\mathcal{A}-SIMPLE MULTIGERMS AND \mathcal{L}-SIMPLE MULTIGERMS

By
Takashi Nishimura

(Received June 2, 2008; Revised September 28, 2009)

Abstract

In this paper, we investigate restrictions on multiplicities and numbers of branches for \mathcal{G}-simple multigerms $(\mathcal{G}=\mathcal{A}$ or $\mathcal{L})$.

Introduction

Throughout this paper, let $S=\left\{s_{1}, \cdots, s_{r}\right\}$ be a finite subset of \mathbf{R}^{n} with r elements, $f:\left(\mathbf{R}^{n}, S\right) \rightarrow\left(\mathbf{R}^{p}, 0\right)$ be a germ of C^{∞} mapping at S such that $f(S)=0$ (called a multigerm) and for any $i(1 \leq i \leq r)$ let f_{i} be the restriction of f to $\left(\mathbf{R}^{n}, s_{i}\right)$ (called a branch of f). The integer r is called the number of branches of f. Let C_{S} (resp. C_{0}) be the set of C^{∞} function-germs $\left(\mathbf{R}^{n}, S\right) \rightarrow \mathbf{R}$ (resp. $\left.\left(\mathbf{R}^{p}, 0\right) \rightarrow \mathbf{R}\right)$. Let m_{S} (resp. m_{0}) be the subset of C_{S} (resp. C_{0}) consisting of C^{∞} function-germs $\left(\mathbf{R}^{n}, S\right) \rightarrow(\mathbf{R}, 0)$ (resp. $\left(\mathbf{R}^{p}, 0\right) \rightarrow(\mathbf{R}, 0)$). The sets C_{S} and C_{0} have natural \mathbf{R}-algebra structures induced by the \mathbf{R}-algebra structure of \mathbf{R}. For a multigerm $f:\left(\mathbf{R}^{n}, S\right) \rightarrow\left(\mathbf{R}^{p}, 0\right)$, let $f^{*}: C_{0} \rightarrow C_{S}$ be the R-algebra homomorphism defined by $f^{*}(u)=u \circ f$. Put $Q(f)=C_{S} / f^{*}\left(m_{0}\right) C_{S}$. The dimension of $Q(f)$ as a real vector space is called the multiplicity of f, and in the case that $n \leq p$ it is finite in general.

Two multigerms $f, g:\left(\mathbf{R}^{n}, S\right) \rightarrow\left(\mathbf{R}^{p}, 0\right)$ are said to be \mathcal{A}-equivalent if there exist germs of C^{∞} diffeomorphisms $\varphi:\left(\mathbf{R}^{n}, S\right) \rightarrow\left(\mathbf{R}^{n}, S\right)$ with the condition that $\varphi\left(s_{i}\right)=s_{i}$ for $(1 \leq i \leq r)$ and $\psi:\left(\mathbf{R}^{p}, 0\right) \rightarrow\left(\mathbf{R}^{p}, 0\right)$ such that $f=\psi \circ g \circ \varphi^{-1}$. \mathcal{L}-equivalence (resp. \mathcal{R}-equivalence) for f and g is defined in the same way as \mathcal{A}-equivalence but such that φ (resp. ψ) is the germ of identity mapping. A multigerm $f:\left(\mathbf{R}^{n}, S\right) \rightarrow\left(\mathbf{R}^{p}, 0\right)$ is said to be \mathcal{A}-simple (resp. \mathcal{L}-simple) if there exists a finite number of \mathcal{A}-equivalence classes (resp. \mathcal{L}-equivalence classes) such that for any positive integer d and any C^{∞} mapping $F: U \rightarrow V$ where $U \subset \mathbf{R}^{n} \times \mathbf{R}^{d}$ is a neighbourhood of $S \times 0, V \subset \mathbf{R}^{p} \times \mathbf{R}^{d}$ is a neighbourhood of $(0,0), F(x, \lambda)=\left(f_{\lambda}(x), \lambda\right)$ and the germ of f_{0} at S is f, there

[^0]exists a sufficiently small neighbourhood $W_{i} \subset U$ of $\left(s_{i}, 0\right)(1 \leq i \leq r)$ such that for every $\left\{\left(x_{1}, \lambda\right), \cdots,\left(x_{r}, \lambda\right)\right\}$ with $\left(x_{i}, \lambda\right) \in W_{i}$ and $F\left(x_{1}, \lambda\right)=\cdots=F\left(x_{r}, \lambda\right)$ the multigerm $f_{\lambda}:\left(\mathbf{R}^{n},\left\{x_{1}, \cdots, x_{r}\right\}\right) \rightarrow\left(\mathbf{R}^{p}, f_{\lambda}\left(x_{i}\right)\right)$ lies in one of these finite \mathcal{A}-equivalence classes (resp. \mathcal{L}-equivalence classes).

THEOREM 1. Let $f:\left(\mathbf{R}^{n}, S\right) \rightarrow\left(\mathbf{R}^{p}, 0\right)(n \leq p)$ be a multigerm with corank at most one.

1. Suppose that $n p \neq 1$ and f is \mathcal{A}-simple. Then, the following inequality holds.

$$
\operatorname{dim}_{\mathbf{R}} Q(f) \leq \frac{p^{2}+(n-1) r}{n(p-n)+(n-1)}
$$

2. Suppose that f is \mathcal{L}-simple. Then, the following inequality holds.

$$
\operatorname{dim}_{\mathbf{R}} Q(f) \leq \frac{p}{n}
$$

Here, corank at most one for an \mathcal{A}-simple multigerm $f:\left(\mathbf{R}^{n}, S\right) \rightarrow\left(\mathbf{R}^{p}, 0\right)$ means that $\max \left\{n-\operatorname{rank} J f_{i}\left(s_{i}\right) \mid 1 \leq i \leq r\right\} \leq 1$ holds, where $J f_{i}\left(s_{i}\right)$ is the Jacobian matrix of the restriction f_{i} of f at s_{i}. Note that there are no upper bounds for $\operatorname{dim}_{\mathbf{R}} Q(f)$ of an \mathcal{A}-simple f in the case that $n=p=1$ since for any positive integer δ the map-germ $f(x)=x^{\delta}$ is \mathcal{A}-simple and of corank at most one.

