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Abstract. In this paper, we investigate restrictions on multiplicities and num-
bers of branches for G-simple multigerms (G = A or L).

Introduction

Throughout this paper, let S = {s1,---,s,} be a finite subset of R™ with
r elements, f : (R™,S) — (RP,0) be a germ of C* mapping at S such that
f(S) =0 (called a multigerm) and for any ¢ (1 <i <r) let f; be the restriction
of f to (R™,s;) (called a branch of f). The integer r is called the number of
branches of f. Let Cg (resp. Cp) be the set of C*° function-germs (R",S) — R
(resp. (R?,0) — R). Let mg (resp. mg) be the subset of Cg (resp. Cp)
consisting of C'*° function-germs (R",5) — (R,0) (resp. (R?,0) — (R,0)).
The sets C's and Cj have natural R-algebra structures induced by the R-algebra
structure of R. For a multigerm f : (R"™,S) — (RP,0), let f*: Cy — Cg be the
R-algebra homomorphism defined by f*(u) = uo f. Put Q(f) = Cs/f*(mg)Cs.
The dimension of Q(f) as a real vector space is called the multiplicity of f, and
in the case that n < p it is finite in general.

Two multigerms f, g : (R",5) — (RP,0) are said to be A-equivalent if
there exist germs of C*° diffeomorphisms ¢ : (R, S) — (R",S) with the con-
dition that ¢(s;) = s; for (1 < i < r) and ¢ : (RP,0) — (RP,0) such that
f =1ogop . L-equivalence (resp. R-equivalence) for f and g is defined
in the same way as A-equivalence but such that ¢ (resp. 1) is the germ of
identity mapping. A multigerm f : (R",S) — (RP?,0) is said to be A-simple
(resp. L-simple) if there exists a finite number of A-equivalence classes (resp.
L-equivalence classes) such that for any positive integer d and any C'*° mapping
F:U — V where U C R" x R? is a neighbourhood of S x 0, V C R? x R is a
neighbourhood of (0,0), F(z,A) = (fa(z), A) and the germ of fy at S is f, there
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exists a sufficiently small neighbourhood W; C U of (s;,0) (1 <4 < r) such that
for every {(x1,A), -+, (xr, A)} with (z;,\) € W; and F(z1,\) = -+ = F(z,,\)
the multigerm fy : (R™, {21, - ,2,}) — (RP, fu(z;)) lies in one of these finite
A-equivalence classes (resp. L-equivalence classes).

THEOREM 1. Let f: (R™,S) — (R?,0) (n < p) be a multigerm with corank
at most one.

1. Suppose that np # 1 and f is A-simple. Then, the following inequality
holds.
P+ (n—1)r

n(p—mn)+n—1)

2. Suppose that f is L-simple. Then, the following inequality holds.

dimg Q(f) <

dimp Q(f) < L.

Here, corank at most one for an A-simple multigerm f : (R"”,S) — (RP,0)
means that max{n — rankJ f;(s;) | 1 < i < r} <1 holds, where Jf;(s;) is the
Jacobian matrix of the restriction f; of f at s;. Note that there are no upper
bounds for dimg Q(f) of an A-simple f in the case that n = p = 1 since for any
positive integer § the map-germ f(z) = 2° is A-simple and of corank at most
one.

The author does not know whether or not Theorem 1 still holds without the
assumption of corank at most one.

THEOREM 2. Let f: (R",S) — (RP,0) (n < p) be a multigerm.

1. Suppose that n # p and f is A-simple. Then, the number of branches r is
restricted in the following way.

p2

r << 7%(]9—’”,).

2. Suppose that f is L-simple. Then, the number of branches r is restricted in
the following way.

r <

3=

Note that there are no upper bounds for the number of branches of an A-
simple f in the case that n = p since for any positive integer r a smooth finite
covering with 7 fibers gives an example of A-simple multigerm in this case.

Note also that since r < dimg Q(f) the inequality r < n(;z))iin) for an A-simple
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multigerm with corank at most one can be obtained from 1 of Theorem 1 as an
immediate corollary. Thus, the point of 1 of Theorem 2 is the sharpness of the
inequality.

