ON CONNECTED QUANDLES WITH THE PROFILE $\{1,\ell,\ell\}$ or $\{1,\ell,\ell,\ell\}$

By

Taisuke Watanabe

(Received June 4, 2014; Revised March 13, 2015)

Abstract. In this paper, we study a finite connected quandle with the profile $\{1,\ell,\ell\}$ or $\{1,\ell,\ell,\ell\}$. In particular, we study an affine quandle with the above profile. We prove that the automorphism group of a connected affine quandle with the above profile acts doubly transitively on itself.

1. Introduction

DEFINITION 1.1. A quandle is a set Q with a binary operation $*: Q \times Q \to Q$ satisfying the following three axioms.

- (Q1) For any $a \in Q$, a * a = a.
- (Q2) For any pair $a, b \in Q$, there exists a unique $c \in Q$ such that c * a = b.
- (Q3) For any triple $a, b, c \in Q$, (a * b) * c = (a * c) * (b * c).

EXAMPLE 1.2. Let A be a finite abelian group, and $T \in Aut(A)$. We endow A with a quandle structure x * y = T(x) + (1 - T)(y) for $x, y \in A$. We denote this quandle Aff(A, T), which is called an affine quandle.

Let (Q, *) and (Q', *') be two quandles. A map $f: Q \to Q'$ is said to be a homomorphism if f(a*b) = f(a)*'f(b) for any $a, b \in Q$. If a homomorphism is bijective as a map, then it is said to be an isomorphism. An isomorphism from a quandle Q to Q itself is said to be an automorphism of Q.

The map $r_c: Q \to Q; x \mapsto x * c$ is a bijection for any $c \in Q$ by axiom (Q2) and we have $r_c(a*b) = (a*b)*c = (a*c)*(b*c) = r_c(a)*r_c(b)$ for any pair $a, b \in Q$ by axiom (Q3), so r_c is an automorphism.

Let $\operatorname{Aut}(Q)$ be the group of all automorphisms of Q. The inner group of a quandle Q is the subgroup of $\operatorname{Aut}(Q)$ generated by the maps r_c for all $c \in Q$.

2010 Mathematics Subject Classification: 20N02; 57M27 Key words and phrases: finite quandle, affine quandle

We write Inn(Q) for the inner group of Q. A quandle Q is said to be connected if Inn(Q) acts transitively on Q.

Note that an affine quandle Aff(A, T) is connected if and only if 1 - T is in Aut(A).

EXAMPLE 1.3. Let p be a prime, $t \in \mathbb{N}$, let \mathbb{F} be a field of p^t elements and let X be a non-zero element of \mathbb{F} . Since the map $\mathbb{F} \to \mathbb{F}$; $x \mapsto Xx$ is an automorphism of the additive group $(\mathbb{F}, +)$, by Example 1.2, \mathbb{F} is regarded as an affine quandle with x * y = Xx + (1 - X)y for $x, y \in \mathbb{F}$. If further X is not the identity element of \mathbb{F} , then the map $\mathbb{F} \to \mathbb{F}$; $x \mapsto x - Xx$ is also an automorphism and this affine quandle is connected.

Let Q be a finite quandle of order n. We write its elements as 1, 2, ..., n. Since the map r_c is a bijection, it can be regarded as a permutation on the set $\{1, 2, ..., n\}$.

In general, when a permutation σ on $\{1, 2, \ldots, n\}$ can be written as the product of disjoint cycles $(i_{1,1} \cdots i_{1,\ell_1})(i_{2,1} \cdots i_{2,\ell_2}) \cdots (i_{k,1} \cdots i_{k,\ell_k})$, we call the multiple set of the length of the cycles $\{\ell_1, \ell_2, \ldots, \ell_k\}$ the pattern of σ . In [4], P. Lopes and D. Roseman defined the profile of a quandle with n elements to be the sequence of the patterns of r_1, r_2, \ldots, r_n . In the case of a connected quandle Q of order n, it is easily seen that r_i and r_j are mutually conjugate for any pair i, j with $1 \leq i < j \leq n$. Therefore, r_i and r_j have the same pattern. In this paper, we call this common pattern the profile of Q for short.

