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Abstract. A (proper) coloring of G with k colors is called a distinguishing
k-coloring of G if there is no color-preserving automorphism of G other than the
identity map. We shall prove that every 3-connected planar graph, with the ex-
ception of K2,2,2 and C6+K2, admits a distinguishing 5-coloring which uses color
5 only for one vertex. By contrast, we shall present examples of 3-connected pla-
nar graphs that have distinguishing 4-colorings but no distinguishing 4-coloring
with one color used only once.

1. Introduction

Our graphs are simple, without loops or multiple edges. We denote the set of

vertices and edges of a graph G by V (G) and E(G), respectively. An assignment

of colors to vertices c : V (G) → {1, 2, . . . , k} is called a (proper) coloring or a

k-coloring of G if any adjacent vertices receive different colors. A k-coloring of G

is said to be distinguishing or is called a distinguishing k-coloring of G if there is

no color-preserving automorphism of G other than the identity map. If G admits

a distinguishing k-coloring, then G is said to be distinguishing k-colorable. The

distinguishing chromatic number of G is defined as the minimum number k such

that G is distinguishing k-colorable and is denoted by χD(G).

These notions have been introduced by Collins and Trenk [3], who have

determined the distinguishing chromatic numbers of many kinds of abstract

graphs. The distinguishing chromatic number has also received attention in

case of embedded graphs in [4, 6, 8], and in particular Negami [6] and Tucker [9]

have independently shown that every 3-connected planar graph is distinguishing

6-colorable. The authors have recently proven a strengthening of this result.

Here, we denote the double wheel Cn + K2 with rim Cn by DWn.

THEOREM 1. (Fijavž, Negami and Sano [4]) Every 3-connected planar graph

is distinguishing 5-colorable unless it is isomorphic to either K2,2,2 or DW6.
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It should be noted that there are 2-connected planar graphs with arbitrarily large

distinguishing chromatic number. For example, χD(K2,n) = n + 2 for any n ≥ 1.

In fact, the distinguishing 5-colorings constructed in the proof in [4] assign

color 5 to very few vertices and the authors suspected that it might suffice to use

color 5 only once. We shall show the affirmative answer to this:

THEOREM 2. Every 3-connected planar graph, except K2,2,2 and DW6, has a

distinguishing 5-coloring which uses color 5 only for one vertex.

The Four Color Theorem [1, 7] states that every planar graph is 4-colorable.

The above theorem seems to suggest that we need only one extra color to modify

a 4-coloring of a 3-connected planar graph G into a distinguishing one and use

the additional color only once. However, when G is 3-colorable, we can use two

more colors, 4 and 5, and use color 4 as many times as we want.

One might ask for a stronger result. Let G be a 3-connected planar graph,

whose chromatic number does not exceed 3. Does there exist a distinguishing

(χ(G) + 1)-coloring which uses the additional color for only one vertex?

We shall prove that the above speculation is false even if we allow a finite list

of exceptional graphs. Namely we shall exhibit families of k-chromatic graphs

for k = 2, 3 whose distinguishing chromatic number is equal to k + 1 and such

that every distinguishing (k + 1)-coloring assigns each color to at least a pair of

vertices.

The above mentioned examples follow in Section 3, and we shall devote Sec-

tion 2 to a proof of Theorem 2.

2. Proof – using color 5 only once

Let G be a 3-connected planar graph. It is pointed out in [5] that the unique-

ness of its dual, proved by Whitney [10], implies that G can be embedded on the

sphere so that every automorphism of G extends to a transformation over the

sphere. Such an embedding is said to be faithful. If G is faithfully embedded

on the sphere, then its automorphism group Aut(G) acts on the sphere and the

image of one specified face of G determines the automorphism of the whole G. In

particular, if an automorphism of G fixes each vertex lying along the boundary

cycle of some face, then it must be the identity map. We shall use this logic

implicitly in our arguments below. See [4] for the details.

A cycle of length 3 in a 3-connected graph G is called a separating 3-cycle if

the removal of its vertices disconnects G. It is not difficult to see that if G is

embedded on the plane or the sphere, then a separating 3-cycle divides it into

two regions so that each region contains at least one vertex in its interior.
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LEMMA 3. If a 3-connected planar graph contains a separating 3-cycle, then it

has a distinguishing 5-coloring with color 5 used only once.

Proof. Let G be a 3-connected graph embedded on the sphere and suppose that

G contains a separating 3-cycle. Let us choose an innermost one, say uvw. That

is, the cycle uvw is one of the two corresponding regions bounded by uvw, say

R, contains no other separating 3-cycles of G. Since uvw is a separating 3-cycle,

R contains at least one vertex x.

