  

is an increasing function of ,2
iq , which is equal to say that ,2

iq  is an increasing 

function of Q . 

Similarly, by fixing the other two parameters, we can obtain the derivatives of D  and 

K with respect to ,2
iq  are as follows: 
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Based on the analysis of )( ,2  iqQ  and (3.50), (3.51), it is easy to check that 

0)( ,2  

iqD  and 0)( ,2  

iqK , which imply that ,2
iq  is an increasing function of D  

and a decreasing function of the K .The proof is completed.                      □ 

 

Comment 3 

The results in Proposition 3 are also intuitive. Firstly, when the capacity is low, it is 

natural for a retailer to raise his/her order quantity to gain a larger share of the total 

capacity. Secondly, when the demand is high, a retailer should increase his/her order 

quantity to guarantee a larger allocation. Thirdly, when the upper bound is high, as the 

opponent can order more, a retailer should also raise his/her order quantity to make 

him/her more competitive. 
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Explanations of the experiment findings 

Utilizing the above analytical results, we can provide a unified explanation for the 

experimental findings in the literature. 

Explanation of the experimental findings of Chen, Su and Zhao 

In the work of Chen, Su and Zhao (2012), the experiments show that when the 

wholesale price is very low ( 2c  in the experiment), most retailers’ choices are close 

to Q . Theorem 1 suggests that regardless of 
i , an active retailer’s optimal order 

quantity is Q . As it is acceptable that a retailer adopts an active attitude when facing a 

commodity of low cost, our result is in consistent with the experimental findings. When 

the wholesale price is very high ( 20c in the experiment), retailers’ order quantities are 

distributed in the interval ],[ QD , in other words, in this case, a retailer also orders more 

than his/her demand, but don’t order the highest Q  for a fear of possible large loss. 

From Theorem 2, we know the optimal order quantity of a passive retailer ,2
iq  lies in 

the interval ],[ QD , further, by assuming different initial beliefs )( ii qp


, ,2
iq  can be 

different values within ],[ QD . It is also acceptable that a retailer is passive when facing 

a commodity of high cost, so we can say our results match the experimental data to some 

extent. 

 

Explanation of the experimental findings of Cui and Zhang 

The experiments conducted by Cui and Zhang (2016) also show some tendencies of 

retailers’ behaviors in the capacity allocation game. Firstly, a retailer orders more when 

the capacity is more restricted (i.e. K  is low). Secondly, a retailer doesn’t order the 

upper bound at first, however, when the game is repeated, a retailer’s order quantity 
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increases to the upper bound. These phenomena can be also explained by our model. 

Firstly, in Proposition 3, we show that the optimal order quantity is increasing with 

decreasing the capacity, what is more, we also show that the optimal order quantity is 

increasing with increasing the demand and the upper bound, which are both consistent 

with human’s intuition. Secondly, at first stage, retailers have no experience of such a 

game, in other word, a retailer finds him/herself in an unfamiliar environment. In such an 

environment, it is probable that the retailer is passive (or less confident), so the retailer 

chooses an order quantity less than the upper bound, which is consistent with the choice 

of a passive retailer in our model; however, with repeating playing the same game, a 

retailer gains more experiences and becomes more confident (or active), and the order 

quantity gradually increases to the upper bound, which is the choice of the active retailer 

in our model. 
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3.5  Summary  

In this section, we utilize the One Shot Game Model to examine the capacity allocation 

game. Firstly, each retailer forms the belief based on strategy dominance. Secondly, 

optimal choices are made based on the form belief. As there is one and only one chance 

for a retailer to submit an order quantity and one and only one order quantity will be 

chosen by his/her rival, it is a typical one-shot decision problem for each retailer, so we 

utilize the one-shot decision theory to analyze the decision making process of an retailer. 

The obtained analytical results are more intuitive than the classical Nash Equilibrium and 

match the experimental findings in literature.  

Moreover, the proposed framework in this section can be potentially extended to 

investigate games resembling the capacity allocation game in the following two aspects: 

firstly, the unique equilibrium is obtained by iteration of elimination of dominated 

strategies; secondly, the equilibrium is an implausible extreme value. 

One example is the Traveler’s Dilemma proposed by Kaushik Basu in 1994. The story 

is that two travelers fly home, each bring a souvenir of the same price. Their luggage is 

lost and the airline company asks them to make independent claims for compensations. 

If their claims differ, each will get the minimum of the two claims. In addition, the traveler 

making the lower claim will be paid a fixed reward, which will be imposed as penalty to 

the other traveler. The unique Nash equilibrium obtained after iteration of elimination of 

dominated strategies is each traveler submit a 0 claim, which is implausible but robust.  

The other example is the p Beauty Contest Game studied by Nagel in 1995. The 

rule is simple: a large number of players simultaneously choose a number between 0 and 

100, the more closer a player’s chosen number is to the p )10(  p times the average 

of all chosen numbers, the more profit he/she gets from the game. When the chosen 



45 

 

number is restricted to integers, it is one kind of integer games. The p beauty contest 

game is also a dominance solvable game with the unique Nash equilibrium that every 

player chooses 0, which is a prediction far from experimental findings.  

