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Abstract. In this paper, we study a finite connected quandle with the profile
{1, `, `} or {1, `, `, `}. In particular, we study an affine quandle with the above
profile. We prove that the automorphism group of a connected affine quandle
with the above profile acts doubly transitively on itself.

1. Introduction

DEFINITION 1.1. A quandle is a set Q with a binary operation ∗ : Q×Q → Q

satisfying the following three axioms.

(Q1) For any a ∈ Q, a ∗ a = a.

(Q2) For any pair a, b ∈ Q, there exists a unique c ∈ Q such that c ∗ a = b.

(Q3) For any triple a, b, c ∈ Q, (a ∗ b) ∗ c = (a ∗ c) ∗ (b ∗ c).

EXAMPLE 1.2. Let A be a finite abelian group, and T ∈Aut(A). We endow A

with a quandle structure x ∗ y = T (x) + (1− T )(y) for x, y ∈ A. We denote this

quandle Aff(A, T ), which is called an affine quandle.

Let (Q, ∗) and (Q′, ∗′) be two quandles. A map f : Q → Q′ is said to be a

homomorphism if f(a ∗ b) = f(a) ∗′ f(b) for any a, b ∈ Q. If a homomorphism is

bijective as a map, then it is said to be an isomorphism. An isomorphism from

a quandle Q to Q itself is said to be an automorphism of Q.

The map rc : Q → Q; x 7→ x ∗ c is a bijection for any c ∈ Q by axiom (Q2)

and we have rc(a ∗ b) = (a ∗ b) ∗ c = (a ∗ c) ∗ (b ∗ c) = rc(a) ∗ rc(b) for any pair

a, b ∈ Q by axiom (Q3), so rc is an automorphism.

Let Aut(Q) be the group of all automorphisms of Q. The inner group of a

quandle Q is the subgroup of Aut(Q) generated by the maps rc for all c ∈ Q.
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We write Inn(Q) for the inner group of Q. A quandle Q is said to be connected

if Inn(Q) acts transitively on Q.

Note that an affine quandle Aff(A, T ) is connected if and only if 1 − T is in

Aut(A).

EXAMPLE 1.3. Let p be a prime, t ∈ N, let F be a field of pt elements and let X

be a non-zero element of F. Since the map F → F; x 7→ Xx is an automorphism

of the additive group (F, +), by Example 1.2, F is regarded as an affine quandle

with x ∗ y = Xx + (1−X)y for x, y ∈ F. If further X is not the identity element

of F, then the map F → F; x 7→ x − Xx is also an automorphism and this affine

quandle is connected.

Let Q be a finite quandle of order n. We write its elements as 1, 2, . . . , n.

Since the map rc is a bijection, it can be regarded as a permutation on the set

{1, 2, . . . , n}.

In general, when a permutation σ on {1, 2, . . . , n} can be written as the

product of disjoint cycles (i1,1 · · · i1,`1)(i2,1 · · · i2,`2) · · · (ik,1 · · · ik,`k
), we call the

multiple set of the length of the cycles {`1, `2, . . . , `k} the pattern of σ. In [4],

P. Lopes and D. Roseman defined the profile of a quandle with n elements to be

the sequence of the patterns of r1, r2, . . . , rn. In the case of a connected quandle

Q of order n, it is easily seen that ri and rj are mutually conjugate for any pair

i, j with 1 ≤ i < j ≤ n. Therefore, ri and rj have the same pattern. In this

paper, we call this common pattern the profile of Q for short.

L. Vendramin proved that the inner group of a quandle acts doubly tran-

sitively on itself if and only if a quandle is of cyclic type. In this paper, we

study the doubly transitive property of the automorphism group of a connected

quandle with the above profile.

In [3], C. Hayashi asked a question (ibid. Question 1.6), which is equivalent

to the case of {1, `, `} of the following.

QUESTION 1.4. If a finite connected quandle Q has a profile of the form {1, `, `}
or {1, `, `, `}, where ` ≥ 2, then Aut(Q) acts doubly transitively on Q.

