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Abstract. Valdis Laan in (On a generalization of strong flatness, Acta Com-
ment. Univ. Tartuensis 2 (1998), 55-60.) introduced Condition $(E^{\prime})$ , a general-
ization of Condition $(E)$ . In this paper we continue the investigation of Condition
$(E^{\prime})$ and give a classification of monoids by comparing this condition of their
acts with other properties. We give also a classffication of monoids for which all
(monocyclic, cyclic) right acts satisfy Condition $(E^{\prime})$ and in particular for idem-
potent monoids and monoids $S$ with $E(S)=\{1\}$ . A classification of monoids
over which all monocyclic right acts are weakly pullback flat will be given too.

1. Introduction

Throughout this paper $S$ will denote a monoid. We refer the reader to [3]
and [4] for basic results, definitions and terminology relating to semigroups and
acts over monoids and to [1], [8] for definitions and results on flatness which are
used here.

A monoid $S$ is said to be left collapsible if for any $p,q\in S$ there exists $r\in S$

such that $rp=rq$ .
A right S-act $A$ satisfies Condition $(P)$ if for all $a,a^{\prime}\in A,$ $s,$

$s^{\prime}\in S,$ $as=a^{\prime}s^{\prime}$

implies that there exist $a^{\prime\prime}\in A,$ $u,$ $v\in S$ such that $a=a^{\prime\prime}u,$ $a^{\prime}=a^{\prime\prime}v$ and
$us=vs^{\prime}$ . It satisfies Condition $(P_{E})$ if whenever $a,$ $a^{\prime}\in A,$ $s,$

$s^{j}\in S$ , and
$as=a^{\prime}s^{j}$ , there exist $a^{\prime\prime}\in A$ and $u,$ $v,$ $e^{2}=e,$ $f^{2}=f\in S$ such that $ae=a^{\prime\prime}ue$ ,
$a^{j}f=a^{\prime\prime}vf$ , $es=s,$ $fs^{\prime}=s^{\prime}$ and $us=vs^{\prime}$ . It is shown in [2] that Condition
$(P_{E})$ implies weak flatness, but the converse is not true. A right S-act $A$ satisfies
Condition $(E)$ if for all $a\in A,$ $s,$

$s^{\prime}\in S$ , $as=as^{\prime}$ implies that there exist $a^{\prime}\in A$ ,
$u\in S$ such that $a=a^{\prime}u$ and $us=us^{\prime}$ .

We use the following abbreviations,

weak pullback flatness $=WPF$
weak kernel flatness $=WKF$
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principal weak kernel flatness $=PWKF$
translation kernel flatness $=TKF$
weak homoflatness $=(WP)$

principal weak homoflatness $=(PWP)$

weak flatness $=WF$

principal weak flatness $=PWF$

2. Characterization of monoids by Condition $(E^{\prime})$ of right acts

DEFINITION. A right S-act $A$ satisfies Condition $(E^{\prime})$ if for all $a\in A,$ $s,$ $t,$ $ z\in$

$S$ , $as=at$ and $sz=tz$ imply that there exist $a^{\prime}\in A,$ $u\in S$ such that $a=a^{j}u$

and $us=ut$ .

Note that Condition $(E)$ implies Condition $(E^{\prime})$ , but the converse is not true
in general, for if $S$ is a non-trivial group, then $\Theta_{S}$ satisfies Condition $(E^{\prime})$ , but it
does not satisfy Condition $(E)$ , otherwise by ([4, III, 14.3]), $S$ is left collapsible,
and so $|S|=1$ , which is not true.

Note also that Condition $(E^{\prime})$ does not imply torsion freeness in general, for
if $S=(N, \cdot)$ , where $N$ is the set of natural numbers, and if $A_{S}=NU^{2N}N$ ,
then

$A_{S}=\{(a, x)|a\in 2N_{0}+1\}\cup 2N\cup\{(a, y)|a\in 2N_{0}+1\}$ .
It can easily be seen that

$\{(a, x)|a\in 2N_{0}+1\}\cup 2N\cong N_{N}\cong\{(a, y)|a\in 2N_{0}+1\}\cup 2N$.

