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Abstract. Let $p$ be a prime number. A number field $F$ satisfies the Hilbert-
Speiser condition $(H_{p})$ when any tame cyclic extension $N/F$ of degree $p$ has a
normal integral basis. We show that $F$ satisfies $(H_{p})$ only when $F\cap Q(\zeta_{p})=Q$

under some assumption on $p$ .

1. Introduction

Let $p$ be a prime number. A number field $F$ satisfies the condition $(H_{p})$ when
any tame cyclic extension $N/F$ of degree $p$ has a normal integral basis. As is
well known, the rationals $Q$ satisfy $(H_{p})$ for any $p$ by Hilbert and Speiser. On
the other hand, Greither et al. [3] proved that $F\neq Q$ does not satisfy $(H_{p})$ for
infinitely many $p$ . Thus, it is of interest to determine which number field satisfies
$(H_{p})$ or not. They showed the above assertion after deriving, from a theorem of
McCulloh [12], a simple necessary condition for $F$ to satisfy $(H_{p})$ (see Lemma
2 in Section 3). Using the necessary condition, we showed in $[6, Propo\backslash sition2]$

that if $p\geq 5$ and $\zeta_{p}\in F^{x}$ , then $F$ does not satisfy $(H_{p})$ , where $\zeta_{p}$ is a primitive
p-th root of unity. For this, see also Herreng [4, Proposition 3.3]. The following
more general assertion is easily shown using the necessary condition, and seems
to be known to specialists. (Its proof is given at the end of this note.)

PROPOSITION. Let $p\geq 5$ be a preme number. A number field $F$ does not
satish $(H_{p})$ if $F\cap Q(\zeta_{p})$ is an imaginary subfield of $Q(\zeta_{p})$ .

The purpose of this note is to deal with the case where $F\cap Q(\zeta_{p})$ is a nontrivial
real subfield. The following is a consequence of the main theorem.

THEOREM 1. Let $p$ be a prime number with $23\leq p<2^{10}$ and $p\neq 29$ . $A$

number field $F$ does not satisfy $(H_{p})$ if $F\cap Q(\zeta_{p})$ is a $nontr\dot{v}\dot{m}al$ real subfield of
$Q(\zeta_{p})$ .
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From these assertions, we obtain the following:

COROLLARY 1. Let $p$ be as in Theorem 1. Then, a number field $F$ satisfies
$(H_{p})$ only when $F\cap Q(\zeta_{p})=Q$ .

Let $h_{p}^{-}$ be the relative class number of $Q(\zeta_{p})$ . In our argument, the existence
of an odd prime factor of $h_{p}^{-}$ is necessary. The condition $p\geq 23$ is equivalent to
$h_{p}^{-}>1$ (see Washington [13, Corollary 11.18]). The case $p=29$ is exceptional
since $h_{p}^{-}$ is a power of 2 if and only if ($p\leq 19$ or) $p=29$ by Horie [5].

REMARK 1. (1) Let $p$ be as in Theorem 1. It is known that any subfield
$F\neq Q$ of $Q(\zeta_{p})$ does not satisfy $(H_{p})$ (see Section 4 of [11]). Corollary 1 is a
generalization of this.

(2) Imaginary quadratic fields satisfying $(H_{p})$ are determined for $p=2,3,5,7$
and 11 ([1, 7, 11]). The numbers of such imaginary quadratic fields are 3, 4, 2,
1, $0$ , respectively. At present, we have no example of number fields satisfying
$(H_{p})$ for $p\geq 11$ .

(3) When $p=3$ , there exists a number field $F$ with $\zeta_{3}\in F^{x}$ satisfying $(H_{3})$ .
For example, $F=Q(\zeta_{3})$ and $F=Q(\zeta_{3}, \sqrt{-d})$ with $d=1,2,11satis\Phi(H_{3})$ .
For this, see [2, p. 110] and [6, Example 1].

