YOKOHAMA MATHEMATICAL JOURNAL VOL. 54, 2007

NOTE ON HILBERT-SPEISER NUMBER FIELDS AT A PRIME p

By

HUMIO ICHIMURA

(Received April 13, 2007)

Abstract. Let p be a prime number. A number field F satisfies the Hilbert-Speiser condition (H_p) when any tame cyclic extension N/F of degree p has a normal integral basis. We show that F satisfies (H_p) only when $F \cap Q(\zeta_p) = Q$ under some assumption on p.

1. Introduction

Let p be a prime number. A number field F satisfies the condition (H_p) when any tame cyclic extension N/F of degree p has a normal integral basis. As is well known, the rationals Q satisfy (H_p) for any p by Hilbert and Speiser. On the other hand, Greither *et al.* [3] proved that $F \neq Q$ does not satisfy (H_p) for infinitely many p. Thus, it is of interest to determine which number field satisfies (H_p) or not. They showed the above assertion after deriving, from a theorem of McCulloh [12], a simple necessary condition for F to satisfy (H_p) (see Lemma 2 in Section 3). Using the necessary condition, we showed in [6, Proposition 2] that if $p \geq 5$ and $\zeta_p \in F^{\times}$, then F does not satisfy (H_p) , where ζ_p is a primitive p-th root of unity. For this, see also Herreng [4, Proposition 3.3]. The following more general assertion is easily shown using the necessary condition, and seems to be known to specialists. (Its proof is given at the end of this note.)

PROPOSITION. Let $p \geq 5$ be a prime number. A number field F does not satisfy (H_p) if $F \cap Q(\zeta_p)$ is an imaginary subfield of $Q(\zeta_p)$.

The purpose of this note is to deal with the case where $F \cap Q(\zeta_p)$ is a nontrivial real subfield. The following is a consequence of the main theorem.

THEOREM 1. Let p be a prime number with $23 \leq p < 2^{10}$ and $p \neq 29$. A number field F does not satisfy (H_p) if $F \cap Q(\zeta_p)$ is a nontrivial real subfield of $Q(\zeta_p)$.

²⁰⁰⁰ Mathematics Subject Classification: 11R33, 11R18.

Key words and phrases: Hilbert-Speiser number field, cyclotomic field

From these assertions, we obtain the following:

COROLLARY 1. Let p be as in Theorem 1. Then, a number field F satisfies (H_p) only when $F \cap Q(\zeta_p) = Q$.

Let h_p^- be the relative class number of $Q(\zeta_p)$. In our argument, the existence of an odd prime factor of h_p^- is necessary. The condition $p \ge 23$ is equivalent to $h_p^- > 1$ (see Washington [13, Corollary 11.18]). The case p = 29 is exceptional since h_p^- is a power of 2 if and only if $(p \le 19 \text{ or}) p = 29$ by Horie [5].

REMARK 1. (1) Let p be as in Theorem 1. It is known that any subfield $F \neq Q$ of $Q(\zeta_p)$ does not satisfy (H_p) (see Section 4 of [11]). Corollary 1 is a generalization of this.

(2) Imaginary quadratic fields satisfying (H_p) are determined for p=2, 3, 5, 7and 11 ([1, 7, 11]). The numbers of such imaginary quadratic fields are 3, 4, 2, 1, 0, respectively. At present, we have no example of number fields satisfying (H_p) for $p \ge 11$.

(3) When p = 3, there exists a number field F with $\zeta_3 \in F^{\times}$ satisfying (H_3) . For example, $F = Q(\zeta_3)$ and $F = Q(\zeta_3, \sqrt{-d})$ with d = 1, 2, 11 satisfy (H_3) . For this, see [2, p. 110] and [6, Example 1].

(4) When p = 5, we can show that $F = Q(\sqrt{5})$ satisfies (H_5) using the above mentioned theorem of McCulloh by a hard hand-calculation.