The author does not know whether or not Theorem 1 still holds without the assumption of corank at most one.

THEOREM 2. Let $f:\left(\mathbf{R}^{n}, S\right) \rightarrow\left(\mathbf{R}^{p}, 0\right)(n \leq p)$ be a multigerm.

1. Suppose that $n \neq p$ and f is \mathcal{A}-simple. Then, the number of branches r is restricted in the following way.

$$
r<\frac{p^{2}}{n(p-n)}
$$

2. Suppose that f is \mathcal{L}-simple. Then, the number of branches r is restricted in the following way.

$$
r \leq \frac{p}{n}
$$

Note that there are no upper bounds for the number of branches of an \mathcal{A} simple f in the case that $n=p$ since for any positive integer r a smooth finite covering with r fibers gives an example of \mathcal{A}-simple multigerm in this case. Note also that since $r \leq \operatorname{dim}_{\mathbf{R}} Q(f)$ the inequality $r \leq \frac{p^{2}}{n(p-n)}$ for an \mathcal{A}-simple
multigerm with corank at most one can be obtained from 1 of Theorem 1 as an immediate corollary. Thus, the point of 1 of Theorem 2 is the sharpness of the inequality.

Since the left hand side of the inequality in 1 of Theorem 2 is an integer while the right hand side is a rational number, the sharp inequality in 1 of Theorem 2 suggests that there must exist some special restrictions for the number of branches of an \mathcal{A}-simple multigerm when the right hand side is an integer. The rational number $\frac{p^{2}}{n(p-n)}$ can be an integer only when $p=2 n$ and in this case it attains its minimal value 4 . Thus, we may guess that the classical cross ratio and the symplectic cross ratio ([14]) are the very invariants of special restrictions for the number of branches of an \mathcal{A}-simple multigerm, and it is impossible to find out such invariants in the case that $p \neq 2 n, p>n$.

It seems interesting also to compare 1 of Theorem 1 and 1 of Theorem 2 when the right hand side of the inequality in 1 of Theorem 2 is an integer. The rational number $\frac{p^{2}+(n-1) r}{n(p-n)+(n-1)}$ for $p=2 n, r<4$ can be an integer only when $n=1$ and the maximal value it attains is 4 . Although there are no \mathcal{A} simple multigerms $f:\left(\mathbf{R}^{n}, S\right) \rightarrow\left(\mathbf{R}^{2 n}, 0\right)$ with $r=4$ by 1 of Theorem 2, for instance map-germs $x \mapsto\left(x^{4}, x^{5}+x^{7}\right)$ (taken from [3]), $\left\{x \mapsto(x, 0), x \mapsto\left(x^{3}, x^{4}\right)\right\}$ and $\left\{x \mapsto(x, 0), x \mapsto(0, x), x \mapsto\left(x^{2}, x^{3}\right)\right\}$ (these two are taken from [9]) give examples of \mathcal{A}-simple multigerms satisfying $\operatorname{dim}_{\mathbf{R}} Q(f)=4$ in the case that $(n, p)=(1,2)$. Thus, we can not expect the sharpness for the inequality of 1 of Theorem 1.

Not only in the case above, the upper bound for $\operatorname{dim}_{\mathbf{R}} Q(f)$ given in 1 of Theorem 1 is the best possible bound in the classification results of \mathcal{A}-simple map-germs listed here ([4], [5], [6], [7], [8], [9], [10], [13], [15], [17]), and the upper bound for r is also the best possible bound in the classification results ([5], [6], [9], [17]). However, if $n=r=1$ and p is greater than 5, then the upper bound in Theorem 1 is not the best estimate since the effect of \mathcal{A}-moduli sets in \mathcal{K}-simple orbits can not be disregarded as shown in [1].

For \mathcal{L}-simple multigerms, by 2 of Theorem 1 we see that if $n \leq p<2 n$ then any \mathcal{L}-simple map-germ with corank at most one must be an immersive monogerm (i.e. an immersion germ with only one branches), and we can not expect to improve 2 of Theorem 1 and 2 of Theorem 2 to hold the sharp inequality $r<\frac{p}{n}$.

Next, we remark briefly that there exist \mathcal{A}-simple multigerms which are not \mathcal{L}-simple even when $p \geq 2 n$.

Proposition 1. Let $p>1, r \geq p$ and let $f:(\mathbf{R}, S) \rightarrow\left(\mathbf{R}^{p}, 0\right)$ be an immersion such that $\sum_{i=1}^{p} j^{1} f_{j_{i}}\left(s_{j_{i}}\right)(\mathbf{R})=\mathbf{R}^{p}$, where $j_{i} \in\{1, \cdots, r\}\left(j_{i} \neq j_{k}\right.$ if $\left.i \neq k\right)$ and the 1-jet $j^{1} f_{i}\left(s_{i}\right)$ is being regarded as a linear mapping. Then, we have the following:

1. Suppose that $r=p$. Then, f is \mathcal{L}-simple.
2. Suppose that $r=p+1$. Then, f is \mathcal{A}-simple.
3. Suppose that $r \geq p+2$. Then, f is not \mathcal{A}-simple.

Proposition 2. Let $f:\left(\mathbf{R}^{n}, S\right) \rightarrow\left(\mathbf{R}^{2 n}, 0\right)$ be an immersion such that f_{i} is transversally intersecting with f_{j} for any $i, j(1 \leq i, j \leq r, i \neq j)$.

1. Suppose that $r=2$. Then, f is \mathcal{L}-simple.
2. Suppose that $r=3$. Then, f is \mathcal{A}-simple.
3. Suppose that $r \geq 4$. Then, f is not \mathcal{A}-simple.