Since $N_{N}$ satisfies Condition $(E)$ , then $\{(a, x)|a\in 2N_{0}+1\}\cup 2N$ and $\{(a, y)|$

$a\in 2N_{0}+1\}\cup 2N$ satisfy Condition $(E)$ , and so $A_{S}$ satisfies Condition $(E)$ .
Now if Condition $(E^{j})$ implies torsion freeness, then $2=(1, x)2=(1, y)2$ implies
that $(1, x)=(1, y)$ , which is a contradiction. Now it is natural to ask for monoids
over which Condition $(E^{\prime})$ of acts implies torsion freeness, and other properties
that imply torsion freeness.

It is shown in [1] that the necessary and sufficient condition for a monoid
$S$ to be a group is that all right S-acts be $WPF,$ $WKF$ , PWKF, $TKF$ , or
satisfy Conditions $(PWP),$ $(WP),$ $(P)$ , but by the following theorem we show
that the necessary and sufficient condition for a monoid $S$ to be a group is that
all right S-acts satisfying Condition $(E^{\prime})$ be $WPF,$ $WKF$ , PWKF, $TKF$ , or
satisfy Conditions $(PWP),$ $(WP),$ $(P)$ .
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THEOREM 2.1. For any monoid $S$ the following statements are equivalent:

(1) All right S-acts satisfying Condition $(E^{\prime})$ are $WPF$ .
(2) All mght S-acts satisfying Condition $(E^{j})$ satisfy Condition $(P)$ .
(3) All reght S-acts satisfying Condition $(E^{\prime})$ are $WKF$ .
(4) All reght S-acts satisfying Condition $(E^{\prime})$ are PWKF.
(5) All nght S-acts satisfying Condition $(E^{\prime})$ are $TKF$ .
(6) All right S-acts satisfying Condition $(E^{j})$ satisfy Condition $(WP)$ .
(7) All right S-acts satisfying Condition $(E^{\prime})$ satisfy Condition $(PWP)$ .
(8) $S$ is a group.

Proof. Implications (1) $\Rightarrow(2)\Rightarrow(6)\Rightarrow(7)$ and (1) $\Rightarrow(3)\Rightarrow(4)\Rightarrow(5)\Rightarrow(7)$

are obvious.

(8) $\Rightarrow(1)$ . By ([1, proposition 9]), it is obvious.

(7) $\Rightarrow(8)$ . Let $I$ be a proper right ideal of $S$ and let

$A_{S}=S\prod S=I\{(a, x)|a\in S\backslash I\}\cup I\cup\{(a, y)|a\in S\backslash I\}$ .

Then it is obvious that $\{(a, x)|a\in S\backslash I\}\cup I$ and $\{(a, y)|a\in S\backslash I\}\cup I$ are
subacts of $A_{S}$ isomorphic to $S_{S}$ . Since $S_{S}$ is free, then it satisfies Comdition (E’).
Thus $\{(a, x)|a\in S\backslash I\}\cup I$ and $\{(a, y)|a\in S\backslash I\}\cup I$ satisfy Condition $(E^{j})$ ,
and so $A_{S}$ satisfies Condition $(E^{\prime})$ . Thus by assumption $A_{S}$ satisfies Condition
$(PWP)$ . If $t\in I$ , then $t=(1, x)t=(1, y)t$ , and so there exist $a\in A$ and $u,$ $v\in S$

such that $(1, x)=au,$ $(1, y)=av$ and $ut=vt$ . Thus $(1, x)=au$ $implies\backslash $ for
some $s\in S\backslash I$ , that $a=(s, x)$ . Similarly, $a=(s^{j}, y)$ for some $s^{\prime}\in S\backslash I$, and
so we have a $\omega ntradiction$ . Thus $S$ has no proper right ideal, that is for every
$s\in S,$ $sS=S$ , and so $S$ is a group as required. $\square $

Now we have ([10, Theorem 2.5]), as a corollary of Theorem 2.1, as follows:

COROLLARY 2.2. For any monoid $S$ the following statements are equivalent:

(1) All mght S-acts satisfying Condition $(E^{\prime})$ are free.
(2) All right S-acts satisfying Condition $(E^{\prime})$ are projective genemtors.
(3) All right S-acts satisfying Condition $(E^{\prime})$ are projective.
(4) All right S-acts $satis\ovalbox{\tt\small REJECT} ng$ Condition $(E^{j})$ are strongly flat.
(5) $S=\{1\}$ .

