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Abstract. In the study of quantum walks, determining their limit distributions
is one of the important issues. In this paper, we propose a model of discrete-
time quantum walks on the square lattice without localization and give its limit
distribution. Based on the argument on G.Grimmett-S.Janson-P.F.Scudo [9]. We
also discuss the relationship between our quantum walks and alternate quantum
walks. In the last section, we give consideration on the positive-operator-valued
measure (POVM) and express our main theorem in the context.

1. Introduction

The notion of quantum walks was introduced by Y.Aharonov et al. [2] as
a quantum counterpart of the classical one-dimensional random walks. It was
re-discovered in computer science by several authors, for instance, [1], [5], [18]
around 2000. Recently quantum walks have been intensively studied in con-
nection with quantum computing [4], [10], [20], [21] and quantum physics [3],
[12]. Quantum walks is now studied intensively in mathematics and analysis
long-time behavior is one of the main topics there. In this paper, we give some
consideration of quantum walk on the square lattice.

In 2004, N.Inui-Y.Konishi-N.Konno [11] analyzed the two-dimensional Grover
walk model and discovered an interesting phenomenon called a localization.
Grover walk is a quantum walk that is given by the following d x d unitary
matrix G = (¢i;)i =12 d,

9ij = cgl — 0ij-

In two-dimensional discrete-time quantum walks, there are examples whose
limit distributions are computed [8], [15] and [22]. In this paper we give an
example of non-localization quantum walks on the two-dimensional lattice given
by a 4 X 4 unitary matrix without assumption any initial condition.
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Let (X,,Y,) be our quantum walk at time n. We have the following limit
theorem.

MAIN THEOREM (Theorem 2.1) We start the walk at the origin. Let o, [
be non-negative integers. For any initial state ¢ = T (1, o, 03, 04) € C* with
|¢|2a = 1, where T is the transpose operator. Then we have

X\ (Y’ > e 4 xo(vs, vy)
. n n - o ﬁ Ty Yy
Jim B K?) (?) ] /_Ood'”"”/_oo oy Ve Oy ST o) (1 — 102) vz, vy),

where xo(vs,vy) is the characteristic function on the region Q = {(vg,v,) : v2 +
v2 < (3)*} and the weight function m(vg,vy) is given by

(v vy) = 1 - 2((|<P2|2 i + zme«om)vy)
9 ((Imlz ~ leal)u, + m(wg@m).

REMARK 1.1. Our model has a relation to an alternate quantum walk on the
square lattice [8]. They assumed initial state to be two-state, where we treat
initial condition in four-state. Our result implies the alternate quantum walk
introduced by [8] in the sense that we obtain their result by taking ¢; = o = 0.

Let us explain the background of our result in [8], [22]. We consider the Hilbert
space

CZ2,C) = {f: 22— C% |[fIP = D |f(@)|es < 00}

x€Z2

with the inner product defined by

(fog9) =D (f@),g(@)es,  fo g€ P(Z°,CY),

T€Z?

where | - |cs+ and (-, -)ca are the standard norm and inner product on C* For
r € Z* and ¢ € C*, define 6, ® ¢ € (*(Z* C*) by

0 otherwise.

(0, @ ) (y) = {“0 e

For f € (*(Z* C*) and (x,y) € Z?, define the shift operators 71, 75 on (*(Z? C*)
by

(Tlf)(l',y):f<l'—1,y), (Tgf)(l',y):f(l’,y—l).
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Let A = (a;)ij=1234 be a four-by-four unitary matrix. Decompose the matrix
A as

A=P + P+ P;+ Py,
where P; is defined by

Pi=1 an aa a3 au (i=1,2,3,4).
0O 0 0 O
A quantum walk is described by a unitary operator Uy : (?(Z?, C*) — (*(Z?,C*)
defined by

UA:P17'1+P27'1_1+P37'2—|—P4T2_1. (11)
We found that the following relation is derived from definition of Uy.

(UAf)(xay) :Plf(x—1,y)+P2f(x+1,y)+P3f(m,y—1)+P4f(x,y—|—1)
(1.2)

Given an initial state ¢ € C* with |p|2, = 1, the transition probability for
existence at (x,y) € Z? in n-step is given by |1, (x, y)|2s, where the n-th iteration
¥, = U%(6 ® ) and 0 is the origin in Z2. One interesting future of the discrete-
time quantum walk on the square lattice is a localization, the first example
of which was shown by Grover walk [11]. K.Watabe-N.Kobayashi-M.Katori-
N.Konno [22] showed the density function of a generalization of Grover walk
associated with matrix Ay;

P4 \Pq /Pq
A= | L TR VR VR

VvPe pe —q p

VPl P4 P —q

where p 4+ ¢ =1 and p,q € (0,1). They showed the following theorem.