Note that under the situation of Proposition 1 (resp. Proposition 2), f is not \mathcal{L}-simple if $r=p+1$ (resp. $r=3$) by 2 of Theorem 1 , and thus an f given in 2 of Proposition 1 (resp. 2 of Proposition 2) is an \mathcal{A}-simple map-germ which is not \mathcal{L}-simple.

All results in this paper hold also in complex holomorphic category.
In $\S 1$, several preparations are given. Theorems 1 and 2 and propositions 1 and 2 are proved in $\S 2, \S 3, \S 4$ and $\S 5$ respectively.

1. Preliminaries

Most notions and notations defined in this section are due to Mather ([11], [12]) and already common in singularity theory of C^{∞} mappings. For details of them, we recommend an excellent survey [16] to the readers. Although in [16] r is always 1 , it is very useful to understand the geometric meaning of the notions intruduced in this section.

Two multigerms $f, g:\left(\mathbf{R}^{n}, S\right) \rightarrow\left(\mathbf{R}^{p}, 0\right)$ are said to be \mathcal{K}-equivalent if there exist a germ of C^{∞} diffeomorphism $\varphi:\left(\mathbf{R}^{n}, S\right) \rightarrow\left(\mathbf{R}^{n}, S\right)$ such that $\varphi\left(s_{i}\right)=s_{i}$ for ($1 \leq i \leq r$) and a germ of C^{∞} mappings $M:\left(\mathbf{R}^{n}, S\right) \rightarrow G L(p, \mathbf{R})$ such that $f(x)=M(x) g \circ \varphi^{-1}(x)$. Note that the multiplicities are \mathcal{K}-invariant for multigerms. The \mathcal{C}-equivalence for f and g is defined as the \mathcal{K}-equivalence of them such that φ is the germ of identity mapping.

For a multigerm $f:\left(\mathbf{R}^{n}, S\right) \rightarrow\left(\mathbf{R}^{p}, 0\right)$, let $\theta_{S}(f)$ be the C_{S}-module consisting of germs of C^{∞} vector fields along f. We may identify $\theta_{S}(f)$ with $\underbrace{C_{S} \times \cdots \times C_{S}}_{p \text { tuples }}$,
We put $\theta_{S}(n)=\theta_{S}\left(i d d_{\cdot\left(\mathbf{R}^{n}, S\right)}\right)$ and $\theta_{0}(p)=\theta\left(i d ._{\left(\mathbf{R}^{p}, 0\right)}\right)$, where $i d ._{\left(\mathbf{R}^{n}, S\right)}$ (resp. $\left.i d ._{\left(\mathbf{R}^{p}, 0\right)}\right)$ is the germ of the identity mapping of $\left(\mathbf{R}^{n}, S\right)\left(\operatorname{resp} .\left(\mathbf{R}^{p}, 0\right)\right)$. For a $k \in\{0,1, \cdots, \infty\}$, an element of $m_{S}^{k} \theta_{S}(n)$ or $m_{0}^{k} \theta_{0}(p)$ is a germ of C^{∞} vector field along the germ of the identity mapping such that the terms of the Taylor series of it up to $(k-1)$ are zero.

For a given multigerm $f:\left(\mathbf{R}^{n}, S\right) \rightarrow\left(\mathbf{R}^{p}, 0\right)$, the \mathcal{G}-equivalence class of f is denoted by $\mathcal{G}(f)$, where \mathcal{G} is one of $\mathcal{L}, \mathcal{A}, \mathcal{C}$ and \mathcal{K}. For the f, we define $t f$ and ωf in the following way:

$$
\begin{array}{ll}
t f: \theta_{S}(n) \rightarrow \theta_{S}(f), \quad t f(a)=d f \circ a, \\
\omega f: \theta_{0}(p) \rightarrow \theta_{S}(f), \quad \omega f(b)=b \circ f,
\end{array}
$$

where $d f$ is the differential of f. For the f, we put

$$
\begin{aligned}
T \mathcal{R}(f) & =t f\left(m_{S} \theta_{S}(n)\right), \\
T \mathcal{L}(f) & =\omega f\left(m_{0} \theta_{0}(p)\right), \\
T \mathcal{A}(f) & =t f\left(m_{S} \theta_{S}(n)\right)+\omega f\left(m_{0} \theta_{0}(p)\right), \\
T \mathcal{C}(f) & =f^{*}\left(m_{0}\right) \theta_{S}(f), \\
T \mathcal{K}(f) & =t f\left(m_{S} \theta_{S}(n)\right)+f^{*}\left(m_{0}\right) \theta_{S}(f) .
\end{aligned}
$$

For a given multigerm f, we may identify $Q(f)^{n}$ as $\theta_{S}(n) / f^{*}\left(m_{0}\right) \theta_{S}(n)$ and $Q(f)^{p}$ as $\theta_{S}(f) / f^{*}\left(m_{0}\right) \theta_{S}(f)$. Under this identification, Wall's homomorphism of $Q(f)$-modules (p. 508 of [16]) is the following:

$$
\bar{t} f: Q(f)^{n} \rightarrow Q(f)^{p}, \quad \bar{t} f([a])=[t f(a)],
$$

where $[a]=a+f^{*}\left(m_{0}\right) \theta_{S}(n)$ and $[t f(a)]=t f(a)+f^{*}\left(m_{0}\right) \theta_{S}(f)$. Let $\delta(f)$ (resp. $\gamma(f))$ be the dimension of $Q(f)$ (resp. the dimension of the kernel of $\bar{t} f$).