L. Vendramin proved that the inner group of a quandle acts doubly transitively on itself if and only if a quandle is of cyclic type. In this paper, we study the doubly transitive property of the automorphism group of a connected quandle with the above profile.

In [3], C. Hayashi asked a question (ibid. Question 1.6), which is equivalent to the case of $\{1, \ell, \ell\}$ of the following.

QUESTION 1.4. If a finite connected quandle Q has a profile of the form $\{1, \ell, \ell\}$ or $\{1, \ell, \ell, \ell\}$, where $\ell \geq 2$, then $\operatorname{Aut}(Q)$ acts doubly transitively on Q.

This question motivates our research. The following is the main theorem in this paper.

THEOREM 1.5. Let A be a finite abelian group, and $T \in Aut(A)$. If an affine

quandle Aff(A, T) has a profile of the form $\{1, \ell, \ell\}$ or $\{1, \ell, \ell\}$, where $\ell \geq 2$, then there exist a finite field \mathbb{F} of the characteristic p, a generator X of \mathbb{F} over \mathbb{F}_p and an isomorphism $(\mathbb{F}, +) \simeq A$ via which the map $\mathbb{F} \to \mathbb{F}$; $a \mapsto Xa$ corresponds to T on A.

COROLLARY 1.6. For an affine quandle, Question 1.4 is solved affirmatively.

THEOREM 1.7. Question 1.4 is solved affirmatively for a quandle whose order is less than or equal to 35.

We prove Theorem 1.5, Corollary 1.6 and Theorem 1.7 in Section 3.

2. Simple quandles

In this section, we review the definition of a simple quandle, refer to its properties and explain some propositions.

DEFINITION 2.1. A quandle Q is called simple if any surjective quandle homomorphism on Q has trivial image or is bijective.

The following results are consequences of Proposition 2 and Proposition 3 in [2].

PROPOSITION 2.2. ([2]) If Q is a connected quantile and $f: Q \to P$ is a surjective quantile homomorphism, then P is connected.

PROPOSITION 2.3. ([2]) If $f: Q \to P$ is a surjective quandle homomorphism and P is connected, then there exists a quandle isomorphism $g: f^{-1}(a) \to f^{-1}(b)$ for $a, b \in P$.

By using these propositions, we prove the following proposition.

PROPOSITION 2.4. A connected quantile with the profile $\{1, \ell, \ell\}$ or $\{1, \ell, \ell, \ell\}$, where $\ell \geq 2$, is simple.

Proof. Let Q be a connected quandle with the profile $\{1, \ell, \ell\}$. To prove it by contradiction, we suppose that Q is not simple. Then, there exists a surjective homomorphism $f: Q \to P$ of quandles such that $|P| \neq 1, |Q|$. By Proposition 2.2, P is a connected quandle. We fix an element $x \in Q$ and let y = f(x). For any $a \in Q$ satisfying f(a) = y, we have that f(a * x) = f(a) * f(x) = y * y = y. Therefore, x and a * x belong to the same fiber $f^{-1}(y)$. Writing the map r_x as the form $r_x = (x_1 \cdots x_\ell)(x_{\ell+1} \cdots x_{2\ell})(x)$, we have that x_1, \ldots, x_ℓ belong to the same

fiber and $x_{\ell+1}, \ldots, x_{2\ell}$ belong to the same fiber. Therefore, the order of the fiber $f^{-1}(y)$ must be $1, \ell, \ell+1, 2\ell$ or $2\ell+1$. On the other hand, by the assumption $|P| \neq 1, |Q|$ and Proposition 2.3, the order of any fiber is a nontrivial divisor of $|Q| = 2\ell + 1$. However, $1, \ell, \ell+1, 2\ell$ and $2\ell+1$ are not a nontrivial divisor of |Q|, which is a contradiction. Therefore, we have that Q is simple.