(4) When $p=5$ , we can show that $F=Q(\sqrt{5})$ satisfies $(H_{5})$ using the above
mentioned theorem of McCulloh by a hard hand-calculation.

2. Main theorem

To state the main result, we first recall the definition and some properties of
Stickelbeger ideals of $nductorp$ . Let $p$ be an odd prime number, and $C=F_{p}^{x}$

the multiplicative group of the finite field $F_{p}$ of $p$ elements. Let $S_{C}$ be the
classical Stickelberger ideal of the group ring $Z[C]$ (for the definition, see [13,
Chap. 6]). Let $H$ be an arbitrary subgroup of $C$ . For an element $\alpha\in Z[C]$ , let

$\alpha_{H}=\sum_{\sigma\in H}a_{\sigma}\sigma\in Z[H]$
with

$\alpha=\sum_{\sigma\in C}a_{\sigma}\sigma$

be the H-part of $\alpha$ . We define the Stickelberger ideal $S_{H}$ of $Z[H]$ by

$S_{H}=\{\alpha_{H}|\alpha\in S_{C}\}\subseteq Z[H]$ .

Letting $\rho$ be a generator of the cyclic group $H$ , set

$\mathfrak{n}_{H}=\left\{\begin{array}{l}1+\rho+\rho^{2}+\cdots+\rho^{|H|/2-1}, if |H| is even\\(1)\\1, if |H| is odd.\end{array}\right.$
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It is known that $S_{H}\subseteq\langle \mathfrak{n}_{H}\rangle=\mathfrak{n}_{H}Z[H]$ ([10, Lemma 1]). Further, it is known
that the quotient $\langle \mathfrak{n}_{H}\rangle/S_{H}$ is a finite abelian group whose order divides the
relative class number $h_{p}^{-}$ and that $[\langle \mathfrak{n}_{C}\rangle : S_{C}]=h_{p}^{-}$ ([10, Theorem 2]). For a
prime number $q$ , let

$S_{H,q}=S_{H}\otimes Z_{q}(\subseteq Z_{q}[H])$ and $\langle \mathfrak{n}_{H}\rangle_{q}=\mathfrak{n}_{H}Z_{q}[H]$ .

Here, $Z_{q}$ is the ring of q-adic integers.
Let $F$ be a number field, and $K=F(\zeta_{p})$ . We regard the Galois group

$Ga1(K/F)=Ga1(Q(\zeta_{p})/F\cap Q(\zeta_{p}))$

with a subgroup $H=H_{F}$ of $C$ through the Galois action on $\zeta_{p}$ . Clearly, the
subfield $F\cap Q(\zeta_{p})$ of $Q(\zeta_{p})$ is real if and only if $|H|$ is even.

Now, the main theorem is stated as follows.

THEOREM 2. Let $p$ be a prime number with $p\geq 23$ and $p\neq 29$ . Let $F$ be a
number field such that $F\cap Q(\zeta_{p})$ is a nontrinial real subfield of $Q(\zeta_{p})$ , and let
$H=H_{F}$ be as above. Assume that there enists an odd prime factor $q$ of $h_{p}^{-}$

satishing $S_{H,q}=\langle \mathfrak{n}_{H}\rangle_{q}$ . Then, $F$ does not satisfy the condition $(H_{p})$ .

Combining this with Proposition, we obtain:

COROLLARY 2. Let $p$ be a prime number satisfying the assumption of Theorem
2. Then, $F$ satisfies $(H_{p})$ only when $F\cap Q(\zeta_{p})=Q$ .

For the assumption of Theorem 2, the following assertions are known.

LEMMA 1. LetH be a subgroup $ofC=F_{p}^{x}$ with $|H|$ even and $H\neq C$ .
(I) When $|H|=2,4,6$ , we have $ S_{H}=\langle \mathfrak{n}_{H}\rangle$ .
(II) When $23\leq p\leq 499$ and $p\neq 29$ , we have $S_{H,q}=(\mathfrak{n}_{H}\rangle_{q}$ for some odd

prime factor $q$ of $h_{p}^{-}$ .
(III) For a pnme factor $q$ of $h_{p}^{-}$ with $q\Vert h_{p}^{-}$ , we have $S_{H,q}=(\mathfrak{n}_{H}\rangle_{q}$ for any

$H$ .