Proof. Implications (1) $\Rightarrow(2)\Rightarrow(3)\Rightarrow(4)$ are obvious.
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(4) $\Rightarrow(5)$ . By assumption all right S-acts satisfying Condition $(E^{\prime})$ are
$WPF$ . Thus by Theorem 2.1, $S$ is a group, and so all right S-acts satisfy
Condition $(E^{\prime})$ . Thus all right S-acts are strongly flat, and so by ([4, IV, 10.5]),
$S=\{1\}$ .

(5) $\Rightarrow(1)$ . It is obvious. $\square $

Qiao and Liu in $([10, Threm2.9])$ , showed that right collapsible monoids for
which all right S-acts satisfying Condition $(E^{j})$ are (principally weakly, weakly)
flat are regular monoids. Now by the following $threm$ we extend these results
to any monoid. Moreover, we show that monoids for which all right S-acts
satisfying Condition $(E^{\prime})$ satisfy Condition $(P_{E})$ are regular too.

THEOREM 2.3. For any monoid $S$ the follounng statements are equivalent:

(1) All right S-acts satisMng Condition $(E^{\prime})$ satisfy Condition $(P_{E})$ .
(2) All mght S-acts satisfying Condition $(E^{\prime})$ are flat.
(3) All right S-acts satisfying Condition $(E^{\prime})$ are $WF$ .
(4) All right S-acts satisfy ing Condition $(E^{\prime})$ are $PWF$ .
(5) $S$ is regular.

Proof. Implications (2) $\Rightarrow(3)\Rightarrow(4)$ are obvious.

(4) $\Rightarrow(5)$ . Since Condition $(E)$ implies Condition $(E^{\prime})$ , then by ([9, $Threm$
$3])$ , it is obvious.

(5) $\Rightarrow(2)$ . Suppose that $S$ is regular, $sM$ is a left S-act and $A_{S}$ a right S-act
that satisfies Condition $(E^{\prime})$ . Let $a\otimes m=a^{j}\otimes m^{\prime}$ in $A_{S}\otimes s^{M}$ for $a,$

$a^{\prime}\in A_{S}$ and
$m,$ $m^{\prime}\in sM$ . We show that $a\otimes m=a^{\prime}\otimes m^{\prime}$ holds also in $A_{S}\otimes s(Sm\cup Sm^{j})$ .
Since $a\otimes m=a^{\prime}\otimes m^{\prime}$ in $A_{S}\otimes s^{M}$ , then we have a tossing

$s_{1}m_{1}$ $=m$

$as_{1}$ $=a_{1}t_{1}$ $s_{2}m_{2}$ $=t_{1}m_{1}$

$a_{1}s_{2}$ $=a_{2}t_{2}$ $s_{3}m_{3}$ $=t_{2}m_{2}$

$a_{k-1}s_{k}$
$=a^{\prime}t_{k}$ $m^{\prime}$ $=t_{k}m_{k}$

of length $k$ , where $s_{1},$ $\ldots$ , $s_{k},$ $t_{1},$ $\ldots,t_{k}\in S,$ $a_{1},$ $\ldots,$
$a_{k-1}\in A_{S},$ $m_{1},$ $\ldots$ , $ m_{k}\in$

$sM$ .
If $k=1$ , then we have

$as_{1}$
$=a^{\prime}t_{1}$

$s_{1}m_{1}$ $=m$
$m^{\prime}$ $=t_{1}m_{1}$ .
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Since $S$ is regular, then the equality as $1=a^{\prime}t_{1}$ implies that $a^{\prime}t_{1}=a^{\prime}t_{1}s_{1}^{\prime}s_{1}$ , for
$s_{1}^{\prime}\in V(s_{1})$ . Since $A_{S}$ satisfies Condition $(E^{\prime})$ and $t_{1}\cdot s_{1}^{\prime}=t_{1}s_{1}^{\prime}s_{1}\cdot s_{1}^{\prime}$ , then there
exist $a^{\prime\prime}\in A_{S}$ and $u\in S$ such that $a^{\prime}=a^{\prime\prime}u$ and $ut_{1}=ut_{1}s_{1}^{j}s_{1}$ . From the last
equality we obtain $um=ut_{1}m_{1}=ut_{1}s_{1}^{\prime}s_{1}m_{1}=ut_{1}s_{1}^{\prime}m$ . Since $m=s_{1}m_{1}$ , then
$s_{1}s_{1}^{\prime}m=m$ , and so we get