In the case of the profile $\{1, \ell, \ell, \ell\}$, similarly as in the case of the profile $\{1, \ell, \ell\}$, we suppose a connected quandle with the profile $\{1, \ell, \ell, \ell\}$ is not simple. Then, the order of its any fiber must be $1, \ell, \ell+1, 2\ell, 2\ell+1, 3\ell$ or $3\ell+1$. Since these are not a nontrivial divisor of $|Q| = 3\ell + 1$, we get a contradiction. Therefore, we have that a connected quandle with the profile $\{1, \ell, \ell, \ell\}$ is simple. \square

The following theorem is a part of Theorem 3.9 in [1].

THEOREM 2.5. ([1]) Let Q be a simple and connected quantile and let p be a prime. Then, the following are equivalent.

- (1) Q has p^t elements, for some $t \in \mathbb{N}$.
- (2) Q is an affine quandle $Aff(\mathbb{F}_p^t, T)$, where $T \in GL(t, \mathbb{F}_p)$ acts irreducibly.

By using this theorem, we prove the following theorem.

THEOREM 2.6. Let Q be a simple and connected quantile and let p be a prime. Then, the following are equivalent.

- (1) Q has p^t elements, for some $t \in \mathbb{N}$.
- (2) Q is affine quantile defined by $(\mathbb{F}, +)$ in Example 1.3.

Proof. For a non-identity element $a \in \mathbb{F}_p^t$, we consider the map $\mathbb{F}_p[X] \to \mathbb{F}_p^t$; $f(X) \mapsto f(T) \cdot a$. This map is surjective, the kernel of this map is generated by g(X) and $\mathbb{F}_p[X]/(g(X)) \simeq \mathbb{F}_p^t$ is irreducible now. Therefore, g(X) is irreducible and $\mathbb{F}_p[X]/(g(X))$ is a field. We regard this field as \mathbb{F} in Example 1.3 and there exists an isomorphism $(\mathbb{F},+) \simeq (\mathbb{F}_p^t,+)$ via which the map $\mathbb{F} \to \mathbb{F}$; $x \mapsto Xx$ corresponds to T on \mathbb{F}_p^t . By Theorem 2.5, the proof is complete.

3. Proof

In this section, we prove Theorem 1.5, Corollary 1.6 and Theorem 1.7. We give two proofs of Theorem 1.5. The first proof appeals to a result of Andruskiewitsch and Graña [1], which is based on the classification of simple finite groups. On the other hand, since we work only with an abelian group, we can give a more direct proof of Theorem 1.5, which uses only elementary divisor theory. This is the second proof.

3.1. First we prove that for an affine quandle Aff(A, T) with the profile $\{1, \ell, \ell\}$, an abelian group A is of the form $\mathbb{Z}/p\mathbb{Z} \times \cdots \times \mathbb{Z}/p\mathbb{Z}$, where p is an odd prime.

Let Q be an affine quandle Aff(A, T) with the profile $\{1, \ell, \ell\}$. Since Q has the profile $\{1, \ell, \ell\}$, the pattern of the map r_0 is $\{1, \ell, \ell\}$, where 0 is the identity element of A.

We have $r_0(x) = T(x) + (1 - T)(0) = T(x)$ for each $x \in A$, that is, $r_0 = T$, so r_0 is of the form $r_0 = (x \ T(x) \cdots T^{\ell-1}(x))(y \ T(y) \cdots T^{\ell-1}(y))(0)$. Therefore, the cardinality of the set of the orders of the elements in $A \setminus \{0\}$ is at most two. Moreover, there are ℓ elements of each order when the cardinality of the set of the orders is exactly two. By the fundamental theorem of finite abelian groups, A satisfying these conditions is of the form $\mathbb{Z}/p\mathbb{Z} \times \cdots \times \mathbb{Z}/p\mathbb{Z}$, where p is an odd prime.