For the assertions (I) and (II), see Theorem 2(III) and Proposition 3 of [10],
and for (III), see Corollary 2 of [9]. For prime numbers $p$ with $23\leq p<2^{10}$ , it
is known that $q\Vert h_{p}^{-}$ for some odd prime number $q$ except for the case where
$p=29,31$ or 41 (see the table of Yamamura [14]). Therefore, Theorem 1 is an
immediate $nsequence$ of Theorem 2 and Lemma 1.
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3. Consequences of McCulloh’s theorem

To study Hilbert-Speiser number fields, the theorem of McCulloh [12] men-
tioned in Section 1 plays a fundamental role. In this section, we recall some
consequences of the theorem. For a number field $F$ and an integer $a\in \mathcal{O}_{F}$ , let
$Cl_{F,a}$ be the ray class group of $F$ defined modulo the integral ideal $a\mathcal{O}_{F}$ , where
$O_{F}$ is the ring of integers of $F$ . In particular, $Cl_{F}=Cl_{F,1}$ is the absolute class
group of $F$ . Let $\mathcal{O}_{F}^{x}$ be the group of units of $F$ , and let $[O_{F}^{x}]_{p}=O_{F}^{x}$ mod $p$

be the subgroup of the multiplicative group $(\mathcal{O}_{F}/p)^{x}$ consisting of the classes
containing a unit of $F$ . The quotient $(\mathcal{O}_{F}/p)^{\times}/[\mathcal{O}_{F}^{x}]_{p}$ is a subgroup of the ray
class group $Cl_{F,p}$ . The following is the necessary condition for $(H_{p})$ mentioned
in Section 1.

LEMMA 2. ([3, Corollary 7]). If $F$ satisfies the condition $(H_{p})$ , then the p-part
of $(\mathcal{O}_{F}/p)^{x}/[\mathcal{O}_{F}^{x}]_{p}$ is trivial.

LEMMA 3. ([8, Theorem 5]). Let $F$ be a number field, and let $K=F(\zeta_{p})$ and
$H=Ga1(K/F)\subseteq C$ . If $F$ satisfies $(H_{p})$ , then

$Cl_{K,\pi}^{S_{H}}=\{0\}$ and $Cl_{K,p}^{H}\cap Cl_{K,p}^{S_{H}}=\{0\}$ .
Here, $\pi=\zeta_{p}-1$ , and $Cl_{K,p}^{H}$ is the Galois invariant part. In particular, $S_{H}$ kills
$Cl_{K}$ if $F$ satisfies $(H_{p})$ .

REMARK 2. It is known that the converse of Lemma 3 holds when $p=3$
([7, Theorem 3]).

4. Proof of Theorem 2

The following lemma is quite easy to show.

LEMMA 4. For an integer $n\geq 2$ , let $C_{n}$ be a cyclic group of order $n$ . Let $q$

be an odd $p$rime number, and let $\Gamma=C_{q}^{\oplus s}$ with $s\geq 1$ . Letting $C_{2}$ act on $\Gamma$ via
$(-1)$ -multiplication, let $G$ be the semi-direct product of $\Gamma$ and $C_{2}$ with $\Gamma$ normal
in G. Let $J$ be an element of $G$ of order 2. Then, all elements of $G$ of order 2
are given by

$ J_{\gamma}=\gamma^{-1}J\gamma$ with $\gamma\in\Gamma$ ,

and $J_{\gamma}\neq J_{\gamma^{\prime}}$ for $\gamma\neq\gamma^{\prime}$ .