Consider a 4-coloring of G with colors 1, 2, 3 and 4, and change the color

of x to color 5 to obtain a 5-coloring of G. Then it is clear that any color-

preserving automorphism σ of G maps the region R onto itself since the outside

of R contains no vertex with color 5 and since the separating 3-cycle uvw is

innermost. Furthermore, σ fixes each of u, v and w since they have three different

colors. This implies that σ fixes the faces incident to uv, vw and uw, both inside

and outside R. By the connectivity of G, we conclude that σ is the identity map.

Therefore, the 5-coloring of G with color 5 used only for x is distinguishing.

The following lemma gives us a key fact to prove Theorem 2.

LEMMA 4. If a 3-connected planar graph has a vertex of odd degree, then it has

a distinguishing 5-coloring with color 5 used only once.

Proof. Let G be a 3-connected planar graph and v a vertex of degree 2k + 1 in

G. Let u0, u1, . . . , u2k be the neighbors of v lying around v in this cyclic order

and let A be the face incident to v with corner ukvuk+1. That is, uk, v, uk+1 are

three consecutive vertices along A. Consider the graph G′ obtained from G by

contracting the edge u0v to a vertex x and by adding an edge joining uk and

uk+1 inside A unless already present. Then G′ is a planar graph with no loops

and admits a 4-coloring by the Four Color Theorem. This 4-coloring induces

naturally a 4-coloring of G − v in which u0 gets the same color as x and uk and

uk+1 get two additional different colors, since x, uk and uk+1 form a triangle in

G′. Without loss of generality, we may assume that u0, uk and uk+1 get colors 1,

2 and 3, respectively.

Assign color 5 to v to form a 5-coloring of G. This choice implies that

every color-preserving automorphism of G will fix the set of neighbors of v. By

construction, u0 is the only vertex adjacent to v which gets color 1. This implies

that u0v is a unique edge with colors 1 and 5 at its ends and hence every color-

preserving automorphism σ of G fixes this edge. If σ is not the identity map, then

it acts on the sphere as a reflexion and flips A, swapping uk and uk+1. However,

this is impossible since uk and uk+1 have colors 2 and 3. Therefore, σ is the

identity map and the 5-coloring of G with color 5 only for v is distinguishing.
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Proof of Theorem 2. Let G be a 3-connected planar graph and suppose that it

is faithfully embedded on the sphere. By Lemmas 3 and 4, we may assume that

G has no separating 3-cycle and that every vertex of G has even degree. First

we shall show that there is a triangular face of G under these assumptions.

Let n, m and f denote the number of vertices, edges and faces of G. Assuming

that G does not contain a triangular face, we have 2m ≥ 4f . Substituting this to

Euler’s formula n−m+ f = 2, we conclude that 2m ≤ 4n− 8, and consequently

the average vertex degree in G is strictly less than 4. This implies that G has a

vertex of degree at most 3 and hence there is a vertex of degree 2 in G since every

vertex of G has even degree. This is contrary to G being 3-connected. Therefore,

there is a triangular face in G.

Let uvw be the boundary cycle of a triangular face, say A, and let B be the

other face sharing the edge uv with A. Consider the planar graph G′ obtained

from G by contracting the edge uv to a vertex x. Since G′ has no loops, G′

admits a 4-coloring by the Four Color Theorem, which induces a 4-coloring of

G−v. We may assume that u and w get colors 1 and 2 without loss of generality.

Assigning color 5 to v in addition, we obtain a 5-coloring of G so that uv

is a unique edge with colors 1 and 5 at its ends. Then every color-preserving

automorphism σ of G fixes the edge uv. If B is not a triangular face, then σ

cannot swap the two faces A and B, and hence it is the identity map. Thus,

the 5-coloring of G is distinguishing and uses color 5 only for v, as we want.

Otherwise, we conclude that every triangular face is incident only to triangular

faces. This implies that G is a triangulation of the sphere.

It is well-known that a triangulation G of the sphere is 3-colorable if and only

if every vertex of G has even degree. Thus, G has a 3-coloring with colors 1, 2

and 3 by our assumption on the degrees of vertices in G. We shall modify this

3-coloring to a 5-coloring of G, adding two colors 4 and 5, as follows.

First suppose that G has a vertex v of degree at least 8. Let u0, u1, . . . , ud−1

be the neighbors of v with d = deg v, lying around v in this cyclic order. We

may assume that v has color 3, u0, u2, . . . have color 1 and u1, u3, . . . have color 2

in the 3-coloring of G. Since there is no separating 3-cycle in G, there is no edge

between u0 and u3. Thus, we can assign color 4 to both u0 and u3, and assign

color 5 to v to obtain a 5-coloring of G.

