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Abstract. In this paper we $8how$ how to calculate explicitly the exponential
of certain matrices, which are evolution operators governing the interaction of
the four level system of $atom8$ and the radiation, etc. We present a consistent
method in terms of the magic matrix by Makhlin.
As a closely related $8ubject$ , we derive a closed form expression of the Baker-
Campbell-Hausdorff formula for a class of matrices in $SU(4)$ , by use of the method
developed by the present $author8$ in $quant-ph/0610009$ .

1. Introduction

The purpose of this paper is to develop a useful method to calculate the
exponential of certain matrices explicitly. These matrices arise from differential
equations governing the interaction of the four level system of atoms with the
radiation whose image is illustrated in Figure 1.

For the general background, motivation and possible applications of the
present work, see the recent work of the author and collaborators [1], [2] and
[3]. Under the RWA (–Rotating Wave $\lrcorner A$)$proximation$) and some resonance con-
ditions the problem is reduced to the evaluation of the exponential (i.e. finite
time evolution operator) $e^{-itH}$ with the Hamiltonian

$H=\left(\begin{array}{llll}0 & h_{l2} & h_{l3} & h_{l4}\\h_{l2} & 0 & h_{23} & h_{24}\\h_{l3} & h_{23} & 0 & h_{34}\\h_{l4} & h_{24} & h_{34} & 0\end{array}\right)$ ,

where $h_{ij}$ are real coupling constants between the atom and laser fields. Here we
have changed some notation from the previous one in [2] (like $g_{ij}\leftrightarrow h_{i-1,j-1}$ )
for convenience. A generic algorithm to calculate $e^{-itH}$ based on eigenvalues of
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Figure 1 Atom with four energy levels and general action by laser fields

the Hamiltonian $H$ has been given by us in [2], although the actual execution is
not so simple.

In this paper we revisit the problem from a different point of view. Let us
introduce Makhlin’s $threm$ . The isomorphism

$SU(2)\otimes SU(2)\cong SO(4)$ $(\Leftrightarrow su(2)\otimes 1_{2}+1_{2}\otimes su(2)\cong so(4))$

is one of the well-known theorems in elementary representation theory and is
characteristic of four dimensional Euclidean space. In [4] Makhlin gave it the
adjoint expression explicitly:

$F:SU(2)\otimes SU(2)\rightarrow SO(4)$ , $F(A\otimes B)=Q^{\dagger}(A\otimes B)Q$ ,

with some unitary matrix $Q\in U(4)$ . As far as we know this is the first time that
the map was realized by the adjoint action. See also [5], where a slightly different
matrix $R$ has been used in place of $Q$ . This $R$ (in our notation) is interesting
enough and is called the magic matrix by Makhlin, see also [6] and [7].

As the Hamiltonian $H$ above is real symmetric $(\in su(4))$ (not anti-symmetric
$(\in so(4)))$ it is not obvious whether the magic matrix $R$ could be applied to it
or not. As we will show presently, a fairly wide sub-class of such Hamiltonians
can be explicitly exponentiated with the help of the magic matrix and an addi-
tional similarity transformation. For the generic Hamiltonian $H$ , we provide an
approximate result of explicit exponentiation.

Here we note that there is some overlap between our work and [7]. However,
the methods given in [7] are quite varied and rather complicated. On the other
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hand ours rely on a consistent use of the magic matrix, so we believe our method
could be easily digested by general readers, though the scope might be limited.

As a closely related subject, we discuss the Baker-Campbell-Hausdorff (B-C-
H) formula. It is one of the fundamental theorems in elementary Linear Algebra
(or Lie group):

$e^{A}e^{B}=e^{BCH(A,B)}$ ;

$ BCH(A, B)=A+B+\frac{1}{2}[A, B]+\frac{1}{12}\{[[A, B], B]+[A, [A, B]]\}+\cdots$ ,

where $A$ and $B$ are elements of some algebra. See for example the textbooks
[8], [9] or [10]. A closed expression for the B-C-H formula for $SU(2)$ is quite
well-known. Similar closed expression is obtained for $SO(4)$ (namely, for $A,$ $ B\in$

$so(4))$ by making use of the magic matrix, see [2].
Here we address the problem of explicit summation of the right hand side of

the B-C-H formula for certain lower dimensional matrices, in particular, those
related to $su(4)$ .

