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Abstract. In this paper, we investigate restrictions on multiplicities and num-

bers of branches for G-simple multigerms (G = A or L).

Introduction

Throughout this paper, let S = {s1, · · · , sr} be a finite subset of Rn with
r elements, f : (Rn, S) → (Rp, 0) be a germ of C∞ mapping at S such that
f(S) = 0 (called a multigerm) and for any i (1 ≤ i ≤ r) let fi be the restriction
of f to (Rn, si) (called a branch of f). The integer r is called the number of
branches of f . Let CS (resp. C0) be the set of C∞ function-germs (Rn, S) → R
(resp. (Rp, 0) → R). Let mS (resp. m0) be the subset of CS (resp. C0)
consisting of C∞ function-germs (Rn, S) → (R, 0) (resp. (Rp, 0) → (R, 0)).
The sets CS and C0 have natural R-algebra structures induced by the R-algebra
structure of R. For a multigerm f : (Rn, S) → (Rp, 0), let f∗ : C0 → CS be the
R-algebra homomorphism defined by f∗(u) = u◦f . Put Q(f) = CS/f∗(m0)CS .
The dimension of Q(f) as a real vector space is called the multiplicity of f , and
in the case that n ≤ p it is finite in general.

Two multigerms f, g : (Rn, S) → (Rp, 0) are said to be A-equivalent if
there exist germs of C∞ diffeomorphisms ϕ : (Rn, S) → (Rn, S) with the con-
dition that ϕ(si) = si for (1 ≤ i ≤ r) and ψ : (Rp, 0) → (Rp, 0) such that
f = ψ ◦ g ◦ ϕ−1. L-equivalence (resp. R-equivalence) for f and g is defined
in the same way as A-equivalence but such that ϕ (resp. ψ) is the germ of
identity mapping. A multigerm f : (Rn, S) → (Rp, 0) is said to be A-simple
(resp. L-simple) if there exists a finite number of A-equivalence classes (resp.
L-equivalence classes) such that for any positive integer d and any C∞ mapping
F : U → V where U ⊂ Rn ×Rd is a neighbourhood of S × 0, V ⊂ Rp ×Rd is a
neighbourhood of (0, 0), F (x, λ) = (fλ(x), λ) and the germ of f0 at S is f , there
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exists a sufficiently small neighbourhood Wi ⊂ U of (si, 0) (1 ≤ i ≤ r) such that
for every {(x1, λ), · · · , (xr, λ)} with (xi, λ) ∈ Wi and F (x1, λ) = · · · = F (xr, λ)
the multigerm fλ : (Rn, {x1, · · · , xr}) → (Rp, fλ(xi)) lies in one of these finite
A-equivalence classes (resp. L-equivalence classes).

THEOREM 1. Let f : (Rn, S) → (Rp, 0) (n ≤ p) be a multigerm with corank
at most one.

1. Suppose that np 6= 1 and f is A-simple. Then, the following inequality
holds.

dimR Q(f) ≤ p2 + (n − 1)r
n(p − n) + (n − 1)

.

2. Suppose that f is L-simple. Then, the following inequality holds.

dimR Q(f) ≤ p

n
.

Here, corank at most one for an A-simple multigerm f : (Rn, S) → (Rp, 0)
means that max{n − rankJfi(si) | 1 ≤ i ≤ r} ≤ 1 holds, where Jfi(si) is the
Jacobian matrix of the restriction fi of f at si. Note that there are no upper
bounds for dimR Q(f) of an A-simple f in the case that n = p = 1 since for any
positive integer δ the map-germ f(x) = xδ is A-simple and of corank at most
one.

The author does not know whether or not Theorem 1 still holds without the
assumption of corank at most one.

THEOREM 2. Let f : (Rn, S) → (Rp, 0) (n ≤ p) be a multigerm.

1. Suppose that n 6= p and f is A-simple. Then, the number of branches r is
restricted in the following way.

r <
p2

n(p − n)
.

2. Suppose that f is L-simple. Then, the number of branches r is restricted in
the following way.

r ≤ p

n
.