This question motivates our research. The following is the main theorem in

this paper.

THEOREM 1.5. Let A be a finite abelian group, and T ∈Aut(A). If an affine
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quandle Aff(A, T ) has a profile of the form {1, `, `} or {1, `, `, `}, where ` ≥ 2,

then there exist a finite field F of the characteristic p, a generator X of F over Fp

and an isomorphism (F, +) ' A via which the map F → F; a 7→ Xa corresponds

to T on A.

COROLLARY 1.6. For an affine quandle, Question 1.4 is solved affirmatively.

THEOREM 1.7. Question 1.4 is solved affirmatively for a quandle whose order

is less than or equal to 35.

We prove Theorem 1.5, Corollary 1.6 and Theorem 1.7 in Section 3.

2. Simple quandles

In this section, we review the definition of a simple quandle, refer to its

properties and explain some propositions.

DEFINITION 2.1. A quandle Q is called simple if any surjective quandle ho-

momorphism on Q has trivial image or is bijective.

The following results are consequences of Proposition 2 and Proposition 3 in

[2].

PROPOSITION 2.2. ([2]) If Q is a connected quandle and f : Q → P is a

surjective quandle homomorphism, then P is connected.

PROPOSITION 2.3. ([2]) If f : Q → P is a surjective quandle homomorphism

and P is connected, then there exists a quandle isomorphism g : f−1(a) → f−1(b)

for a, b ∈ P .

By using these propositions, we prove the following proposition.

PROPOSITION 2.4. A connected quandle with the profile {1, `, `} or {1, `, `, `},
where ` ≥ 2, is simple.

Proof. Let Q be a connected quandle with the profile {1, `, `}. To prove it by

contradiction, we suppose that Q is not simple. Then, there exists a surjective

homomorphism f : Q → P of quandles such that |P | 6= 1, |Q|. By Proposition

2.2, P is a connected quandle. We fix an element x ∈ Q and let y = f(x). For

any a ∈ Q satisfying f(a) = y, we have that f(a ∗ x) = f(a) ∗ f(x) = y ∗ y = y.

Therefore, x and a∗x belong to the same fiber f−1(y). Writing the map rx as the

form rx = (x1 · · ·x`)(x`+1 · · · x2`)(x), we have that x1, . . . , x` belong to the same
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fiber and x`+1, . . . , x2` belong to the same fiber. Therefore, the order of the fiber

f−1(y) must be 1, `, ` + 1, 2` or 2` + 1. On the other hand, by the assumption

|P | 6= 1, |Q| and Proposition 2.3, the order of any fiber is a nontrivial divisor of

|Q| = 2` + 1. However, 1, `, ` + 1, 2` and 2` + 1 are not a nontrivial divisor of

|Q|, which is a contradiction. Therefore, we have that Q is simple.

In the case of the profile {1, `, `, `}, similarly as in the case of the profile

{1, `, `}, we suppose a connected quandle with the profile {1, `, `, `} is not simple.

Then, the order of its any fiber must be 1, `, `+1, 2`, 2`+1, 3` or 3`+1. Since these

are not a nontrivial divisor of |Q| = 3` + 1, we get a contradiction. Therefore,

we have that a connected quandle with the profile {1, `, `, `} is simple.

The following theorem is a part of Theorem 3.9 in [1].

THEOREM 2.5. ([1]) Let Q be a simple and connected quandle and let p be a

prime. Then, the following are equivalent.

(1) Q has pt elements, for some t ∈ N.

(2) Q is an affine quandle Aff(Ft
p, T ), where T ∈GL(t, Fp) acts irreducibly.

By using this theorem, we prove the following theorem.

THEOREM 2.6. Let Q be a simple and connected quandle and let p be a prime.

Then, the following are equivalent.

(1) Q has pt elements, for some t ∈ N.

(2) Q is affine quandle defined by (F, +) in Example 1.3.