In this paper we treat matrices of type

$H=\left(\begin{array}{llll}0 & h_{l2} & 0 & h_{14}\\h_{12} & 0 & h_{23} & 0\\0 & h_{23} & 0 & h_{34}\\h_{14} & 0 & h_{34} & 0\end{array}\right)$ ,

which are very important in quantum optics, quantum computation, etc. (see
[1]). We will derive its exact exponential form $e^{-itH}$ and will present a closed
form expression of the B-C-Hformula for two of them.

2. Magic Matrix

In this section we introduce appropriate concepts and notation together with
a brief review of the results in [5] within our necessity, which look slightly different
from the original work of Makhlin in [4].

The l-qubit space is $C^{2}=Vect_{C}\{|0\rangle, |1\rangle\}$ where

$|0\rangle=\left(\begin{array}{l}1\\0\end{array}\right)$ $|1\rangle$ $=\left(\begin{array}{l}0\\1\end{array}\right)$ . (1)

Let $\{\sigma_{1}, \sigma_{2}, \sigma_{3}\}$ be the Pauli matrices acting on the space

$\sigma_{1}=\left(\begin{array}{ll}0 & 1\\1 & 0\end{array}\right)$ , $\sigma_{2}=\left(\begin{array}{ll}0 & -i\\i & 0\end{array}\right)$ , $\sigma_{3}=\left(\begin{array}{ll}1 & 0\\0 & -1\end{array}\right)$ and $1_{2}=\left(\begin{array}{ll}1 & 0\\0 & 1\end{array}\right)$ .
(2)
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Next let us consider the 2-qubit space. Now we use the tensor product
notation which is different from the usual one. That is,

$C^{2}\otimes C^{2}=\{a\otimes b|a, b\in C^{2}\}$ ,

$C^{2_{\otimes}^{\wedge}}C^{2}=\{\sum_{j=1}^{k}\lambda_{j}a_{j}\otimes b_{j}|a_{j},$ $b_{j}\in C^{2},$ $\lambda_{j}\in C,$ $k\in N\}\cong C^{4}$ .

Then the 2-qubit space is

$C^{2_{\otimes}^{\wedge}}C^{2}=Vect_{C}\{|00\rangle, |01\rangle, |10), |11\rangle\}$ ,

where I $ ab\rangle$ $=|a\rangle$ $\otimes|b\rangle$ $(a, b\in\{0,1\})$ . The Bell basis $\{|\Psi_{1}\rangle, |\Psi_{2}\rangle, |\Psi_{3}\rangle, |\Psi_{4}\rangle\}$

defined by

$|\Psi_{1}\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle),$ $|\Psi_{2}\rangle$ $=\frac{1}{\sqrt{2}}(|01\rangle+|10\rangle)$ ,
(3)

$|\Psi_{3}\rangle=\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle),$ $|\Psi_{4}\rangle$ $=\frac{1}{\sqrt{2}}(|00\rangle-|11\rangle)$

plays an important role in various $ntext$ .
By $H_{0}(2;C)$ we denote the set of all traceless hermitian matrices in $M(2;C)$ .

It is well-known that they are spanned by the Pauli matrices

$H_{0}(2;C)=$ {a $\equiv a_{1}\sigma_{1}+a_{2}\sigma_{2}+a_{3}\sigma_{3}|a_{1},$ $a_{2},$ $a_{3}\in R$}

and $H_{0}(2;C)\cong su(2)$ where $su(2)=\mathcal{L}(SU(2))$ is the Lie algebra of the group
$SU(2)$ .

The isomorphism is realized as the adjoint action (the Makhlin’s $threm$) as
follows

$F:SU(2)\otimes SU(2)\rightarrow SO(4)$ , $F(A\otimes B)=R^{\uparrow}(A\otimes B)R$

where

$R\equiv(|\Psi_{1}\rangle, -i|\Psi_{2}\rangle, -|\Psi_{3}\rangle, -i|\Psi_{4}\rangle)=\frac{1}{\sqrt{2}}\left(\begin{array}{llll}1 & 0 & 0 & -i\\0 & -i & -1 & 0\\0 & -i & 1 & 0\\1 & 0 & 0 & i\end{array}\right)$ . (4)

Note that the unitary matrix $R$ is a bit different from $Q$ in [4].