For a given multigerm $f:\left(\mathbf{R}^{n}, S\right) \rightarrow\left(\mathbf{R}^{p}, 0\right)$ and a positive integer i, we put ${ }_{i} Q(f)=f^{*}\left(m_{0}^{i}\right) C_{S} / f^{*}\left(m_{0}^{i+1}\right) C_{S}$ and ${ }_{i} \delta(f)=\operatorname{dim}_{\mathbf{R}} i Q(f)$. We may identify ${ }_{i} Q(f)^{n}$ as $f^{*}\left(m_{0}^{i}\right) \theta_{S}(n) / f^{*}\left(m_{0}^{i+1}\right) \theta_{S}(n)$ and ${ }_{i} Q(f)^{p}$ as $f^{*}\left(m_{0}^{i}\right) \theta_{S}(f) / f^{*}\left(m_{0}^{i+1}\right) \theta_{S}(f)$. Under this identification, we let ${ }_{i} \gamma(f)$ be the dimension of the kernel of the following homomorphism of $Q(f)$-modules.

$$
{ }_{i} \bar{t} f:{ }_{i} Q(f)^{n} \rightarrow{ }_{i} Q(f)^{p}, \quad{ }_{i} \bar{t} f([a])=[t f(a)] .
$$

Then, we see easily that $\delta(f) \leq{ }_{i} \delta(f) \leq p^{i} \delta(f)$, and thus ${ }_{i} \delta(f)<\infty$ if $\delta(f)<\infty$. Similarly $\gamma(f) \leq{ }_{i} \gamma(f) \leq p^{i} \gamma(f)$ and thus ${ }_{i} \gamma(f)<\infty$ if $\gamma(f)<\infty$. Note that ${ }_{i} Q(f)$ is not isomorphic to ${ }_{i} Q(F)$, where F is an unfolding of f. However, in the case that $n=1$ we see easily that

$$
{ }_{1} \delta(F)=(1+q)_{1} \delta(f) \text { and }{ }_{1} \gamma(F)=(1+q)_{1} \gamma(f),
$$

where q is the number of parameters for the unfolding F.
The Taylor series ignoring terms of degree higher than k at points of S for a multigerm $f:\left(\mathbf{R}^{n}, S\right) \rightarrow\left(\mathbf{R}^{p}, 0\right)$ is called k jet of f at S and is denoted by $j^{k} f(S)$. We put

$$
J^{k}(n, p)=\left\{j^{k} f(0) \mid f:\left(\mathbf{R}^{n}, 0\right) \rightarrow\left(\mathbf{R}^{p}, 0\right) C^{\infty}\right\}
$$

The jet space suitable for multigerms $\left(\mathbf{R}^{n}, S\right) \rightarrow\left(\mathbf{R}^{p}, 0\right)$ is the following multijet space:

$$
{ }_{r} J^{k}(n, p)=\left\{\left(j^{k} f_{1}\left(s_{1}\right), \cdots, j^{k} f_{r}\left(s_{r}\right)\right) \mid f_{1}\left(s_{1}\right)=\cdots=f_{r}\left(s_{r}\right)\right\}
$$

For a multigerm $f:\left(\mathbf{R}^{n}, S\right) \rightarrow\left(\mathbf{R}^{p}, 0\right)$, the multijet space ${ }_{r} J^{k}(n, p)$ may be identified with the quotient space $m_{S} \theta_{S}(f) / m_{S}^{k+1} \theta_{S}(f)$. Under this identification we put

$$
\begin{aligned}
T \mathcal{R}^{k}\left(j^{k} f(S)\right) & =\left\{[g] \in_{r} J^{k}(n, p) \mid g \in T \mathcal{R}(f)\right\}, \\
T \mathcal{L}^{k}\left(j^{k} f(S)\right) & =\left\{[g] \in_{r} J^{k}(n, p) \mid g \in T \mathcal{L}(f)\right\}, \\
T \mathcal{A}^{k}\left(j^{k} f(S)\right) & =\left\{[g] \in_{r} J^{k}(n, p) \mid g \in T \mathcal{A}(f)\right\}, \\
T \mathcal{C}^{k}\left(j^{k} f(S)\right) & =\left\{[g] \in_{r} J^{k}(n, p) \mid g \in T \mathcal{C}(f)\right\}, \\
T \mathcal{K}^{k}\left(j^{k} f(S)\right) & =\left\{[g] \in_{r} J^{k}(n, p) \mid g \in T \mathcal{K}(f)\right\},
\end{aligned}
$$

where $[g]=g+m_{S}^{k+1} \theta_{S}(f)$. These are tangent spaces to orbits of actions of well-defined Lie groups corresponding to Mather's groups $\mathcal{R}, \mathcal{L}, \mathcal{A}, \mathcal{C}$ and \mathcal{K}. (for details, see [16]).

2. Proof of Theorem 1

Lemma 2.1. Let $f:\left(\mathbf{R}^{n}, S\right) \rightarrow\left(\mathbf{R}^{p}, 0\right)$ be a multigerm.

1. Suppose that f is \mathcal{A}-simple. Then, there exists a multigerm $g:\left(\mathbf{R}^{n}, S\right) \rightarrow$ $\left(\mathbf{R}^{p}, 0\right)$ such that two properties $\mathcal{K}(f)=\mathcal{K}(g)$ and $T \mathcal{K}(g)=T \mathcal{A}(g)$ are satisfied.
2. Suppose that f is \mathcal{L}-simple. Then, there exists a multigerm $g:\left(\mathbf{R}^{n}, S\right) \rightarrow$ $\left(\mathbf{R}^{p}, 0\right)$ such that two properties $\mathcal{C}(f)=\mathcal{C}(g)$ and $T \mathcal{C}(g)=T \mathcal{L}(g)$ are satisfied.

Proof. First we show 1 of Lemma 2.1. If f satisfies the property that $T \mathcal{K}(f)=$ $T \mathcal{A}(f)$, then just take the f as g. If $T \mathcal{K}(f) \neq T \mathcal{A}(f)$, then since f is \mathcal{A}-simple there must exist a multigerm $g \in \mathcal{K}(f)$ such that $\mathcal{A}(f)$ is adjacent to $\mathcal{A}(g)$ and the property $T \mathcal{K}(g)=T \mathcal{A}(g)$ holds.

For the proof of 2 of Lemma 2.1, just replace \mathcal{A} and \mathcal{K} in the proof of 1 of Lemma 2.1 with \mathcal{L} and \mathcal{C}.