2. Main theorem

To state the main result, we first recall the definition and some properties of Stickelbeger ideals of conductor p. Let p be an odd prime number, and $C = F_p^{\times}$ the multiplicative group of the finite field F_p of p elements. Let S_C be the classical Stickelberger ideal of the group ring Z[C] (for the definition, see [13, Chap. 6]). Let H be an arbitrary subgroup of C. For an element $\alpha \in Z[C]$, let

$$lpha_H = \sum_{\sigma \in H} a_\sigma \sigma \in {oldsymbol Z}[H] \quad ext{with} \quad lpha = \sum_{\sigma \in C} a_\sigma \sigma$$

be the *H*-part of α . We define the Stickelberger ideal \mathcal{S}_H of $\mathbb{Z}[H]$ by

$$\mathcal{S}_H = \{ \alpha_H \mid \alpha \in \mathcal{S}_C \} \subseteq \mathbf{Z}[H].$$

Letting ρ be a generator of the cyclic group H, set

$$\mathfrak{n}_{H} = \begin{cases} 1+\rho+\rho^{2}+\dots+\rho^{|H|/2-1}, & \text{if } |H| \text{ is even} \\ 1, & \text{if } |H| \text{ is odd.} \end{cases}$$
(1)

46

It is known that $S_H \subseteq \langle \mathfrak{n}_H \rangle = \mathfrak{n}_H \mathbb{Z}[H]$ ([10, Lemma 1]). Further, it is known that the quotient $\langle \mathfrak{n}_H \rangle / S_H$ is a finite abelian group whose order divides the relative class number h_p^- and that $[\langle \mathfrak{n}_C \rangle : S_C] = h_p^-$ ([10, Theorem 2]). For a prime number q, let

$$\mathcal{S}_{H,q} = \mathcal{S}_H \otimes \mathbf{Z}_q \ (\subseteq \mathbf{Z}_q[H]) \quad \text{and} \quad \langle \mathfrak{n}_H \rangle_q = \mathfrak{n}_H \mathbf{Z}_q[H].$$

Here, Z_q is the ring of q-adic integers.

Let F be a number field, and $K = F(\zeta_p)$. We regard the Galois group

$$\operatorname{Gal}(K/F) = \operatorname{Gal}(\boldsymbol{Q}(\zeta_p)/F \cap \boldsymbol{Q}(\zeta_p))$$

with a subgroup $H = H_F$ of C through the Galois action on ζ_p . Clearly, the subfield $F \cap Q(\zeta_p)$ of $Q(\zeta_p)$ is real if and only if |H| is even.

Now, the main theorem is stated as follows.

THEOREM 2. Let p be a prime number with $p \ge 23$ and $p \ne 29$. Let F be a number field such that $F \cap Q(\zeta_p)$ is a nontrivial real subfield of $Q(\zeta_p)$, and let $H = H_F$ be as above. Assume that there exists an odd prime factor q of h_p^- satisfying $S_{H,q} = \langle n_H \rangle_q$. Then, F does not satisfy the condition (H_p) .

Combining this with Proposition, we obtain:

COROLLARY 2. Let p be a prime number satisfying the assumption of Theorem 2. Then, F satisfies (H_p) only when $F \cap Q(\zeta_p) = Q$.

For the assumption of Theorem 2, the following assertions are known.

LEMMA 1. Let H be a subgroup of $C = \mathbf{F}_p^{\times}$ with |H| even and $H \neq C$.

(I) When |H| = 2, 4, 6, we have $S_H = \langle \mathfrak{n}_H \rangle$.

(II) When $23 \leq p \leq 499$ and $p \neq 29$, we have $S_{H,q} = \langle \mathfrak{n}_H \rangle_q$ for some odd prime factor q of h_p^- .

(III) For a prime factor q of h_p^- with $q \parallel h_p^-$, we have $S_{H,q} = \langle \mathfrak{n}_H \rangle_q$ for any H.

For the assertions (I) and (II), see Theorem 2(III) and Proposition 3 of [10], and for (III), see Corollary 2 of [9]. For prime numbers p with $23 \le p < 2^{10}$, it is known that $q \parallel h_p^-$ for some odd prime number q except for the case where p = 29, 31 or 41 (see the table of Yamamura [14]). Therefore, Theorem 1 is an immediate consequence of Theorem 2 and Lemma 1.