Note that there are no upper bounds for the number of branches of an A-
simple f in the case that n = p since for any positive integer r a smooth finite
covering with r fibers gives an example of A-simple multigerm in this case.
Note also that since r ≤ dimR Q(f) the inequality r ≤ p2

n(p−n) for an A-simple
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multigerm with corank at most one can be obtained from 1 of Theorem 1 as an
immediate corollary. Thus, the point of 1 of Theorem 2 is the sharpness of the
inequality.

Since the left hand side of the inequality in 1 of Theorem 2 is an integer while
the right hand side is a rational number, the sharp inequality in 1 of Theorem
2 suggests that there must exist some special restrictions for the number of
branches of an A-simple multigerm when the right hand side is an integer. The
rational number p2

n(p−n) can be an integer only when p = 2n and in this case it
attains its minimal value 4. Thus, we may guess that the classical cross ratio and
the symplectic cross ratio ([14]) are the very invariants of special restrictions for
the number of branches of an A-simple multigerm, and it is impossible to find
out such invariants in the case that p 6= 2n, p > n.

It seems interesting also to compare 1 of Theorem 1 and 1 of Theorem 2
when the right hand side of the inequality in 1 of Theorem 2 is an integer.
The rational number p2+(n−1)r

n(p−n)+(n−1) for p = 2n, r < 4 can be an integer only
when n = 1 and the maximal value it attains is 4. Although there are no A-
simple multigerms f : (Rn, S) → (R2n, 0) with r = 4 by 1 of Theorem 2, for
instance map-germs x 7→ (x4, x5+x7) (taken from [3]), {x 7→ (x, 0), x 7→ (x3, x4)}
and {x 7→ (x, 0), x 7→ (0, x), x 7→ (x2, x3)} (these two are taken from [9]) give
examples of A-simple multigerms satisfying dimR Q(f) = 4 in the case that
(n, p) = (1, 2). Thus, we can not expect the sharpness for the inequality of 1 of
Theorem 1.

Not only in the case above, the upper bound for dimR Q(f) given in 1 of
Theorem 1 is the best possible bound in the classification results of A-simple
map-germs listed here ([4], [5], [6], [7], [8], [9], [10], [13], [15], [17]), and the
upper bound for r is also the best possible bound in the classification results
([5], [6], [9], [17]). However, if n = r = 1 and p is greater than 5, then the upper
bound in Theorem 1 is not the best estimate since the effect of A-moduli sets in
K-simple orbits can not be disregarded as shown in [1].

For L-simple multigerms, by 2 of Theorem 1 we see that if n ≤ p < 2n then
any L-simple map-germ with corank at most one must be an immersive mono-
germ (i.e. an immersion germ with only one branches), and we can not expect to
improve 2 of Theorem 1 and 2 of Theorem 2 to hold the sharp inequality r < p

n .

Next, we remark briefly that there exist A-simple multigerms which are not
L-simple even when p ≥ 2n.

PROPOSITION 1. Let p > 1, r ≥ p and let f : (R, S) → (Rp, 0) be an immer-
sion such that

∑p
i=1 j1fji(sji)(R) = Rp, where ji ∈ {1, · · · , r} (ji 6= jk if i 6= k)

and the 1-jet j1fi(si) is being regarded as a linear mapping. Then, we have the
following:
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1. Suppose that r = p. Then, f is L-simple.
2. Suppose that r = p + 1. Then, f is A-simple.
3. Suppose that r ≥ p + 2. Then, f is not A-simple.

PROPOSITION 2. Let f : (Rn, S) → (R2n, 0) be an immersion such that fi is
transversally intersecting with fj for any i, j (1 ≤ i, j ≤ r, i 6= j).

1. Suppose that r = 2. Then, f is L-simple.
2. Suppose that r = 3. Then, f is A-simple.
3. Suppose that r ≥ 4. Then, f is not A-simple.

Note that under the situation of Proposition 1 (resp. Proposition 2), f is not
L-simple if r = p + 1 (resp. r = 3) by 2 of Theorem 1, and thus an f given in
2 of Proposition 1 (resp. 2 of Proposition 2) is an A-simple map-germ which is
not L-simple.

All results in this paper hold also in complex holomorphic category.
In §1, several preparations are given. Theorems 1 and 2 and propositions 1

and 2 are proved in §2, §3, §4 and §5 respectively.