Since the left hand side of the inequality in 1 of Theorem 2 is an integer while
the right hand side is a rational number, the sharp inequality in 1 of Theorem
2 suggests that there must exist some special restrictions for the number of
branches of an A-simple multigerm when the right hand side is an integer. The
rational number n(#% can be an integer only when p = 2n and in this case it
attains its minimal value 4. Thus, we may guess that the classical cross ratio and
the symplectic cross ratio ([14]) are the very invariants of special restrictions for
the number of branches of an A-simple multigerm, and it is impossible to find
out such invariants in the case that p # 2n,p > n.

It seems interesting also to compare 1 of Theorem 1 and 1 of Theorem 2
when the right hand side of the inequality in 1 of Theorem 2 is an integer.
% for p = 2n, r < 4 can be an integer only
when n = 1 and the maximal value it attains is 4. Although there are no A-
simple multigerms f : (R",S) — (R?",0) with r = 4 by 1 of Theorem 2, for
instance map-germs x — (z*, z5+27) (taken from [3]), {z — (,0),z — (23, 2%)}
and {z — (2,0),2 — (0,2),2 — (2%,23)} (these two are taken from [9]) give
examples of A-simple multigerms satisfying dimg Q(f) = 4 in the case that
(n,p) = (1,2). Thus, we can not expect the sharpness for the inequality of 1 of

The rational number

Theorem 1.

Not only in the case above, the upper bound for dimg Q(f) given in 1 of
Theorem 1 is the best possible bound in the classification results of A-simple
map-germs listed here ([4], [5], [6], [7], [8], [9], [10], [13], [15], [17]), and the
upper bound for r is also the best possible bound in the classification results
([5], [6], [9], [17]). However, if n = r =1 and p is greater than 5, then the upper
bound in Theorem 1 is not the best estimate since the effect of A-moduli sets in
K-simple orbits can not be disregarded as shown in [1].

For L-simple multigerms, by 2 of Theorem 1 we see that if n < p < 2n then
any L-simple map-germ with corank at most one must be an immersive mono-
germ (i.e. an immersion germ with only one branches), and we can not expect to
improve 2 of Theorem 1 and 2 of Theorem 2 to hold the sharp inequality » < Z.

Next, we remark briefly that there exist A-simple multigerms which are not
L-simple even when p > 2n.

PROPOSITION 1. Letp > 1,7 > p and let f : (R,S) — (R?,0) be an immer-
sion such that Y%_, i1 f;.(s;;)(R) = RP, where j; € {1,--- ,r} (j; # ji if i # k)
and the 1-jet j* f;(s;) is being regarded as a linear mapping. Then, we have the
following:
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1. Suppose that r = p. Then, f is L-simple.
2. Suppose that r = p+ 1. Then, f is A-simple.
3. Suppose that r > p+ 2. Then, f is not A-simple.

PROPOSITION 2. Let f: (R",S) — (R?*",0) be an immersion such that f; is
transversally intersecting with f; for any i,j (1 <4, <w, i # j).

1. Suppose that r = 2. Then, f is L-simple.
2. Suppose that r = 3. Then, f is A-simple.
3. Suppose that r > 4. Then, f is not A-simple.

Note that under the situation of Proposition 1 (resp. Proposition 2), f is not
L-simple if r = p+ 1 (resp. r = 3) by 2 of Theorem 1, and thus an f given in
2 of Proposition 1 (resp. 2 of Proposition 2) is an A-simple map-germ which is
not L-simple.

All results in this paper hold also in complex holomorphic category.
In §1, several preparations are given. Theorems 1 and 2 and propositions 1
and 2 are proved in §2, §3, §4 and §5 respectively.

1. Preliminaries

Most notions and notations defined in this section are due to Mather ([11],
[12]) and already common in singularity theory of C'* mappings. For details of
them, we recommend an excellent survey [16] to the readers. Although in [16]
is always 1, it is very useful to understand the geometric meaning of the notions
intruduced in this section.