3. Consequences of McCulloh's theorem

To study Hilbert-Speiser number fields, the theorem of McCulloh [12] mentioned in Section 1 plays a fundamental role. In this section, we recall some consequences of the theorem. For a number field F and an integer $a \in \mathcal{O}_F$, let $Cl_{F,a}$ be the ray class group of F defined modulo the integral ideal $a\mathcal{O}_F$, where \mathcal{O}_F is the ring of integers of F. In particular, $Cl_F = Cl_{F,1}$ is the absolute class group of F. Let \mathcal{O}_F^{\times} be the group of units of F, and let $[\mathcal{O}_F^{\times}]_p = \mathcal{O}_F^{\times} \mod p$ be the subgroup of the multiplicative group $(\mathcal{O}_F/p)^{\times}$ consisting of the classes containing a unit of F. The quotient $(\mathcal{O}_F/p)^{\times}/[\mathcal{O}_F^{\times}]_p$ is a subgroup of the ray class group $Cl_{F,p}$. The following is the necessary condition for (H_p) mentioned in Section 1.

LEMMA 2. ([3, Corollary 7]). If F satisfies the condition (H_p) , then the p-part of $(\mathcal{O}_F/p)^{\times}/[\mathcal{O}_F^{\times}]_p$ is trivial.

LEMMA 3. ([8, Theorem 5]). Let F be a number field, and let $K = F(\zeta_p)$ and $H = \text{Gal}(K/F) \subseteq C$. If F satisfies (H_p) , then

$$Cl_{K,\pi}^{S_H} = \{0\} \text{ and } Cl_{K,\mu}^H \cap Cl_{K,\mu}^{S_H} = \{0\}.$$

Here, $\pi = \zeta_p - 1$, and $Cl_{K,p}^H$ is the Galois invariant part. In particular, S_H kills Cl_K if F satisfies (H_p) .

REMARK 2. It is known that the converse of Lemma 3 holds when p = 3 ([7, Theorem 3]).

4. Proof of Theorem 2

The following lemma is quite easy to show.

LEMMA 4. For an integer $n \geq 2$, let C_n be a cyclic group of order n. Let q be an odd prime number, and let $\Gamma = C_q^{\oplus s}$ with $s \geq 1$. Letting C_2 act on Γ via (-1)-multiplication, let G be the semi-direct product of Γ and C_2 with Γ normal in G. Let J be an element of G of order 2. Then, all elements of G of order 2 are given by

$$J_{\gamma} = \gamma^{-1} J \gamma$$
 with $\gamma \in \Gamma$,

and $J_{\gamma} \neq J_{\gamma'}$ for $\gamma \neq \gamma'$.

Let p be a prime number with $p \ge 23$ and $p \ne 29$. Let $k = Q(\zeta_p)$, and k^+ its maximal real subfield. Let Cl_k^- be the minus class group of k. Let q be an

48

odd prime number dividing h_p^- , and let M_q^-/k be the class field corresponding to the class group $Cl_k^-/(Cl_k^-)^q$. Then, M_q^- is Galois over any subfield of k. We easily see that there exists an extension E^+/k^+ such that $E^+ \cap k = k^+$ and $E^+k = M_q^-$. Of course, such an extension E^+/k^+ is not uniquely determined. Let $q^s = [M_q^-:k]$.

LEMMA 5. The unique prime ideal \wp of k^+ over p is decomposed in E^+ as

$$\wp = \wp_1 \left(\wp_2 \cdots \wp_{(q^s+1)/2} \right)^2,$$

where p_i 's are prime ideals of E^+ of absolute degree one.

