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Abstract. A (proper) coloring of G with k colors is called a distinguishing
k-coloring of G if there is no color-preserving automorphism of G other than the
identity map. We shall prove that every 3-connected planar graph, with the ex-
ception of K> 2 2 and Cg + K5, admits a distinguishing 5-coloring which uses color
5 only for one vertex. By contrast, we shall present examples of 3-connected pla-
nar graphs that have distinguishing 4-colorings but no distinguishing 4-coloring
with one color used only once.

1. Introduction

Our graphs are simple, without loops or multiple edges. We denote the set of
vertices and edges of a graph G by V(G) and E(G), respectively. An assignment
of colors to vertices ¢ : V(G) — {1,2,...,k} is called a (proper) coloring or a
k-coloring of G if any adjacent vertices receive different colors. A k-coloring of G
is said to be distinguishing or is called a distinguishing k-coloring of G if there is
no color-preserving automorphism of G other than the identity map. If G admits
a distinguishing k-coloring, then G is said to be distinguishing k-colorable. The
distinguishing chromatic number of G is defined as the minimum number £ such
that G is distinguishing k-colorable and is denoted by xp(G).

These notions have been introduced by Collins and Trenk [3], who have
determined the distinguishing chromatic numbers of many kinds of abstract
graphs. The distinguishing chromatic number has also received attention in
case of embedded graphs in [4, 6, 8], and in particular Negami [6] and Tucker [9]
have independently shown that every 3-connected planar graph is distinguishing
6-colorable. The authors have recently proven a strengthening of this result.
Here, we denote the double wheel C,, + K4 with rim C,, by DW,,.

THEOREM 1. (Fijavz, Negami and Sano [4]) Every 3-connected planar graph
is distinguishing 5-colorable unless it is isomorphic to either Ko99 or DWg.
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It should be noted that there are 2-connected planar graphs with arbitrarily large
distinguishing chromatic number. For example, xp(Ks,) = n+2 for any n > 1.

In fact, the distinguishing 5-colorings constructed in the proof in [4] assign
color 5 to very few vertices and the authors suspected that it might suffice to use
color 5 only once. We shall show the affirmative answer to this:

THEOREM 2. Every 3-connected planar graph, except Koo and DWs, has a
distinguishing 5-coloring which uses color 5 only for one vertex.

The Four Color Theorem [1, 7] states that every planar graph is 4-colorable.
The above theorem seems to suggest that we need only one extra color to modify
a 4-coloring of a 3-connected planar graph G into a distinguishing one and use
the additional color only once. However, when G is 3-colorable, we can use two
more colors, 4 and 5, and use color 4 as many times as we want.

One might ask for a stronger result. Let G be a 3-connected planar graph,
whose chromatic number does not exceed 3. Does there exist a distinguishing
(x(G) + 1)-coloring which uses the additional color for only one vertex?

We shall prove that the above speculation is false even if we allow a finite list
of exceptional graphs. Namely we shall exhibit families of k-chromatic graphs
for k = 2,3 whose distinguishing chromatic number is equal to £ + 1 and such
that every distinguishing (k + 1)-coloring assigns each color to at least a pair of
vertices.

The above mentioned examples follow in Section 3, and we shall devote Sec-
tion 2 to a proof of Theorem 2.

2. Proof — using color 5 only once

Let G be a 3-connected planar graph. It is pointed out in [5] that the unique-
ness of its dual, proved by Whitney [10], implies that G can be embedded on the
sphere so that every automorphism of G extends to a transformation over the
sphere. Such an embedding is said to be faithful. If G is faithfully embedded
on the sphere, then its automorphism group Aut(G) acts on the sphere and the
image of one specified face of G determines the automorphism of the whole G. In
particular, if an automorphism of G fixes each vertex lying along the boundary
cycle of some face, then it must be the identity map. We shall use this logic
implicitly in our arguments below. See [4] for the details.

A cycle of length 3 in a 3-connected graph G is called a separating 3-cycle if
the removal of its vertices disconnects G. It is not difficult to see that if G is
embedded on the plane or the sphere, then a separating 3-cycle divides it into
two regions so that each region contains at least one vertex in its interior.
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LEMMA 3. If a 3-connected planar graph contains a separating 3-cycle, then it
has a distinguishing 5-coloring with color 5 used only once.

Proof. Let GG be a 3-connected graph embedded on the sphere and suppose that
GG contains a separating 3-cycle. Let us choose an innermost one, say uvw. That
is, the cycle uwvw is one of the two corresponding regions bounded by uvw, say
R, contains no other separating 3-cycles of GG. Since uvw is a separating 3-cycle,
R contains at least one vertex z.