3.2. Now we prove Theorem 1.5 in the case of the profile $\{1, \ell, \ell\}$. By Proposition 2.4, a quandle with the profile $\{1, \ell, \ell\}$ is a simple quandle. By using the facts that the order of Q is a prime power by 3.1 and that Q is a simple quandle and Theorem 2.6, the proof of Theorem 1.5 in the case of the profile $\{1, \ell, \ell\}$ is complete.

In the next subsection, we give the direct proof in the case of $\{1, \ell, \ell\}$ in Theorem 1.5.

- **3.3.** We prove Theorem 1.5 in the case of $\{1, \ell, \ell\}$ directly. We use the elementary divisor theory in this direct proof.
- By 3.1, A is of the form $\mathbb{Z}/p\mathbb{Z} \times \cdots \times \mathbb{Z}/p\mathbb{Z}$, so regard A as an $\mathbb{F}_p[X]$ -module with the action $\mathbb{F}_p[X] \curvearrowright A$; $f \cdot a := f(T) \cdot a$. By the elementary divisor theory, A is isomorphic to the underlying additive group of the ring

$$R := \mathbb{F}_p[X]/(f_1) \oplus \cdots \oplus \mathbb{F}_p[X]/(f_d),$$

where $f_1, \dots, f_d \in \mathbb{F}_p[X] \setminus \mathbb{F}_p$. We write $R_i = \mathbb{F}_p[X]/(f_i)$ for each i with $1 \le i \le d$. Since T is an automorphism, X must be an invertible element in R_i for each i and the order of (X, \dots, X) must be ℓ in R^{\times} .

We claim d=1. Assume that $d \geq 2$, and the automorphism on R corresponding to T on A can be described as $R \to R; a \mapsto (X, \ldots, X)a$. We consider the orbit decomposition of this automorphism. We have

$$R = \{(0, \dots, 0)\} \coprod \{(1, \dots, 1), (X, \dots, X), \dots, (X^{\ell-1}, \dots, X^{\ell-1})\}$$

$$\coprod \{(1, 0, \dots, 0), (X, 0, \dots, 0), \dots, (X^{\ell-1}, 0, \dots, 0)\}$$

$$\coprod \{(0, \dots, 0, 1), (0, \dots, 0, X), \dots, (0, \dots, 0, X^{\ell-1})\} \coprod \cdots$$

In particular, there are at least three distinct orbits of order ℓ , which contradicts the assumption that Aff(A, T) has the profile $\{1, \ell, \ell\}$.

Therefore, we can write $R = \mathbb{F}_p[X]/(f)$. Let the degree of f be m. We claim that f is irreducible. We may assume that $f = g^k$, where g is irreducible of degree c. Now, we have $|R^\times| = p^m - p^{m-c}$. Since the element X is of the order $\ell = \frac{1}{2}(p^m-1)$ in R^\times , we have $\frac{1}{2}(p^m-1)|p^m-p^{m-c}=p^{m-c}(p^c-1)$, hence $\frac{1}{2}(p^m-1)|p^c-1$. Since $\frac{1}{2}(p^m-1) = \frac{1}{2}(p^k-1) = \frac{1}{2}(p^c-1)(p^{(k-1)c}+p^{(k-2)c}+\cdots+p^c+1)$, we have $\frac{1}{2}(p^{(k-1)c}+p^{(k-2)c}+\cdots+p^c+1) \leq 1$, that is, $p^{(k-1)c}+p^{(k-2)c}+\cdots+p^c+1 \leq 2$. When $k \geq 2$, this contradicts the fact that p is a prime. Therefore, k=1, that is, f is irreducible and we get $A \simeq R = \mathbb{F}_p[X]/(f)$ is a field. The direct proof in the case of the profile $\{1,\ell,\ell\}$ is complete.