$a\otimes m=a\otimes s_{1}s_{1}^{\prime}m=as_{1}\otimes s_{1}^{j}m=a^{\prime}t_{1}\otimes s_{1}^{\prime}m=a^{\prime\prime}ut_{1}\otimes s_{1}^{\prime}m=$

$a^{u}\otimes ut_{1}s_{1}^{\prime}m=a^{\prime\prime}\otimes um^{\prime}=a^{\prime\prime}u\otimes m^{j}=a^{\prime}\otimes m^{\prime}$

in $A_{S}\otimes s(Sm\cup Sm^{\prime})$ .
Now we suppose that $k\geq 2$ and that the required equality holds for tossing

of length less than $k$ . From as $1=a_{1}t_{1}$ we obtain equalities $a_{1}t_{1}=a_{1}t_{1}s_{1}^{\prime}s_{1}$ for
$s_{1}^{\prime}\in V(s_{1})$ and as $1=as_{1}t_{1}^{\prime}t_{1}$ for $t_{1}^{\prime}\in V(t_{1})$ . Since $A_{S}$ satisfies Condition $(E^{\prime})$

and $t_{1}\cdot s_{1}^{\prime}=t_{1}s_{1}^{\prime}s_{1}\cdot s_{1}^{j},$ $s_{1}\cdot t_{1}^{\prime}=s_{1}t_{1}^{\prime}t_{1}\cdot t_{1}^{j}$ , then there exist $a_{1}^{\prime\prime},$ $a_{2}^{\prime\prime}\in A_{S}$ and
$u_{1},$ $u_{2}\in S$ such that $a_{1}=a_{1}^{\prime\prime}u_{1},$ $u_{1}t_{1}=u_{1}t_{1}s_{1}^{\prime}s_{1}$ and $a=a_{2}^{\prime\prime}u_{2},$ $u_{2}s_{1}=u_{2}s_{1}t_{1}^{\prime}t_{1}$ .
Thus we have the following tossings

$a_{2}^{\prime\prime}u_{2}s_{1}$ $=a_{1}^{\prime\prime}u_{1}t_{1}$

of length 1 and

$a_{1}^{\prime\prime}u_{1}s_{2}$ $=a_{2}t_{2}$

$a_{k-1^{S}k}$ $=a^{\prime}t_{k}$

of length $k-1$ .

$u_{2}s_{1}m_{1}$ $=u_{2}m$

$u_{1}s_{2}m_{2}$ $=u_{1}t_{1}m_{1}$ .

$u_{1}s_{2}m_{2}$ $=u_{1}t_{1}m_{1}$

$s_{3}m_{3}$ $=t_{2}m_{2}$

$m^{\prime}$ $=t_{k}m_{k}$

From the tossing of length 1, we have $a_{2}^{\prime\prime}\otimes u_{2}m=a_{1}^{\prime\prime}\otimes u_{1}s_{2}m_{2}$ in $A_{S}\otimes sM$ .
By inductive hypothesis we have $a_{2}^{\prime\prime}\otimes u_{2}m=a_{1}^{\prime\prime}\otimes u_{1}s_{2}m_{2}$ in $ A_{S}\otimes s(Su_{2}m\cup$

$Su_{1}s_{2}m_{2})$ . Since

$u_{1}s_{2}m_{2}=u_{1}t_{1}m_{1}=u_{1}t_{1}s_{1}^{\prime}s_{1}m_{1}=u_{1}t_{1}s_{1}^{\prime}m\in Sm$ ,

then we have $a_{2}^{jj}\otimes u_{2}m=a_{1}^{\prime\prime}\otimes u_{1}s_{2}m_{2}$ in $A_{S}\otimes s(Sm\cup Sm^{\prime})$ .
Also from tossing of the length $k-1$ , we have $a_{1}^{\prime\prime}\otimes u_{1}t_{1}m_{1}=a^{\prime}\otimes m^{j}$ in