1. Preliminaries

Most notions and notations defined in this section are due to Mather ([11],
[12]) and already common in singularity theory of C∞ mappings. For details of
them, we recommend an excellent survey [16] to the readers. Although in [16] r

is always 1, it is very useful to understand the geometric meaning of the notions
intruduced in this section.

Two multigerms f, g : (Rn, S) → (Rp, 0) are said to be K-equivalent if there
exist a germ of C∞ diffeomorphism ϕ : (Rn, S) → (Rn, S) such that ϕ(si) = si

for (1 ≤ i ≤ r) and a germ of C∞ mappings M : (Rn, S) → GL(p,R) such
that f(x) = M(x)g ◦ ϕ−1(x). Note that the multiplicities are K-invariant for
multigerms. The C-equivalence for f and g is defined as the K-equivalence of
them such that ϕ is the germ of identity mapping.

For a multigerm f : (Rn, S) → (Rp, 0), let θS(f) be the CS-module consisting
of germs of C∞ vector fields along f . We may identify θS(f) with CS × · · · × CS︸ ︷︷ ︸

p tuples

.

We put θS(n) = θS(id.(Rn,S)) and θ0(p) = θ(id.(Rp,0)), where id.(Rn,S) (resp.
id.(Rp,0)) is the germ of the identity mapping of (Rn, S) (resp. (Rp, 0)). For a
k ∈ {0, 1, · · · ,∞}, an element of mk

SθS(n) or mk
0θ0(p) is a germ of C∞ vector

field along the germ of the identity mapping such that the terms of the Taylor
series of it up to (k − 1) are zero.
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For a given multigerm f : (Rn, S) → (Rp, 0), the G-equivalence class of f is
denoted by G(f), where G is one of L,A, C and K. For the f , we define tf and
ωf in the following way:

tf : θS(n) → θS(f), tf(a) = df ◦ a,

ωf : θ0(p) → θS(f), ωf(b) = b ◦ f,

where df is the differential of f . For the f , we put

TR(f) = tf(mSθS(n)),

TL(f) = ωf(m0θ0(p)),

TA(f) = tf(mSθS(n)) + ωf(m0θ0(p)),

TC(f) = f∗(m0)θS(f),

TK(f) = tf(mSθS(n)) + f∗(m0)θS(f).

For a given multigerm f , we may identify Q(f)n as θS(n)/f∗(m0)θS(n) and
Q(f)p as θS(f)/f∗(m0)θS(f). Under this identification, Wall’s homomorphism
of Q(f)-modules (p. 508 of [16]) is the following:

tf : Q(f)n → Q(f)p, tf([a]) = [tf(a)],

where [a] = a+f∗(m0)θS(n) and [tf(a)] = tf(a)+f∗(m0)θS(f). Let δ(f) (resp.
γ(f)) be the dimension of Q(f) (resp. the dimension of the kernel of tf).

For a given multigerm f : (Rn, S) → (Rp, 0) and a positive integer i, we
put iQ(f) = f∗(mi

0)CS/f∗(mi+1
0 )CS and iδ(f) = dimR iQ(f). We may identify

iQ(f)n as f∗(mi
0)θS(n)/f∗(mi+1

0 )θS(n) and iQ(f)p as f∗(mi
0)θS(f)/f∗(mi+1

0 )θS(f).
Under this identification, we let iγ(f) be the dimension of the kernel of the fol-
lowing homomorphism of Q(f)-modules.

itf : iQ(f)n → iQ(f)p, itf([a]) = [tf(a)].

Then, we see easily that δ(f) ≤ iδ(f) ≤ pi δ(f), and thus iδ(f) < ∞ if δ(f) < ∞.
Similarly γ(f) ≤ iγ(f) ≤ pi γ(f) and thus iγ(f) < ∞ if γ(f) < ∞. Note that
iQ(f) is not isomorphic to iQ(F ), where F is an unfolding of f . However, in the
case that n = 1 we see easily that

1δ(F ) = (1 + q) 1δ(f) and 1γ(F ) = (1 + q) 1γ(f),

where q is the number of parameters for the unfolding F .