3.4. In the case of the profile $\{1, \ell, \ell, \ell\}$, we can get a proof similarly as in 3.2, by using the fact that a quandle with the profile $\{1, \ell, \ell, \ell\}$ is also a simple quandle by Proposition 2.4 and Theorem 2.6. Now, we give the direct proof similarly as in 3.3.

Let Q be an affine quandle $\operatorname{Aff}(A,T)$ with the profile $\{1,\ell,\ell,\ell\}$. The map r_0 is of the form $r_0 = (x \ T(x) \cdots T^{\ell-1}(x))(y \ T(y) \cdots T^{\ell-1}(y))(z \ T(z) \cdots T^{\ell-1}(z))(0)$. Therefore, the cardinality of the set of the orders of the elements in $A \setminus \{0\}$ is at most three. Moreover, there are ℓ elements of each order when the cardinality of the set of the orders is exactly three, and there are ℓ and 2ℓ elements of each order when it is exactly two. First, we claim that A is a p-group.

To prove it by contradiction, suppose that there exist different primes p and q which are divisors of |A|. Then, A has elements of the order p and the order q. The number of the elements of the order p is $p^m - 1$ and that of the order q is $q^n - 1$, where $m, n \in \mathbb{N}$, and these numbers are different. By the assumption, we may assume that the number of the elements of the order p is ℓ and the number of the elements of the order p is either of the order p or of the order p. However, in fact, there exists an element of the order p, which is a contradiction. Therefore, p is a p-group and the claim follows.

Next, we claim that A satisfying the above conditions is of the form $\mathbb{Z}/p\mathbb{Z} \times \cdots \times \mathbb{Z}/p\mathbb{Z}$, where p is a prime. By the assumption that the cardinality of the set of the orders of the elements in $A \setminus \{0\}$ is at most three, the fact that A is a p-group and using the fundamental theorem of finite abelian group, we write

$$A = \underbrace{\mathbb{Z}/p\mathbb{Z} \times \cdots \times \mathbb{Z}/p\mathbb{Z}}_{a_1 \text{ times}} \times \underbrace{\mathbb{Z}/p^2\mathbb{Z} \times \cdots \times \mathbb{Z}/p^2\mathbb{Z}}_{a_2 \text{ times}} \times \underbrace{\mathbb{Z}/p^3\mathbb{Z} \times \cdots \times \mathbb{Z}/p^3\mathbb{Z}}_{a_3 \text{ times}}.$$

It is sufficient that we prove $a_2 = a_3 = 0$. Now, $|A| = 3\ell + 1 = p^{a_1+2a_2+3a_3}$, so $\ell = \frac{1}{3}(p^{a_1+2a_2+3a_3}-1)$. It is easily seen that the number of the elements of

the order p is $p^{a_1+a_2+a_3}-1$. Assume that $a_3 \geq 1$ or $a_2 \geq 2$. Then, we have that $p^{a_1+a_2+a_3}-1 < \ell = \frac{1}{3}(p^{a_1+2a_2+3a_3}-1)$, which contradicts the fact that there exist ℓ elements whose orders are p. Therefore, $a_3=0$ and $a_2 \leq 1$. Assume that $a_2=1$. Then, it is easily seen that $p^{a_1+1}-1 < 2\ell = \frac{2}{3}(p^{a_1+2}-1)$. If $p^{a_1+1}-1=\ell=\frac{1}{3}(p^{a_1+2}-1)$, then p=2 and $a_1=0$, so we have |A|=4 and $\ell=1$ which contradicts the assumption $\ell\geq 2$. Therefore, when $a_2=1$, the number of the elements of the order p is not ℓ , 2ℓ and 3ℓ . Thus, $a_2=0$. The claim follows.