Both the two abnormalities mentioned above can be potentially solved by the proposed 

framework in this section. On one hand, as dominated strategies can be eliminated 

iteratively, a monotone belief can reflect the dominance relation of such games better; on 

the other hand, considering the one-time feature of such games, we utilize the one-shot 

decision theory to handle a player’s decision process. Players’ action set as well as utility 

function in both games are different from those in the capacity allocation game, and 

further analysis is left for the future work. 
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Chapter 4 

 

First Price Sealed Bid Auction 

 

4.1 Anomalies in First Price Sealed Bid Auction 

The classical solution concept in first price sealed bid auctions is the risk-neutral 

Bayesian Nash Equilibrium (hereafter RNBNE) (Vickrey, 1961). However, experimental 

evidence shows that real bidders don’t follow it at most time. Generally speaking, there 

exist two major tendencies. One is that bidders with low valuation tend to bid randomly: 

on one hand, Cox, Smith and Walker (1988) point out the ‘throw away’ phenomenon, 

which says that some subjects in first price auction experiments, upon drawing a low 

value, enter a bid at (or near) zero, or less frequently, a bid at (or near) the value. On the 

other hand, overbidding (Pezanis-Christou, 2002) and underbidding (Kirchkamp & 

Philipp, 2004), which respectively mean bidding above and below the RNBNE, are also 

observed. The other one is that bidders with high valuation tend to overbid (Cox et al., 

1982). 

Several explanations have been considered in the literature. For example, the throw 

away phenomenon is thought caused by the fact that bidders with low evaluation don’t 

take the auction seriously (Cox et al., 1992). Overbidding is explained by theoretical 

models such as risk aversion (Cox et al., 1983), joy of winning (Cox et al., 1992), ad hoc 

bidding strategy (Pezanis-Christou, 2002), quantal response equilibrium (Goeree et al., 

2002), the level-k model (Crawford & Iriberri, 2007), regret averse (Hayashi & 

Yoshimoto, 2014), etc. Underbidding is rationalized by the anticipated emotions model 
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(Roider & Schmitz, 2007). However, to the best of our knowledge, until now, there exists 

no theoretical model providing a unified explanation for those phenomena. In the 

following, we utilize the One-Shot Game Model to analyze the first price sealed bid 

auction. Instead of treating an involved bidder as a decision making machine, we try to 

narrate the real decision making process of him/her. 
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4.2 Two Bidders’ First Price Sealed Bid Auction 

For easily understanding our models, let us begin with examining the two bidders’ case. 

For bidder }2,1{i , the set of his/her bidding prices is ],0[ ii vB   where iv  is his/her 

valuation of the auctioned subject which is an independent private value; his/her belief – 

the probability density function of his/her rivals’ bidding prices is ip  where 

}2,1{ ji .  

In our models, we not only take into account the simple gain achieved by the bidding 

price but also the regret caused after knowing the result. The effect of regret on bidders’ 

behaviors is initially examined by Engelbrecht-Wiggans (1989) and further studied by 

Filiz-Ozbay & Ozbay (2007), Engelbrecht-Wiggans & Katok (2007, 2009) and Hayashi 

& Yoshimoto (2014). The winner in a first-price sealed-bid auction is the bidder with the 

highest bidding price. However, it is always the case that the winner finds himself/herself 

bid too high after the revelation of all the other bidders’ bidding prices. In this situation, 

we say that the winner suffers from ‘winner’s regret’. In contrast, after an auction, a loser 

may find that the winner’s bidding price is below his/her valuation of the auctioned object. 

In this case, the loser actually misses an opportunity to gain and we say that the loser 

suffers from ‘loser’s regret’. The evaluation function is given as follows: 


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
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




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

;,0
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;,)()(

),( 2,

1,

ij

ijijii

jijiiii

jii

vb
bbvbvk

bbbbkbv
bbf            (4.1) 

where 1,ik  is bidder si'  winning regret parameter and 2,ik  is bidder si'  losing regret 

parameter. Here we assume ],0(, 2,1, Ckk ii   where C  is a positive real number. This 

assumption is reasonable and can be interpreted as follows: on one hand, the empirical 

study (Engelbrecht-Wiggans & Katok, 2007) shows both winning regret and losing regret 
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have effect on the bidder’s evaluation; on the other hand, neither winning regret nor losing 

regret is so large that the direct profit can be ignored in the bidder’s evaluation. The 

evaluation function (1) involves the following three cases. Case 1 is that bidder i  wins 

the auction ( ji bb  ). In this case, the evaluation value is the gain ii bv   offsetting by 

the weighted winning regret )(1, jii bbk  . Case 2 is for the situation iji bbv  . In this 

case, the bidder i  feels regret because if he presents a little higher than jb  he could 

gain ji bv   so that the evaluation value is )(2, jii bvk  , it should be mentioned here 

that we treat the tie case as lose in (1) to reflect a relatively conservative attitude of an 

involved bidder; In Case 3, that is, ij vb  , bidder i  loses the auction. However, there 

is neither regret nor gain for him/her.  