The Taylor series ignoring terms of degree higher than k at points of S for
a multigerm f : (Rn, S) → (Rp, 0) is called k jet of f at S and is denoted by
jkf(S). We put

Jk(n, p) = {jkf(0) | f : (Rn, 0) → (Rp, 0) C∞}.
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The jet space suitable for multigerms (Rn, S) → (Rp, 0) is the following
multijet space:

rJ
k(n, p) = {(jkf1(s1), · · · , jkfr(sr)) | f1(s1) = · · · = fr(sr)}.

For a multigerm f : (Rn, S) → (Rp, 0), the multijet space rJ
k(n, p) may be

identified with the quotient space mSθS(f)/mk+1
S θS(f). Under this identification

we put

TRk(jkf(S)) = {[g] ∈ rJ
k(n, p) | g ∈ TR(f)},

TLk(jkf(S)) = {[g] ∈ rJ
k(n, p) | g ∈ TL(f)},

TAk(jkf(S)) = {[g] ∈ rJ
k(n, p) | g ∈ TA(f)},

TCk(jkf(S)) = {[g] ∈ rJ
k(n, p) | g ∈ TC(f)},

TKk(jkf(S)) = {[g] ∈ rJ
k(n, p) | g ∈ TK(f)},

where [g] = g + mk+1
S θS(f). These are tangent spaces to orbits of actions of

well-defined Lie groups corresponding to Mather’s groups R, L, A, C and K.
(for details, see [16]).

2. Proof of Theorem 1

LEMMA 2.1. Let f : (Rn, S) → (Rp, 0) be a multigerm.

1. Suppose that f is A-simple. Then, there exists a multigerm g : (Rn, S) →
(Rp, 0) such that two properties K(f) = K(g) and TK(g) = TA(g) are
satisfied.

2. Suppose that f is L-simple. Then, there exists a multigerm g : (Rn, S) →
(Rp, 0) such that two properties C(f) = C(g) and TC(g) = TL(g) are satis-
fied.

Proof. First we show 1 of Lemma 2.1. If f satisfies the property that TK(f) =
TA(f), then just take the f as g. If TK(f) 6= TA(f), then since f is A-simple
there must exist a multigerm g ∈ K(f) such that A(f) is adjacent to A(g) and
the property TK(g) = TA(g) holds.

For the proof of 2 of Lemma 2.1, just replace A and K in the proof of 1 of
Lemma 2.1 with L and C.

LEMMA 2.2. Let g : (Rn, S) → (Rp, 0) be a multigerm such that δ(g) < ∞.

1. Suppose that TK(g) = TA(g). Then, the following inequality holds:

(p − n) 1δ(g) + 1γ(g) − γ(g) ≤ p2.
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2. Suppose that TC(g) = TL(g). Then, the following inequality holds:

1δ(g) ≤ p.

Proof. First we show 1 of Lemma 2.2. Put

A =
g∗(m0)θS(g)

tg(mSθS(n)) ∩ g∗(m0)θS(g)
.

The assumption TK(g) = TA(g) implies that any element ϕ of g∗(m0)θS(g)
has the form ϕ = ϕ1 + ϕ2 (ϕ1 ∈ tg(mSθS(n)), ϕ2 ∈ ωg(m0θ0(p))). Then,
note that ϕ1 = ϕ − ϕ2 belongs to tg(mSθS(n)) ∩ g∗(m0)θS(g) since the vector
space ωg(m0θ0(p)) is contained in the vector space g∗(m0)θS(g). Thus, under
the assumption TK(g) = TA(g), we see that any element of A has the form
ϕ + tg(mSθS(n)) ∩ g∗(m0)θS(g) (ϕ ∈ ωg(m0θ0(p))). Therefore, we see that the
minimal number of elements of a generator of A as C0-module via g is less than
or equal to the minimal number of elements of a generator of ωg(m0θ(p)) as
C0-module via g and it is clear that the latter number is less than or equal to
p2. Thus, we have the following inequality:

dimR
A

g∗(m0)A
≤ p2.

On the other hand, the left hand side of the above inequality is more than or
equal to p 1δ(g) − (n 1δ(g) − 1γ(g)) − γ(g).

Next we show 2 of Lemma 2.2. The assumption TC(g) = TL(g) implies the
inequality p 1δ(g) = dimR 1Q(g)p ≤ p2.