Two multigerms f, ¢g: (R",S) — (RP,0) are said to be K-equivalent if there
exist a germ of C*° diffeomorphism ¢ : (R™,S) — (R",S) such that ¢(s;) = s;
for (1 <4 < r) and a germ of C* mappings M : (R",S) — GL(p,R) such
that f(x) = M(x)g o ¢ '(x). Note that the multiplicities are K-invariant for
multigerms. The C-equivalence for f and g is defined as the K-equivalence of
them such that ¢ is the germ of identity mapping.

For a multigerm f : (R™,S) — (RP,0), let O5(f) be the Cs-module consisting
of germs of C*° vector fields along f. We may identify 0g(f) with Cg x --- x Cg.

p tuples
We put fs(n) = 0s(id.(rn,s)) and Oo(p) = 0(id.(me o)), where id. g g) (resp.
id.(rr,0)) is the germ of the identity mapping of (R"™,S) (resp. (RP,0)). For a
k € {0,1,---,00}, an element of m&fg(n) or mffy(p) is a germ of C°° vector
field along the germ of the identity mapping such that the terms of the Taylor
series of it up to (k — 1) are zero.
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For a given multigerm f : (R",S) — (RP,0), the G-equivalence class of f is
denoted by G(f), where G is one of £, A,C and K. For the f, we define tf and
wf in the following way:

tf :0s(n) — 0s(f), tf(a) =df oa,
wfao(p)_)es(f)a Wf(b):bof,

where df is the differential of f. For the f, we put

TR(f) =tf(mshs(n)),
TL(f) = wf(mobo(p)),
TA(f) =tf(msbs(n)) +wf(mobo(p)),
TC(f) = f*(mo)0s(f),
TE(f) =tf(msbs(n)) + f*(mo)0s(f).

For a given multigerm f, we may identify Q(f)™ as s(n)/f*(mg)fs(n) and
Q(f)P as 0s(f)/f*(mo)Bs(f). Under this identification, Wall’s homomorphism
of Q(f)-modules (p. 508 of [16]) is the following:

tf - Q)" — Q(f)P, tf(la]) = [tf(a)],
where [a] = a+ f*(mo)0s(n) and [tf(a)] = tf(a)+ f*(mo)0s(f). Let 6(f) (resp.
v(f)) be the dimension of Q(f) (resp. the dimension of the kernel of ¢f).

For a given multigerm f : (R",5) — (R”,0) and a positive integer i, we
put ;Q(f) = f*(mp)Cs/ f*(mi"")Cs and ;6(f) = dimg ;Q(f). We may identify
Q)™ as f*(mh)0s(n)/ f*(mgH)0s(n) and ;Q(f)P as f*(mh)0s(f)/ f*(mgH)0s(f).
Under this identification, we let ;v(f) be the dimension of the kernel of the fol-
lowing homomorphism of Q(f)-modules.

itf Q)" = Q()P,  itf([a]) = [tf(a)].

Then, we see easily that 6(f) < ;6(f) < p*§(f), and thus ;6(f) < oo if 6(f) < oo.
Similarly v(f) < ;v(f) < p'y(f) and thus ;v(f) < oo if y(f) < co. Note that
+Q(f) is not isomorphic to ;Q(F'), where F is an unfolding of f. However, in the
case that n = 1 we see easily that

10(F) =1+ q)16(f) and 1v(F) = (1 + q) 17(f),

where ¢ is the number of parameters for the unfolding F'.