THEOREM 1.2. (Watabe-Kobayashi-Katori-Konno (2008) [22]) For any initial
state ¥ = T((Pla P2, P35 904) € (C47

X' @ Y B8 [e%e] o0
. n n _ a B
T}EEOE{(7> (7> :|_ /oo dvx /oo dvy UI Uy V(vmvy)'
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Here the limiting distribution v is explicit given by p,(vs,vy) m(vs,vy) +

Ady(vy)do(vy), where p,(x,y) is the density function, m(v,,v,) and A are the
weight functions. Detailed definitions are formed in [22]. Since v contains the
Dirac’s delta function, this model has also localization.
It is interesting to see that the density function of our quantum walk appears in
[8] and [15]. Franco et al. construct a model of two-state quantum walk without
localization. They call the model alternate quantum walk and determine limit
distribution as in the following.

THEOREM 1.3. (Franco-Gettrick-Machida-Busch (2011) [8]) For any initial
state o = (i1, p2) € C?,

X\ Y\ e e xXa(vz, vy)
. n n o o g T
| () (o) = Lo [ ot ity

where

Re(p103)

m(z,y) =1— (le1]* = |2y — -

-+ St

and

Q- {@’y): (Sc;y)2 N (564—823;)2 _ 1}7

c=cosy, s=siny, v € (0.27), v # g,w, 37#

This paper organized as follows. In this section 1, we define the notion of a
discrete-time quantum walk on the square lattice. By calculating the eigenvalues
of a time evolution matrix of the quantum walk in the wave number space, the
long-time behavior of the joint moments of X, and Y}, is analyzed and we see that
the Konno function appears as the density function with respect to the radial
direction in our quantum walk in section 2. In section 3, we discuss a relation of
their model with ours. Finally, we give another expression of our result from the
view point of the quantum information, the POVM in particular.

The author is grateful to the referee for his/her useful suggestions.

2. Main result

Now we consider the quantum walk associated with matrix Ay, where

1 1

b TRy

T B R RN

L -1 0 0
¢

z w00
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THEOREM 2.1. (Main Theorem) We start the walk at the origin. Let o, [
be non-negative integers. For any initial state ¢ = T (o1, @a, 03, 04) € C* with
|<p|%4 =1, where T is the transpose operator. Then we have

X\ /Y o > 4 xq (v, vy)
. n n _ o ﬁ T Yy
i B\ (Ge) () J= e [ s o — a7 ")

where XQ(vx,vy) is the characteristic function on the region Q = {(vy,v,) : v2 +
v2 < (3)?} and the weight function m(vg,v,) is given by

(v 0y) = 1 — 2(<|m|2 i + m«am)vy)

9 (<|<,o4|2 ~ lealP)u, + mwg@m).

From now on, we prepare lemmas to prove our main theorem following the
method by [9]. For 1, € (*(Z?, C*), we define the Fourier transformation v, by

bulkorky) = 3 e ihmthiny, (o) (2.3)

(z,y)€Z?
(2.9) / / Y gilkee ki) (ko k).

LEMMA 2.2. For 1, € (*(Z* C*) and ¢ € C* with |p|cs = 1, we get the
following relation

Then we get

VUn (b, ky) = (wkx, @))nso,

where
e~z 0 0
0 ethe 0 0
Viks, ky) = : A.
( y) 0 0 efzky 0
0 0 0 etky
Proof. From (1.2) and (2.3), we have
2zbn-f—l kxak Z wn-f—l iy y ~ilkemthyy)
(z,y)€Z?
= (e"* =Py 4 = Py 4 e~ v Py 4 v py) Z U, y) e kerthyy)
(z,y)ez?

= V(ky, ky) ﬂzn(kaw ky).
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Using the Fourier transformation of v, we get the following formula of the

joint moments E[X2Y].
dk 8 “ 8

E[X2Y/] = /

where z/}fl is an adjoint operator of ¥,, and X,, and Y, are x and y coordinates of
the position of the walker at time n.