Proof. For a non-identity element a ∈ Ft
p, we consider the map Fp[X] → Ft

p; f(X)

7→ f(T ) · a. This map is surjective, the kernel of this map is generated by g(X)

and Fp[X]/(g(X)) ' Ft
p is irreducible now. Therefore, g(X) is irreducible and

Fp[X]/(g(X)) is a field. We regard this field as F in Example 1.3 and there exists

an isomorphism (F, +) ' (Ft
p, +) via which the map F → F; x 7→ Xx corresponds

to T on Ft
p. By Theorem 2.5, the proof is complete.

3. Proof

In this section, we prove Theorem 1.5, Corollary 1.6 and Theorem 1.7. We

give two proofs of Theorem 1.5. The first proof appeals to a result of An-

druskiewitsch and Graña [1], which is based on the classification of simple finite

groups. On the other hand, since we work only with an abelian group, we can

give a more direct proof of Theorem 1.5, which uses only elementary divisor

theory. This is the second proof.
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3.1. First we prove that for an affine quandle Aff(A, T ) with the profile {1, `, `},
an abelian group A is of the form Z/pZ × · · · × Z/pZ, where p is an odd prime.

Let Q be an affine quandle Aff(A, T ) with the profile {1, `, `}. Since Q has

the profile {1, `, `}, the pattern of the map r0 is {1, `, `}, where 0 is the identity

element of A.

We have r0(x) = T (x) + (1 − T )(0) = T (x) for each x ∈ A, that is, r0 = T ,

so r0 is of the form r0 = (x T (x) · · ·T `−1(x))(y T (y) · · ·T `−1(y))(0). Therefore,

the cardinality of the set of the orders of the elements in A r {0} is at most two.

Moreover, there are ` elements of each order when the cardinality of the set of

the orders is exactly two. By the fundamental theorem of finite abelian groups,

A satisfying these conditions is of the form Z/pZ × · · · × Z/pZ, where p is an

odd prime.

3.2. Now we prove Theorem 1.5 in the case of the profile {1, `, `}. By Propo-

sition 2.4, a quandle with the profile {1, `, `} is a simple quandle. By using the

facts that the order of Q is a prime power by 3.1 and that Q is a simple quandle

and Theorem 2.6, the proof of Theorem 1.5 in the case of the profile {1, `, `} is

complete.

In the next subsection, we give the direct proof in the case of {1, `, `} in

Theorem 1.5.

3.3. We prove Theorem 1.5 in the case of {1, `, `} directly. We use the elemen-

tary divisor theory in this direct proof.

By 3.1, A is of the form Z/pZ× · · · ×Z/pZ, so regard A as an Fp[X]-module

with the action Fp[X] y A; f · a := f(T ) · a. By the elementary divisor theory,

A is isomorphic to the underlying additive group of the ring

R := Fp[X]/(f1) ⊕ · · · ⊕ Fp[X]/(fd),

where f1, · · · , fd ∈ Fp[X] r Fp. We write Ri = Fp[X]/(fi) for each i with 1 ≤
i ≤ d. Since T is an automorphism, X must be an invertible element in Ri for

each i and the order of (X, . . . , X) must be ` in R×.

We claim d = 1. Assume that d ≥ 2, and the automorphism on R corre-

sponding to T on A can be described as R → R; a 7→ (X, . . . , X)a. We consider

the orbit decomposition of this automorphism. We have

R = {(0, . . . , 0)}
∐
{(1, . . . , 1), (X, . . . , X), . . . , (X`−1, . . . , X`−1)}∐
{(1, 0, . . . , 0), (X, 0, . . . , 0), . . . , (X`−1, 0, . . . , 0)}∐
{(0, . . . , 0, 1), (0, . . . , 0, X), . . . , (0, . . . , 0, X`−1)}

∐
· · · .
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In particular, there are at least three distinct orbits of order `, which contradicts

the assumption that Aff(A, T ) has the profile {1, `, `}.
Therefore, we can write R = Fp[X]/(f). Let the degree of f be m. We claim

that f is irreducible. We may assume that f = gk, where g is irreducible of degree

c. Now, we have |R×| = pm − pm−c. Since the element X is of the order ` =
1
2
(pm−1) in R×, we have 1

2
(pm−1)|pm−pm−c = pm−c(pc−1), hence 1

2
(pm−1)|pc−1.

