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Abstract. In our previous paper we estimated the upper and the lower recurrent
dimensions of discrete orbits given by circle mappings and we have given the lower
bounds of the gap values between the upper and the lower dimensions by using
the parametrizing Diophantine conditions on the irrational rotation numbers. In
this paper, estimating the upper bounds of the gap values, we give the exact
gap values, which are described by the Diophantine parameters of the rotation
numbers.

1. Introduction

In this paper we study recurrent dimensions of discrete dynamical systems
given by a circle diffeomorphism $f$ : $S^{1}\rightarrow S^{1}$ . The rotation number of $f$ is
defined by

$\rho(f)=\lim_{n\rightarrow\infty}\frac{\hat{f}^{n}(x)-x}{n}$

where $f$ : $R\rightarrow R$ is a lift of $f$ such that $\pi of=f\circ\pi$ , $\pi$ : $R\rightarrow R/Z(=$

$S^{1})$ is a covering map. Our purpose of this paper is to estimate the recurrent
dimensions of the discrete orbits $\Sigma_{x}=\{f^{n}(x) : n\in N_{0}\}$ according to the
algebraic properties of $\rho(f)$ .

In 1885 Poincar\’e proved that, if $f$ : $S^{1}\rightarrow S^{1}$ is a homeomorphism with-
out periodic points, then there exist a rotation $R_{\alpha}(x)$ $:=x+\alpha(mod 1)$ and a
continuous surjective monotone map $h:S^{1}\rightarrow S^{1}$ , which satisfies

$hof=R_{\alpha}\circ h$

and $\alpha$ is an irrational number and equal to the rotation number of $f$ . Conse-
quently, $\rho(f)$ is independent of $x$ .
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In this case we say that $f$ is semi-conjugate to the rotation $R_{\alpha}$ or $h$ is a
$semi-njugacy$ between $f$ and $R_{\alpha}$ . Furthermore, if $h$ is strictly monotone (one-
to-one), we say that $f$ is conjugate to the rotation $R_{\alpha}$ or $h$ is a conjugacy between
$f$ and $R_{\alpha}$ .

If $f$ is sufficiently smooth, $f$ is conjugate to a rotation. The following theorem
was given by Denjoy.

THEOREM 1.1 (Denjoy,1932). If $f$ : $S^{1}\rightarrow S^{1}$ is $C^{2}$ -diffeomorphism without
periodic points, then $f$ is topologically conjugate to a rotation. That is, the
conjugacy $h$ between $f$ and the rotation is a homeomorphism.

The regularity of the conjugacy was studied by many authors. Here we
introduce the estimate by Katznelson and Ornstein [2].

We say that $g$ is $C^{m+\delta}$-class where $m\geq 1$ is an integer and $0\leq\delta<1$ , if $g$ is
$C^{m}$ and its m-th derivative is H\"older $ntinuous$ with its exponent $\delta$ .

THEOREM 1.2 (Katznelson and Ornstein, 1989). Let $f$ : $S^{1}\rightarrow S^{1}$ be a $C^{k_{-}}$

diffeomorphism, $k>0$ , uttho$ut$ periodic points and its rotation number $\alpha$ satis-

fies the Diophantine condition for $\beta\geq 0$ :

$|\alpha-\frac{p}{q}|>\frac{C}{q^{2+\beta}}$ $(*)$

for all $p/q\in Q$ . Then, if $\beta+2<k$ , the conjugacy $h$ between $f$ and the rotation
$R_{\alpha}$ is of class $C^{k-1-\beta-e}$ for all $\epsilon>0$ .

In our previous paper [8] we introduced the gaps between the upper and
the lower recurrent dimensions as the index parameters, which measure unpre-
dictability levels of the orbits. In [9] and [10] we estimated the gaps of recurrent
dimensions kr some quasi-periodic orbits by using the order of the parametrizing
Diophantine conditions, we say $d_{0^{-}}(D)$ condition, on their irrational frequencies.
In [11], using the order $d_{0}$ of $(D)ndition$ , we estimated the lower bounds
of gaps of recurrent dimensions for the discrete orbit $\Sigma_{x}$ , given by a $C^{k}$-class
function $f$ , in the following cases:
(I) The rotation number satisfies the assumption $\beta+2<k$ and the conjugacy $h$

is smooth: $C^{\gamma}$-class, $\gamma\geq 1$ ,
(II) The rotation number satisfies $2\leq k\leq\beta+2$ and $h$ is a homeomorphism.

In this paper, estimating the upper bounds of these gap values, we give the
exact gap values of these recurrent dimensions.

Our plan of this paper is as follows. In section 2 we introduce the classifi-
cations of irrational numbers to parametrize the Diophantine condition $(*)$ and
give definitions of recurrent dimensions. In section 3 we give the exact gaps
values in the case (I) and in section 4 we treat the case (II). In section 5 we
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give some numerical results on the gap values of recurrent dimensions for quasi-
periodic orbits given by the rotations according to the classifications of irrational
rotation numbers.

2. classification of irrational numbers

Let $\tau$ be an irrational number. In our previous papers ([7], [8], [9]) we in-
troduce the following classifications according to (good or bad) levels of approx-
imation by rational numbers.