Gl ) = (v<kx,ky>)nso

4
D ()" vk, ky) Cjlka, ky).

j=1

.

Here, \; is the eigenvalue of V' (k,, k,) and v, (k,, k) is the normalized eigenvector
corresponding to the eigenvalue A;, 1 < j <4 and

Cj(kxv ky) = ’U;(k’x, ky)‘;pa (2'5>

where ¢ is an initial state. From (2.4) and (2.5), we need to analysis eigenvalues
of V(ky, ky). The eigenvalues of V' (k,, k,) are given by

+mm}
’

cw(ky,ky)+m . w(kg,ky)+m
)\1 — 6—2{%—&-7]]7‘{}’ )\2 _ —6_1{%

W(kz ky) “"(k’»L ky)

+m7r} )\ :_ez{ +m7r}’

)\3 = 61{

where m € Z and

cosw(ky, k) = /1 —sin?k, cos? k,, sinw(ky,k,) =sink,cosk,. (2.6
y Y y Y

Then we have

itk (i) (i ) itha )
= M (ky, k) (%%}Zkﬂ))a (%%Z;ky))ﬁx(n)w + O(na+ﬁ—1). (2.7)

Here, (n), =n(n—1)---(n —k+1) and

M(ks, ky) = |Calka )2+ ol By )2+ (— >a+ﬁ(|03<kz,k>|+|c4< . >|2).

(2.8)
By using (2.4) and (2.7), we get the following lemma.
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LEMMA 2.3.

{5 (2] -
e [ g (LY (10

To obtain the formula like Theorem 1.2, we put v, := —%% and v, =

%%ﬁy’k@’). Then by simple computation apply to (2.6), v, and v, explicit com-
putable as
1 sin k, sin k 1 cos k, cos k
Vg = 3 : : y 2 ) Uy =35 .y ) : (29>
2\/1 — cos? k, sin’ k, 2y/1 — cos? k, sin’ k,

Then the domain of integration is given by

Q- {(vx,vy) SRR (%)2}

Let K be {(1,0),(0,—1),(—3,0),(0,2)}. We give the Jacobian of the map
¢:[-m7m)? — QUK
W w

(ks, ky) (Vg vy).

By using (2.9), we have

ov; 1 sin k, cos k 2
det ! = - ad Y . 2.10
‘ (8/@ ) i=zy 4 (1 — cos? k, sin’ ky> (2:10)
=Y

Next we compute the density function.

LEMMA 2.4.

(1) The map ® is one-to-four.
(2) Suppose that cos* k, # 1 (sink, # 0) and sin® k, # 1 (cosk, # 0). Then we
get the following relation.

( sin k, cos k,
)
1 — cos? k, sin® k,

)2: (1 —402)(1 — 402).

Proof. Firstly, we prove Lemma 2.4 (1). If (K., k]) = (ky —m, k, —7), (K}, k]) =

x) Y x) Y

(7 — ks, m—k,) and (K}, k,) = (—k., —k;), then we have (v,,v,) = (v}, v,). When

x) Yy
sink, = 0 and cosk, = 0, the Jacobian has singular points (v,,v,) = (0, £1/2)
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and (vg,v,) = (£1/2,0) given by (2.9). This map ® : [-7,7)> — QUK is
one-to-four.
Next, we prove Lemma 2.4 (2). Suppose that sin® k, # 0. From (2.9), we get

40?2 1 — 40?2 — 402
<2 . x 2 . Yy T
sin” k, = v cos“ k, = a7 102 (2.11)
1 — 402 — 402 4v?
L2 y z 2, _ y
sin“ k, = BE VTR e cos” k, = T 402 (2.12)

By (2.11) and (2.12), we have

< sin k; cos k,
2
1 — cos? k, sin” k,

)2: (1 —402)(1 —402).

Suppose that sin® k, = 0 (cos? k, = 1),

. 2

sin k, cos k, ok

5 —5 = sin” k.
1 — cos? kg sin® k,

Using 4v7 = 0 and 4v] = cos” k,

sin k, cos k, 2_ Lo, _— . , ,
(1 — cos? k, sin? ky> =sin”k,=1—cos” k, =1 x (1 —4v,) = (1 — 4v;)(1 — 4v,).