Proof of Theorem 1. First we prove 1 of Theorem 1. Since f is of corank at most
one, the multigerm g in 1 of Lemma 2.1 is also of corank at most one. Since g

is of corank at most one, g is A-equivalent to an unfolding of a multigerm h of
one variable with (n − 1) parameters. Note that

δ(f) = δ(g) = δ(h).

Furthermore, since h is a multigerm of one variable we have that 1δ(h) = δ(h),
1γ(h) = γ(h) easily and γ(h) = δ(h) − r (for the last equality, refer to p. 508
of [16]). By combining the above equalities and the equalities in §2 we have the
following two:

1δ(g) = nδ(h) = nδ(f),

1γ(g) = nγ(h) = n (δ(f) − r) .
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Therefore, for the g in 1 of Lemma 2.1, by 1 of Lemma 2.2 we have the following
desired inequality:

(p − n)nδ(f) + n(δ(f) − r) − (δ(f) − r) ≤ p2.

For the proof of 2 of Theorem 1, just replace 1 of Lemma 2.1 and 1 of Lemma
2.2 in the proof of 1 of Theorem 1 with 2 of Lemma 2.1 and 2 of Lemma 2.2.
Q.E.D.

3. Proof of Theorem 2

LEMMA 3.1. Let f : (Rn, S) → (Rp, 0) (n ≤ p) be a multigerm.

1. Suppose that f is A-simple. Then, there exists an A-simple immersion
h : (Rn, S) → (Rp, 0) such that f is adjacent to h and the equality TK(h) =
TA(h) holds.

2. Suppose that f is L-simple. Then, there exists an L-simple immersion
h : (Rn, S) → (Rp, 0) such that f is adjacent to h and the equality TC(h) =
TL(h) holds.

Proof. Since n ≤ p the multigerm f can be deformed to an immersive g by
adding sufficiently small linear terms. Since f is A-simple (resp. L-simple),
the obtained immersive germ g must be A-simple (resp. L-simple). Applying
Lemma 2.1 for the g we obtain the desired multigerm h.

LEMMA 3.2. Let h : (Rn, S) → (Rp, 0) be an immersive multigerm. Then, we
have that dimR TR1(j1h(S)) = n2r and dimR TG1(j1h(S)) = npr for G = C,K.

Proof. Since h is immersive, we see that dimR TR1(j1h(S)) is equal to r mul-
tiplied by the dimension of the space of linear isomorphisms of Rn, which is
n2r. For dimR TK1(j1h(S)), note that TK(h) = TC(h) since h is immersive.
By definition of TC(h) we have that dimR TC1(j1h(S)) = p

∑r
i=1 rank(Jhi(si)).

Therefore, for an immersive h the desired equality holds.

LEMMA 3.3. Let h : (Rn, S) → (Rp, 0) be an immersive multigerm. Then,
dimR TA1(j1h(S)) < n2r + p2.

Proof. Put V = TR1(j1h(S)) ∩ TL1(j1h(S)). First we show that dimR V is
positive. For any non-zero real number α we let ϕα,i : (Rn, si) → (Rn, si) be
given by ϕα,i(x) = α(x− si) + si. Let ϕα : (Rn, S) → (Rn, S) be the multigerm
whose restriction to (Rn, si) is ϕα,i. Furthermore, let ψα : (Rp, 0) → (Rp, 0)
be given by ψα(X) = αX for any non-zero real number α. Then, we have that
j1(h ◦ ϕα)(S) = j1(ψα ◦ h)(S). Thus, we see that dimR V must be positive.
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By Lemma 3.2, dimR TL1(j1h(S)) ≤ p2 and dimR V > 0 we have the follow-
ing:

dimR TA1(j1h(S)) = dimR TR1(j1h(S)) + dimR TL1(j1h(S)) − dimR V

≤ n2r + p2 − dimR V < n2r + p2.

Proof of Theorem 2. For the A-simple (resp. L-simple) h obtained in Lemma
3.1, by lemmata 3.2 and 3.3 we see that npr < n2r+p2 (resp. npr ≤ p2). Q.E.D.