Since 1
2
(pm − 1) = 1

2
(pkc − 1) = 1

2
(pc − 1)(p(k−1)c + p(k−2)c + · · ·+ pc + 1), we have

1
2
(p(k−1)c + p(k−2)c + · · ·+ pc + 1) ≤ 1, that is, p(k−1)c + p(k−2)c + · · ·+ pc + 1 ≤ 2.

When k ≥ 2, this contradicts the fact that p is a prime. Therefore, k = 1, that

is, f is irreducible and we get A ' R = Fp[X]/(f) is a field. The direct proof in

the case of the profile {1, `, `} is complete.

3.4. In the case of the profile {1, `, `, `}, we can get a proof similarly as in

3.2, by using the fact that a quandle with the profile {1, `, `, `} is also a simple

quandle by Proposition 2.4 and Theorem 2.6. Now, we give the direct proof

similarly as in 3.3.

Let Q be an affine quandle Aff(A, T ) with the profile {1, `, `, `}. The map r0 is

of the form r0 = (x T (x) · · ·T `−1(x))(y T (y) · · ·T `−1(y))(z T (z) · · ·T `−1(z))(0).

Therefore, the cardinality of the set of the orders of the elements in A r {0} is

at most three. Moreover, there are ` elements of each order when the cardinality

of the set of the orders is exactly three, and there are ` and 2` elements of each

order when it is exactly two. First, we claim that A is a p-group.

To prove it by contradiction, suppose that there exist different primes p and

q which are divisors of |A|. Then, A has elements of the order p and the order q.

The number of the elements of the order p is pm − 1 and that of the order q is

qn − 1, where m,n ∈ N, and these numbers are different. By the assumption, we

may assume that the number of the elements of the order p is ` and the number

of the elements of the order q is 2`, so any element of A r {0} is either of the

order p or of the order q. However, in fact, there exists an element of the order

pq, which is a contradiction. Therefore, A is a p-group and the claim follows.

Next, we claim that A satisfying the above conditions is of the form Z/pZ ×
· · · × Z/pZ, where p is a prime. By the assumption that the cardinality of the

set of the orders of the elements in A r {0} is at most three, the fact that A is

a p-group and using the fundamental theorem of finite abelian group, we write

A = Z/pZ × · · · × Z/pZ︸ ︷︷ ︸
a1 times

×Z/p2Z × · · · × Z/p2Z︸ ︷︷ ︸
a2 times

×Z/p3Z × · · · × Z/p3Z︸ ︷︷ ︸
a3 times

.

It is sufficient that we prove a2 = a3 = 0. Now, |A| = 3` + 1 = pa1+2a2+3a3 ,

so ` = 1
3
(pa1+2a2+3a3 − 1). It is easily seen that the number of the elements of
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the order p is pa1+a2+a3 − 1. Assume that a3 ≥ 1 or a2 ≥ 2. Then, we have

that pa1+a2+a3 − 1 < ` = 1
3
(pa1+2a2+3a3 − 1), which contradicts the fact that there

exist ` elements whose orders are p. Therefore, a3 = 0 and a2 ≤ 1. Assume

that a2 = 1. Then, it is easily seen that pa1+1 − 1 < 2` = 2
3
(pa1+2 − 1). If

pa1+1 − 1 = ` = 1
3
(pa1+2 − 1), then p = 2 and a1 = 0, so we have |A| = 4 and

` = 1 which contradicts the assumption ` ≥ 2. Therefore, when a2 = 1, the

number of the elements of the order p is not `, 2` and 3`. Thus, a2 = 0. The

claim follows.