LEMMA 2.2. Let $g:\left(\mathbf{R}^{n}, S\right) \rightarrow\left(\mathbf{R}^{p}, 0\right)$ be a multigerm such that $\delta(g)<\infty$.

1. Suppose that $T \mathcal{K}(g)=T \mathcal{A}(g)$. Then, the following inequality holds:

$$
(p-n)_{1} \delta(g)+{ }_{1} \gamma(g)-\gamma(g) \leq p^{2}
$$

2. Suppose that $T \mathcal{C}(g)=T \mathcal{L}(g)$. Then, the following inequality holds:

$$
{ }_{1} \delta(g) \leq p .
$$

Proof. First we show 1 of Lemma 2.2. Put

$$
A=\frac{g^{*}\left(m_{0}\right) \theta_{S}(g)}{t g\left(m_{S} \theta_{S}(n)\right) \cap g^{*}\left(m_{0}\right) \theta_{S}(g)}
$$

The assumption $T \mathcal{K}(g)=T \mathcal{A}(g)$ implies that any element φ of $g^{*}\left(m_{0}\right) \theta_{S}(g)$ has the form $\varphi=\varphi_{1}+\varphi_{2}\left(\varphi_{1} \in \operatorname{tg}\left(m_{S} \theta_{S}(n)\right), \varphi_{2} \in \omega g\left(m_{0} \theta_{0}(p)\right)\right)$. Then, note that $\varphi_{1}=\varphi-\varphi_{2}$ belongs to $\operatorname{tg}\left(m_{S} \theta_{S}(n)\right) \cap g^{*}\left(m_{0}\right) \theta_{S}(g)$ since the vector space $\omega g\left(m_{0} \theta_{0}(p)\right)$ is contained in the vector space $g^{*}\left(m_{0}\right) \theta_{S}(g)$. Thus, under the assumption $T \mathcal{K}(g)=T \mathcal{A}(g)$, we see that any element of A has the form $\varphi+t g\left(m_{S} \theta_{S}(n)\right) \cap g^{*}\left(m_{0}\right) \theta_{S}(g)\left(\varphi \in \omega g\left(m_{0} \theta_{0}(p)\right)\right)$. Therefore, we see that the minimal number of elements of a generator of A as C_{0}-module via g is less than or equal to the minimal number of elements of a generator of $\omega g\left(m_{0} \theta(p)\right)$ as C_{0}-module via g and it is clear that the latter number is less than or equal to p^{2}. Thus, we have the following inequality:

$$
\operatorname{dim}_{\mathbf{R}} \frac{A}{g^{*}\left(m_{0}\right) A} \leq p^{2}
$$

On the other hand, the left hand side of the above inequality is more than or equal to $p_{1} \delta(g)-\left(n_{1} \delta(g)-{ }_{1} \gamma(g)\right)-\gamma(g)$.

Next we show 2 of Lemma 2.2. The assumption $T \mathcal{C}(g)=T \mathcal{L}(g)$ implies the inequality $p_{1} \delta(g)=\operatorname{dim}_{\mathbf{R}}^{1} 1 Q(g)^{p} \leq p^{2}$.

Proof of Theorem 1. First we prove 1 of Theorem 1. Since f is of corank at most one, the multigerm g in 1 of Lemma 2.1 is also of corank at most one. Since g is of corank at most one, g is \mathcal{A}-equivalent to an unfolding of a multigerm h of one variable with $(n-1)$ parameters. Note that

$$
\delta(f)=\delta(g)=\delta(h)
$$

Furthermore, since h is a multigerm of one variable we have that ${ }_{1} \delta(h)=\delta(h)$, ${ }_{1} \gamma(h)=\gamma(h)$ easily and $\gamma(h)=\delta(h)-r$ (for the last equality, refer to p. 508 of [16]). By combining the above equalities and the equalities in $\S 2$ we have the following two:

$$
\begin{aligned}
& { }_{1} \delta(g)=n \delta(h)=n \delta(f), \\
& { }_{1} \gamma(g)=n \gamma(h)=n(\delta(f)-r) .
\end{aligned}
$$

Therefore, for the g in 1 of Lemma 2.1, by 1 of Lemma 2.2 we have the following desired inequality:

$$
(p-n) n \delta(f)+n(\delta(f)-r)-(\delta(f)-r) \leq p^{2}
$$

For the proof of 2 of Theorem 1, just replace 1 of Lemma 2.1 and 1 of Lemma 2.2 in the proof of 1 of Theorem 1 with 2 of Lemma 2.1 and 2 of Lemma 2.2. Q.E.D.

3. Proof of Theorem 2

LEMMA 3.1. Let $f:\left(\mathbf{R}^{n}, S\right) \rightarrow\left(\mathbf{R}^{p}, 0\right)(n \leq p)$ be a multigerm.

1. Suppose that f is \mathcal{A}-simple. Then, there exists an \mathcal{A}-simple immersion $h:\left(\mathbf{R}^{n}, S\right) \rightarrow\left(\mathbf{R}^{p}, 0\right)$ such that f is adjacent to h and the equality $T \mathcal{K}(h)=$ $T \mathcal{A}(h)$ holds.
2. Suppose that f is \mathcal{L}-simple. Then, there exists an \mathcal{L}-simple immersion $h:\left(\mathbf{R}^{n}, S\right) \rightarrow\left(\mathbf{R}^{p}, 0\right)$ such that f is adjacent to h and the equality $T \mathcal{C}(h)=$ $T \mathcal{L}(h)$ holds.

Proof. Since $n \leq p$ the multigerm f can be deformed to an immersive g by adding sufficiently small linear terms. Since f is \mathcal{A}-simple (resp. \mathcal{L}-simple), the obtained immersive germ g must be \mathcal{A}-simple (resp. \mathcal{L}-simple). Applying Lemma 2.1 for the g we obtain the desired multigerm h.