Let $p$ be a prime number with $p\geq 23$ and $p\neq 29$ . Let $k=Q(\zeta_{p})$ , and $k^{+}$

its maximal real subfield. Let $Cl_{k}^{-}$ be the minus class group of $k$ . Let $q$ be an
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odd prime number dividing $h_{p}^{-}$ , and let $M_{q}^{-}/k$ be the class field corresponding
to the class group $Cl_{k}^{-}/(Cl_{k}^{-})^{q}$ . Then, $M_{q}^{-}$ is Galois over any subfield of $k$ . We
easily see that there exists an extension $E^{+}/k^{+}$ such that $E^{+}\cap k=k^{+}$ and
$E^{+}k=M_{q}^{-}$ . Of course, such an extension $E^{+}/k^{+}$ is not uniquely determined.
Let $q^{s}=[M_{q}^{-} : k]$ .

LEMMA 5. The unique prime ideal $\wp$ of $k^{+}$ over $p$ is decomposed in $E^{+}$ as

$\wp=\wp_{1}(\wp_{2}\cdots\wp_{(q+1)/2})^{2}$ ,

where $\wp_{i}s$ are prime ideals of $E^{+}$ of absolute degree one.

Proof. Let $G=Ga1(M_{q}^{-}/k^{+})$ and $\Gamma=Ga1(M_{q}^{-}/k)$ . Then, $G$ is the semi-direct
product of $\Gamma$ and $C_{2}=Ga1(k/k^{+})$ with $C_{2}$ acting on $\Gamma$ via (-l)-multiplication.
Let $\tilde{\wp}$ be the unique prime ideal of $k$ over $p$ . As $\tilde{\wp}$ is principal, it completely
decomposes in $M_{q}^{-}$ . Let as be a prime ideal of $M_{q}^{-}$ over $\overline{\wp}$ . Then, all the primes
of $M_{q}^{-}$ over $p$ are given by $\mathfrak{P}^{\gamma}$ with $\gamma\in\Gamma$ . Let $T_{\gamma}$ be the inertia group of $\mathfrak{P}^{\gamma}$ over
$k^{+}$ , and let $T=T_{e}$ where $e$ is the identity of F. Clearly, $|T_{\gamma}|=2$ . By Lemma 4,
the groups $ T_{\gamma}=\gamma^{-1}T\gamma$ with $\gamma\in\Gamma$ are all the subgroups of $G$ of order 2, and
$T_{\gamma}\neq T_{\gamma^{\prime}}$ for $\gamma\neq\gamma^{\prime}$ . Hence, we have $T=Ga1(M_{q}^{-}/E^{+})$ for a suitable choice of
$\mathfrak{P}$ . It follows that the prime $\mathfrak{P}\cap O_{E+}$ is unramified over $k^{+}$ , and that for $\gamma\neq e$ ,
$\mathfrak{P}^{\gamma}\cap \mathcal{O}_{E+}$ is ramified over $k^{+}$ with ramification index 2 as $T_{\gamma}\neq T$ . From this,
we obtain the assertion since $\mathfrak{P}$ is of absolute degree one. $\square $

LEMMA 6. Let $k_{0}$ be a subfield of $k^{+}$ . Let $E_{0}/k_{0}$ be an extension such that
$E_{0}\cap k=k_{0}$ and $E_{0}k=M_{q}^{-}$ . Then, there enist exactly one real pmme and
$(q^{s}-1)/2$ complex $p$rimes of $E_{0}$ over each real prime of $k_{0}$ .

Proof. Let $G=Ga1(M_{q}^{-}/k_{0}),$ $\Gamma=Ga1(M_{q}^{-}/k)$ and $H=Ga1(M_{q}^{-}/E_{0})$ . An
element $g\in G$ is uniquely written as $g=\gamma h$ for $\gamma\in\Gamma$ and $h\in H$ . Let $\infty 0$ be
a real prime of $k_{0}$ , and let $\varphi$ : $M_{q}^{-}c\rightarrow C$ be an embedding corresponding to an
extension 66 of $\infty 0$ to $M_{q}^{-}$ . Then, the set of infinite primes of $M_{q}^{-}$ over $\infty 0$ is

$\{\varphi g, j\varphi g|g\in G\}/\sim=\{\varphi\gamma h, j\varphi\gamma h|\gamma\in\Gamma, h\in H\}/\sim$ .