Therefore, A is of the form $\mathbb{Z}/p\mathbb{Z} \times \cdots \times \mathbb{Z}/p\mathbb{Z}$. Furthermore, A is isomorphic to the underlying additive group R in 3.3. Assume that $d \geq 2$. We consider the orbit decomposition of the map $R \to R$; $a \mapsto (X, \dots, X)a$. We have

$$\begin{split} R &= \{(0,\ldots,0)\} \coprod \{(1,\ldots,1),(X,\ldots,X),\ldots,(X^{\ell-1},\ldots,X^{\ell-1})\} \\ &\qquad \coprod \{(1,0,\ldots,0),(X,0,\ldots,0),\ldots,(X^{\ell-1},0,\ldots,0)\} \\ &\qquad \coprod \{(0,\ldots,0,1),(0,\ldots,0,X),\ldots,(0,\ldots,0,X^{\ell-1})\} \coprod \cdots. \end{split}$$

The order of X must be ℓ in R_1^{\times} and in R_d^{\times} , since $\mathrm{Aff}(A,T)$ has the profile $\{1,\ell,\ell,\ell\}$. Then, there exists another orbit $\{(1,0,\ldots,0,X),(X,0,\ldots,0,X^2),\ldots,(X^{\ell-1},0,\ldots,0,1)\}$, which contradicts the fact that the number of the orbits of the length ℓ is three. Therefore, we can write $R=\mathbb{F}_p[X]/(f)$. Let the degree of f be m. We may assume that $f=g^k$, where g is irreducible of degree c. Similarly as in the case of $\{1,\ell,\ell\}$ in 3.3, since the element X is of the order $\ell=\frac{1}{3}(p^m-1)$ in R^{\times} , we have $p^{(k-1)c}+p^{(k-2)c}+\cdots+p^c+1\leq 3$. When $k\geq 3$, this contradicts the fact that p is a prime. When k=2, only p=2 and c=1 satisfy this condition. Then, we have m=2, |R|=4 and $\ell=1$ which contradicts the assumption $\ell\geq 2$. Therefore, k=1, that is, f is irreducible and we get $A\simeq R=\mathbb{F}_p[X]/(f)$ is a field.

3.5. To prove Corollary 1.6, we prove the following proposition, the statement of which is obtained by replacing Inn(Q) by Aut(Q) of Proposition 3.3 in [6].

PROPOSITION 3.1. Let Q be a quantile and assume that $|Q| \geq 3$. Then the following conditions are mutually equivalent. Here, $\operatorname{Aut}(Q)_q$ is the stabilizer of q in $\operatorname{Aut}(Q)$.

- (1) Aut(Q) acts doubly transitively on Q.
- (2) For every $q \in Q$, the action of $Aut(Q)_q$ on $Q \setminus \{q\}$ is transitive.
- (3) Q is connected, and there exists $q \in Q$ such that the action of $\operatorname{Aut}(Q)_q$ on $Q \setminus \{q\}$ is transitive.

The proof of Proposition 3.1 is the same as Proposition 3.3 in [6]. Now, we prove Corollary 1.6.

Let Q be an affine quandle $\operatorname{Aff}(A,T)$ with the profile $\{1,\ell,\ell\}$ or $\{1,\ell,\ell,\ell\}$. We prove that $\operatorname{Aut}(Q)$ acts doubly transitively on Q. By 2.3 and 2.4, we have $Q \simeq \operatorname{Aff}(R,\varphi)$ and r_0 is of the form $r_0 = (1 \ X \cdots X^{\ell-1})(a \ Xa \cdots X^{\ell-1}a)(0)$ or $r_0 = (1 \ X \cdots X^{\ell-1})(a \ Xa \cdots X^{\ell-1}a)(b \ Xb \cdots X^{\ell-1}b)(0)$, respectively, where $R = \mathbb{F}_p[X]/(f)$, $f \in \mathbb{F}_p[X] \setminus \mathbb{F}_p$ is irreducible and $\varphi : R \to R; \alpha \mapsto X\alpha$. Let ψ_a be the map $R \to R; \alpha \mapsto a\alpha$. We have that ψ_a is a quandle automorphism of $\operatorname{Aff}(R,\varphi)$. In fact, for any $x,y \in R$, $\psi_a(x*y) = \psi_a(Xx + (1-X)y) = a(Xx + (1-X)y) = X(ax) + (1-X)(ay) = (ax)*(ay) = \psi_a(x)*\psi_a(y)$.