LEMMA 3.2. Let $h:\left(\mathbf{R}^{n}, S\right) \rightarrow\left(\mathbf{R}^{p}, 0\right)$ be an immersive multigerm. Then, we have that $\operatorname{dim}_{\mathbf{R}} T \mathcal{R}^{1}\left(j^{1} h(S)\right)=n^{2} r$ and $\operatorname{dim}_{\mathbf{R}} T \mathcal{G}^{1}\left(j^{1} h(S)\right)=n$ pr for $\mathcal{G}=\mathcal{C}, \mathcal{K}$.

Proof. Since h is immersive, we see that $\operatorname{dim}_{\mathbf{R}} T \mathcal{R}^{1}\left(j^{1} h(S)\right)$ is equal to r multiplied by the dimension of the space of linear isomorphisms of \mathbf{R}^{n}, which is $n^{2} r$. For $\operatorname{dim}_{\mathbf{R}} T \mathcal{K}^{1}\left(j^{1} h(S)\right)$, note that $T \mathcal{K}(h)=T \mathcal{C}(h)$ since h is immersive. By definition of $T \mathcal{C}(h)$ we have that $\operatorname{dim}_{\mathbf{R}} T \mathcal{C}^{1}\left(j^{1} h(S)\right)=p \sum_{i=1}^{r} \operatorname{rank}\left(J h_{i}\left(s_{i}\right)\right)$. Therefore, for an immersive h the desired equality holds.

LEMMA 3.3. Let $h:\left(\mathbf{R}^{n}, S\right) \rightarrow\left(\mathbf{R}^{p}, 0\right)$ be an immersive multigerm. Then, $\operatorname{dim}_{\mathbf{R}} T \mathcal{A}^{1}\left(j^{1} h(S)\right)<n^{2} r+p^{2}$.

Proof. Put $V=T \mathcal{R}^{1}\left(j^{1} h(S)\right) \cap T \mathcal{L}^{1}\left(j^{1} h(S)\right)$. First we show that $\operatorname{dim}_{\mathbf{R}} V$ is positive. For any non-zero real number α we let $\varphi_{\alpha, i}:\left(\mathbf{R}^{n}, s^{i}\right) \rightarrow\left(\mathbf{R}^{n}, s^{i}\right)$ be given by $\varphi_{\alpha, i}(x)=\alpha\left(x-s_{i}\right)+s_{i}$. Let $\varphi_{\alpha}:\left(\mathbf{R}^{n}, S\right) \rightarrow\left(\mathbf{R}^{n}, S\right)$ be the multigerm whose restriction to $\left(\mathbf{R}^{n}, s_{i}\right)$ is $\varphi_{\alpha, i}$. Furthermore, let $\psi_{\alpha}:\left(\mathbf{R}^{p}, 0\right) \rightarrow\left(\mathbf{R}^{p}, 0\right)$ be given by $\psi_{\alpha}(X)=\alpha X$ for any non-zero real number α. Then, we have that $j^{1}\left(h \circ \varphi_{\alpha}\right)(S)=j^{1}\left(\psi_{\alpha} \circ h\right)(S)$. Thus, we see that $\operatorname{dim}_{\mathbf{R}} V$ must be positive.

By Lemma 3.2, $\operatorname{dim}_{\mathbf{R}} T \mathcal{L}^{1}\left(j^{1} h(S)\right) \leq p^{2}$ and $\operatorname{dim}_{\mathbf{R}} V>0$ we have the following:

$$
\begin{aligned}
\operatorname{dim}_{\mathbf{R}} T \mathcal{A}^{1}\left(j^{1} h(S)\right) & =\operatorname{dim}_{\mathbf{R}} T \mathcal{R}^{1}\left(j^{1} h(S)\right)+\operatorname{dim}_{\mathbf{R}} T \mathcal{L}^{1}\left(j^{1} h(S)\right)-\operatorname{dim}_{\mathbf{R}} V \\
& \leq n^{2} r+p^{2}-\operatorname{dim}_{\mathbf{R}} V<n^{2} r+p^{2}
\end{aligned}
$$

Proof of Theorem 2. For the \mathcal{A}-simple (resp. \mathcal{L}-simple) h obtained in Lemma 3.1, by lemmata 3.2 and 3.3 we see that $n p r<n^{2} r+p^{2}$ (resp. $n p r \leq p^{2}$). Q.E.D.

4. Proof of Proposition 1

Since 3 of Proposition 1 is a direct corollary of 1 of Theorem 2 , it suffices to prove 1 and 2 of Proposition 1. One can prove 1 of Proposition 1 in the following way.

Proof. By composing a germ of C^{∞} diffeomorphism $\left(\mathbf{R}^{p}, 0\right) \rightarrow\left(\mathbf{R}^{p}, 0\right)$ if necessary, from the first we may assume that f has the following form:

$$
f_{1}(x)=(x, 0, \cdots, 0), \cdots, f_{p}(x)=(0, \cdots, 0, x)
$$

By putting $a x \frac{\partial}{\partial X_{j}}=a X_{i} \circ f_{i} \frac{\partial}{\partial X_{j}}$ for any $f_{i}(1 \leq i \leq p)$, we see that the equality

$$
T \mathcal{C}^{1}\left(j^{1} f(S)\right)=T \mathcal{L}^{1}\left(j^{1} f(S)\right)
$$

holds, where $\left(X_{1}, \cdots, X_{p}\right) \in \mathbf{R}^{p}$ and $\frac{\partial}{\partial X_{j}}$ is the j-th fundamental vector field of \mathbf{R}^{p}. Therefore, we have that

$$
{ }_{1} Q(f)^{p}=\{[g] \mid g \in T \mathcal{L}(f)\}
$$

where $[g]=g+f^{*}\left(m_{0}^{2}\right) \theta_{S}(f)$, and thus, by Malgrange preparation theorem (for instance, see [2]) we have that

$$
T \mathcal{C}(f)=T \mathcal{L}(f)
$$

This equality shows that there are no \mathcal{L}-equivalence classes to which the immersion f is adjacent. Hence, f must be \mathcal{L}-simple.