Here, $j$ is the complex conjugation, $and\sim is$ the obvious equivalence. It follows
that the set of infinite primes of $E_{0}$ over $\infty 0$ is

$\{(\varphi\gamma)_{|E_{0}}, (j\varphi\gamma)_{|E_{0}}|\gamma\in\Gamma\}/\sim=\{(\varphi\gamma)_{|E_{O}}|\gamma\in\Gamma\}/\sim$

as $H$ fixes the elements of $E_{0}$ . Let $T_{\gamma}$ be the inertia group over $k_{0}$ of the
infinite prime $[\varphi\gamma]rresponding$ to the embedding $\varphi\gamma$ . As $k_{0}\subseteq k^{+}$ , we have
$T_{\gamma}\subseteq Ga1(M_{q}^{-}/k^{+})$ . Hence, $T_{\gamma}$ equals the inertia group of $[\varphi\gamma]$ over $k^{+}$ . By an
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argument in the proof of Lemma 5, $T_{e}=Ga1(M_{q}^{-}/E_{0}k^{+})\subseteq H$ for a suitable
choice of 66 or $\varphi$ , and $T_{\gamma}\neq T_{e}$ for $\gamma\neq e$ . As $H$ is a cyclic group, the last condition
implies $T_{\gamma}\not\subset H$ . Hence, it follows that the infinite prime of $E_{0}$ corresponding
to the embedding $\varphi_{|E_{O}}$ is real, and the other ones are complex. The assertion
follows from this. $\square $

Proof of Theorem Z. LetF beanumber field, and letK $=F(\zeta_{p})andk_{0}=F\cap k$ .
Put

$H=Ga1(K/F)=Ga1(k/k_{0})\subseteq C=F_{p}^{x}$ .

Assume that $k_{0}$ is nontrivial and real. Then, $|H|=2d$ is even, and let $J$ be the
element of order 2 of $H$ . Clearly, the restriction $J_{|k}$ is the complex conjugation
of $k$ . Let $q$ be an odd prime number dividing $h_{p}^{-}$ . Assume that $S_{H,q}=\langle \mathfrak{n}_{H}\rangle_{q}$ .
Then, by (1), we have

$1-J=(1-\rho)\mathfrak{n}_{H}\in S_{H,q}$ . (2)

Assume further that $F$ satisfies $(H_{p})$ . By Lemma 3, $S_{H}$ annihilates the class
group $Cl_{K}$ . Hence, it follows from (2) that $Cl_{K}(q)^{1-J}=\{0\}$ , where $Cl_{K}(q)$ is
the q-part of $Cl_{K}$ . This implies that the class field $M_{q}^{-}$ of $k$ is contained in $K$ .
Let $E_{0}$ be the subfield of $M_{q}^{-}$ fixed by the automorphisms in $H$ . Then, we see
that $E_{0}\cap k=k_{0}$ and $E_{0}k=M_{q}^{-}$ . Let $n=[F:E_{0}]$ .

Let $\lambda_{1}$ and $\lambda_{2}$ be the p-ranks of the abelian groups $[O_{F}^{x}]_{p}$ and $(O_{F}/p)^{x}$ ,
respectively. In view of Lemma 2, it suMces to show that

$\lambda_{1}<\lambda_{2}$ .

Let $q^{\delta}=[M_{q}^{-} : k]=[E_{0} : k_{0}]$ . By Lemma 6, the number of complex primes of
$F$ is at least

$\lambda_{3}=\frac{p-1}{2d}\times\frac{q^{s}-1}{2}\times n$ .