Let us consider this isomorphism at the Lie algebra level because it is in
general easier than at the Lie group level:
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$L(SU(2)\otimes SU(2))$

exp $\downarrow$

$SU(2)\otimes SU(2)$

$f$

$L(SO(4))$

$\downarrow$ exp

$SO(4)$

$F$

Since the Lie algebra of $SU(2)\otimes SU(2)$ is

$\mathcal{L}(SU(2)\otimes SU(2))=su(2)\otimes 1_{2}+1_{2}\otimes su(2)$

$=\{i(a\otimes 1_{2}+1_{2}\otimes b)|a, b\in H_{0}(2;C)\}$ ,

we have only to examine

$f(i(a\otimes 1_{2}+1_{2}\otimes b))=iR^{t}(a\otimes 1_{2}+1_{2}\otimes b)R\in \mathcal{L}(SO(4))\equiv so(4)$ . (5)

If we set $a=\sum_{j=1}^{3}a_{j}\sigma_{j}$ and $b=\sum_{j=1}^{3}b_{j}\sigma_{j}$ then the right hand side of (5) reads

$iR^{\uparrow}(a\otimes 1_{2}+1_{2}\otimes b)R$

$=(-(a_{3}+b_{3})-(a_{2}-b_{2})-(a_{1}+b_{1})0$ $-(a_{3}-b_{3})a_{2}+b_{2}a_{1}+b_{1}0$

Conversely, if

$A=(-f_{14}-f_{13}-f_{12}0$ $-f_{24}-f_{23}f_{12,0}$

then we obtain

$-(a_{1}-b_{1})a_{3}-b_{3}a_{2}-b_{2}0$ $-(a_{2}+b_{2})a_{1}-b_{1}a_{3}+b_{3}0)$ . (6)

$-f_{34}f_{23}f_{13}0$ $f_{34}f_{24}f_{14}0)\in so(4)$

$RAR\dagger=i(a\otimes 1_{2}+1_{2}\otimes b)$ (7)

with

a $=a_{1}\sigma_{1}+a_{2}\sigma_{2}+a_{3}\sigma_{3}=\frac{f_{12}+f_{34}}{2}\sigma_{1}+\frac{f_{13}-f_{24}}{2}\sigma_{2}+\frac{f_{14}+f_{23}}{2}\sigma_{3}$ , (8)

$b=b_{1}\sigma_{1}+b_{2}\sigma_{2}+b_{3}\sigma_{3}=\frac{f_{12}-f_{34}}{2}\sigma_{1}-\frac{f_{13}+f_{24}}{2}\sigma_{2}+\frac{f_{14}-f_{23}}{2}\sigma_{3}$ . (9)
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It is very interesting to note that a and $b$ are the self-dual and anti-self-dual part
of the matrix $A$ , respectively, under the $Hodge*$-operation defined by $(*F)_{ij}=$

$\frac{1}{2}\sum_{k,l=1}^{4}\epsilon_{ijk\ell}F_{k\ell}$ . Here $\epsilon_{ijk\ell}$ is the totally anti-symmetric tensor with $\epsilon_{1234}=1$ .

3. The Exponential of Matrices in Four Level System

This section provides the main results of the paper, explicit calculation of the
exponential of certain matrices. The generic Hamiltonian treated in this paper
is a real symmetric $4\times 4$ matrix with vanishing diagonal elements

$H=\left(\begin{array}{llll}0 & h_{l2} & h_{l3} & h_{l4}\\h_{l2} & 0 & h_{23} & h_{24}\\h_{l3} & h_{23} & 0 & h_{34}\\h_{l4} & h_{24} & h_{34} & 0\end{array}\right)$ , $h_{ij}\in R$ . (10)

The general method is quite simple: evaluate the evolution operator (matrix)
$U(t)\equiv e^{-itH}$ by unitary conjugation of the Hamiltonian $H$ in terms of the magic
matrix $R$ :

$U(t)=e^{-itH}=RR^{\uparrow}e^{-itH}RR^{\uparrow}=Re^{-itR^{\uparrow}HR}R^{t}$ . (11)

The conjugated Hamiltonian $R^{\uparrow}HR$ reads explicitly

$ R^{t}HR=\frac{1}{2}\times$

$\left(\begin{array}{lll}-2h_{14}i(h_{12}+h_{13}+h_{24}+h_{34}) & -h_{12}+h_{13}-h_{24}+h_{34} & 0\\i(h_{12}+h_{13}+h_{24}+h_{34}) & 2h_{23} 0 & h_{12}+h_{13}-h_{24}-h_{34}\\-h_{12}+h_{13}-h_{24}+h_{34} & -02h_{23} & i(h_{12}-h_{13}-h_{24}+h_{34})\\0 & h_{12}+h_{13}-h_{24}-h_{34} & -i(h_{12}-h_{13}-h_{24}+h_{34}) -2h_{14}\end{array}\right)$