The Taylor series ignoring terms of degree higher than k at points of S for
a multigerm f : (R",S) — (RP,0) is called k jet of f at S and is denoted by
% £(S). We put

T (n,p) = {5"F(0) | f : (R",0) — (RP,0) C*=}.
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The jet space suitable for multigerms (R™,S) — (RP,0) is the following
multijet space:

PH(,p) = (G filse), - 3 folse)) | fa(sa) = - = filso))

For a multigerm f : (R",S) — (RP,0), the multijet space ,J*(n,p) may be
identified with the quotient space msfs(f)/m%0s(f). Under this identification
we put

TR*(j*£(S)) = {lg] € »J*(n,p) | g € TR(f)},
TLR(R£(9)) = {lg] € »J"(n,p) | g € TL(F)},
TA*(5*£(S)) = {lg] € »J*(n.p) | g € TA(f)},
TC* (5% £(S)) = {lg] € »J*(n,p) | g € TC(f)},
TK*(5* £(9)) = {[g] € +J*(n,p) | g € TK(f)},

where [g] = g + mE™05(f). These are tangent spaces to orbits of actions of
well-defined Lie groups corresponding to Mather’s groups R, £, A, C and K.
(for details, see [16]).

2. Proof of Theorem 1

LEMMA 2.1. Let f: (R",S) — (R?,0) be a multigerm.

1. Suppose that [ is A-simple. Then, there exists a multigerm g : (R, S) —
(R?,0) such that two properties K(f) = K(g) and TK(g) = TA(g) are
satisfied.

2. Suppose that f is L-simple. Then, there exists a multigerm g : (R™,S) —
(R?,0) such that two properties C(f) = C(g) and TC(g) = TL(g) are satis-
fied.

Proof. First we show 1 of Lemma 2.1. If f satisfies the property that TIC(f) =
TA(f), then just take the f as g. If TK(f) # TA(f), then since f is A-simple
there must exist a multigerm g € K(f) such that A(f) is adjacent to A(g) and
the property TK(g) = T'A(g) holds.

For the proof of 2 of Lemma 2.1, just replace A and K in the proof of 1 of
Lemma 2.1 with £ and C. O

LEMMA 2.2. Let g: (R",S) — (R?,0) be a multigerm such that 6(g) < oo.
1. Suppose that TK(g) = T A(g). Then, the following inequality holds:

(p—n)18(g) +17(9) —1(g) < p*.
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2. Suppose that TC(g) = TL(g). Then, the following inequality holds:
16(g9) <p-.

Proof. First we show 1 of Lemma 2.2. Put

= 9" (mo)fs(g)
tg(msbs(n)) N g*(mo)ds(g)

The assumption TK(g) = T.A(g) implies that any element ¢ of g*(mg)fs(g)
has the form ¢ = @1 4+ @2 (v1 € tg(msls(n)), s € wg(mobo(p))). Then,
note that ¢1 = ¢ — ¢a belongs to tg(msbhs(n)) N g*(mo)bs(g) since the vector
space wg(mofo(p)) is contained in the vector space g*(mg)fs(g). Thus, under
the assumption TK(g) = T.A(g), we see that any element of A has the form
© +tg(mgbs(n)) N g*(mo)bs(g) (¢ € wg(mobo(p))). Therefore, we see that the
minimal number of elements of a generator of A as Cyp-module via g is less than
or equal to the minimal number of elements of a generator of wg(myf(p)) as
Co-module via g and it is clear that the latter number is less than or equal to
p?. Thus, we have the following inequality:

A
dimg ————— < p2.
Rg*(mo)A =P

On the other hand, the left hand side of the above inequality is more than or
equal to p19(g) — (n10(g) —17(9)) — ¥(9)-

Next we show 2 of Lemma 2.2. The assumption TC(g) = TL(g) implies the
inequality p 10(g) = dimg 1Q(g)? < p?. O

Proof of Theorem 1. First we prove 1 of Theorem 1. Since f is of corank at most
one, the multigerm ¢ in 1 of Lemma 2.1 is also of corank at most one. Since g
is of corank at most one, g is A-equivalent to an unfolding of a multigerm h of
one variable with (n — 1) parameters. Note that

Furthermore, since h is a multigerm of one variable we have that 15(h) = §(h),
17(h) = 7y(h) easily and (k) = §(h) — r (for the last equality, refer to p. 508
of [16]). By combining the above equalities and the equalities in §2 we have the
following two:
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Therefore, for the g in 1 of Lemma 2.1, by 1 of Lemma 2.2 we have the following
desired inequality:

(p—n)nd(f) +n(d(f) —r) = (8(f) —r) < p*.
For the proof of 2 of Theorem 1, just replace 1 of Lemma 2.1 and 1 of Lemma
2.2 in the proof of 1 of Theorem 1 with 2 of Lemma 2.1 and 2 of Lemma 2.2.
Q.E.D.