The satisfaction function can be obtained through the following transformation: 

ii

ii
ii LBfUPf

LBfffu



)( ,           (4.2) 

where iLBf  and iUPf  are a lower bound and a upper bound of if , respectively. Since 

iii vfCv   always holds, we take iv  and iCv  as the upper bound and lower 

bound of if , respectively, and rewrite (4.2) as follows: 
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For simplicity, we set  

),()1())()(( 1
1, jiiiijiiii bbuvCCvbbkbv  ,       (4.4) 

)()1())(( 2
2, jiiijii buvCCvbvk  ,         (4.5) 
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and ),(1
jii bbu  and )(2

ji bu  are used henceforward.  

Usually, bidder si'  valuation iv  is assumed to be a real number within ]1,0[  and 

bidder si'  belief on his/her rival’s bidding prices jb  is assumed to be uniformly 

distributed within ]1,0[  (Engelbrecht-Wiggans, 1989; Crawford & Iriberri, 2007), that 

is, 
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The relative likelihood function is then given as follows: 
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We argue that a bidder determines his/her bidding price based on his/her imagined 

scenario which is consistent with his/her personality. Let us consider that the bidder takes 

a conservative attitude to the imagined scenario. Speaking in detail, for each available 

bidding price ib , the bidder i  contemplates a scenario jb  which can bring him/her a 

relatively low satisfaction level ),( jii bbu  with a relatively high relative likelihood 

degree )( ji b . It can be represented by the following bi-objective optimization problem. 

)(max jib b
j
 , ),(min jiib bbu

j
,                (4.8) 

where ],0[ ii vb  . Regarding ),( jii bbu  and )( ji b  equally important, we can find out 

one Pareto optimal solution of (4.8) from the set of all undominated solutions as follows: 

)),(),(1max(minarg)( jiijibij bbubbb
j

 .                    (4.9) 
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)( ij bb  is a focused scenario amongst all scenarios jb  when bidder i  presents the 

bidding price ib  and called as the focus point of ib .   

A bidder aims to find out a bidding price whose focus point associates with the largest 

satisfaction level. Such a bidding price is regarded as an optimal one. Denoting the set of 

focus points of ib  as )( ibB  and an optimal bidding price as 

ib , we have 

),(minmaxarg )( kiibBbbi bbub
iki 

  .           (4.10) 

(4.10)  is for the case that multiple focus points of ib  exist. In this case, different focus 

points bring different satisfaction levels. We take a conservative attitude to evaluate the 

satisfaction levels so that we take a minimum, that is, ),(min )( kiibBb bbu
ik

. If a unique 

focus point )( ij bb  exists for ib , then (4.10) becomes ))(,(maxarg ijiibi bbbub
i

 . 

  Let us make a brief summary of a bidder’s decision procedure described by (4.6)-(4.10). 

The first step is the formulation of his/her belief about his/her rival’s bidding price, that 

is the formulas (4.6) and (4.7); the second step is determining the focus point (one 

imagined bidding price offered by his/her rival) of his/her each bidding price, that is the 

formulas (4.8) and (4.9); the third step is to evaluate his/her each bidding price by the 

focus point and determine his/her optimal bidding price. Clearly, different from the 

existing auction models where the bidding price is evaluated by the expected utility 

resulted by all possible bidding prices of the rival, our model evaluates the bidding price 

only by the satisfaction level resulted by its focus point. The following theorem is for the 

optimal bidding price. 
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Theorem 1. 

The optimal bidding price of bidder i  is given as follows: 

2,1,

2,

1
)1(

ii

ii
i kk

vk
b




 .                           (4.11) 

Proof. 

Firstly, let us examine the focus point for each ],0[ ii vb  . 

Since 1)( ji b  and 0),( jii bbu  always hold, we have 

),()),(),(1max( jiijiiji bbubbub                (4.12) 

so that we know 

),(min)),(),(1max(min ]1,0[]1,0[ jiibjiijib bbubbub
jj   .                    (4.13) 

Using (4.4) and (4.5), (4.3) can be rewritten as 

),(),( 1
jiijii bbubbu   for ),0[ ij bb  ,               (4.14)  

)(),( 2
jijii bubbu   for ],[ iij vbb  ,        (4.15) 

)1(),( CCbbu jii   for ]1,( ij vb  .        (4.16) 

Since ),(1
jii bbu  and )(2

ji bu  are increasing in jb , we know 

)0,(),(min 11
),0[ iijiibb bubbu
ij

 ,          (4.17) 

)1()1())(()()(min 2,
22

],[ CCvCCvbvkbubu iiiiiiijivbb iij
 .     (4.18) 

From (4.13), (4.17) and (4.18), we know 

))(),0,(min(),(min)),(),(1max(min 21
]1,0[ iiiijiibjiiji bububbubbub

j
  .    (4.19) 

So for each ib , its focus point, denoted as )( ij bb  is given as follows: 
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















;)()0,(,}{
;)()0,(,},0{
;)()0,(,}0{

)(
21

21

21

iiiii

iiiii

iiii

ij

bubub
bubub
bubu

bb
             (4.20) 

Secondly, let us examine the optimal bidding price. From (4.19), we know 

))(),0,(min(),(min 21
)( iiiikiibBb bububbu
ik

 .           (4.21) 