Proof. Let $G = \operatorname{Gal}(M_q^-/k^+)$ and $\Gamma = \operatorname{Gal}(M_q^-/k)$. Then, G is the semi-direct product of Γ and $C_2 = \operatorname{Gal}(k/k^+)$ with C_2 acting on Γ via (-1)-multiplication. Let $\tilde{\wp}$ be the unique prime ideal of k over p. As $\tilde{\wp}$ is principal, it completely decomposes in M_q^- . Let \mathfrak{P} be a prime ideal of M_q^- over $\tilde{\wp}$. Then, all the primes of M_q^- over p are given by \mathfrak{P}^{γ} with $\gamma \in \Gamma$. Let T_{γ} be the inertia group of \mathfrak{P}^{γ} over k^+ , and let $T = T_e$ where e is the identity of Γ . Clearly, $|T_{\gamma}| = 2$. By Lemma 4, the groups $T_{\gamma} = \gamma^{-1}T\gamma$ with $\gamma \in \Gamma$ are all the subgroups of G of order 2, and $T_{\gamma} \neq T_{\gamma'}$ for $\gamma \neq \gamma'$. Hence, we have $T = \operatorname{Gal}(M_q^-/E^+)$ for a suitable choice of \mathfrak{P} . It follows that the prime $\mathfrak{P} \cap \mathcal{O}_{E^+}$ is unramified over k^+ , and that for $\gamma \neq e$, $\mathfrak{P}^{\gamma} \cap \mathcal{O}_{E^+}$ is ramified over k^+ with ramification index 2 as $T_{\gamma} \neq T$. From this, we obtain the assertion since \mathfrak{P} is of absolute degree one. \Box

LEMMA 6. Let k_0 be a subfield of k^+ . Let E_0/k_0 be an extension such that $E_0 \cap k = k_0$ and $E_0k = M_q^-$. Then, there exist exactly one real prime and $(q^s - 1)/2$ complex primes of E_0 over each real prime of k_0 .

Proof. Let $G = \operatorname{Gal}(M_q^-/k_0)$, $\Gamma = \operatorname{Gal}(M_q^-/k)$ and $H = \operatorname{Gal}(M_q^-/E_0)$. An element $g \in G$ is uniquely written as $g = \gamma h$ for $\gamma \in \Gamma$ and $h \in H$. Let ∞_0 be a real prime of k_0 , and let $\varphi : M_q^- \hookrightarrow C$ be an embedding corresponding to an extension $\widetilde{\infty}$ of ∞_0 to M_q^- . Then, the set of infinite primes of M_q^- over ∞_0 is

$$\{\varphi g, j\varphi g \mid g \in G\}/\sim = \{\varphi \gamma h, j\varphi \gamma h \mid \gamma \in \Gamma, h \in H\}/\sim$$
.

Here, j is the complex conjugation, and \sim is the obvious equivalence. It follows that the set of infinite primes of E_0 over ∞_0 is

$$\{(\varphi\gamma)_{|E_0}, (j\varphi\gamma)_{|E_0} \mid \gamma \in \Gamma\} / \sim = \{(\varphi\gamma)_{|E_0} \mid \gamma \in \Gamma\} / \sim$$

as H fixes the elements of E_0 . Let T_{γ} be the inertia group over k_0 of the infinite prime $[\varphi\gamma]$ corresponding to the embedding $\varphi\gamma$. As $k_0 \subseteq k^+$, we have $T_{\gamma} \subseteq \operatorname{Gal}(M_q^-/k^+)$. Hence, T_{γ} equals the inertia group of $[\varphi\gamma]$ over k^+ . By an

argument in the proof of Lemma 5, $T_e = \operatorname{Gal}(M_q^-/E_0k^+) \subseteq H$ for a suitable choice of $\widetilde{\infty}$ or φ , and $T_{\gamma} \neq T_e$ for $\gamma \neq e$. As H is a cyclic group, the last condition implies $T_{\gamma} \not\subseteq H$. Hence, it follows that the infinite prime of E_0 corresponding to the embedding $\varphi_{|E_0}$ is real, and the other ones are complex. The assertion follows from this. \Box