Choose a color-preserving automorphism σ of G. Since v is a unique vertex

with color 5, σ fixes v and maps the cycle u0u1 · · · ud−1 onto itself. The pair of

vertices u0 and u3 divides the cycle into two segments, one of which has length

3 and with the other being longer since d ≥ 8. Thus, σ cannot swap these two

segments. Furthermore, it cannot flip the segment u0u1u2u3 since u1 and u2 are

adjacent and consequently have different colors. Hence σ fixes each of vertices

v, u0, u1, . . . , ud−1 and hence it is the identity map. Therefore, the 5-coloring of



DISTINGUISHING COLORINGS OF 3-CONNECTED PLANAR GRAPHS 61

G is distinguishing with color 5 used once.

Now we suppose that there is no vertex of degree at least 8 in G. That is,

every vertex in G has degree 4 or 6. Let us first treat the two regular cases.

Since G is a triangulation, if G is 4-regular then G is isomorphic to K2,2,2

and this case is excluded as one of the exceptions. On the other hand, a routine

application of Euler’s formula shows that there exists no planar 6-regular graphs.

Hence we may assume that G is not a regular graph and there exists a pair

of adjacent vertices v and u0 which have degrees 6 and 4, respectively. Let

u0, u1, . . . , u5 be the six neighbors of v, which form a cycle surrounding v. Let

us note that if ui and uj are not consecutive around v, then ui and uj are not

adjacent, since G is assumed to have no separating 3-cycle.

Assume first that there exist vertices ui, ui+2 (for some i = 0, . . . , 5 with

addition modulo 6) which have different degrees. In this case, let us assign

color 4 to both ui and ui+2 and assign color 5 to v. Now a color-preserving

automorphism σ of G fixes v and ui+1, since ui+1 is the only vertex adjacent to

three vertices of colors 4, 4 and 5; if so were another vertex, then we could find

a separating 3-cycle passing through v and it. Similarly σ fixes both ui and ui+2

since they have different degrees. Hence σ is the identity map and the 5-coloring

of G is distinguishing in this case.

Finally we may assume that deg u0 = deg u2 = deg u4 = 4 and deg u1 =

deg u3 = deg u5, which is equal to either 4 or 6. If deg u1 = 4, then G is

isomorphic to DW6 with rim u0u1 · · · u5, which is also excluded as one of two

exceptional graphs. Thus, we assume that deg u1 = 6. Let w be the fourth

neighbor of u2 other than v, u1 and u3. If w and u0 were adjacent, then wu0u1

would form a separating 3-cycle, which is absurd. Hence construct our final

coloring by assigning color 4 to both u0 and w, and color 5 to v to obtain a

5-coloring of G.

A color-preserving automorphism σ of G fixes v, u0 and u1, the latter being

the only vertex adjacent to three vertices of colors 4, 4 and 5. Hence σ is the

identity map and the constructed 5-coloring of G is distinguishing with color 5

used once, completing the proof.

3. Planar graphs which are not 4-chromatic

In this section, we shall discuss distinguishing coloring of planar graphs which

are not 4-chromatic, that is, ones that have 2- or 3-colorings. The authors [4]

have already proved that every 3-connected bipartite planar graph is distinguish-

ing 3-colorable with two exceptions, the 3-cube and its radial graph, which are
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distinguishing 4-colorable.

It is hard to grasp the class of 3-colorable planar graphs, and characterizing

which 3-colorable planar graphs admit a distinguishing 4-coloring consequently

feels out of reach. However we can focus on a more manageable subclass. A

graph G is said to be triangle-free if G contains no cycle of length 3. Grötzsch’s

theorem [2] implies that every triangle-free planar graph is 3-colorable.

THEOREM 5. Every 3-connected triangle-free planar graph has a distinguishing

4-coloring with color 4 used for at most two vertices.

Proof. Let G be a 3-connected triangle-free planar graph embedded on the

sphere. First suppose that G is a bipartite graph, having a 2-coloring with colors

1 and 2. Choose an edge x1y2 and let A1 and A2 be two faces sharing x1y2. Let

y1x1y2 and x1y2x2 be the corners of these faces A1 and A2, respectively.

Recolor x1 and x2 with color 3 and change colors of y1 and y2 to 4. Let σ

be a color-preserving automorphism of G. Then we have σ({x1, x2}) = {x1, x2}
and σ({y1, y2}) = {y1, y2}. Since G is 3-connected, A1 is the only face of G

containing vertices y1 and y2. Hence, σ maps A1 onto itself and similarly A2

onto itself. Since x1y2 is the only edge shared by A1 and A2, we have both

σ(x1) = x1 and σ(y2) = y2. Continuing along the facial walk of either A1 or

A2 we infer that σ(x) = x for every vertex in the union of A1 and A2. Now

connectivity of G implies that σ is the identity map. Therefore, the 4-coloring

of G is distinguishing and uses color 4 only for two vertices y1 and y2.