As )0()1/()(1)0,0( 2
2,

1
iii uCkCu   and 

)()1/()1/()()0,( 2
1,

1
iiiii vuCCCkCvu   hold, considering that 

iiiiii vCbkvCbu )1/())1()1(()0,( 1,
1   is a decreasing function of ib  and 

iiiiiii vCbkvkCbu )1/())(()( 2,2,
2   is an increasing function of ib , it is obvious that 

))(),0,(min( 21
iiii bubu  attains its maximum when the following equation is satisfied: 

)()0,( 21
iiii bubu  .                                       (4.22) 

Solving (4.22), we can obtain the optimal bidding price as follows: 

2,1,

2,

1
)1(

ii

ii
i kk

vk
b




 .          (4.11) 

It proves Theorem 1.                   □ 

 

From the proof of Theorem 1, we know that for a bidding price ib , the following two 

situations draw attention of bidder i : one is that his/her rival gives a bidding price 0, and 

in this case, bidder i  suffers from the largest winning regret; the other one is that his/her 

rival offers the same bidding price with his/her bidding price, that is, ij bb  , and in this 

case, bidder i  has the largest losing regret. By making a comparison between the above 
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two situations, bidder i  eventually chooses a worse scenario which brings him/her a 

lower satisfaction as the focus point of ib . The focus point is bidder i ’s imagining 

scenario which will happen when he /she offers a bidding price ib .  

Since bidder i ’s winning regret increases but losing regret decreases with increasing 

his/her bidding price, bidder i  should make a trade-off between them when he/she 

decides the optimal bidding price. As a result, the optimal bidding price makes the bidder 

have equal satisfaction levels in winning and losing situations.  

Clearly, the above explanation is intuitively acceptable and fits the psychological 

behavior of a conservative bidder. 

From Theorem 1, the following properties can be easily obtained. 

 

Proposition 2.  

Bidder si'  optimal bidding price is an increasing function of his/her valuation iv  

and his/her losing regret parameter 2,ik , respectively; and a decreasing function of his/her 

winning regret parameter 1,ik . 

Proposition 2 shows that if a bidder highly evaluates the auctioned object then he/she 

will offer a high bidding price, which is also called the ‘efficiency of auctions’; if a bidder 

values losing regret highly, then he/she will increase his/her bidding price to make 

winning more possible; if a bidder puts major emphasis on winning regret, then he/she 

will decrease his/her bidding price in order to avoid spending too much unnecessary 

money on the auctioned object. The above conclusions are quite consistent with the actual 

behavior of a bidder and meanwhile support the fundamental hypothesis of this research 

that for each bidder he/she faces a one-shot decision problem in which each bidder makes 
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a decision based on his/her imagined scenario. 

 

Comment. We have proposed two bidders’ first-price sealed-bid auction models with the 

one-shot decision theory. In the proposed model, each bidder tries to obtain the optimal 

bidding price with conjecturing that the other bidder randomly decides his/her bidding 

price within ]1,0[ . This idea is the same as the level-k model, in which a level-1 bidder 

faces a level-0 bidder (Crawford & Iriberri, 2007). However, our models are scenario-

based whereas the level-k auction models are lottery-based. Moreover, in the level-k 

auction model, regret is not considered and overbidding is attributed to higher level 

reasoning and bidding prices are raised in the following way: in order to win (or best 

respond to) the level-0 bidders, level-1 bidders should submit a higher price; in order to 

win the level-1 bidders, bidding prices of level-2 players should be even higher. 

Compared to it, it suffices to use level-1 bidders to rationalize overbidding in our model 

by considering regret. As shown in Proposition 2, overbidding can be caused by a 

relatively large losing regret parameter or a relatively small winning regret parameter, the 

same results also hold in the N-bidder’s case, which will be shown in the following section.  
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4.3  N-bidders’ First Price Sealed Bid Auction 

  We further extend the proposed model for the two bidders’ case to the N-bidder’s case. 

In the N-bidder’s case, each bidder tries to optimize his/her bidding price with 

conjecturing that the other 1N  bidders randomly decide their bidding prices. 

For bidder },...,1{ Ni , his/her greatest concern is the highest price amongst the other 

bidders’ bidding prices, denoted as jb . Here we use the same symbol jb  as in the two 

bidders’ case because for bidder i  in essence there are always two prices competing, the 

one is his/hers and the other is the highest price of the other bidders. With the assumption 

that any bidder i  thinks the other N-1 bidders offer the bidding prices which are 

mutually independently and distributed uniformly within ]1,0[ , the probability density 

function of jb  is as follows: 

;
;
;

1
10

0

,
,
,

0

)1(

0

)( 2


















j

j

j
N
jji

b
b

b
bNbp               (4.23) 

Like (4.7), we have the following normalized probability density function: 

;
;
;

1
10

0

,
,
,

0

0

)( 2


















j

j

j
N
jji

b
b

b
bb .               (4.24)  

Knowing (4.24), the N-bidder’s first-price sealed-bid auction problems become the two 

bidders’ problems. Speaking in detail, the problem of each bidder facing 1N  other 

bidders whose bidding prices are mutually independently and uniformly distributed over 

]1,0[  can be reduced to the problem of each bidder facing another bidder with the 

normalized joint probability density function (4.24). Clearly, the satisfaction function 

(4.3) is still appropriate for the N-bidder’s case. Using the same ideas as in 2-2, we have 
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the following theorem for the optimal bidding price. 