$A_{S}\otimes s^{M}$ . By inductive hypothesis we have $a_{1}^{\prime\prime}\otimes u_{1}t_{1}m_{1}=a^{j}\otimes m^{\prime}$ in $ A_{S}\otimes$

$s(Su_{1}t_{1}m_{1}\cup Sm^{\prime})$ . Since $u_{1}t_{1}m_{1}=u_{1}t_{1}s_{1}^{\prime}m\in Sm$ , then $a_{1}^{\prime\prime}\otimes u_{1}t_{1}m_{1}=a^{\prime}\otimes m^{\prime}$

in $A_{S}\otimes s(Sm\cup Sm^{\prime})$ . Thus we have
$a\otimes m=a_{2}^{\prime\prime}u_{2}\otimes m=a_{2}^{\prime\prime}\otimes u_{2}m=a_{1}^{\prime\prime}\otimes u_{1}s_{2}m_{2}=a_{1}^{\prime\prime}\otimes u_{1}t_{1}m_{1}=a^{\prime}\otimes m^{\prime}$

in $A_{S}\otimes s(Sm\cup Sm^{\prime})$ .
(1) $\Leftrightarrow(3)$ . Since every regular monoid is left $PP$ , then by ([2, $Threms$

2.3, 2.5]), it is obvious. $\square $
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Note that cofreeness of acts does not imply Condition $(E^{\prime})$ , for if $S=T^{1}$ ,
where $T$ is a non-trivial right zero semigroup and $X$ is a set with one element,
then the cofree right S-act $X^{S}$ has also one element, and so $X^{S}\cong\Theta_{S}$ . Since $\Theta_{S}$

does not satisfy Condition $(E^{\prime})$ , then $X^{S}$ does not satisfy Condition $(E^{\prime})$ either.
It is now obvious that every property of acts over monoids which is implied by
cofreenees does not imply Condition $(E^{\prime})$ either.

THEOREM 2.4. For any monoid $S$ the following statements are equivalent:

(1) All principally weakly injective right S-acts satisfy Condition $(E^{\prime})$ .
(2) All fg-weakly injective right S-acts satisfy Condition $(E^{\prime})$ .
(3) All weakly injective right S-acts satisfy Condition $(E^{\prime})$ .
(4) All injective right S-acts satisfy Condition $(E^{\prime})$ .
(5) All cofree right S-acts satisfy Condition $(E^{\prime})$ .
(6) $(\forall s, t, z\in S)(sz=tz\Rightarrow(\exists u\in S, \rho(s,t)=ker\lambda_{u}))$ .

Proof. Implications (1) $\Rightarrow(2)\Rightarrow(3)\Rightarrow(4)\Rightarrow(5)$ are obvious.

A similar argument as in ([7, Proposition 2.1]), can be used for implicatioms
(5) $\Rightarrow(6)$ and (6) $\Rightarrow(1)$ . $\square $

Note that by ([4, IV, 11.14]) and ([4, III, 17.13]), all (mono) cyclic right S-
acts satisfy Condition $(E)$ if and only if $S=\{1\}$ or $S=\{0,1\}$ , but if we replace
$(E)$ by $(E^{\prime})$ , then we have the following theorem.

THEOREM 2.5. For any monoid $S$ the following statements are equivalent:

(1) All right S-acts satisfy Condition $(E^{\prime})$ .
(2) All divisible right S-acts satisfy Condition $(E^{\prime})$ .
(3) All finitely genemted right S-acts satisfy Condition $(E^{\prime})$ .
(4) All cyclic right S-acts satisfy Condition $(E^{\prime})$ .
(5) All monocyclic right S-acts satisfy Condition $(E^{\prime})$ .
(6) $(\forall s,t, z\in S)(sz=tz\Rightarrow(\exists u\in S, us=ut, 1\rho(s,t)u))$ .
(7) $(\forall s, t, z\in S)(sz=tz\Rightarrow(\exists e\in E(S), es=et, 1\rho(s, t)e))$ .
(8) $(\forall s,t, z\in S)(sz=tz\Rightarrow(\exists e\in E(S), \rho(s, t)=ker\lambda_{\epsilon}))$ .