Then we have

sin k, cos k,
1 — cos? k, sin? k,

)2= (1 —402)(1 —402).
O

Next we compute the weight function m(v,, vy) = M (ku(vs,vy), ky(ve, vy)).
Let us recall (2.8). To compute (2.8) explicit by using (2.5), we see that the
normalized eigenvectors v; corresponding to the eigenvalues A; of V'(k,, k), 1 <
7 < 4, are given by

1 1
g S
v = o i (e*“vly e B S et (efi}cy reiletho)
Ny (ks ky) 5 Ny (ka, ky) 35,
e—iw;ﬂ' (eiky_ei(erkz)) —e_iwéﬂ (eiky—ei(“’+k1))
\/551 \/551
1 1
S S
05— 1 0% (efiky _Qe,i@,sz)) , Vy= ; _ei% (efikyiefi(wsz))
Ny (kz, ky) 725, No(kz, ky) V255
s (eiky+e*i(wsz)) —'% (eiky-‘re*i(“’*k“”))

V2S5 V25,
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Here S; = —e™ + e *=sink,, Sy = e + ie "* sink, and the normalization
factors Ny (ky, ky) and No(ky, k) are given by

1 52 1 s2

Ny(ky, ky)? 41 —sink, sin (w + kz))" Na(ke, ky)? - 4(1 — sinky sin (w — k)

We denote w is w(k,, k,) for simplicity. Let us denote a] are coefficients of each
eigenvector, i.e. 7 is the index of an eigenvalue and ¢ is the ¢-th component of an
eigenvector. There are following relations;

LEMMA 2.5. The weight function m(vy,vy) = M (ky(vs,vy), ky(va,vy)) of the
density function is given by

(_1)am(vz’vy) = (_1)am1(vm7 Uy) + (_1)ﬂm2(vr7vy)7

where

1
m1(vx,vy) = 9 U:v(|901|2 - |902|2) - Uy(|904|2 - |903|2)

+ /1 — dv2 — 4ol <3m(g03@) — Jm(g@@)) +2 (vz‘ﬁe(@g@) — vyﬂ%e(wgﬁ)),

1
ma(vz,0y) = 5 = va(l2l” = |1]*) — vy (lepsl” — lepal”)

2
/1= 402 — 402 (Im(par) — Im(pan) ) 420, Re(a1) — v, Relps7) ).
Proof.
M(ky, )

|Gy (kg k)P + |l )+ <—1>a+ﬁ(rcg<km k)1 + [Calks. ky>|2)

4
_ (2 S Jal Pl + 4Re(alalipaz) + 4me<aia§sog@>>

=1

1
+ (=1)>tF <2 Z a2 2] |* + 40Re(atadpapr) + 4%2(@2@3303@)).
i=1

(2.13)
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It should be noted that

4
2> Jal Pl
=1
1
= {1 =20)er + 1+ 20l + (1420l + (1= 20,)lea,

4
2> |a}’| @il
i=1
1
— 5{(1 4+ 20,) 1|2 + (1 — 20,)|@a]* + (1 — ZUy)|g03|2 +(1+ QUy)\g04|2},
(2.14)

ARe(atalpaPr) + ARe(ajalpsPi)

S (ﬁmwg@ _ mem) 2 (vwme«og@) - vyme«om)) ,

(2.15)

ARe(aiadpar) + 4Re(afadesPa)

= /1 —4vi— 4?2 (TJm(g@ﬁ) — Jm(go;;@)) +2 (vy%e(gpgﬁ) — vﬂie(w@)) .

(2.16)
From (2.13), (2.14), (2.15) and (2.16), we have

(—1)O‘m(vx,vy) = (_1)(1M(kx(vwa Uy)a ky(vxavy))

= (1% (5 - wllorl = eaP) = wyllonl - loaP)

+ /1 — 402 — 402 (Tm(sps) — Im (1)) +2(v.Re(psP1) — vﬁ%e(wﬁ)))

1

# (=175 — oalla? = eaP) = v lll? = aP)

+ /1 — 402 — 402 (Tm (1) — Im(pspa)) +2(v,Re(p2ip1) — vz%e(@gﬁ))>

= (=1)*my(va, vy) + (_1)ﬂm2(vzavy)'

Finally, we prove the Theorem 2.1.
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Proof of Theorem 2.1. Using Lemma 2.3, (2.10), Lemma 2.4 and Lemma 2.5, we
get the following formula.