In the case of the profile $\{1, \ell, \ell, \ell\}$, let ψ_b be the map $R \to R$; $\alpha \mapsto b\alpha$. We have that ψ_b is a quandle automorphism of $Aff(R, \varphi)$ similarly as above.

Since r_0 and ψ_a (and ψ_b in the case of $\{1, \ell, \ell, \ell\}$) are in $\operatorname{Aut}(Q)_0$, we have $\operatorname{Aut}(Q)_0$ acts transitively on $Q \setminus \{0\}$ in both cases. Here, $\operatorname{Aut}(Q)_0$ is the stabilizer of the identity element 0 of A in $\operatorname{Aut}(Q)$. By Proposition 3.1 (3) \Rightarrow (1), $\operatorname{Aut}(Q)$ acts doubly transitively on Q. The proof is complete.

3.6. We prove Theorem 1.7.

We have the complete list of non-isomorphic connected quandles whose order is less than or equal to 35 by Rig which is available at http://code.google.com/p/rig. By the list [5], we can list up all non-affine quandles of the order $2\ell + 1$ or $3\ell + 1$. In Table 1 and Table 2, we enumerate non-affine quandles $Q_{n,m}$ of the order $2\ell + 1$ or $3\ell + 1$, where $Q_{n,m}$ is the m-th quandle of the order n in their list. Also, by Rig, we have its profiles. According to these tables, the profile of a non-affine quandle of the order $2\ell + 1$ or $3\ell + 1$ is not $\{1,\ell,\ell\}$ or $\{1,\ell,\ell,\ell\}$. Therefore, we see that a connected quandle with the profile $\{1,\ell,\ell\}$ or $\{1,\ell,\ell,\ell\}$ whose order is less than or equal to 35 is affine. The proof is complete by Corollary 1.6.

Table 1 Connected and non-affine quandles of the order $2\ell+1$

Order	Connected	Non-affine	$Q_{n,m}$	Profile
	quandle	quandle	0.10,110	
15	7	4	$Q_{15,2}$	{1,1,1,2,2,2,2,2,2}
			$Q_{15,5}$	$\{1, 2, 2, 10\}$
			$Q_{15,6}$	$\{1, 2, 2, 2, 2, 2, 2, 2\}$
			$Q_{15,7}$	$\{1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2\}$
21	9	4	$Q_{21,6}$	$\{1,1,1,1,1,2,2,2,2,2,2,2,2,2\}$
			$Q_{21,7}$	$\{1, 2, 2, 2, 14\}$
			$Q_{21,8}$	$\{1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2\}$
			$Q_{21,9}$	$\{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2\}$
27	65	35	$Q_{27,1}$	$\{1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2\}$
			$Q_{27,2}$	$\{1, 1, 1, 4, 4, 4, 4, 4, 4\}$
			$Q_{27,7}$	$\{1, 2, 2, 2, 2, 6, 6, 6\}$
			$Q_{27,9}$	
			$Q_{27,11}$	
			$Q_{27,12}$	
			$Q_{27,16}$	
			$Q_{27,35}$	
			$Q_{27,36}$	
			$Q_{27,41}$	
			:	
			$Q_{27,46}$	
			$Q_{27,56}$	
			:	
			$Q_{27,59}$	
			$Q_{27,8}$	{1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2}
			$Q_{27,10}$	
			$Q_{27,13}$	
			$Q_{27,15}$	
			$Q_{27,14}$	$\{1, 1, 1, 2, 2, 2, 6, 6, 6\}$
			$Q_{27,27}$	$\{1, 2, 8, 8, 8\}$
			$Q_{27,28}$	
			$Q_{27,37}$	$\{1, 2, 6, 18\}$
			:	
			$Q_{27,40}$	
			$Q_{27,60}$	
			$Q_{27,61}$	
			$Q_{27,53}$	$\{1, 2, 2, 2, 2, 18\}$
			$Q_{27,54}$	
			$Q_{27,55}$	
33	11	2	$Q_{33,10}$	{1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
			$Q_{33,11}$	$\{1, 2, 2, 2, 2, 2, 22\}$