One can prove 2 of Proposition 1 in the following way.
Proof. By composing a germ of C^{∞} diffeomorphism $\left(\mathbf{R}^{p}, 0\right) \rightarrow\left(\mathbf{R}^{p}, 0\right)$ if necessary, from the first we may assume that f has the following form:

$$
f_{1}(x)=(x, 0, \cdots, 0), \cdots, f_{p}(x)=(0, \cdots, 0, x), f_{p+1}(x)=\left(a_{1} x, \cdots, a_{p} x\right)
$$

where $a_{1} \cdots a_{p} \neq 0$. For any $f_{i}(1 \leq i \leq p)$ we put $a x \frac{\partial}{\partial X_{i}}=d f_{i} \circ\left(a x \frac{\partial}{\partial x}\right)$ and $a x \frac{\partial}{\partial X_{j}}=a X_{i} \circ f_{i} \frac{\partial}{\partial X_{j}}$ if $j \neq i$ and for f_{p+1} we put $a x \frac{\partial}{\partial X_{j}}=\frac{a}{a_{j}} X_{j} \circ f_{p+1} \frac{\partial}{\partial X_{j}}$. Then, we see that the equality

$$
T \mathcal{K}^{1}\left(j^{1} f(S)\right)=T \mathcal{A}^{1}\left(j^{1} f(S)\right)
$$

holds, where $\left(X_{1}, \cdots, X_{p}\right) \in \mathbf{R}^{p}$ and $\frac{\partial}{\partial X_{j}}$ is the j-th fundamental vector field of \mathbf{R}^{p}. Therefore, we have that

$$
{ }_{1} Q(f)^{p}=\{[g] \mid g \in T \mathcal{A}(f)\}
$$

where $[g]=g+f^{*}\left(m_{0}^{2}\right) \theta_{S}(f)$, and thus by Malgrange preparation theorem we have that

$$
T \mathcal{K}(f)=T \mathcal{A}(f)
$$

This equality shows that there are no \mathcal{A}-equivalence classes to which the immersion f is adjacent. Hence, f must be \mathcal{A}-simple.

5. Proof of Proposition 2

Since 3 of Proposition 2 is a direct corollary of 1 of Theorem 2, it suffices to prove 1 and 2 of Proposition 2. One can prove 1 of Proposition 2 in the following way.

Proof. By composing a germ of C^{∞} diffeomorphism $\left(\mathbf{R}^{p}, 0\right) \rightarrow\left(\mathbf{R}^{p}, 0\right)$ if necessary, from the first we may assume that f has the following form:

$$
f_{1}\left(x_{1}, \cdots, x_{n}\right)=\left(x_{1}, \cdots, x_{n}, 0, \cdots, 0\right), f_{2}\left(x_{1}, \cdots, x_{n}\right)=\left(0, \cdots, 0, x_{1}, \cdots, x_{n}\right)
$$

By putting $\sum_{k=1}^{n} a_{k} x_{k} \frac{\partial}{\partial X_{j}}=\sum_{j=2(i-1)+1}^{2(i-1)+n} a_{j} X_{j} \circ f_{i} \frac{\partial}{\partial X_{j}}$ for any $f_{i}(i=1,2)$, we see that the equality

$$
T \mathcal{C}^{1}\left(j^{1} f(S)\right)=T \mathcal{L}^{1}\left(j^{1} f(S)\right)
$$

holds, where $\left(X_{1}, \cdots, X_{p}\right) \in \mathbf{R}^{p}$ and $\frac{\partial}{\partial X_{j}}$ is the j-th fundamental vector field of \mathbf{R}^{p}. Therefore, we have that

$$
{ }_{1} Q(f)^{p}=\{[g] \mid g \in T \mathcal{L}(f)\}
$$

where $[g]=g+f^{*}\left(m_{0}^{2}\right) \theta_{S}(f)$, and thus by Malgrange preparation theorem we have that

$$
T \mathcal{C}(f)=T \mathcal{L}(f)
$$

This equality shows that there are no \mathcal{L}-equivalence classes to which the immersion f is adjacent. Hence, f must be \mathcal{L}-simple.

One can prove 2 of Proposition 2 in the following way.
Proof. By composing a germ of C^{∞} diffeomorphism $\left(\mathbf{R}^{p}, 0\right) \rightarrow\left(\mathbf{R}^{p}, 0\right)$ if necessary, from the first we may assume that f has the following form:

$$
\begin{aligned}
& f_{1}\left(x_{1}, \cdots, x_{n}\right)=\left(x_{1}, \cdots, x_{n}, 0, \cdots, 0\right) \\
& f_{2}\left(x_{1}, \cdots, x_{n}\right)=\left(0, \cdots, 0, x_{1}, \cdots, x_{n}\right) \\
& f_{3}\left(x_{1}, \cdots, x_{n}\right)=\left(x_{1}, \cdots, x_{n}, a_{1} x_{1}, \cdots, a_{n} x_{n}\right)
\end{aligned}
$$