™ dk, [T dk, 10w(ky, k)\* (1 0w(ky, ky)\"
Ny, k) [ = SRS Ry ) (2P e By)
/7T 2 /7r 2 (kz, y)(Q Ok, ) (2 Ok,
:/ dvx/ dvy (—vy)” vf (v, vy) M (U, vy)
[ o [y o) ) maen )

:/ dvx/ dv, v vg PV, Uy) MV, 0y),

where the density function p(v,,v,) is given by

4 1

72 (1 — 402)(1 — 402

M(nyvy) = )XQ(U%U?J)?

and the weight function m(v,,v,) is given by
m(vg, vy)

- 2((|902|2 —erP)e, + m«om)vy) —2((|904|2 ol + m«omvx).

Then we have

] Xn & Yn B es] 00 N
nll~>r20E|:<7) (?) }: /Oo dv, /Oo dv, v vyﬁ 1(Vs, vy) M(Vg,0y).

REMARK 2.6. We see that the Konno function [13] appears as the density
function with respect to the radial direction in our quantum walk. It is interesting
to see the following formula,

1 [ee] o0 [e o] 1

- Vg, dv, dv, = i ——) dr.

]ty dean, = [T g )
———

Konno function

Proof. We put

vy =rcost, v, =rsinf, z=c¢€".
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amETS

T

Figure 1 the density function of our quantum walk
2 2 o X{v2+v2<i}
CooJ oo TE(1 = 4v2)(1 — 402) 1T =a
1
2

(vg,vy) dv, du,
2m 4 1
- — df od
/0 r{/o (7r2 (1 — 472 cos? 0)(1 — 4r2 sin? 9)) } "
[ ]
=/ r
o Lzt ),

3

<

z
=1 (22 = 22+ 1)(22 + 12+ 1)(

. . dz pd
22—tz —-1)(22+ 12— 1) Z} :
T (4 /
= r f(z dz}dr
/o {W27“4 |z|=1 =)

23

(z—21)(z—22)(z+24)(z+ 2-)(z — iz ) (z —iz_ ) (2 + iz4 ) (2 + i22)
with

1 1
Z+:2_7“(1+ \/1—47”2), Z_

= 2-(1 — V 1 — 4T2).
r
There are four singular points at z = 2_, 2 = —z_, 2 =12_, 2 = —iz_ inside of
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the unit circle centered at the origin {z € C: |z| = 1}. We get

A
Res(f,z_) = TP _27) (2.17)

and Res(f,z_) = Res(f,—z_) = Res(f,iz_) = Res(f,—iz_). By using the

residue theorem and (2.17), we have

/QT{% f(2) dz}d’r’
0 T J)z)=1

= /2r{ ;ll 270 (Res(f, 2_) + Res(f,—z_) + Res(f,iz_) + Res(f, —iz))}dr
0

24
[
0

{%1—741(1 o) }‘"

N

:4/()&70{7?\1/5\/%—77421(1—702)}0[7&
1

= 4/0007“ fK(T;E) dr.

The integral in the fourth line is exactly the Konno function

V1—a?
7T(1 — 7/12>\/WX{0<7“<0,}

as we remarked earlier. O

fr(r;a) = (r)

3. Alternate quantum walk

In this section, we discuss the relationship between an alternate quantum walk
[8] and our quantum walk. An alternate quantum walk on the square lattice is
defined as a unitary operator on the Hilbert space ¢?(Z? C?). To explain the
set-up of an alternate quantum walk, we consider the Hilbert space ¢%(Z?, C?)
with the inner product defined by

(f.9) =D _(f(x).9(x))c2, f. g€ (22 C,

where | - |c2 and (-, -)¢c2 are the standard norm and inner product on C?. For
f € 3(Z* C?) and (x,y) € Z?, define the shift operators oy, g9 on (?(Z? C?)
(see Fig 2, Fig 3) by

(Ulf)(x:y) :f(:v—l,y), (U2f)(xay) :f(:c,y—l).
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Let C' = (¢; )i j=1,2 be a two-by-two unitary matrix. Decompose the matrix C' as

C=Q1+ Qs
where (); is defined by

[ €11 Ci2 B 0 0
Ql_( 0 0>7 QZ—(C21 022)-

An alternate quantum walk is described by a unitary operator Wy ; : £(Z*, C?)
— (?(Z?,C?) defined by

War = (Q1o2+Q205 ) (Qro1+Qa07 "), Was = (Q101+Q207 ) (Qroa+Q2035 ).