Theorem 3. 

(I) If 2 )1(1  N
i Cv  )3( N , then bidder si'  optimal bidding price is 

],0[ ii vb  ; 

(II) If 2 )1(1  N
i Cv )3( N , then bidder si'  optimal bidding price 

ib  satisfies the 

following equation: 

2

1,

2,2,1,2, )
)1()1(

(1
)1(

)(


 




 N

i

iiiii

i

iiii

k
vkbkk

vC
Cvbvk

 .     (4.25) 

Proof.  

Firstly, let us also examine the focus point for each ],0[ ii vb  .  

Since )(2
ji bu  is a strictly increasing continuous function and 2)(1  N

jb  is a strictly 

decreasing continuous function, from the following two inequalities: 

2
2,

2 011)1()()0(  N
ii CkCu ,               (4.26) 

2
2,2,

2 110)1())()1(  N
iiiii vCkvkCu ,                         (4.27) 

we know that there exists a unique solution of 22 )(1)(  N
jji bbu  for ]1,0[jb  and 

denote it as jb . Considering the relation amongst iv , ib  and jb , we have four cases, 

that is, ji bv  , iji bbv  , jii bbv   and jii bbv  . And for each case, let us 

examine (4.9) for the following three subcases: (1) ),0[ ij bb  ,  (2) ),[ iij vbb   and 

(3) ]1,[ ij vb  , respectively. 
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Case 1. ji bv   

For subcase (1), we can obtain 

2
),0[),0[ )(1))(1(min)),(),,(1max(min 

  N
ijibbjiijibb bbbbudb

ijij
 .    (4.28) 

For subcase (2), considering the monotonicity of 2)(1)(1  N
jji bb  and 

)(),( 2
jijii bubbu   and combining the fact that jb  is the unique solution of 

22 )(1)(  N
jji bbu , we can obtain   

2
),[),[ )(1))(1(min)),(),(1max(min 

  N
ijivbbjiijivbb vbbbub

iijiij
  .    (4.29) 

For subcase (3), As )1(),( CCbbu jii   and Since jb  is the unique solution of 

22 )(1)(  N
jji bbu , we know the following relation holds as a result of ji bv  :  

)1()()(1 22 CCvuv ii
N

i   .         (4.30) 

Since 2)(1  N
jb  is strictly decreasing and attains 0 at 1jb , with considering (4.30), 

we know there exists a unique ]1,[ ij vb   such that the following three conditions hold: 

)1()(1 2 CCb N
j   ,                                          (4.31) 

)1()(1 2 CCb N
j    for  jji bbv ,        (4.32) 

)1()(1 2 CCb N
j    for 1

jj bb .            (4.33) 

Let us divide ]1,[ iv  into ),[ 

ji bv  and ]1,[ 

jb , then we have 

)1()(1))(1(min

)),(),(1max(min
2

),[

),[

* CCbb

bbub
N

jjibvb

jiijibvb

jij

jij









 




,                            (4.34) 

)1(),(min)),(),(1max(min ]1,[]1,[ CCbbubbub jiibbjiijibb jjjj
  

 .          (4.35) 
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(4.34) and (4.35) yield 

)1()),(),(1max(min ]1,[ CCbbub jiijivb ij
  .                         (4.36) 

Since ii vb   always holds, it leads to 22 )(1)(1   N
i

N
i bv , and considering  (4.28), 

(4.29), (4.30) and (4.36), we have  

)1()),(),(1max(min ]1,0[ CCbbub jiijib j
  ,              (4.37) 

]1,[)),(),(1max(minarg)( ]1,0[


  jjiijibij bbbubbb
j

 .             (4.38) 

Case 2. iji bbv  . 

The subcase (1) of this case is the same with that of Case 1.  

In the subcase (2), considering the monotonicity of )(1 ji b  and )(),( 2
jijii bubbu  , 

it can be verified that the following relation holds: 

)()(1)),(),(1max(min 22
),[ ji

N
jjiijivbb bubbbub

iij
 

  .                 (4.39) 

In the subcase (3), it is easy to check that (4.36) also holds. Utilizing the condition that 

ij vb   and considering the monotonicity of )(1 ji b  and ),( jii bbu , we can obtain the 

following relation: 

)1()()( 22 CCvubu iiji  .               (4.40) 

Considering (4.28), (4.36), (4.39) and (4.40), we know 

)()(1)),(),(1max(min 22
]1,0[ ji

N
jjiijib bubbbub

j
 

  ,                  (4.41) 

jjiijibij bbbubbb
j

  )),(),(1max(minarg)( ]1,0[  .                       (4.42) 

Case 3. jii bbv  . 