where $a_{1}, \ldots, a_{p} \neq 0$. For f_{1} we put $\sum_{k=1}^{n} b_{k} x_{k} \frac{\partial}{\partial X_{j}}=d f_{1} \circ\left(\sum_{k=1}^{n} b_{k} x_{k} \frac{\partial}{\partial x_{k}}\right)$ $(1 \leq j \leq n)$ and $\sum_{k=1}^{n} b_{k} x_{k} \frac{\partial}{\partial X_{j}}=\sum_{k=1}^{n} b_{k} X_{k} \circ f_{1} \frac{\partial}{\partial X_{j}}(n+1 \leq j \leq p)$. For f_{2} we put $\sum_{k=1}^{n} b_{k} x_{k} \frac{\partial}{\partial X_{j}}=d f_{2} \circ\left(\sum_{k=1}^{n} b_{k} x_{k} \frac{\partial}{\partial x_{k}}\right)(n+1 \leq j \leq p)$ and $\sum_{k=1}^{n} b_{k} x_{k} \frac{\partial}{\partial X_{j}}=$ $\sum_{k=1}^{n} b_{k} X_{k} \circ f_{2} \frac{\partial}{\partial X_{j}}(1 \leq j \leq n)$. Finally, for f_{3} we put $\sum_{k=1}^{n} b_{k} x_{k} \frac{\partial}{\partial X_{j}}=$ $\sum_{k=1}^{n} b_{k} X_{k} \circ f_{3} \frac{\partial}{\partial X_{j}}(1 \leq j \leq n)$ and $\sum_{k=1}^{n} b_{k} x_{k} \frac{\partial}{\partial X_{j}}=\sum_{k=1}^{n} \frac{b_{k}}{a_{k}} X_{k} \circ f_{3} \frac{\partial}{\partial X_{j}}$ $(n+1 \leq j \leq p)$. Then, we see that the equality

$$
T \mathcal{K}^{1}\left(j^{1} f(S)\right)=T \mathcal{A}^{1}\left(j^{1} f(S)\right)
$$

holds, where $\left(X_{1}, \cdots, X_{p}\right) \in \mathbf{R}^{p}$ and $\frac{\partial}{\partial X_{j}}$ is the j-th fundamental vector field of \mathbf{R}^{p}. Therefore, we have that

$$
{ }_{1} Q(f)^{p}=\{[g] \mid g \in T \mathcal{A}(f)\}
$$

where $[g]=g+f^{*}\left(m_{0}^{2}\right) \theta_{S}(f)$, and thus by Malgrange preparation theorem we have that

$$
T \mathcal{K}(f)=T \mathcal{A}(f)
$$

This equality shows that there are no \mathcal{A}-equivalence classes to which the immersion f is adjacent. Hence, f must be \mathcal{A}-simple.

Acknowledgement. The author would like to express his sincere gratitude to the reviewer for his/her careful reading of the manuscript and giving invaluable suggestions.

References

[1] V. I. Arnol'd, Simple singularities of curves, Proc. Steklov Inst. Math., 226 (1999), 20-28.
[2] V. I. Arnol'd, S. M. Gusein-Zade and A. N. Varchenko, Singularities of Differentiable Maps I, Monographs in Mathematics, 82, Birkhäuser, Boston (1985).
[3] J. W. Bruce and T. J. Gaffney, Simple singularities of mappings $\mathbf{C}, 0 \rightarrow \mathbf{C}^{2}, 0$, J. London Math. Soc., 26 (1982), 465-474.
[4] C. G. Gibson and C. A. Hobbs, Simple singularities of space curves, Math. Proc. Cambridge Philos. Soc., 113 (1993), 297-306.
[5] C. G. Gibson and C. A. Hobbs, Singularities of general one-dimensional motions of the plane and space, Proc. Poy. Soc. Edinburgh, 125A (1995), 639-656.
[6] C. A. Hobbs and N. P. Kirk, On the classification and bifurcation of multi-germs of maps from surfaces to 3-space, Math. Scand., 89 (2001), 57-96.
[7] K. Houston and N. P. Kirk, On the classification and geometry of co-rank 1 map-germs from three-space to four-space, Singularity theory (Liverpool 1996), xxii, 325-351, London Math. Soc. Lecture Note Ser., 263, Cambridge Univ. Press, Cambridge, 1999.
[8] C. Klotz, O. Pop and J. Rieger, Real double-points of deformations of \mathcal{A}-simple mapgerms from \mathbf{R}^{n} to $\mathbf{R}^{2 n}$, Math. Proc. Cambridge Philos. Soc., 142 (2007), 341-363.
[9] P. A. Kolgushkin and R. R. Sadykov, Simple singularities of multigerms of curves, Rev. Mat. Complut., 14 (2001), 311-344.
[10] W. L. Marar and F. Tari, On the geometry of simple germs of co-rank 1 maps from \mathbf{R}^{3} to \mathbf{R}^{3}, Math. Proc. Cambridge Philos. Soc., 119 (1996), 469-481.
[11] J. Mather, Stability of C^{∞} mappings, III. Finitely determined map-germs. Publ. Math. Inst. Hautes Études Sci., 35 (1969), 127-156.
[12] J. Mather, Stability of C^{∞} mappings, IV, Classification of stable map-germs by Ralgebras, Publ. Math. Inst. Hautes Études Sci., 37 (1970),223-248.
[13] D. Mond, On classification of germs of maps from \mathbf{R}^{2} to \mathbf{R}^{3}, Proc. London Math. Soc., 50 (1985), 333-369.
[14] V. Ovsienko, Lagrange schwarzian derivative and symplectic Sturm theory, Annales de la faculté des sciences de Toulouse Sér. 6, 2 (1993), 73-96.
[15] J. H. Rieger, Families of maps from the plane to the plane, J. London Math. Soc., 36 (1987), 351-369.
[16] C. T. C. Wall, Finite determinacy of smooth map-germs, Bull. London Math. Soc., 13 (1981), 481-539.
[17] R. Wik-Atique, On the classification of multi-germs of maps from \mathbf{C}^{2} to \mathbf{C}^{3} under \mathcal{A} equivalence, in Real and Complex Singularities (J. V. Bruce and F. Tari, eds.), Proceedings of the 5th Workshop on Real and Complex Singularities, (São Carlos, Brazil, 1998), 119-133. Chapman \& Hall/CRC Res. Notes Math., 412, Chapman \& Hall/CRC, Boca Raton, FL, 2000.

Department of Mathematics,
Faculty of Education and Human Sciences,
Yokohama National University,
Yokohama 240-8501,
JAPAN.
E-mail address: takashi@edhs.ynu.ac.jp

[^0]: 2000 Mathematics Subject Classification: 58K05, 58K20, 57R45
 Key words and phrases: \mathcal{A}-simple multigerm $-\mathcal{L}$-simple multigerm- multiplicity - number of branches.