We found that the following relations are derived from definition of Wy ;.

Wai = Q1 Qi(o2001)+Q1 Qa(ca007")+Q2 Q105" 001)+Q2 Qa(05 ' 007,

(3.18)
71 ~—+1
- q
—+— —— 2
— fal
S =
Figure 2 Figure 3
o1 (resp. oy ') is the shift operator oy (resp. o5 ') is the shift operator
induced by S; (resp. S;'). induced by Sy (resp. Sy ).

Waz = Q1 Qi(02001)+Q2 Qi(o2 007 ) +Q1 Q205" 001)+Qs Qa(05 007 "),
(3.19)

Let oy € C? be an initial state of an alternate quantum walk Wa1 and

ov € C? be an initial state of an alternate quantum walk Wy 2. From (3.18) and
(3.19), we get

Wa1(90,0) @ pu)(x,y)

= (5(171) ® [n QlSOH]) (z,y) + (5(—171) ® [ QQ@H]) (z,9)

+ (6(1,_1) ® [Q2 leoH]) (z,y) + ( —1-1) ® [@2 QWH])(%?J),
(3.20)
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Wa2(60,0) @ ¢v)(x,y)
= (5(1,1) ® [Q1 Q1<Pv]> (z,y) + (5(—1,1) ® [Q2 QMV]) (z,y)

i (5(1,_1> ® [0 QQWQ (z,) + (5(_1,_1> ® [0s Q2m> (z,9).

(3.21)

Now we rephrase our model so that we can compare it with the alternate quantum
walks. We take a four-by-four unitary matrix;

e 0 7
Cy 0
where 0 is a two-by-two zero matrix and C; (i = 1,2) is a two-by-two unitary

matrix. Suppose that the components, a;, b;, of the matrix C; are non-zero.
Decompose the matrix C; as

Ci=Vi+V,, Cy=Ri+ Ry,

where V; and R; are defined by
. ay bl . 0 0 . as bQ . 0 0
Vl_(o 0>’ VZ_(Cl dl)’ Rl—(o 0)’ RQ_(@ d2>'
By using Vi, Vs, Ry, Ry, we re-write Py, Py, P3, Py;
0 W 0 Vs 0 0 0 0
(6 9) 2=(o 0) n=(n o) 7=(n o)
We notice that

P1~P2:P2-P1:O, P3'P4:P4'P3:0, 3320(221,2,3,4) (322)

From (1.1) and (3.22), we get the following formula.

(Ua)?
= (P + Pyt + Py + Py ) P17'1 + PQTI + P31y + Py Y
:(Vl'Rl 0 )7’2071—}-( )72071_1

0 R; - - Va

+ Vi- Ry OT—I— VZR? 0 mlor !
0 R2v1 ! 0 Ry-Vp)'2 "t

(3.23)
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We are ready to see that we obtain an alternate quantum walk if C; = Cy = C.
Actually, suppose that C; = Cy = C. From (3.23), we get

(Ua)*(8(0,0) ® @) (2, y)

RIS S T
AT WA T
Q1- Q1 21 Q2 - Q1 21
=100 ® <p2 (z,y) + [ 61y @ <p2 (z,y)
Q- 7? Q1-Q2( 7?
P4 ©a
Q,-Qs ¥ Q@ ”
+ | 6a,-1® 22 (z,y) + | 61,1 ® 22 (z,y)-
Q2 - Q1 @i Q2 Q2 @i

(3.24)
7 : C* — C? (resp. my : C* — C?) denotes the orthogonal projection onto the
two-dimensional subspace Ce; +Ce, (resp. Ces +Cey) in C* where {e1,- - , e4}
denotes the standard basis on C*; namely

<1 21
%) I I Z2 _ [ %3
T = s T2 = .
Z3 z9 Z3 Z4
24 24

By using (3.20), (3.21) and (3.24), we have the following relationships between
an alternate quantum walk and our quantum walk;

(mU32) (60,0) @ ) (2, y) = Wa2(00,0) @ ¢v)(,y),
(ﬂ—QUi)(d(O,O) ® 90) (33’, y) = WA,l((S(O,O) & @H)(xa y)a

where the orthogonal projection m; acts the Hilbert space ¢*(Z? C?*). Then we
get the following Corollary 3.1.