Therefore, A is of the form Z/pZ×· · ·×Z/pZ. Furthermore, A is isomorphic

to the underlying additive group R in 3.3. Assume that d ≥ 2. We consider the

orbit decomposition of the map R → R; a 7→ (X, . . . , X)a. We have

R = {(0, . . . , 0)}
∐
{(1, . . . , 1), (X, . . . , X), . . . , (X`−1, . . . , X`−1)}∐
{(1, 0, . . . , 0), (X, 0, . . . , 0), . . . , (X`−1, 0, . . . , 0)}∐
{(0, . . . , 0, 1), (0, . . . , 0, X), . . . , (0, . . . , 0, X`−1)}

∐
· · · .

The order of X must be ` in R×
1 and in R×

d , since Aff(A, T ) has the profile

{1, `, `, `}. Then, there exists another orbit {(1, 0, . . . , 0, X), (X, 0, . . . , 0, X2), . . . ,

(X`−1, 0, . . . , 0, 1)}, which contradicts the fact that the number of the orbits of

the length ` is three. Therefore, we can write R = Fp[X]/(f). Let the degree of f

be m. We may assume that f = gk, where g is irreducible of degree c. Similarly

as in the case of {1, `, `} in 3.3, since the element X is of the order ` = 1
3
(pm −1)

in R×, we have p(k−1)c + p(k−2)c + · · ·+ pc + 1 ≤ 3. When k ≥ 3, this contradicts

the fact that p is a prime. When k = 2, only p = 2 and c = 1 satisfy this condi-

tion. Then, we have m = 2, |R| = 4 and ` = 1 which contradicts the assumption

` ≥ 2. Therefore, k = 1, that is, f is irreducible and we get A ' R = Fp[X]/(f)

is a field.

3.5. To prove Corollary 1.6, we prove the following proposition, the statement

of which is obtained by replacing Inn(Q) by Aut(Q) of Proposition 3.3 in [6].

PROPOSITION 3.1. Let Q be a quandle and assume that |Q| ≥ 3. Then the

following conditions are mutually equivalent. Here, Aut(Q)q is the stabilizer of

q in Aut(Q).

(1) Aut(Q) acts doubly transitively on Q.

(2) For every q ∈ Q, the action of Aut(Q)q on Q r {q} is transitive.

(3) Q is connected, and there exists q ∈ Q such that the action of Aut(Q)q

on Q r {q} is transitive.

The proof of Proposition 3.1 is the same as Proposition 3.3 in [6]. Now, we

prove Corollary 1.6.
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Let Q be an affine quandle Aff(A, T ) with the profile {1, `, `} or {1, `, `, `}.
We prove that Aut(Q) acts doubly transitively on Q. By 2.3 and 2.4, we have

Q ' Aff(R,ϕ) and r0 is of the form r0 = (1 X · · ·X`−1)(a Xa · · ·X`−1a)(0)

or r0 = (1 X · · ·X`−1)(a Xa · · ·X`−1a)(b Xb · · ·X`−1b)(0), respectively, where

R = Fp[X]/(f), f ∈ Fp[X] r Fp is irreducible and ϕ : R → R; α 7→ Xα. Let

ψa be the map R → R; α 7→ aα. We have that ψa is a quandle automorphism

of Aff(R,ϕ). In fact, for any x, y ∈ R, ψa(x ∗ y) = ψa(Xx + (1 − X)y) =

a(Xx + (1 − X)y) = X(ax) + (1 − X)(ay) = (ax) ∗ (ay) = ψa(x) ∗ ψa(y).

In the case of the profile {1, `, `, `}, let ψb be the map R → R; α 7→ bα. We

have that ψb is a quandle automorphism of Aff(R,ϕ) similarly as above.