Now suppose that G is not bipartite. There exists a face A of G bounded

by a cycle of odd length. Let u0u1 · · · u2k be the boundary cycle of the face.

Since G is triangle-free, we have k ≥ 2. By Grötzsch’s theorem, G has a 3-

coloring with colors 1, 2 and 3. Let us recolor vertices u1 and u2k with color 4.

Consider a color-preserving automorphism σ of G. Then σ maps A to itself with

σ({u1, u2k}) = {u1, u2k}, similarly to the previous case, as otherwise {u1, u2k}
would form a 2-cut of G. If σ flipped A, then it would swap uk and uk+1, but

this is impossible since they have two different colors. Therefore, σ fixes each

vertex of A and is the identity map. Hence the 4-coloring of G is distinguishing

and uses color 4 only for u1 and u2k.

Let G be a 3-connected planar graph distinct from K2,2,2 and DW6. If χ(G) =

4, then Theorem 2 implies that there exists a distinguishing 5-coloring of G which

uses color 5 at most once. Does a similar property hold for 3-connected planar

graphs with smaller chromatic number? Does there, possibly after excluding a

finite list of exceptions, exists a distinguishing coloring in which color χ(G) + 1

is used at most once? We shall in the final part of the paper argue that this does



DISTINGUISHING COLORINGS OF 3-CONNECTED PLANAR GRAPHS 63

not hold in general.

Let n≥6 be an even number, and let Un ={u0, . . . , un−1}, Wn ={w0, . . . , wn−1},
and Zn = {z0, . . . , zn−1} be three disjoint sets of n vertices. The graph Tn is

defined as the graph with Un ∪ Wn ∪ Zn as its vertex set such that for every

i ∈ {0, . . . , n− 1}, zi is adjacent to ui, wi, ui+1 and wi+1, and that wi is adjacent

also to ui−1, ui and ui+1, where the addition in indices is taken modulo n. Let Ln

be the subgraph in Tn induced by Un∪Wn. Note that Un,Wn, Zn are independent

sets in Tn, hence

χ(Ln) = 2 and χ(Tn) = 3,

and also note that their respective optimal colorings are unique.

Both Tn and Ln are 3-connected planar graphs. The ladder Ln consists of two

disjoint cycles of length n and n edges uiwi joining them and can be embedded on

the plane like a cyclic ladder. We obtain Tn from this by adding one vertex zi to

each quadrilateral face of Ln. It is not difficult to determine their distinguishing

chromatic numbers,

χD(Ln) = 3 and χD(Tn) = 4.

Actually we can construct a distiguishing 4-coloring c of Tn by altering the

unique 3-coloring — recoloring vertices z1, z2 and z4 with color 4. Given a color-

preserving automorphism σ, we have σ(z1) = z1, σ(z2) = z2, and σ(z4) = z4, as

no two distances between these three vertices are the same. Similarly σ fixes

both common neighbors of z1 and z2, and is consequently the identity map.

In an analogous construction, a distinguishing 3-coloring of Ln can be ob-

tained by assigning color 3 to vertices u1, u2 and u4. We leave the proof that a

color-preserving automorphism is the identity map also in this case to the reader.

Now if x is an arbitrary vertex of Tn and if c′ is a 3-coloring of Tn − x, then

c′ partitions V (Tn −x) uniquely into color classes {Un \ {x},Wn \ {x}, Zn \ {x}}.
This last property follows from the fact that Tn−x can be constructed by pasting

triangles along edges and adding edges. Similarly, if y is a vertex of Ln, then the

bipartition of the connected graph Ln − y into {Un \ {y}, Wn \ {y}} is unique.

These observations enable us to prove our final result.

THEOREM 6. Let G be isomorphic to either Ln or Tn, where n ≥ 6 is an even

number, and let c be an arbitrary distinguishing χD(G)-coloring of G. Then c

uses each color at least twice.

Proof. Assume that c is a 4-coloring of G = Tn using color 4 only on a single

vertex x. We may assume that either x = z0 or x = u0, up to symmetry.

First suppose that x = u0. Since the partition of Tn − x by any 3-coloring is

unique as we showed above, we may assume that each ui ( 6= u0) has color 1, wi
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has color 2 and zi has color 3 in c. Then we find an automorphism σ fixing u0 and

flipping each of two disjoint cycles of the ladder Ln, which preserves the colors

of vertices. Since σ is not the identity map, c is not a distinguishing coloring.

Suppose that x = z0. Then we may assume that Tn − x is uniquely colored

with colors 1, 2 and 3, as well as in the previous case. An automorphism σ fixing

z0 is uniquely determined by any choice among a neighbor of z0 as the image

of u0. If σ(u0) = u1, then σ is not the identity map and preserves the colors of

vertices. Therefore, c is not a distinguishing coloring, again.

The proof in case of G = Ln follows along the same lines.
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