Proof of Theorem 2. Let F be a number field, and let $K = F(\zeta_p)$ and $k_0 = F \cap k$. Put

$$H = \operatorname{Gal}(K/F) = \operatorname{Gal}(k/k_0) \subseteq C = F_n^{\times}.$$

Assume that k_0 is nontrivial and real. Then, |H| = 2d is even, and let J be the element of order 2 of H. Clearly, the restriction $J_{|k}$ is the complex conjugation of k. Let q be an odd prime number dividing h_p^- . Assume that $S_{H,q} = \langle \mathfrak{n}_H \rangle_q$. Then, by (1), we have

$$1 - J = (1 - \rho)\mathfrak{n}_H \in \mathcal{S}_{H,q}.$$
(2)

Assume further that F satisfies (H_p) . By Lemma 3, S_H annihilates the class group Cl_K . Hence, it follows from (2) that $Cl_K(q)^{1-J} = \{0\}$, where $Cl_K(q)$ is the q-part of Cl_K . This implies that the class field M_q^- of k is contained in K. Let E_0 be the subfield of M_q^- fixed by the automorphisms in H. Then, we see that $E_0 \cap k = k_0$ and $E_0 k = M_q^-$. Let $n = [F : E_0]$.

Let λ_1 and λ_2 be the *p*-ranks of the abelian groups $[\mathcal{O}_F^{\times}]_p$ and $(\mathcal{O}_F/p)^{\times}$, respectively. In view of Lemma 2, it suffices to show that

$$\lambda_1 < \lambda_2$$
.

Let $q^s = [M_q^- : k] = [E_0 : k_0]$. By Lemma 6, the number of complex primes of F is at least

$$\lambda_3 = \frac{p-1}{2d} \times \frac{q^s - 1}{2} \times n.$$

Therefore, as $\zeta_p \notin F^{\times}$, it follows that

$$\lambda_1 \leq [F: \boldsymbol{Q}] - \lambda_3 - 1 = rac{(p-1)(q^s+1)n}{4d} - 1$$

from the Dirichlet unit theorem. Let \wp_0 be the unique prime ideal of k_0 over p, and let

$$\wp_0 = \wp_1^{e_1} \cdots \wp_r^{e_r}$$

be the prime decomposition in E_0 . Here, \wp_i is a prime ideal of E_0 of absolute degree one, and

$$\sum_{i=1}^{r} e_i = q^s. \tag{3}$$

By Lemma 5, at least one of e_i is even. Hence, we may as well assume that $2|e_r$. Let

$$\wp_i = \prod_{j=1}^{g_i} \mathfrak{P}_{i,j}^{e_{i,j}}$$

be the prime decomposition in F. Here, $N_{F/E_0}\mathfrak{P}_{i,j} = \wp_i^{f_{i,j}}$, and

$$\sum_{j=1}^{g_i} e_{i,j} f_{i,j} = n.$$
 (4)

Let

$$A_i = \bigoplus_{j=1}^{g_i} \left(1 + \mathfrak{P}_{i,j}^{e_{i,j}e_i} \right) \quad \text{for } 1 \le i \le r-1$$

and

$$A_r = \bigoplus_{j=1}^{g_r} \left(1 + \mathfrak{P}_{r,j}^{e_{r,j}e_r/2} \right),$$

and let

$$B_i = \bigoplus_{j=1}^{g_i} \left(1 + \mathfrak{P}_{i,j}^{e_{i,j}e_i(p-1)/2d} \right) \ (\subseteq A_i)$$

for $1 \leq i \leq r$. The quotient $C_i = A_i/B_i$ is an abelian group of exponent p, and the product $C_1 \oplus \cdots \oplus C_r$ is naturally contained in $(\mathcal{O}_F/p)^{\times}$. Hence, it follows from (3) and (4) that

$$\lambda_{2} \geq \sum_{i=1}^{r-1} \sum_{j} e_{i,j} f_{i,j} e_{i} \left(\frac{p-1}{2d} - 1 \right) + \sum_{j} e_{r,j} f_{r,j} e_{r} \left(\frac{p-1}{2d} - \frac{1}{2} \right)$$
$$= \left(\frac{p-1}{2d} - 1 \right) q^{s} n + \frac{ne_{r}}{2} \geq \left(\frac{p-1}{2d} - 1 \right) q^{s} n + n.$$