(12)

whose structure is better displayed in the following tensor product notation

$R^{\dagger}HR$

$=(\frac{h_{13}-h_{24}}{2}\sigma_{1}+\frac{h_{14}+h_{23}}{2}\sigma_{3})\otimes 1_{2}+1_{2}\otimes(\frac{h_{13}+h_{24}}{2}\sigma_{2}+\frac{h_{14}-h_{23}}{2}\sigma_{3})$

$+\frac{h_{12}+h_{34}}{2}\sigma_{3}\otimes\sigma_{2}-\frac{h_{12}-h_{34}}{2}\sigma_{1}\otimes\sigma_{3}$ . (13)

Obviously the first two terms commute with each other and the last two terms
$\sigma_{3}\otimes\sigma_{2}$ and $\sigma_{1}\otimes\sigma_{3}$ also commute. The right hand side of (13) is a summation
of two blocks not commuting each other.

A few comments are in order.
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(1) In the calculation above we have used $R^{\uparrow}HR$ in stead of $RHR^{\uparrow}$ in (7). This
point is important (we leave it to the readers to contemplate why it is so).
(2) The space of the entangled states in the two-qubit system is $ SU(4)/SU(2)\otimes$

$SU(2)$ , which is identified with the homogeneous space $SU(4)/SO(4)$ because of
the isomorphism $SU(2)\otimes SU(2)\cong SO(4)$ . Then it is well-known that

$\{A\in SU(4)|A^{T}=A\}=\{A^{T}A|A\in SU(4)\}\cong SU(4)/SO(4)$ ,

see for example [5]. By use of the expression $SU(4)\ni A=e^{iK}$ with $ K\in$

$H_{0}(4;C)$ we have

$SU(4)/SO(4)\cong\{e^{iK}|K\in H_{0}(4;R)\}$ ,

where $H_{0}(4;R)$ is the set of all traceless symmetric matrices in $M(4;R)$ . It is
of dimension 9 (see (14)), as expected: $15(su(4))-6(so(4))=9$ .

Since this $K$ is written as

$K=\left(\begin{array}{llll}h_{l} & h_{12} & h_{l3} & h_{l4}\\h_{l2} & h_{2} & h_{23} & h_{24}\\h_{l3} & h_{23} & h_{3} & h_{34}\\h_{14} & h_{24} & h_{34} & h_{4}\end{array}\right)=diag(h_{1}, h_{2}, h_{3}, h_{4})+H$ , $h_{1}+h_{2}+h_{3}+h_{4}=0$ ,

(14)

the evaluation of the evolution operator $U(t)=e^{-itH}$ is deeply related with the
study of the entangled states in the two-qubit systems.

For later convenience the conjugated matrix of $K$ is given here:

$R^{\uparrow}KR$

$=(\frac{h_{13}-h_{24}}{2}\sigma_{1}+\frac{h_{14}+h_{23}}{2}\sigma_{3})\otimes 1_{2}+1_{2}\otimes(\frac{h_{13}+h_{24}}{2}\sigma_{2}+\frac{h_{14}-h_{23}}{2}\sigma_{3})$

$+\frac{h_{12}+h_{34}}{2}\sigma_{3}\otimes\sigma_{2}-\frac{h_{12}-h_{34}}{2}\sigma_{1}\otimes\sigma_{3}$

$+\frac{h_{0}-h_{1}-h_{2}+h_{3}}{4}\sigma_{3}\otimes\sigma_{3}+\frac{h_{0}+h_{1}-h_{2}-h_{3}}{4}\sigma_{1}\otimes\sigma_{2}+\frac{h_{0}-h_{1}+h_{2}-h_{3}}{4}\sigma_{2}\otimes\sigma_{1}$ .
(15)

3.1 Approximate Result

We do not know yet how to exponentiate the generic form of the (R-conjugated)
Hamiltonian (13). Our first main result is an approximate one for the generic
case:

$U(t)\approx U_{1}(t)U_{2}(t)U_{3}(t)U_{4}(t)$ , (16)
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(17)

where each factor in (13) can be exponentiated exactly,

$U_{1}(t)=R\{\exp(-it(\frac{h_{13}-h_{24}}{2}\sigma_{1}+\frac{h_{14}+h_{23}}{2}\sigma_{3}))\otimes 1_{2}\}R^{t}$ ,