Proof. Implications (1) $\Rightarrow(3)\Rightarrow(4)\Rightarrow(5)$ , and (1) $\Rightarrow(2)$ are obvious.

(5) $\Rightarrow(6)$ . Suppose that $sz=tz$ for $s,$ $t,$ $z\in S$ . Since by assumption $S/\rho(s, t)$

satisfies Condition $(E^{j})$ and $s\rho(s, t)t$ , then there exists $u\in S$ such that $us=ut$

and $1\rho(s,t)u$ .
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(6) $\Rightarrow(7)$ . Suppose that $sz=tz$ for $s,$ $t,$ $z\in S$ . Then by assumption there
exists $u\in S$ such that $us=ut$ and $1\rho(s, t)u$ . Then $(s, t)\in ker\lambda_{u}$ , and so
$\rho(s, t)\subseteq ker\lambda_{u}$ . Thus $1\rho(s, t)u$ implies that $(1, u)\in ker\lambda_{u}$ , and so $ u^{2}=u\in$

$E(S)$ .
(7) $\Rightarrow(8)$ . Suppose that $sz=tz$ , for $s,$ $t,$ $z\in S$ . By assumption there exists

$e\in E(S)$ such that $es=et$ and $1\rho(s, t)e$ . But $es=et$ implies that $(s, t)\in ker\lambda_{e}$ ,
and so $\rho(s, t)\subseteq ker\lambda_{e}$ . Now we suppose that $(s^{\prime}, t^{\prime})\in ker\lambda_{e}$ , then $es^{\prime}=et’.$

Since $1\rho(s, t)e$ , then $s^{\prime}\rho(s, t)es^{\prime}$ and $t^{\prime}\rho(s, t)et^{\prime}$ . Since es $=et^{\prime}$ , then $s^{\prime}\rho(s, t)t^{\prime}$ ,
and so $(s^{\prime}, t^{\prime})\in\rho(s,t)$ . Thus $ker\lambda_{e}\subseteq\rho(s, t)$ , and so $ker\lambda_{e}=\rho(s,t)$ .

(8) $\Rightarrow(1)$ . First we show that every cyclic right S-act satisfies Condition
$(E^{\prime})$ . For this we suppose that $\rho$ is a right congruence on $S,$ $s\rho t$ and $sz=tz$ , for
$s,t,$ $z\in S$ . Then by assumption there exists $e\in E(S)$ such that $ker\lambda_{e}=\rho(s, t)$ .
Since $(1, e$) $\in ker\lambda_{e}$ and $(s, t)\in\rho(s,t)$ , then $es=et$ and $1\rho(s, t)e$ . Since $s\rho t$ ,
then $\rho(s,t)\subseteq\rho$, and so 1 $\rho e$ . Thus by ([5, Lemma 6]), $ S/\rho$ satisfies Condition
$(E^{\prime})$ as required. Now we suppose that $A$ is a right S-act, $as=at$ and $sz=tz$

for $a\in A$ and $s,t,$ $z\in S$ . Since $aS$ satisfies Condition $(E^{\prime})$ , then there exist
$w_{1},$ $w_{2}\in S$ such that $a=(aw_{1})w_{2}$ and $w_{2}s=w_{2}t$ . If $w_{1}w_{2}=u$ , then $a=au$
and $us=ut$ , that is $A$ satisfies Condition $(E^{\prime})$ as required.