In this case, for the subcase (1), Considering the monotonicity of )(1 ji b  and 
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),(),( 1
jiijii bbubbu  , we know ))(1),,(max( 21  N

jjii bbbu  attains its minimum when 

21 )ˆ(1)ˆ,(  N
jjii bbbu  where jb̂  is the solution of this equation. In other words, we have 

)ˆ,()ˆ(1)),(),(1max(min 12
),0[ jii

N
jjiijibb bbubbbub

ij
 

  .     (4.43) 

For the subcase (2), we have 

)(),(inf)),(),(1max(min 2
),[),[ iijiivbbjiijivbb bubbubbub
iijiij

   .           (4.44) 

For the subcase (3), we have 

)1())1(),(1max(min

)),(),(1max(min

]1,[

]1,[

CCCCb

bbub

jivb

jiijivb

ij

ij












.                         (4.45) 

Since ),(1
jii bbu  is a strictly increasing function and ij bb ˆ , we have 

),()ˆ,( 11
iiijii bbubbu  .           (4.46) 

Meanwhile we know  

)1()1())(()( 2,
2 CCvCCvbvkbu iiiiiii  .      (4.47) 

It follows from (4.43)-(4.47) that 

;
;

)()ˆ,(
)()ˆ,(

,
,

)ˆ,(
)(

)),(),(1max(min 21

21

1

2

]1,0[











iijii

iijii

jii

ii
jiijib bubbu

bubbu
bbu
bu

bbub
j

 ,     (4.48) 

















;)()ˆ,(,}ˆ{
;)()ˆ,(,}ˆ,{
;)()ˆ,(,}{

)(
21

21

21

iijiij

iijiiji

iijiii

ij

bubbub
bubbubb
bubbub

bb                    (4.49) 

Case 4. jii bbv  . 

In this case, subcases (1) – (3) are the same as Case 3 except that (4.44) becomes  

)1()1())(()()( 2,
22 CCvCCvvvkvubu iiiiiiiii  .     (4.50) 
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Instead of making a comparison between )ˆ,(1
jii bbu  and )(2

ii bu , we need to make a 

comparison between )ˆ,(1
jii bbu  and )1( CC  , which leads to the following conclusion: 

;
;

)1()ˆ,(
)1()ˆ,(

,
,

)ˆ,(
)1(

)),(),(1max(min 1

1

1]1,0[









 CCbbu

CCbbu
bbu
CC

bbub
jii

jii

jii
jiijib j

 ,     (4.51) 

;)1()ˆ,(,
;)1()ˆ,(,
;)1()ˆ,(,

]1,[}ˆ{
}ˆ{
]1,[

)(
1

1

1

CCbbu
CCbbu
CCbbu

vb
b
v

bb

jii

jii

jii

ij

j

i

ij

















 .             (4.52) 

Secondly, let us examine the optimal bidding price. 

If ji bv  , then for any ],0[ ii vb   iij vbb )(  so that we have
2
1))(),(,( iijii bdbbbu  

and ],0[ ii vb   which is Theorem 3(I). 

If ji bv  , let us examine ))(,( ijii bbbu  for ),0[ ji bb   and ],[ iji vbb  , respectively.  

In the former case, we know 

)())(,( 2
jijii bubbbu

i
 .                 (4.53) 

In the latter case, we know  

)]()),(ˆ,(min[))(,( 21
iiijiiijii bubbbubbbu  .               (4.54) 

For (4.54), on one hand, we have 

)()(1))(ˆ(1))(ˆ,( 21
jijijjijjji bubbbbbbu   ,                        (4.55) 

where the inequality in (4.55) holds as a result of jjj bbb )(ˆ ; on the other hand, we have 

)()1()1()))(ˆ(())(ˆ,( 2
1,

1
iiiiijiiijii vuCCvCCvvbvkvbvu  .    (4.56) 

Further, let us check the continuity and monotonicity of ))(ˆ,(1
ijii bbbu  and )(2

ii bu . 
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Obviously, )(2
ii bu  is a strictly increasing continuous function of ib . For  ))(ˆ,(1

ijii bbbu , 

as 21 ))(ˆ(1))(ˆ,(  N
ijijii bbbbbu  holds, differentiating both sides of the equation with 

respect to ib  we can obtain 

   0
))(ˆ)(1)(2(

1
)(ˆ

3
1,

1,








i

N
iji

i
ij vbbCNk

k
bb .                             (4.57) 

From (4.57) we know )(ˆ
ij bb  is a strictly increasing continuous function of ib , which 

implies that 2))(ˆ(1  N
ij bb (and also ))(ˆ,(1

ijii bbbu is a strictly decreasing continuous 

function of ib . From (4.55), (4.56) and the monotonicity of ))(ˆ,(1
ijii bbbu  and )(2

ii bu ，

we know ))()),(ˆ,(min( 21
iiijii bubbbu  attains its maximum at 

ib  where 

ib  is the solution 

of )())(ˆ,( 21
iiijii bubbbu  . As a result, the following conditions hold: 

)())(ˆ,())(,(max 21
],[




 iiijiiijiivbb bubbbubbbu

iji
,              (4.58) 




 iijiivbb bbbbu

iji
))(,(maxarg ],[ .               (4.59) 

As ji bb   holds and )(2
ji bu  is a strictly increasing function, we know  

)()( 22
jii bubu

i
 .           (4.60) 

It follows from (4.53) and (4.58)-(4.60) that the optimal bidding price is 

ib , and 

ib  and 

)(ˆ 

ij bb  satisfy 

)())(ˆ,( 21   iiijii bubbbu ,                 (4.61) 

21 ))(ˆ(1))(ˆ,(   N
ijijii bbbbbu .         (4.62) 

From (4.61), we can obtain 
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1,

2,2,1, )1()1(
)(ˆ

i

iiiii
ij k

vkbkk
bb






 .        (4.63) 

From (4.61) and (4.62) we know 

  22 ))(ˆ(1)(   N
ijii bbbu .          (4.64) 

Substituting (4.63) into (4.64) leads to (4.25).  