(18)$U_{2}(t)=R\{1_{2}\otimes\exp(-it(\frac{h_{13}+h_{24}}{2}\sigma_{2}+\frac{h_{14}-h_{23}}{2}\sigma_{3}))\}R^{t}$ ,

$U_{3}(t)=R$ exp $(-it(\frac{h_{12}+h_{34}}{2}\sigma_{3}\otimes\sigma_{2}))R^{\dagger}$ , (19)

$U_{4}(t)=R$ exp $(-it(-\frac{h_{12}-h_{34}}{2}\sigma_{1}\otimes\sigma_{3}))R^{\dagger}$ . (20)

As remarked earlier, $U_{1}$ and $U_{2}$ commute with each other and $U_{3}$ and $U_{4}$ also
commute but the other pairs do not commute. Hopefully the approximation is
not so bad. The non-exactness arises from the non-commutativity.

3.2 Special Exact Result I

If $h_{12}=h_{34}=0$ in (13) the troublesome non-commutativity disappears.
Then we have the simple form

$R^{\dagger}HR=(\frac{h_{13}-h_{24}}{2}\sigma_{1}+\frac{h_{14}+h_{23}}{2}\sigma_{3})\otimes 1_{2}+1_{2}\otimes(\frac{h_{13}+h_{24}}{2}\sigma_{2}+\frac{h_{14}-h_{23}}{2}\sigma_{3})$

(21)
with

$H=\left(\begin{array}{llll}0 & 0 & h_{l3} & h_{l4}\\0 & 0 & h_{23} & h_{24}\\h_{l3} & h_{23} & 0 & 0\\h_{l4} & h_{24} & 0 & 0\end{array}\right)$ . (22)

Then we have the exact form

$U(t)=U_{1}(t)U_{2}(t)=U_{2}(t)U_{1}(t)$ (23)

with $U_{1}(t)$ in (17) and $U_{2}(t)$ in (18).
Though this Hamiltonian is of very special form there is some application

shown in the following section.

3.3 Special Exact Result II

The Hamiltonian that we really want to study is

$H=\left(\begin{array}{llll}0 & h_{l2} & 0 & h_{14}\\h_{l2} & 0 & h_{23} & 0\\0 & h_{23} & 0 & h_{34}\\h_{14} & 0 & h_{34} & 0\end{array}\right)$ , (24)
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which is more general than the one discussed in recent papers by the author [1]
[2] and [3], which is obtained by setting $h_{14}=0$ . This restricted case was also
discussed in [7]. At first sight this Hamiltonian looks rather different from (22),
which can be exactly exponentiated. However, it can be reduced to the form of
(22) by a similarity transformation in terms of the exchange (swap) matrix $S$ :

$SHS=\left(\begin{array}{llll}0 & 0 & h_{12} & h_{14}\\0 & 0 & h_{23} & hu\\h_{12} & h_{23} & 0 & 0\\h_{l4} & h_{34} & 0 & 0\end{array}\right)$ , (25)

with

$S=\frac{1}{2}(1_{2}\otimes 1_{2}+\sigma_{1}\otimes\sigma_{1}+\sigma_{2}\otimes\sigma_{2}+\sigma_{3}\otimes\sigma_{3})$

$=\left(\begin{array}{llll}l & 0 & 0 & 0\\0 & 0 & 1 & 0\\0 & 1 & 0 & 0\\0 & 0 & 0 & 1\end{array}\right)$

Therefore we have

$\Rightarrow$ $S=S^{T}=S^{-1}$ .

$R\dagger SHSR=(\frac{h_{12}-h_{34}}{2}\sigma_{1}+\frac{h_{14}+h_{23}}{2}\sigma_{3})\otimes 1_{2}+1_{2}\otimes(\frac{h_{12}+h_{34}}{2}\sigma_{2}+\frac{h_{14}-h_{23}}{2}\sigma_{3})$ .
(26)

The evolution operator

$U(t)=e^{-itH}=SRR^{t}Se^{-itH}SRR^{t}S=SRe^{-itR^{\gamma}SHSR}R^{\dagger}S$

takes an exact factorized form

$U(t)=U_{1}(t)U_{2}(t)=U_{2}(t)U_{1}(t)$ (27)

where

$U_{1}(t)=SR\{\exp(-it(\frac{h_{12}-h_{34}}{2}\sigma_{1}+\frac{h_{14}+h_{23}}{2}\sigma_{3}))\otimes 1_{2}\}R^{\uparrow}S$, (28)

$U_{2}(t)=SR\{1_{2}\otimes\exp(-it(\frac{h_{12}+h_{34}}{2}\sigma_{2}+\frac{h_{14}-h_{23}}{2}\sigma_{3}))\}R^{\dagger}S$. (29)

Obviously the two factors commute and they belong to two independent $SU(2)$ .
Compare this result with that of [7].