Since r0 and ψa (and ψb in the case of {1, `, `, `}) are in Aut(Q)0, we have

Aut(Q)0 acts transitively on Qr{0} in both cases. Here, Aut(Q)0 is the stabilizer

of the identity element 0 of A in Aut(Q). By Proposition 3.1 (3) ⇒ (1), Aut(Q)

acts doubly transitively on Q. The proof is complete.

3.6. We prove Theorem 1.7.

We have the complete list of non-isomorphic connected quandles whose order

is less than or equal to 35 by Rig which is available at http://code.google.

com/p/rig. By the list [5], we can list up all non-affine quandles of the order

2` + 1 or 3` + 1. In Table 1 and Table 2, we enumerate non-affine quandles

Qn,m of the order 2` + 1 or 3` + 1, where Qn,m is the m-th quandle of the order

n in their list. Also, by Rig, we have its profiles. According to these tables,

the profile of a non-affine quandle of the order 2` + 1 or 3` + 1 is not {1, `, `} or

{1, `, `, `}. Therefore, we see that a connected quandle with the profile {1, `, `} or

{1, `, `, `} whose order is less than or equal to 35 is affine. The proof is complete

by Corollary 1.6.
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Table 1 Connected and non-affine quandles of the order 2` + 1

Order Connected Non-affine Qn,m Profile
quandle quandle

15 7 4 Q15,2 {1, 1, 1, 2, 2, 2, 2, 2, 2}
Q15,5 {1, 2, 2, 10}
Q15,6 {1, 2, 2, 2, 2, 2, 2, 2}
Q15,7 {1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2}

21 9 4 Q21,6 {1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2}
Q21,7 {1, 2, 2, 2, 14}
Q21,8 {1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2}
Q21,9 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2}

27 65 35 Q27,1 {1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2}
Q27,2 {1, 1, 1, 4, 4, 4, 4, 4, 4}
Q27,7 {1, 2, 2, 2, 2, 6, 6, 6}
Q27,9

Q27,11

Q27,12

Q27,16

Q27,35

Q27,36

Q27,41

...
Q27,46

Q27,56

...
Q27,59

Q27,8 {1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2}
Q27,10

Q27,13

Q27,15

Q27,14 {1, 1, 1, 2, 2, 2, 6, 6, 6}
Q27,27 {1, 2, 8, 8, 8}
Q27,28

Q27,37 {1, 2, 6, 18}
...

Q27,40

Q27,60

Q27,61

Q27,53 {1, 2, 2, 2, 2, 18}
Q27,54

Q27,55

33 11 2 Q33,10 {1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2}
Q33,11 {1, 2, 2, 2, 2, 2, 22}
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Table 2 Connected and non-affine quandles of the order 3` + 1

Order Connected Non-affine Qn,m Profile
quandle quandle

10 1 1 Q10,1 {1, 1, 1, 1, 2, 2, 2}
28 13 8 Q28,3 {1, 3, 3, 3, 3, 3, 3, 3, 3, 3}

Q28,4

Q28,11

Q28,12

Q28,5 {1, 3, 6, 6, 6, 6}
Q28,6

Q28,10 {1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2}
Q28,13 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2}

4. Conjecture

CONJECTURE 4.1. A connected quandle with the profile {1, `, `} or {1, `, `, `}
is affine.

REMARK 4.2.

(1) If we prove that Conjecture 4.1 is true, then Question 1.4 is solved com-

pletely by Corollary 1.6.

(2) L. Vendramin proved a connected quandle with profile {1, `} is affine in [7,

Corollary 2]. It would be interesting to consider if the method there could

be generalized for our problem.

PROPOSITION 4.3. For a quandle whose order is less than or equal to 35 or a

prime power, Conjecture 4.1 is true.

Proof. A connected quandle with the profile {1, `, `} or {1, `, `, `} whose order is

less than or equal to 35 is affine by Rig and [5] as in 3.6. A quandle with the

profile {1, `, `} or {1, `, `, `} is a simple quandle by Proposition 2.4 and a simple

quandle whose order is a prime power is affine by Theorem 2.5 or Theorem

2.6.
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