(2) $\Rightarrow(1)$ . Suppose that $A$ is a right S-act. Let $as=at$ and $sz=tz$ for $a\in A$

and $s,$ $t,$ $z\in S$ . By ([4, III, 2.9]), if $D(A)$ is the divisible extension of $A$ , then
by assumption $D(A)$ satisfies Condition $(E^{\prime})$ and hence there exist $b\in D(A)$

and $u\in S$ such that $a=bu$ and $us=ut$ . By ([4, III, 2.9]), there exists $n\in N$

such that $b\in A_{n}$ . Now if $b\in A_{n}\backslash A_{n-1}$ , then by ([4, III, 2.10]), there exist
$b_{1}\in A_{n-1},$ $u_{1},$ $v_{1}\in S$ and a left cancellable element $c\in S$ such that $a\cdot=b_{1}u_{1}$

and $cu_{1}=v_{1}u$ . Then we have $cu_{1}s=v_{1}us=v_{1}ut=cu_{1}t$ , which implies that
$u_{1}s=u_{1}t$ , continuing this process, by ([4, III, 2.10]), there exist $a^{j}\in A,$ $v\in S$

such that $a=a^{\prime}v,$ $vs=vt$ , and so $A$ satisfies Condition $(E^{\prime})$ . $\square $

COROLLARY 2.6. For any monoid $S$ with $E(S)=\{1\}$ , the following state-
ments are equivalent:

(1) All right S-acts satisfy Condition $(E^{j})$ .
(2) All divisible right S-acts satisfy Condition $(E^{\prime})$ .
(3) All finitely generated right S-acts satisfy Condition $(E^{j})$ .
(4) All cyclic right S-acts satisfy Condition $(E^{\prime})$ .
(5) All monocyclic right S-acts satisfy Condition $(E^{\prime})$ .
(6) $S$ is mght cancellative.
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Proof. By Theorem 2.5, it is obvious. $\square $

It is shown in ([1, Propositions 9, 25]), that all (cyclic) right S-acts are WPF
if and only if $S$ is a (group or $S=\{0,1\}$ ) group. Until now there were no
classification of monoids for which all monocyclic right S-acts are $WPF$ . Now
see the following corollary for this classification.

COROLLARY 2.7. Let $S$ be a monoid. Then all monocyclic right S-acts are
WPF if and only if $S$ is a group or $S=\{0,1\}$ .

Proof. Suppose that all monocyclic right S-acts are $WPF$ . Since WPF is equiv-
alent to the $njunction$ of Conditions $(P)$ and $(E^{\prime})$ , all monocyclic right S-acts
satisfy Condition $(P)$ , and so by ([4, IV, 9.9]), $S$ is a group or a group with a
zero adjoined. Now if $S=G^{0}$ , where $G$ is a group, then we claim that $|G|=1$ .
Otherwise there exist $s,$ $t\in G$ such that $s\neq t$ . By Theorem 2.5, and that weak
pullback flatness implies Condition $(E^{\prime})$ , the equality $s0=t0$ , implies that there
exists $e\in E(S)$ such that $\rho(s, t)=ker\lambda_{e}$ . Since $E(S)=\{0,1\}$ , then either
$e=1$ or $e=0$ . If $e=1$ , then $\rho(s, t)=ker\lambda_{1}=\Delta_{S}$ , and so $s=t$ , which is a
contradiction. Thus $e=0$ , and so $\rho(s, t)=ker\lambda_{0}=S\times S$ . Hence $(0,1)\in\rho(s, t)$ ,
and so there exist $y_{1},$ $\ldots,$

$y_{n},$ $s_{1},$ $\ldots$ , $s_{n},$ $t_{1},$
$\ldots,$

$t_{n}\in S$ such that

$0=s_{1}y_{1}$ $t_{2}y_{2}=s_{3}y_{3}$ ... $t_{n}y_{n}=1$

$t_{1}y_{1}=s_{2}y_{2}$ $ t_{3}y_{3}=s_{4}y_{4}\ldots$

and for every $i\in\{1,2, \ldots, n\},$ $\{s_{i}, t_{i}\}=\{s, t\}$ . Now $0=s_{1}y_{1}$ implies.that
$y_{1}=0$ , because $s_{1}\in G$ . Thus $s_{2}y_{2}=0$ , and so $y_{2}=0$ . By $ntinuing$ this
procedure we have, $y_{1}=y_{2}=\ldots=y_{n}=0$ , and so $1=t_{n}y_{n}=0$, which is a
contradiction. Thus $|G|=1$ , and so $S=\{0,1\}$

Conversely, if $S$ is a group, then by ([1, Proposition 9]), all monocyclic right
S-acts are weakly pullback flat. If $S=\{0,1\}$ , then by ([4, IV, 11.14]), all cyclic
right S-acts are strongly flat, and so weakly pullback flat. Thus all monocyclic
right S-acts are weakly pullback flat as required. $\square $

Now we give a characterization of idempotent monoids by Condition $(E^{\prime})$ .