40 K. FUJII

4. $B- C- H$ Formula for a class of matrices in SU(4)

In this section we give a closed expression to the B-C-H formula for the set of
unitary matrices {$e^{iH}|H$ is a type of (24)} by use of the results in the preceding
two sections. Let us prepare some notation for simplicity.

For two (real) symmetric matrices $A,$ $B$

$A=\left(\begin{array}{llll}0 & f_{1} & 0 & f_{4}\\f_{l} & 0 & f_{2} & 0\\0 & f_{2} & 0 & f_{3}\\f_{4} & 0 & f_{3} & 0\end{array}\right)$ ,

we can set

$B=\left(\begin{array}{llll}0 & g_{l} & 0 & g_{4}\\g_{1} & 0 & g_{2} & 0\\0 & g_{2} & 0 & g_{3}\\g_{4} & 0 & g_{3} & 0\end{array}\right)$ (30)

$R^{\uparrow}(SAS)R=a_{1}\otimes 1_{2}+1_{2}\otimes a_{2}$ , $R^{\uparrow}(SBS)R=b_{1}\otimes 1_{2}+1_{2}\otimes b_{2}$ .

Let us represent these four $su(2)$ elements in terms of the $R^{3}$ vectors as in (35):

$a_{1}=\frac{f_{1}-f_{3}}{2}\sigma_{1}+\frac{f_{4}+f_{2}}{2}\sigma_{3}$ ,

$b_{1}=\frac{g_{1}-g_{3}}{2}\sigma_{1}+\frac{g_{4}+g_{2}}{2}\sigma_{3}$ ,

with

$\vec{a}_{1}=\left(\begin{array}{l}f_{L}-\perp 23\\0\\\frac{f_{4}+f_{2}}{2}\end{array}\right)$ , $\vec{b}_{1}=\left(\begin{array}{l}L^{-}1R32\\0\\L4+R22\end{array}\right)$ ;

$a_{2}=\frac{f_{1}+f_{3}}{2}\sigma_{2}+\frac{f_{4}-f_{2}}{2}\sigma_{3}$ ,

$b_{2}=\frac{g_{1}+g_{3}}{2}\sigma_{2}+\frac{g_{4}-g_{2}}{2}\sigma_{3}$

$\vec{a}_{2}=(\frac{\frac{f_{1}+f_{3}0}{f_{4}f_{2}\underline{2}}}{2}),\vec{b}_{2}=\left(\begin{array}{l}0\\\mapsto 4^{\frac{+2}{2}}1L2\mathbb{R}3\end{array}\right)$ .

Obviously $\vec{a}_{1}$ and $\vec{b}_{1}$ belong to the same $su(2)$ , whereas $\vec{a}_{2}$ and $\vec{b}_{2}$ belong to the
other $su(2)$ . Next we introduce a pair of three real parameters $(\alpha_{1}, \beta_{1}, \gamma_{1})$ and
( $\alpha_{2}$ , B2, $\gamma_{2}$ ) defined for each pair of $R^{3}$ vectors $(\vec{a}_{1},\vec{b}_{1})$ and $(\vec{a}_{2},\vec{b}_{2})$ :

$\alpha_{1}=\alpha(\vec{a}_{1},\tilde{b}_{1})$ , $\beta_{1}=\beta(\vec{a}_{1},\vec{b}_{1})$ , $\gamma_{1}=\gamma(\vec{a}_{1},\vec{b}_{1})$ ,
$\alpha_{2}=\alpha(\vec{a}_{2},\vec{b}_{2})$ , $\beta_{2}=\beta(\vec{a}_{2},\vec{b}_{2})$ , $\gamma_{2}=\gamma(\vec{a}_{2},\vec{b}_{2})$ .