Consider a 4-coloring of G with colors 1, 2, 3 and 4, and change the color
of & to color 5 to obtain a 5-coloring of G. Then it is clear that any color-
preserving automorphism o of G maps the region R onto itself since the outside
of R contains no vertex with color 5 and since the separating 3-cycle wvw is
innermost. Furthermore, o fixes each of u, v and w since they have three different
colors. This implies that ¢ fixes the faces incident to uv, vw and uw, both inside
and outside R. By the connectivity of (G, we conclude that o is the identity map.
Therefore, the 5-coloring of G with color 5 used only for z is distinguishing. W

The following lemma gives us a key fact to prove Theorem 2.

LEMMA 4. If a 3-connected planar graph has a vertex of odd degree, then it has
a distinguishing 5-coloring with color 5 used only once.

Proof. Let G be a 3-connected planar graph and v a vertex of degree 2k + 1 in
G. Let wug,uq,...,uy be the neighbors of v lying around v in this cyclic order
and let A be the face incident to v with corner ugpvugy1. That is, ug, v, ug,q are
three consecutive vertices along A. Consider the graph G’ obtained from G by
contracting the edge ugv to a vertex x and by adding an edge joining wu; and
ug,1 inside A unless already present. Then G’ is a planar graph with no loops
and admits a 4-coloring by the Four Color Theorem. This 4-coloring induces
naturally a 4-coloring of G — v in which ug gets the same color as z and u; and
ur+1 get two additional different colors, since x, u; and ugy; form a triangle in
G'. Without loss of generality, we may assume that ug, u, and w1 get colors 1,
2 and 3, respectively.

Assign color 5 to v to form a 5-coloring of G. This choice implies that
every color-preserving automorphism of G will fix the set of neighbors of v. By
construction, ug is the only vertex adjacent to v which gets color 1. This implies
that ugv is a unique edge with colors 1 and 5 at its ends and hence every color-
preserving automorphism o of G fixes this edge. If ¢ is not the identity map, then
it acts on the sphere as a reflexion and flips A, swapping u; and u.,. However,
this is impossible since u; and wugyq have colors 2 and 3. Therefore, o is the
identity map and the 5-coloring of GG with color 5 only for v is distinguishing. W
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Proof of Theorem 2. Let G be a 3-connected planar graph and suppose that it
is faithfully embedded on the sphere. By Lemmas 3 and 4, we may assume that
G has no separating 3-cycle and that every vertex of G has even degree. First
we shall show that there is a triangular face of G under these assumptions.

Let n, m and f denote the number of vertices, edges and faces of G. Assuming
that GG does not contain a triangular face, we have 2m > 4 f. Substituting this to
Euler’s formula n —m + f = 2, we conclude that 2m < 4n — 8, and consequently
the average vertex degree in G is strictly less than 4. This implies that G has a
vertex of degree at most 3 and hence there is a vertex of degree 2 in G since every
vertex of GG has even degree. This is contrary to G being 3-connected. Therefore,
there is a triangular face in G.

Let uwvw be the boundary cycle of a triangular face, say A, and let B be the
other face sharing the edge uv with A. Consider the planar graph G’ obtained
from G by contracting the edge uv to a vertex x. Since G’ has no loops, G’
admits a 4-coloring by the Four Color Theorem, which induces a 4-coloring of
G —v. We may assume that v and w get colors 1 and 2 without loss of generality.

Assigning color 5 to v in addition, we obtain a 5-coloring of G' so that wv
is a unique edge with colors 1 and 5 at its ends. Then every color-preserving
automorphism o of G fixes the edge wv. If B is not a triangular face, then o
cannot swap the two faces A and B, and hence it is the identity map. Thus,
the H-coloring of G is distinguishing and uses color 5 only for v, as we want.
Otherwise, we conclude that every triangular face is incident only to triangular
faces. This implies that G is a triangulation of the sphere.

It is well-known that a triangulation G of the sphere is 3-colorable if and only
if every vertex of G’ has even degree. Thus, G has a 3-coloring with colors 1, 2
and 3 by our assumption on the degrees of vertices in G. We shall modify this
3-coloring to a 5-coloring of GG, adding two colors 4 and 5, as follows.

First suppose that GG has a vertex v of degree at least 8. Let ug, uy,...,uq_1
be the neighbors of v with d = degwv, lying around v in this cyclic order. We
may assume that v has color 3, ug, us, . .. have color 1 and uq, us, ... have color 2
in the 3-coloring of GG. Since there is no separating 3-cycle in GG, there is no edge
between uy and us. Thus, we can assign color 4 to both uy and ug, and assign
color 5 to v to obtain a 5-coloring of G.