Order	Connected	Non-affine	$Q_{n,m}$	Profile
	quandle	quandle		
10	1	1	$Q_{10,1}$	$\{1, 1, 1, 1, 2, 2, 2\}$
28	13	8	$Q_{28,3}$	$\{1, 3, 3, 3, 3, 3, 3, 3, 3, 3\}$
			$Q_{28,4}$	
			$Q_{28,11}$	
			$Q_{28,12}$	
			$Q_{28,5}$	$\{1, 3, 6, 6, 6, 6\}$
			$Q_{28,6}$	
			$Q_{28,10}$	$\{1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2\}$
			$Q_{28,13}$	$\{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2$

Table 2 Connected and non-affine quandles of the order $3\ell + 1$

4. Conjecture

CONJECTURE 4.1. A connected quandle with the profile $\{1, \ell, \ell\}$ or $\{1, \ell, \ell, \ell\}$ is affine.

REMARK 4.2.

- (1) If we prove that Conjecture 4.1 is true, then Question 1.4 is solved completely by Corollary 1.6.
- (2) L. Vendramin proved a connected quandle with profile $\{1, \ell\}$ is affine in [7, Corollary 2]. It would be interesting to consider if the method there could be generalized for our problem.

PROPOSITION 4.3. For a quantile whose order is less than or equal to 35 or a prime power, Conjecture 4.1 is true.

Proof. A connected quandle with the profile $\{1, \ell, \ell\}$ or $\{1, \ell, \ell, \ell\}$ whose order is less than or equal to 35 is affine by Rig and [5] as in 3.6. A quandle with the profile $\{1, \ell, \ell\}$ or $\{1, \ell, \ell, \ell\}$ is a simple quandle by Proposition 2.4 and a simple quandle whose order is a prime power is affine by Theorem 2.5 or Theorem 2.6.

Acknowledgement. The author thanks to Professor Chuichiro Hayashi for his encouragement, and to Professor Chikara Nakayama for his advice in writing this paper.

References

- [1] N. Andruskiewitsch and M. Graña, From racks to pointed Hopf algebras. Adv. Math., 178 (2) (2003), 177–243.
- 2 F. J. B. J. Clauwens, Small connected quandles. arXiv:1011.2456.
- [3] C. Hayashi, Canonical forms for operation tables of finite connected quandles. *Comm. Algebra*, **41** (9) (2013), 3340–3349.
- [4] P. Lopes and D. Roseman, On finite racks and quandles. *Comm. Algebra*, **34**(1) (2006), 371–406.
- [5] M. Saito, Characterizations of small connected quandles, preprint.
- [6] H. Tamaru, Two-point homogeneous quandles with prime cardinality. J. Math. Soc. Japan, 65 (4) (2013), 1117–1134.
- [7] L. Vendramin, Doubly transitive groups and cyclic quandles. To appear in *J. Math. Soc, Japan*, arXiv:1401.4574.

Department of Mathematics Tokyo Institute of Technology Ookayama, Meguro-ku Tokyo 152-8551, Japan E-mail: t.watanabe.q@gmail.com