4. Proof of Proposition 1

Since 3 of Proposition 1 is a direct corollary of 1 of Theorem 2, it suffices to
prove 1 and 2 of Proposition 1. One can prove 1 of Proposition 1 in the following
way.

Proof. By composing a germ of C∞ diffeomorphism (Rp, 0) → (Rp, 0) if neces-
sary, from the first we may assume that f has the following form:

f1(x) = (x, 0, · · · , 0), · · · , fp(x) = (0, · · · , 0, x).

By putting ax ∂
∂Xj

= aXi ◦ fi
∂

∂Xj
for any fi (1 ≤ i ≤ p), we see that the equality

TC1(j1f(S)) = TL1(j1f(S))

holds, where (X1, · · · , Xp) ∈ Rp and ∂
∂Xj

is the j-th fundamental vector field of
Rp. Therefore, we have that

1Q(f)p = {[g] | g ∈ TL(f)},

where [g] = g + f∗(m2
0)θS(f), and thus, by Malgrange preparation theorem (for

instance, see [2]) we have that

TC(f) = TL(f).

This equality shows that there are no L-equivalence classes to which the immer-
sion f is adjacent. Hence, f must be L-simple.

One can prove 2 of Proposition 1 in the following way.

Proof. By composing a germ of C∞ diffeomorphism (Rp, 0) → (Rp, 0) if neces-
sary, from the first we may assume that f has the following form:

f1(x) = (x, 0, · · · , 0), · · · , fp(x) = (0, · · · , 0, x), fp+1(x) = (a1x, · · · , apx),
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where a1 · · · ap 6= 0. For any fi (1 ≤ i ≤ p) we put ax ∂
∂Xi

= dfi ◦ (ax ∂
∂x ) and

ax ∂
∂Xj

= aXi ◦ fi
∂

∂Xj
if j 6= i and for fp+1 we put ax ∂

∂Xj
= a

aj
Xj ◦ fp+1

∂
∂Xj

.
Then, we see that the equality

TK1(j1f(S)) = TA1(j1f(S))

holds, where (X1, · · · , Xp) ∈ Rp and ∂
∂Xj

is the j-th fundamental vector field of
Rp. Therefore, we have that

1Q(f)p = {[g] | g ∈ TA(f)},

where [g] = g + f∗(m2
0)θS(f), and thus by Malgrange preparation theorem we

have that

TK(f) = TA(f).

This equality shows that there are no A-equivalence classes to which the immer-
sion f is adjacent. Hence, f must be A-simple.

5. Proof of Proposition 2

Since 3 of Proposition 2 is a direct corollary of 1 of Theorem 2, it suffices to
prove 1 and 2 of Proposition 2. One can prove 1 of Proposition 2 in the following
way.

Proof. By composing a germ of C∞ diffeomorphism (Rp, 0) → (Rp, 0) if neces-
sary, from the first we may assume that f has the following form:

f1(x1, · · · , xn) = (x1, · · · , xn, 0, · · · , 0), f2(x1, · · · , xn) = (0, · · · , 0, x1, · · · , xn).

By putting
∑n

k=1 akxk
∂

∂Xj
=

∑2(i−1)+n
j=2(i−1)+1 ajXj ◦ fi

∂
∂Xj

for any fi (i = 1, 2), we
see that the equality

TC1(j1f(S)) = TL1(j1f(S))

holds, where (X1, · · · , Xp) ∈ Rp and ∂
∂Xj

is the j-th fundamental vector field of
Rp. Therefore, we have that

1Q(f)p = {[g] | g ∈ TL(f)},

where [g] = g + f∗(m2
0)θS(f), and thus by Malgrange preparation theorem we

have that

TC(f) = TL(f).

This equality shows that there are no L-equivalence classes to which the immer-
sion f is adjacent. Hence, f must be L-simple.
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One can prove 2 of Proposition 2 in the following way.