COROLLARY 3.1.
(1) Suppose that o3 = @, = 0. Let oy = (1, 0s) be a unit vector in C2. We
have

lim |(m U3") (80.0) ® @) (2, y)lce = lm [W35(80,0) @ ov) (2, 9) 2.

n—oo

(2) Suppose that o1 = pa = 0. Let o = T(p3,04) be a unit vector in C%. We
have

lim |(mU3") (F00) ® 0) (2, ) = lim (W34 (500 ® o)z, 9) o

n—oo
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4. POVM (positive-operator-valued measure)

In this section, we give consideration on the positive-operator-valued measure
(POVM) and express Theorem 2.1 in the context. POVMs are the generalized
quantum measurements which appear in the quantum information theory. They
play an important role to distinguish the quantum states [16], [17], [19]. Recently,
experimentally realization of a generalized measuring device by using a quantum
walk is studied in [6], [14]. We briefly see the definition of POVM and refer the
interested readers to [7], [19].

Let (X, F) be a measurable space and H be a separable Hilbert space. Denote
by Ls(H) the set of self-adjoint linear operator on the Hilbert space H. A
positive-operator-valued measure (POVM) on X is defined to be a map II :
F — L;(H) such that

(1) I(E) > 1(0) =0 for all E € F.
(2) If {E,} is a countable collection of disjoint sets in F then

0 E.) = ) (B,

where the series convergence on the right hand side is in the weak operator
topology.
(3) TL(Q) = I,
where [ is an identity operator on the Hilbert space H.
We chose (X, F) = (R? B(R?)) and H = (L*(R? C*), 1) with the inner product
defined by

o) = /R2(f(s,t),g(s,t)>c4u(s,t)dsdt, f. g€ L2(RLCY,

where
dxqa(s,t)
t) =
) = 5 gy = a)
in order to put our model in the POVM-frame work. Then we take a map II
I: BR?*) — M,(C)
w w
A e IA) = [y s, )du(s.1).

where FE(s,t) is the following positive and self adjoint operator on C*;

0 0

—S

E(s,t) = xa(s,t){ [ —2

S O o+
S O »w <+
|
~
+~ »n O
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and Q = {(z,y) € R%2? + ¢* < (3)*}.

PROPOSITION 4.1. 11 : B(R?) — My(C) is a POVM, that is,

(1) I(A) >TI(0) =0  for all A € B(R?).
(2) If {A,} is a countable collection of disjoint sets in B(R?) then

([ An) =D T(A,)

where the series convergence on the right hand side is in the weak operator

topology.
(3) I(R?*) = 1.

Proof. The above conditions (1) and (2) are shown from the definition of the
integral and E(s,t). So we show that the map II is satisfied with the condition
(3). Define the functions F'(6,r) and G(0,r) by

cos
F0,r) =
(6,7) (1 —4r2cos20)(1 — 4r2sin0)’
GO.r) = sin ¢

(1 —4r2cos?0)(1 — 4r2sin® )’
Since G(0,r) is an odd function and

21

F(0,7)do

S~

2w

F@ rd@—i—/ F(0,r)do

s

/7r cos(0 + m)
o (1 —4r2cos?(0 + 7)) (1 — 4r2sin*(¢' + 7))

F@rd@—l— do’

cos &'

F (0,r)do — df
r)dd + /0 (1 —4r2cos? ) (1 — 4r2sin® @)

/

1
o\o\o\

)

We get

45 Xals, ) / 4t xa(s,t)
= —0. (42
/Rg 20— a1 =0 L i e e e =0 W)

From (4.25), it holds that

M(R?) = /R Bls, (s, t)dsdt = 1.
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Thus {E(s,t)}(s.er2 is a POVM. For any initial state o = T(¢1, 2, 3, ¢4) €
C* with |¢|2, = 1, we have

(o, E(s,t)p)ce

1 2(<|m2 o) + m«om)t)
- 2(<rgo4|2 s+ m(sog@)s).

Then we have

X, Y, Y A
lim P((T,;> € A) :/ / w(s,t) m(s,t)dsdt

= [t B Dehcan(s. s
= (p, [I(A)p) s

where A = {(s,t) € R?;s < x, t < y}. The formula in the left side of (4.26) is the
probability that a quantum walk exists in the region {(i,j) € Z*;i < nz,j < ny}
for the large time step n while the right hand side of (4.26) turns a POVM upon
the initial state ¢ € C* with |¢|cs = 1.

(4.26)
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