Therefore, as $\zeta_{p}\not\in F^{x}$ , it follows that

$\lambda_{1}\leq[F : Q]-\lambda_{3}-1=\frac{(p-1)(q^{s}+1)n}{4d}-1$

from the Dirichlet unit theorem. Let $\wp_{0}$ be the unique prime ideal of $k_{0}$ over $p$ ,
and let

$\wp_{0}=\wp_{1}^{e_{1}}\cdots\wp_{r^{r}}^{\epsilon}$
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be the prime decomposition in $E_{0}$ . Here, $\wp_{i}$ is a prime ideal of $E_{0}$ of absolute
degree one, and

$\sum_{i=1}^{r}e_{i}=q^{\epsilon}$ . (3)

By Lemma 5, at least one of $e_{i}$ is even. Hence, we may as well assume that $2|e_{r}$ .
Let

$\wp_{i}=\prod_{j=1}^{g:}\mathfrak{P}_{1j^{j}}^{e}$

be the prime decomposition in $F$ . Here, $N_{F/E_{0}}\mathfrak{P}_{i,j}=\wp_{1}^{f_{i,j}}$ , and

$\sum_{j=1}^{gs}e_{i,j}f_{i,j}=n$ . (4)

Let

$A_{i}=\bigoplus_{j=1}^{9i}(1+\mathfrak{P}_{j}^{\epsilon_{i,j}e_{i}}|)$ for $1\leq i\leq r-1$

and

$A_{r}=\bigoplus_{j=1}^{g_{r}}(1+\mathfrak{P}_{r,j^{J^{e_{r}/2}}}^{e_{r,}})$

and let

$B_{i}=\bigoplus_{j=1}^{g:}(1+\mathfrak{P}_{i,j^{J^{e_{i}(p-1)/2d}}}^{e})(\subseteq A_{i})$

for $1\leq i\leq r$ . The quotient $C_{1}=A_{i}/B_{i}$ is an abelian group of exponent $p$ , and
the product $C_{1}\oplus\cdots\oplus C_{r}$ is naturally contained in $(O_{F}/p)^{x}$ . Hence, it follows
from (3) and (4) that

$\lambda_{2}\geq\sum_{i=1}^{r-1}\sum_{j}e_{i,j}f_{i,j}e_{i}(\frac{p-1}{2d}-1I+\sum_{j}e_{r,j}f_{r,j}e_{r}(\frac{p-1}{2d}-\frac{1}{2})$

$=(\frac{p-1}{2d}-1)q^{s}n+\frac{ne_{r}}{2}\geq(\frac{p-1}{2d}-1)q^{s}n+n$ .

Here, the last inequality holds as $2|e_{r}$ . Therefore, we see that

$\lambda_{2}-\lambda_{1}\geq(\frac{p-1}{4d}-1)(q^{s}-1)n+1>0$

since $p-1\geq 4d$ as $k_{0}\neq Q$ , and we obtain the desired inequality $\lambda_{1}<\lambda_{2}$ . $\square $
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Proof of Proposition. Since the case $\zeta_{p}\in F^{\times}$ is dealt with in [6], we may assume
that $\zeta_{p}\not\in F^{\times}$ . As $k_{0}=F\cap k$ is imaginary, $[k_{0} : Q]=2e$ is even. Let $n=[F:k_{0}]$ .
Let $\lambda_{1}$ and $\lambda_{2}$ be the p-ranks of $[\mathcal{O}_{F}^{x}]_{p}$ and $(\mathcal{O}_{F}/p)^{x}$ , respectively. As $\zeta_{p}\not\in p\times$

we see that $\lambda_{1}\leq en-1$ by the Dirichlet unit theorem. Noting that $p$ is totally
ramified in $k_{0}$ , we easily see that $\lambda_{2}\geq(2e-1)n$ . Therefore, $\lambda_{1}<\lambda_{2}$ , and the
assertion follows from Lemma 2. $\square $
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