Proof. By composing a germ of C∞ diffeomorphism (Rp, 0) → (Rp, 0) if neces-
sary, from the first we may assume that f has the following form:

f1(x1, · · · , xn) = (x1, · · · , xn, 0, · · · , 0),

f2(x1, · · · , xn) = (0, · · · , 0, x1, · · · , xn),

f3(x1, · · · , xn) = (x1, · · · , xn, a1x1, · · · , anxn),

where a1, . . . , ap 6= 0. For f1 we put
∑n

k=1 bkxk
∂

∂Xj
= df1 ◦ (

∑n
k=1 bkxk

∂
∂xk

)
(1 ≤ j ≤ n) and

∑n
k=1 bkxk

∂
∂Xj

=
∑n

k=1 bkXk ◦f1
∂

∂Xj
(n+1 ≤ j ≤ p). For f2 we

put
∑n

k=1 bkxk
∂

∂Xj
= df2◦(

∑n
k=1 bkxk

∂
∂xk

) (n+1 ≤ j ≤ p) and
∑n

k=1 bkxk
∂

∂Xj
=∑n

k=1 bkXk ◦ f2
∂

∂Xj
(1 ≤ j ≤ n). Finally, for f3 we put

∑n
k=1 bkxk

∂
∂Xj

=∑n
k=1 bkXk ◦ f3

∂
∂Xj

(1 ≤ j ≤ n) and
∑n

k=1 bkxk
∂

∂Xj
=

∑n
k=1

bk

ak
Xk ◦ f3

∂
∂Xj

(n + 1 ≤ j ≤ p) . Then, we see that the equality

TK1(j1f(S)) = TA1(j1f(S))

holds, where (X1, · · · , Xp) ∈ Rp and ∂
∂Xj

is the j-th fundamental vector field of
Rp. Therefore, we have that

1Q(f)p = {[g] | g ∈ TA(f)},

where [g] = g + f∗(m2
0)θS(f), and thus by Malgrange preparation theorem we

have that

TK(f) = TA(f).

This equality shows that there are no A-equivalence classes to which the immer-
sion f is adjacent. Hence, f must be A-simple.

Acknowledgement. The author would like to express his sincere grat-
itude to the reviewer for his/her careful reading of the manuscript and giving
invaluable suggestions.
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[ 3 ] J. W. Bruce and T. J. Gaffney, Simple singularities of mappings C, 0 → C2, 0, J. London

Math. Soc., 26 (1982), 465–474.



104 T. NISHIMURA

[ 4 ] C. G. Gibson and C. A. Hobbs, Simple singularities of space curves, Math. Proc. Cam-

bridge Philos. Soc., 113 (1993), 297–306.

[ 5 ] C. G. Gibson and C. A. Hobbs, Singularities of general one-dimensional motions of the

plane and space, Proc. Poy. Soc. Edinburgh, 125A (1995), 639–656.

[ 6 ] C. A. Hobbs and N. P. Kirk, On the classification and bifurcation of multi-germs of maps

from surfaces to 3-space, Math. Scand., 89 (2001), 57–96.

[ 7 ] K. Houston and N. P. Kirk, On the classification and geometry of co-rank 1 map-germs

from three-space to four-space, Singularity theory (Liverpool 1996), xxii, 325–351, Lon-

don Math. Soc. Lecture Note Ser., 263, Cambridge Univ. Press, Cambridge, 1999.

[ 8 ] C. Klotz, O. Pop and J. Rieger, Real double-points of deformations of A-simple map-

germs from Rn to R2n, Math. Proc. Cambridge Philos. Soc., 142 (2007), 341–363.

[ 9 ] P. A. Kolgushkin and R. R. Sadykov, Simple singularities of multigerms of curves, Rev.

Mat. Complut., 14 (2001), 311–344.

[ 10 ] W. L. Marar and F. Tari, On the geometry of simple germs of co-rank 1 maps from R3

to R3, Math. Proc. Cambridge Philos. Soc., 119 (1996), 469–481.

[ 11 ] J. Mather, Stability of C∞ mappings, III. Finitely determined map-germs. Publ. Math.

Inst. Hautes Études Sci., 35 (1969), 127–156.

[ 12 ] J. Mather, Stability of C∞ mappings, IV, Classification of stable map-germs by R-

algebras, Publ. Math. Inst. Hautes Études Sci., 37 (1970),223–248.

[ 13 ] D. Mond, On classification of germs of maps from R2 to R3, Proc. London Math. Soc.,

50 (1985), 333–369.

[ 14 ] V. Ovsienko, Lagrange schwarzian derivative and symplectic Sturm theory, Annales de
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