Thirdly, let us show the following equivalence conditions to make our conclusion more 

tractable: 

2 )1(1  N
iji Cvbv                                         (4.65)  

As 2
2, )(1))1(())((  N

jiijii bvCCvbvk  holds, by algebraic transformation, we 

obtain the following equation: 

2
2,2, )())1(()()1()1(  N

jijii bvCbkCk .        (4.66) 

If 2 )1(1  N
i Cv  and ji bv  , then the left side of (4.66) is 

)1(1))1(()()1()1( 2,2, CvCbkCk ijii  ,       (4.67) 

and the right side of (4.66) is  

)1(1)()( 22 Cvb N
i

N
j   .          (4.68) 

The contradiction between (4.67) and (4.68) shows that (4.65) holds. 

It proves Theorem 3(II).                                                  □ 

 

From the proof of Theorem 3 (I) (Case 1), the following insights can be gained. When 

iv  is small ( 2-N C)(11 iv ), for any bidding price ib , bidder i  focuses on )( ij bb (a 

bidding price provided by the rivals) which is larger than iv . In this case, losing without 
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regret is always the result for bidder i  so that any ],0[ ii vb   does not make any 

difference. Interestingly, it matches bidders’ behaviors well. When a bidder’s valuation is 

relatively small, several experimental findings have been reported in the literature. Firstly, 

the throw away phenomenon says that some subjects in first price auction experiments, 

upon drawing a low value enter a bid at (or near) zero, or less frequently, a bid at or near 

the value (Cox et al., 1992). Secondly, overbid (Pezanis-Christou, 2002) and underbid 

(Kirchkamp & Philipp, 2004) are also observed. In summary, we can say bidders with 

low valuation tend to bid randomly. However, there exists no model able to match such 

behaviors. Our model provides a better description of bidders’ behaviors as well as an 

intuitive explanation. 

As in two bidders’ case, we examine the properties of the optimal bidding price for the 

N-bidder’s case.  

Proposition 4. 

(I) The optimal bidding price 

ib  is a decreasing function of the winning regret 

parameter 1,ik  and an increasing function of the bidder’s valuation iv , the losing 

regret parameter 2,ik  and the number of bidders N , respectively. 

(II) The optimal bidding price 

ib  satisfies ii
ii

ii vb
kk
vk




 *

2,1,

2,

1
)1(

 when 3N . 

(III) The optimal bidding price ii vb   when N . 

 

Proof.  

4(I): Denoting A  as 1,2,2,1, ))1()1(( iiiiii kvkbkk   , (4.62), (4.63) together with the 

fact that 1),(0 1  jii bbu yield )1,0(A . From the proof of Theorem 3, we know that 
ib  
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is the unique solution of )())(ˆ,( 21
iiijii bubbbu   within ],[ ij vb , combining the fact that 

)())(ˆ,( 21
iiijii vuvbvu   (see (4.56)), we know ii vb  . Differentiating both sides of (4.14) 

with respect to iv , 1,ik , 2,ik and N , respectively, we obtain 

0
)1()1)(2(

)1()1)(2(

2,1,
32

2,1,

2,
32

2,1,














ii
N

iiii

i
N

iiii

i

i

kkAvCNvkk
kAvCNbkk

v
b ,            (4.69) 

0
)1()1)(2(

))(1()1)(2(

2,1,
3

1,2,
2
1,

2,
3

1,














ii
N

iiiii

iii
N

i

i

i

kkAvkCNvkk
vbkAvCN

k
b ,            (4.70) 

0
)1()1)(2(
))()1()1)(2((

2,1,
3

2,1,

1,2,
3

2,














ii
N

iiii

iiii
N

i

i

i

kkAvCNvkk
bvkkAvCN

k
b ,             (4.71) 

0
)1()2()1()1(

ln))1()1((

2,1,2,2,1,

2,2,1,














iiiiiiii

iiiiiii

kkbNvkbkk
Avkbkkb

N
b .           (4.72) 

It proves 4 (I). 

4 (II): On one hand, from the proof of Proposition 4 (I) we know 0A  holds, which 

leads to 
2,1,

2,

1
)1(

ii

ii
i kk

vk
b




 ; on the other hand, it has been shown that ii vb   in the proof 

of Proposition 4 (I). It proves 4 (II). 