LEMMA 2.8. Let $S$ be a monoid. If all right Rees factor S-acts satish Condi-
tion $(E^{\prime})$ , then for all $e,$ $f\in E(S)\backslash \{1\},$ $ef=e$ .

Proof. Suppose that all right Rees factor acts of $S$ satisfy Condition $(E^{\prime})$ and
let $e,$ $f\in E(S)\backslash \{1\}$ . Since $ef,$ $e\in eS$ , then $ef\rho_{eS}e$ , also $ef\cdot f=e\cdot f$ . Hence by
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Theorem ([5, Lemma 6]), there exists $u\in S$ such that 1 $\rho_{e}su$ and $u\cdot ef=u\cdot e$ ,
because $S/eS$ satisfies Condition $(E^{\prime})$ . But $eS\neq S$ and so $u=1$ , that is,
$ef=e.\square $

THEOREM 2.9. For an idempotent monoid $S$ the folloutng statements are
equivalent:

(1) All right S-acts satish Condition $(E^{\prime})$ .
(2) All finitely generated right S-acts satish Condition $(E^{\prime})$ .
(3) All cyclic right S-acts satish Condition $(E^{\prime})$ .
(4) All monocyclic right S-acts satish Condition $(E^{\prime})$ .
(5) All right Rees factor S-acts satisfy Condition $(E^{\prime})$ .
(6) All divisible right S-acts satisfy Condition $(E^{\prime})$ .
(7) All pmncipally weakly injective right S-acts satish Condition $(E^{\prime})$ .
(8) All fg-weakly injective nght S-acts satish Condition $(E^{\prime})$ .
(9) All weakly injective right S-acts satisfy Condition $(E^{\prime})$ .
(10) All injective right S-acts satisfy Condition $(E^{\prime})$ .
(11) All coflee nght S-acts satisfy Condition $(E^{\prime})$ .
(12) For all $e,$ $f\in S\backslash \{1\},$ $ef=e$ .

Proof. Implications (1) $\Rightarrow(2)\Rightarrow(3)\Rightarrow(4),$ (3) $\Rightarrow(5),$ (6) $\Rightarrow(7)\Rightarrow(8)\Rightarrow$

(9) $\Rightarrow(10)\Rightarrow(11)$ and (1) $\Rightarrow(6)$ are obvious.

(4) $\Rightarrow(5)$ . By assumption and Theorem 2.5, all cyclic right S-acts satisfy
Condition $(E^{\prime})$ , and so all right Rees factor S-acts satisfy Condition $(E^{\prime})$ .

(5) $\Rightarrow(12)$ . Since $E(S)=S$ , then by Lemma 2.8, it is obvious.

(11) $\Rightarrow(12)$ . By (6) of Theorem 2.4, (8) of Theorem 2.5, and that $E(S)=S$ ,
it follows that all cyclic right S-acts satisfy Condition $(E^{\prime})$ , and so by Lemma
2.8, for all $e,$ $f\in S\backslash \{1\},$ $ef=e$ .

(12) $\Rightarrow(1)$ . Suppose that $A_{S}$ is a right S-act, $ae=af$ and $eg=fg$ , for
$a\in A_{S}$ and $e,$ $f,g\in S$ . Then there are four cases that can arise:

Case 1. $e\neq 1,$ $f\neq 1$ . Since by assumption $eg=e$ and $fg=f$ , then $e=f$ .
Now $a=a\cdot 1$ and 1 $\cdot e=1\cdot f$ .

Case 2. $e=f=1$ . Then $a=a\cdot 1$ and 1 $\cdot e=1\cdot f$ .
Case 3. $e=1$ and $f\neq 1$ . Then $a=a\cdot f$ and $f\cdot 1=f\cdot f$ .
Case 4. $f=1$ and $e\neq 1$ . It is similar to the case 3.



88 A. GOLCHIN AND H. MOHAMMADZADEH

Thus $A_{S}$ satisfies Condition $(E^{\prime})$ . $\square $
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