See (37) in the Appendix or the paper [11] for the definition of these parameters.
By combining the exact B-C-H formula for $su(2)$ for each pair $(\vec{a}_{1},\vec{b}_{1})$ and
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$(\vec{a}_{2},\tilde{b}_{2})$ , we obtain

$e^{iA}e^{iB}=SRR\dagger Se^{iA}SRR^{\uparrow}Se^{iB}SRR^{\uparrow}S$

$=SRe^{iRSASR}e^{iRSBSR}R^{\uparrow}S\dagger\dagger$

$=SRe^{i(a_{1}\otimes 1_{2}+1_{2}\otimes a_{2})}e^{i(b_{1}\otimes 1_{2}+1_{2}\otimes b_{2})}R^{\uparrow}S$

$=SR(e^{ia_{1}}\otimes e^{ia_{2}})(e^{ib_{1}}\otimes e^{ib_{2}})R^{\uparrow}S$

$=SR(e^{ia_{1}}e^{ib_{1}})\otimes(e^{ia_{2}}e^{ib_{2}})R^{t}S$

$=SR^{i(\alpha_{1}a_{1}+\beta_{1}b_{1}+\gamma_{1^{i}}}\otimes eRS$:

$=SRe^{i\{+q22[a_{2},b_{2}])\}_{R^{\uparrow}S}}(\alpha_{1}a_{1}+\beta_{1}b_{1}\gamma_{1}^{i}[a_{1},b_{1}])\otimes 1_{2}+1_{2}\otimes(\alpha_{2}a_{2}+\beta_{2}b_{2}+\gamma^{\ell}$

$=eiSR\{(\alpha_{1}a_{1}+\beta_{1}b_{1}+\gamma_{1}\dot{i}[a_{1},b_{1}])\otimes 1_{2}+1_{2}\otimes(\alpha_{2}a_{2}+\beta_{2}b_{2}+\gamma 2^{l}z[a_{2},b_{2}])\}R^{\dagger}S$

$\equiv e^{iBCH(A,B)}$ . (31)

The desired closed form of the B-C-H formula reads

$BCH(A, B)$

$=SR\{(\alpha_{1}a_{1}+\beta_{1}b_{1}+\gamma_{1}\frac{i}{2}[a_{1}, b_{1}])\otimes 1_{2}+1_{2}\otimes(\alpha_{2}a_{2}+\beta_{2}b_{2}+\gamma_{2^{\frac{i}{2}}}[a_{2}, b_{2}])\}R^{t}S$

$=($ $\frac{\frac{\frac{0}{(12)}}{(13)}}{(14)}$ $\frac{(12)0}{\frac,(24)(23)}$ $\frac{(23)(13)0}{(34)}$ $(34)(24)(14)0$ ), (32)

whose entries are

(12) $=\alpha_{1}\frac{f_{1}-f_{3}}{2}+\beta_{1}\frac{g_{1}-g_{3}}{2}+\alpha_{2}\frac{f_{1}+f_{3}}{2}+\beta_{2^{\frac{g_{1}+g_{3}}{2}}}$ ,

(13) $=i\{\gamma_{1}(\frac{f_{1}-f_{3}}{2}\frac{g_{4}+g_{2}}{2}-\frac{f_{4}+f_{2}}{2}\frac{g_{1}-g_{3}}{2})$

$-\gamma_{2}(\frac{f_{1}+f_{3}}{2}\frac{g_{4}-g_{2}}{2}-\frac{f_{4}-f_{2}}{2}\frac{g_{1}+g_{3}}{2})\}$ ,

(14) $=\alpha_{1}\frac{f_{4}+f_{2}}{2}+\beta_{1}\frac{g_{4}+g_{2}}{2}+\alpha_{2}\frac{f_{4}-f_{2}}{2}+\beta_{2}\frac{g_{4}-g_{2}}{2}$ ,

(23) $=\alpha_{1}\frac{f_{4}+f_{2}}{2}+\beta_{1}\frac{g_{4}+g_{2}}{2}-\alpha_{2}\frac{f_{4}-f_{2}}{2}-\beta_{2^{\frac{g_{4}-g_{2}}{2}}}$ ,

(24) $=i\{\gamma_{1}(\frac{f_{1}-f_{3}}{2}\frac{g_{4}+g_{2}}{2}-\frac{f_{4}+f_{2}}{2}\frac{g_{1}-g_{3}}{2})$

$+\gamma_{2}(\frac{f_{1}+f_{3}}{2}\frac{g_{4}-g_{2}}{2}-\frac{f_{4}-f_{2}}{2}\frac{g_{1}+g_{3}}{2})\}$ ,

(34) $=-\alpha_{1}\frac{f_{1}-f_{3}}{2}-\beta_{1}\frac{g_{1}-g_{3}}{2}+\alpha_{2}\frac{f_{1}+f_{3}}{2}+\beta_{2}\frac{g_{1}+g_{3}}{2}$ .
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Here $\overline{(12)}$ is the complex conjugate of (12).
This is another main result of the present paper.