4 (III): We need to prove the following condition: 

,0  ),(N  ),( NN  

ii vNb )( ,       (4.73) 

where )(Nbi
  is the solution of  

2

1,

2,2,1,2, )
)1()1(

(1
)1(
)(







 N

i

iiii

i

iii

k
vkxkk

vC
Cvxvk

.      (4.74) 

On one hand, as 1
)1(

2,






i

ii

vC
Cvk 

 and  
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1
)1()1())(1(

1,

2,1,1,

1,

2,2,1,






i

i

iiii

i

iiiii v
k

kkvk
k

vkvkk  , 

,0  ),(N  ),( NN the following condition holds: 

2

1,

2,2,1,2, )
)1())(1(

(1
)1(

))((







 N

i

iiiii

i

iiii

k
vkvkk

vC
Cvvvk 

;     (4.75) 

On the other hand, )(Nbi
  satisfies the following condition: 

2

1,

2,2,1,2, )
)1()()1(

(1
)1(

))((


 




 N

i

iiiii

i

iiii

k
vkNbkk

vC
CvNbvk

.     (4.76) 

Considering the monotonicity of both sides of (4.74), we know 

ii vNb )(  from 

(4.75) and (4.76). It proves 4 (III).                                          □ 

 

Proposition 4(I) provides us the same intuitive results as those in Proposition 2. From 

Proposition 2 and Proposition 4(I), we know whatever the number of bidders is, the 

bidder’s optimal bidding price increases with increasing the losing regret parameter 2,ik  

and decreasing the winning regret parameter 1,ik . These properties can serve as an 

alternative for rationalizing overbidding and underbidding behaviors. Overbidding says 

that bidders frequently offer a bidding price above the risk-neutral Bayesian Nash 

Equilibrium (BNE). Traditionally, such deviations are explained by theoretical models 

such as risk aversion, joy of winning, quantal response equilibrium, the level-k model, 

spiteful bidding etc. Not so often, bidders also underbid in some situations. Kirchkamp 

and Philipp argue that bidders that follow the simple rules-of-thumb may underbid at low 

valuations. Theoretically, such underbidding behavior is rationalized by the ‘anticipated 

emotions’ model.  
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In our model, we explain overbidding and underbidding as follows: overbidding and 

underbidding are caused by bidders’ attitudes towards winning regret and losing regret. 

Speaking in detail, bidders will bid high if they value losing regret more and bid less if 

they value winning regret more. Such an explanation is straightforward and fits the 

mentality of the bidders in the real world.  

Proposition 4(II) and 4(III) tell the effect of the bidders’ number on an individual 

bidder’s optimal bidding price. When 3N , the bidder’s optimal bidding price is higher 

than that in the case 2N . The bidder’s bidding price approaches his/her valuation with 

N , which is consistent with the marketing law that an infinitely large number of 

players brings no gains to any involved player.  
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4.4 Summary 

In this section, we provide a unified explanation for the deviations in first-price sealed-

bid auction. Basically, we reformulate the auction problems as each individual bidder’s 

decision problem under uncertainty which also takes regret into consideration. 

Procedurally, bidders are thought to focus on only one scenario, which is the one-shot 

decision theory based thinking. On one hand, when a bidder’s evaluation is low, he/she 

focuses on a bidding price higher than his/her evaluation, which makes every bidding 

price indifferent to him/her and explains the throw away phenomenon; On the other hand, 

a bidder’s bidding price is partially decided by his/her attitudes towards winning and 

losing regret, so overbidding and underbidding can be thought as a reflection of to what 

extent regret affects a bidder’s decision. 
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Chapter 5 

 

Conclusion 

 

In this research, we propose the One-Shot Game Model to analyze players’ behaviors 

in games. Generally speaking, we reformulate games as each individual player’s decision 

making problem. Firstly, an individual player forms his/her beliefs about the other 

player(s)’ actions, we mainly suggest three kinds of belief formulation. The first is that an 

involved player formulates his/her belief based on the payoff of his/her opponents. The 

second is that a player formulates his/her belief based on strategy dominance (capacity 

allocation game); the third is that a player simply assumes that the other players choose 

their actions with equal probability (sealed bid first price auction). Secondly, based on the 

formulated belief, the player undertakes his/her decision making process. Different from 

the Expected Utility Theory, the decision process within our framework is scenario based 

rather than lottery based. Simply speaking, when choosing an action, an involved player 

only focuses on a single scenario, under which he/she evaluates the chosen action. Within 

this framework, we explain the observed deviation from the predicted equilibrium in the 

capacity allocation game and rationalize bidders’ bidding tendencies in sealed bid first 

price auction. We also examine the effect of players’ personality on their behaviors as 

well as the result of the game. In some simple games, whatever an initial beliefs a player 

formulates, his/her decision is the same and is only determined by whether he/she is an 

active or a passive decision maker. 

Although we utilize the One-Shot Game Model to make a reformulation of players’ 
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decision making process in games and show the efficiency of the proposed framework, 

two kinds of games are still unsolvable within our framework: One is the Prisoner’s 

Dilemma, in which the dominated strategy for any prisoner is defect while cooperation is 

often reported; the other is dynamic games, solutions of which are obtained by backward 

induction but deviate from experimental findings. Inspired by those two kinds of games, 

we seek to improve our approach to handle games in more general horizon and leave it 

for the future work. 
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