3. Proof of Theorem 2

LEMMA 3.1. Let f: (R",S) — (R?,0) (n < p) be a multigerm.

1. Suppose that f is A-simple. Then, there exists an A-simple immersion
h:(R™ S) — (RP,0) such that f is adjacent to h and the equality TIC(h) =
TA(h) holds.

2. Suppose that f is L-simple. Then, there exists an L-simple immersion
h:(R™ S) — (RP,0) such that f is adjacent to h and the equality TC(h) =
TL(h) holds.

Proof. Since n < p the multigerm f can be deformed to an immersive g by
adding sufficiently small linear terms. Since f is A-simple (resp. L-simple),
the obtained immersive germ g must be A-simple (resp. L-simple). Applying
Lemma 2.1 for the g we obtain the desired multigerm h. O

LEMMA 3.2. Let h: (R",S) — (RP,0) be an immersive multigerm. Then, we
have that dimg TR(j1h(S)) = n?r and dimg TG (j*h(S)) = npr for G = C,K.

Proof. Since h is immersive, we see that dimg TR!(j'h(S)) is equal to r mul-
tiplied by the dimension of the space of linear isomorphisms of R™, which is
n?r. For dimg TK!(j1h(S)), note that TK(h) = TC(h) since h is immersive.
By definition of TC(h) we have that dimg TC*(j*h(S)) = p>_._, rank(Jh;(s;)).
Therefore, for an immersive h the desired equality holds. O

LEMMA 3.3. Let h : (R",S) — (RP,0) be an immersive multigerm. Then,
dimg T A (5 h(S)) < n?r + p?.

Proof. Put V.= TRY(j'h(S)) N TLY(j*h(S)). First we show that dimg V is
positive. For any non-zero real number a we let ¢, ; : (R",s") — (R",s') be
given by ¢a,i(z) = a(x — s;) + s;. Let ¢, : (R",S) — (R™, S) be the multigerm
whose restriction to (R"™,s;) is ¢4, Furthermore, let ¢, : (R?,0) — (RP?,0)
be given by 1, (X) = aX for any non-zero real number «. Then, we have that
G H(h o ©a)(S) = jt(1hy o h)(S). Thus, we see that dimg V' must be positive.
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By Lemma 3.2, dimg TL!(51h(S)) < p? and dimgr V > 0 we have the follow-
ing:

dimg TA'(j'(9)) = dimg TR (' h(S)) + dimg TL(j'h(S)) — dimr V

<n’r+p? —dimg V < n’r +p°.
O

Proof of Theorem 2. For the A-simple (resp. L-simple) h obtained in Lemma
3.1, by lemmata 3.2 and 3.3 we see that npr < n?r+p? (resp. npr < p?). Q.E.D.

4. Proof of Proposition 1

Since 3 of Proposition 1 is a direct corollary of 1 of Theorem 2, it suffices to
prove 1 and 2 of Proposition 1. One can prove 1 of Proposition 1 in the following
way.

Proof. By composing a germ of C*° diffeomorphism (R?,0) — (R?,0) if neces-
sary, from the first we may assume that f has the following form:

fl(x) = (Z‘,O,'-' 70)7"' 7fp('r) = (07 ,O,l‘).
By putting axaixj =aX;o fiaixj for any f; (1 < < p), we see that the equality
TC(jf(S)) =TLY (' f(S))

holds, where (X1,---,X,) € R” and aixj is the j-th fundamental vector field of
RP. Therefore, we have that ‘

1Q(f)P =A{lgl | g € TL(S)},

where [g] = g+ f*(m3)0s(f), and thus, by Malgrange preparation theorem (for
instance, see [2]) we have that

TC(f) = TL(S).