Choose a color-preserving automorphism o of G. Since v is a unique vertex
with color 5, o fixes v and maps the cycle uguy - - - ug—1 onto itself. The pair of
vertices uy and ug divides the cycle into two segments, one of which has length
3 and with the other being longer since d > 8. Thus, ¢ cannot swap these two
segments. Furthermore, it cannot flip the segment uguiususz since u; and uy are
adjacent and consequently have different colors. Hence o fixes each of vertices
v, Ug, U1, - - ., Ug—1 and hence it is the identity map. Therefore, the 5-coloring of
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G is distinguishing with color 5 used once.

Now we suppose that there is no vertex of degree at least 8 in GG. That is,
every vertex in GG has degree 4 or 6. Let us first treat the two regular cases.

Since G is a triangulation, if G is 4-regular then G is isomorphic to Kz
and this case is excluded as one of the exceptions. On the other hand, a routine
application of Euler’s formula shows that there exists no planar 6-regular graphs.

Hence we may assume that G is not a regular graph and there exists a pair
of adjacent vertices v and uy which have degrees 6 and 4, respectively. Let
Ug, U1, . ..,us be the six neighbors of v, which form a cycle surrounding v. Let
us note that if u; and w; are not consecutive around v, then w; and u; are not
adjacent, since GG is assumed to have no separating 3-cycle.

Assume first that there exist vertices wu;, u;yo (for some i = 0,...,5 with
addition modulo 6) which have different degrees. In this case, let us assign
color 4 to both u; and wu;,o and assign color 5 to v. Now a color-preserving
automorphism o of G fixes v and wu;1, since u;; is the only vertex adjacent to
three vertices of colors 4, 4 and 5; if so were another vertex, then we could find
a separating 3-cycle passing through v and it. Similarly ¢ fixes both u; and ;o
since they have different degrees. Hence o is the identity map and the 5-coloring
of GG is distinguishing in this case.

Finally we may assume that deguy = degus = deguy = 4 and degu; =
degus = degus, which is equal to either 4 or 6. If degu; = 4, then G is
isomorphic to DWj with rim wugu; - - - us5, which is also excluded as one of two
exceptional graphs. Thus, we assume that degu; = 6. Let w be the fourth
neighbor of us other than v, u; and us. If w and ug were adjacent, then wugu,
would form a separating 3-cycle, which is absurd. Hence construct our final
coloring by assigning color 4 to both ug and w, and color 5 to v to obtain a
5-coloring of G.

A color-preserving automorphism o of G fixes v, ug and wu;, the latter being
the only vertex adjacent to three vertices of colors 4, 4 and 5. Hence o is the
identity map and the constructed 5-coloring of GG is distinguishing with color 5
used once, completing the proof. B

3. Planar graphs which are not 4-chromatic

In this section, we shall discuss distinguishing coloring of planar graphs which
are not 4-chromatic, that is, ones that have 2- or 3-colorings. The authors [4]
have already proved that every 3-connected bipartite planar graph is distinguish-
ing 3-colorable with two exceptions, the 3-cube and its radial graph, which are
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distinguishing 4-colorable.

It is hard to grasp the class of 3-colorable planar graphs, and characterizing
which 3-colorable planar graphs admit a distinguishing 4-coloring consequently
feels out of reach. However we can focus on a more manageable subclass. A
graph G is said to be triangle-free if G contains no cycle of length 3. Grotzsch’s
theorem [2] implies that every triangle-free planar graph is 3-colorable.

THEOREM 5. Fvery 3-connected triangle-free planar graph has a distinguishing
4-coloring with color 4 used for at most two vertices.

Proof. Let G be a 3-connected triangle-free planar graph embedded on the
sphere. First suppose that G is a bipartite graph, having a 2-coloring with colors
1 and 2. Choose an edge 1y, and let A; and Ay be two faces sharing x1y,. Let
11212 and x1y»xo be the corners of these faces A; and A,, respectively.

Recolor z; and x5 with color 3 and change colors of y; and y, to 4. Let o
be a color-preserving automorphism of G. Then we have o({z1,22}) = {x1, 22}
and o({y1,y2}) = {y1,92}. Since G is 3-connected, A; is the only face of G
containing vertices y; and 5. Hence, o maps A; onto itself and similarly A,
onto itself. Since z1y, is the only edge shared by A; and Ay, we have both
o(z1) = x1 and o(y2) = yo. Continuing along the facial walk of either A; or
Ay we infer that o(x) = z for every vertex in the union of A; and A;. Now
connectivity of G implies that ¢ is the identity map. Therefore, the 4-coloring
of G is distinguishing and uses color 4 only for two vertices y; and ys.