Here, the last inequality holds as $2|e_r$. Therefore, we see that

$$\lambda_2 - \lambda_1 \ge \left(\frac{p-1}{4d} - 1\right)(q^s - 1)n + 1 > 0$$

since $p-1 \ge 4d$ as $k_0 \neq Q$, and we obtain the desired inequality $\lambda_1 < \lambda_2$. \Box

Proof of Proposition. Since the case $\zeta_p \in F^{\times}$ is dealt with in [6], we may assume that $\zeta_p \notin F^{\times}$. As $k_0 = F \cap k$ is imaginary, $[k_0 : \mathbf{Q}] = 2e$ is even. Let $n = [F : k_0]$. Let λ_1 and λ_2 be the *p*-ranks of $[\mathcal{O}_F^{\times}]_p$ and $(\mathcal{O}_F/p)^{\times}$, respectively. As $\zeta_p \notin F^{\times}$, we see that $\lambda_1 \leq en - 1$ by the Dirichlet unit theorem. Noting that p is totally ramified in k_0 , we easily see that $\lambda_2 \geq (2e - 1)n$. Therefore, $\lambda_1 < \lambda_2$, and the assertion follows from Lemma 2. \Box

Acknowledgement. The author was partially supported by Grant-in-Aid for Scientific Research (C), No. 19540005, Japan Society for the Promotion of Science.

References

- J. E. Carter, Normal integral bases in quadratic and cyclic cubic extensions of a quadratic field, Arch. Math. (Basel), 81 (2003), 266-271, Erratum, ibid., 83 (2004), vol.6, vi-vii.
- [2] E. J. Gómez Ayala, Bases normales d'entiers dans les extensions de Kummer de degré premier, J. Théor. Nombres Bordeaux, 6 (1994), 95-116.
- [3] C. Greither, D. R. Replogle, K. Rubin and A. Srivastav, Swan modules and Hilbert-Speiser number fields, J. Number Theory, 79 (1999), 164-173.
- [4] T. Herreng, Sur les corps de Hilbert-Speiser, J. Théor. Nombres Bordeaux, 17 (2005), 767-778.
- [5] K. Horie, On the class numbers of cyclotomic fields, Manuscripta Math., 65 (1989), 465-477.
- [6] H. Ichimura, Note on the ring of integers of a Kummer extension of prime degree, V, Proc. Japan Acad., 78A (2002), 76-79.
- [7] H. Ichimura, Normal integral bases and ray class groups, Acta Arith., 114 (2004), 71-85.
- [8] H. Ichimura, Normal integral bases and ray class groups, II, Yokohama Math. J., 53 (2006), 75-81.
- [9] H. Ichimura, Triviality of Stickelberger ideals of conductor p, J. Math. Sci. Univ. Tokyo, 13 (2006), 617-628.
- [10] H. Ichimura and H. Sumida-Takahashi, Stickelberger ideals of conductor p and their application, J. Math. Soc. Japan, 58 (2006), 885-902.
- [11] H. Ichimura and H. Sumida-Takahashi, Imaginary quadratic fields satisfying the Hilbert-Speiser type condition for a small prime p, Acta Arith., **127** (2007), 179–191.
- [12] L. R. McCulloh, Galois module structure of elementary abelian extensions, J. Algebra, 82 (1983), 102-134.
- [13] L. C. Washington, Introduction to Cyclotomic Fields (2nd ed.), Springer, New York, 1997.
- [14] K. Yamamura, Table of relative class numbers of imaginary abelian number fields of prime power conductors ≤ 2¹⁰ = 1024, available at ftp://tnt.math.metro-u.ac.jp/pub/table/rcn/.

Faculty of Science, Ibaraki University Bunkyo 2-1-1, Mito, 310-8512, Japan E-mail: hichimur@mx.ibaraki.ac.jp