This equality shows that there are no L-equivalence classes to which the immer-
sion f is adjacent. Hence, f must be L-simple. O

One can prove 2 of Proposition 1 in the following way.

Proof. By composing a germ of C*° diffeomorphism (R?,0) — (RP?,0) if neces-
sary, from the first we may assume that f has the following form:

fl(x) = (Z‘,O,"' 70)7"' 7f;0('77) = (07 707$)’fp+1(x) = (alxv"' ,apx),
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where a1 ---ap # 0. For any f; (1 <i < p) we put ax% =df; o (ax%) and

axaixj =aX; o0 fiaixj if j # 4 and for f,11 we put a:caixj =
Then, we see that the equality

TK(1£(S)) = TA (5 £(S))

o
a; Xj o fp+1 an .

holds, where (X7, -+ ,X,) € RP and % is the j-th fundamental vector field of
RP. Therefore, we have that

1Q(f)” ={lgl [ 9 € TA(H)},

where [g] = g + f*(m3)0s(f), and thus by Malgrange preparation theorem we
have that

TE(f) = TA(f)-

This equality shows that there are no A-equivalence classes to which the immer-
sion f is adjacent. Hence, f must be A-simple. O

5. Proof of Proposition 2

Since 3 of Proposition 2 is a direct corollary of 1 of Theorem 2, it suffices to
prove 1 and 2 of Proposition 2. One can prove 1 of Proposition 2 in the following
way.

Proof. By composing a germ of C*° diffeomorphism (R?,0) — (RP,0) if neces-
sary, from the first we may assume that f has the following form:
fl(xlv"' ,In) = (‘Tlv"' 7xn507"' ,0)7f2($1,"' azn) = (O; aoazla"' ,l’n).
By putting >~;_; akxkaixj = ng(?fl’;ﬂ a;X;o fiaixj for any f; (i =1,2), we
see that the equality

TCH (51 £(8)) = TL (51 f(S))
holds, where (X1,---,X,) € R” and aixj is the j-th fundamental vector field of
RP. Therefore, we have that

1Q()" =gl 9 € TL(f)},

where [g] = g + f*(m2)0s(f), and thus by Malgrange preparation theorem we
have that

TC(f) = TL(f)-

This equality shows that there are no £-equivalence classes to which the immer-
sion f is adjacent. Hence, f must be L-simple. O
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One can prove 2 of Proposition 2 in the following way.

Proof. By composing a germ of C*° diffeomorphism (R?,0) — (RP?,0) if neces-
sary, from the first we may assume that f has the following form:

fl(xla"' 7xn):(1’1a"' s Ty 00 70)7

f2(x1a"' 7'1:77,) = (Oa ,O,le,"' 7xn)7
f3(x1u"' 7$n) = (1'17"' y Ty, A1, aanmn)v
where aq,...,a, # 0. For fi we put Y ,_; bkxkaixj =dfio (X, bkx;ga%k)

(1<j<n)and ) ,_, bkxkaixj = kak0f1ain (n+1 < j <p). For fo we
put >, bkmkaixj =dfy0(> 1, bkxk%) (n+tl<j<p)and > ,_, bkxkain =
Soro b Xy 0 fgaixj (1 < j < n). Finally, for f3 we put > ,_, bkzkaixj =
SheiiXk o fige (1 <7 < n) and Yp_ buangle = Ypoy o= Xk o fagk
(n+1<j<p). Then, we see that the equality

TK (' f(S)) = TA'(j1 f(S5))

holds, where (X1,---,X,) € R? and aixj is the j-th fundamental vector field of
RP. Therefore, we have that

1Q(f)P ={lgl | g € TA(f)},

where [g] = g + f*(m3)0s(f), and thus by Malgrange preparation theorem we
have that

TK(f) = TA(f)-

This equality shows that there are no 4-equivalence classes to which the immer-
sion f is adjacent. Hence, f must be A-simple. O
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