5. Discussion

In this letter we addressed the problem of explicit exponentiation of the
generic Hamiltonian in the general four level system. With the aid of the magic
matrix, we obtained an approximate result for the generic case and some exact
results for certain restricted forms of the Hamiltonian. It is a good challenge to
derive the explicit form of the evolution operator for the most generic Hamilto-
nian in the four level system.
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Appendix: $B-C-H$ Formula for SU(2)

In this Appendix we recapitulate the closed form expression of the B-C-H
formula for $SU(2)$ in the $2\times 2$ representation, see [11] for more details.

First of all let us recall the well-known exponentiation formula:

$e^{i(x\sigma_{1}+y\sigma_{2}+z\sigma_{S})}=\cos r1_{2}+\frac{\sin r}{r}i(x\sigma_{1}+y\sigma_{2}+z\sigma_{3})$ (33)

$=($ $co+i\frac{\epsilon inr}{+ir}zi\frac{\sin rsr}{r}(xy)$ $co-i\frac{-i\epsilon inr}{r}zi\frac{\sin r}{srr}(xy)$ ) (34)

where $r=\sqrt{x^{2}+y^{2}+z^{2}}$. This is a simple exercise.
For the group $SU(2)$ it is easy to sum up all terms in the B-C-H expansion by

using the above exact exponentiation formula. Because of the obvious relation
$su(2)\cong so(3)$ , three dimensional vector notation is quite useful for $su(2)$ . For
2 $x2$ hermitian matrices,

$X=x_{1}\sigma_{1}+x_{2}\sigma_{2}+x_{3}\sigma_{3}$ , $Y=y_{1}\sigma_{1}+y_{2}\sigma_{2}+y_{3}\sigma_{3}\in H_{0}(2, C)$

we associate $R^{3}$ vectors. Namely, we set

$X\rightarrow x=\left(\begin{array}{l}x_{l}\\x_{2}\\x_{3}\end{array}\right)$ , $Y\rightarrow y=\left(\begin{array}{l}y_{l}\\y_{2}\\y_{3}\end{array}\right)$ (35)
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and

$x\cdot y=x_{1}y_{1}+x_{2}y_{2}+x_{3}y_{3}=h(XY)/2$ , $|x|=\sqrt{xx}$, $|y|=\sqrt{yy}$.

Then the commutator of $X$ and $Y$ corresponds to the vector product $xxy$ :

$-\frac{i}{2}[X, Y]\rightarrow x\times y=\left(\begin{array}{l}x_{2}y_{3}-x_{3}y_{2}\\x_{3}y_{l}-x_{l}y_{3}\\x_{l}y_{2}-x_{2}y_{l}\end{array}\right)$ .

Now we are in a position to state the B-C-H formula for $SU(2)$ :

$e^{iX}e^{iY}=e^{iZ}$ : $Z=\alpha X+\beta Y+\gamma\frac{i}{2}[X, Y]$ , (36)

where the real $efficients\alpha,$ $\beta$ and $\gamma$ are defined by

$\alpha\equiv\alpha(x,y)=\frac{\sin^{-1}\rho}{\rho}\frac{\sin|x|\cos|y|}{|x|}$ ,

$\gamma\equiv\gamma(x,y)=\frac{\sin^{-1}\rho}{\rho}\frac{\sin|x|\sin|y|}{|x||y|}$

with

$\beta\equiv\beta(x,y)=\frac{\sin^{-1}\rho}{\rho}\frac{\cos|x|\sin|y|}{|y|}$ ,

(37)

$\rho^{2}\equiv\rho(x,y)^{2}$

$=\sin^{2}|x|\cos^{2}|y|+\sin^{2}|y|$

$-\frac{\sin^{2}|x|\sin^{2}|y|}{|x|^{2}|y|^{2}}(x\cdot y)^{2}+\frac{2\sin|x|\cos|x|\sin|y|\cos|y|}{|x||y|}(x\cdot y)$ .

The proof is not difficult, so it is left to the readers.
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