Now suppose that GG is not bipartite. There exists a face A of G bounded
by a cycle of odd length. Let uguq ---ug; be the boundary cycle of the face.
Since G is triangle-free, we have k& > 2. By Grotzsch’s theorem, G has a 3-
coloring with colors 1, 2 and 3. Let us recolor vertices u; and wug; with color 4.
Consider a color-preserving automorphism o of G. Then o maps A to itself with
o({u1,usr}) = {u1,us}, similarly to the previous case, as otherwise {u, uay}
would form a 2-cut of G. If ¢ flipped A, then it would swap u; and wug,q, but
this is impossible since they have two different colors. Therefore, o fixes each
vertex of A and is the identity map. Hence the 4-coloring of G is distinguishing
and uses color 4 only for u; and ug,. W

Let G be a 3-connected planar graph distinct from K399 and DWs. If x(G) =
4, then Theorem 2 implies that there exists a distinguishing 5-coloring of G which
uses color 5 at most once. Does a similar property hold for 3-connected planar
graphs with smaller chromatic number? Does there, possibly after excluding a
finite list of exceptions, exists a distinguishing coloring in which color x(G) + 1
is used at most once?” We shall in the final part of the paper argue that this does
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not hold in general.

Let n>6 be an even number, and let U, ={uq, ..., up_1}, Wp={wo, ..., w,_1},
and Z, = {z0,...,2n_1} be three disjoint sets of n vertices. The graph T,, is
defined as the graph with U, U W,, U Z,, as its vertex set such that for every
i€{0,...,n—1}, z is adjacent to u;, w;, u;+1 and w; 41, and that w; is adjacent
also to u;_1,u; and w1, where the addition in indices is taken modulo n. Let L,
be the subgraph in 7;, induced by U, UW,,. Note that U,, W,,, Z,, are independent
sets in T,,, hence

X(L,) =2 and x(T,) =3,

and also note that their respective optimal colorings are unique.

Both T}, and L,, are 3-connected planar graphs. The ladder L,, consists of two
disjoint cycles of length n and n edges u;w; joining them and can be embedded on
the plane like a cyclic ladder. We obtain 7}, from this by adding one vertex z; to
each quadrilateral face of L,,. It is not difficult to determine their distinguishing
chromatic numbers,

Xp(Ln) =3 and  xp(T,) = 4.

Actually we can construct a distiguishing 4-coloring ¢ of T, by altering the
unique 3-coloring — recoloring vertices 21, 2o and z, with color 4. Given a color-
preserving automorphism o, we have o(z1) = z1,0(22) = 29, and o (24) = 24, as
no two distances between these three vertices are the same. Similarly o fixes
both common neighbors of z; and z5, and is consequently the identity map.

In an analogous construction, a distinguishing 3-coloring of L, can be ob-
tained by assigning color 3 to vertices ui,us and uy. We leave the proof that a
color-preserving automorphism is the identity map also in this case to the reader.

Now if z is an arbitrary vertex of T, and if ¢ is a 3-coloring of T,, — x, then
¢ partitions V(T,, — ) uniquely into color classes {U, \ {z}, W, \ {z}, Z, \ {z}}.
This last property follows from the fact that T;, — x can be constructed by pasting
triangles along edges and adding edges. Similarly, if y is a vertex of L,,, then the
bipartition of the connected graph L, —y into {U, \ {y}, W, \ {y}} is unique.
These observations enable us to prove our final result.

THEOREM 6. Let G be isomorphic to either L, or T,, where n > 6 is an even
number, and let ¢ be an arbitrary distinguishing x p(G)-coloring of G. Then ¢
uses each color at least twice.

Proof. Assume that ¢ is a 4-coloring of G = T,, using color 4 only on a single
vertex x. We may assume that either x = 2y or £ = ug, up to symmetry.

First suppose that x = ug. Since the partition of 7;,, — x by any 3-coloring is
unique as we showed above, we may assume that each u; (# ug) has color 1, w;



64

G. FIJAVZ, S. NEGAMI AND T. SANO

has color 2 and z; has color 3 in ¢. Then we find an automorphism o fixing uy and

flipping each of two disjoint cycles of the ladder L,,, which preserves the colors

of vertices. Since o is not the identity map, c is not a distinguishing coloring.

Suppose that z = z;. Then we may assume that 7,, — x is uniquely colored

with colors 1, 2 and 3, as well as in the previous case. An automorphism o fixing

zg is uniquely determined by any choice among a neighbor of 2z, as the image

of ug. If o(ug) = uy, then o is not the identity map and preserves the colors of

vertices. Therefore, ¢ is not a distinguishing coloring, again.

The proof in case of G = L,, follows along the same lines. B
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