We say that $\tau$ is an $\alpha$-order Roth number if there exists $\alpha\geq 0$ such that,
for every $\beta:\beta>\alpha$ , there exists a $nstantc_{\beta}>0$ , which satisfies

$|\tau-\frac{q}{p}|\geq\frac{c_{\beta}}{p^{2+\beta}}$

for all rational numbers $q/p\in Q$ .
Let $\{n_{k}/m_{k}\}$ be the Diophantine approximation of $\tau$ . Then we call $\tau$ an

$\alpha$-order weak Liouville number if there exists an infinite subsequence $\{m_{k_{j}}\}\subset$

$\{m_{k}\}$ , which satisfies

$|\tau-\frac{n_{k_{j}}}{m_{k_{j}}}|<\frac{c}{m_{k_{j}}^{2+\alpha}}$ , $\forall j$

for some constants $c,$ $\alpha>0$ .
Furthermore, we can parametrize the Diophantine condition $(*)$ as follows:
Let $R(\alpha)$ be the set of $\alpha$-order Roth numbers and $wL(\beta)$ the set of $\beta$-order

weak Liouville numbers. In [9] we have shown that

$R(\alpha)\subset R(\alpha^{\prime}),$ $\alpha\leq\alpha^{\prime},$ $wL(\beta)\subset wL(\beta^{\prime}),$ $\beta\geq\beta^{\prime}$ ,

$R(\alpha)^{c}\subset\bigcap_{\beta<\alpha}wL(\beta)$
,

$wL(\beta)\subset\bigcap_{\beta>\alpha}R(\alpha)^{c}$
,

$R(0)^{c}=\bigcup_{\beta>0}wL(\beta)$

where the complements are considered in the set of all irrational numbers. Thus,
for each irrational number $\tau$ , there exists a constant $d_{0}$ , which specifies the levels
of (bad or good) approximable properties by rational numbers:

(2. 1) $\inf${ $\alpha$ : $\tau$ is an $\alpha$-order Roth number}
$=\sup${$\beta:\tau$ is a $\beta$-order weak Liouville number}:$=d_{0}$ .

In our previous paper ([8]) we introduced a $d_{0^{-}}(D)$ condition for a pair of irra-
tional numbers. For a single irrational case, let us say that $\tau$ satisfies a $d_{0^{-}}(D)$

condition if (2. 1) holds.
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Definitions of recurrent dimensions:

Define the first $\epsilon$-recurrent time by

$M_{\epsilon}(x)=\min\{m\in N : |f^{m}(x)-x|<\epsilon\}$ .

and the upper and the lower recurrent dimensions by

$\overline{D}_{x}=\lim_{\epsilon\rightarrow}\sup_{0}\frac{\log M_{e}(x)}{-\log\epsilon}$ , $Dr=\lim_{\epsilon\rightarrow}\inf_{0}\frac{\log M_{\epsilon}(x)}{-\log\epsilon}$ .

Then we can define the gaps of recurrent dimensions by $G_{x}=\overline{D}_{x}-\underline{D}_{x}$ . (See [7]
or [8] for further details.)

If the gap values $G_{x}$ take positive values, we cannot exactly determine or
predict the $\epsilon$-recurrent time of the orbits. Thus we propose the value $G_{x}$ as the
parameter, which measures the unpredictability level of the orbit.

3. smooth conjugacy case

In this section we consider the case where the $njugacyh$ between the circle
map $f$ and the rotaion is $C^{\gamma}$-class, $\gamma\geq 1$ . First we note that the metric in $S^{1}$ is
induced by the covering (quotient) map $\pi$ : $R\rightarrow S^{1}$ such that

$|x-y|$ $:=\inf_{m\in Z}|x-y-m|$ , $x,$
$y\in S^{1}$

where we use the same notation as that of usual absolute values as far as not
being confused.

THEOREM 3.1. Let $f$ : $S^{1}\rightarrow S^{1}$ be a $C^{3}$ -diffeomorphism without periodic
points and its rotation number $\alpha$ satisfies the $d_{0^{-}}(D)$ condition for $0\leq d_{0}<1$ .
Then, for each $x\in S^{1}$ , we have

$\underline{D}_{x}=\frac{1}{1+d_{0}}$ , $\overline{D}_{x}=1$ .

Consequently, we have

$G_{x}=\frac{d_{0}}{1+d_{0}}$ .

Proof. Since we have shown the following estimates in [11]

$\underline{D}_{x}\leq\frac{1}{1+d_{0}’}$ $\overline{D}_{x}\geq 1$ , $G_{x}\geq\frac{d_{0}}{1+d_{0}}$
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it is sufficient to show that

$\underline{D}_{x}\geq\frac{1}{1+d_{0}}$ $\overline{D}_{x}\leq 1$ .

First we estmate the lower bound of the lower recurrent dimension. Since the
Diophantine condition $(*)$ in Theorem 1.2 is satisfied with $\beta=1-\epsilon_{0}>d_{0}$ for
some sufficiently small $\epsilon_{0}>0$ , the conjugacy $h$ is $C^{1+\epsilon_{O}-e}$-class for every $\epsilon>0$ .
Thus we can admit $C^{1}$ -conjugacy $h:hof=R_{\alpha}\circ h$ . Since $f^{n}(x)=h^{-1}\circ R_{\alpha}^{n}\circ h$

and Lipschitz continuity $co$nditions of $h$ and $h^{-1}$ , which are given by the Mean
Value Theorem, such that

$C_{1}|x-y|\leq|h(x)-h(y)|\leq C_{2}|x-y|$ , $x,$
$y\in S^{1}$ : $|x-y|\leq\frac{1}{2}$

for some $C_{2}>C_{1}>0$ , we can take an integer $m$ :

(3. 1) $|f^{n}(x)-x|=|h^{-1}\circ R_{\alpha}^{n}oh(x)-(h^{-1}\circ h)(x)|$

$\leq C_{1}^{-1}|\alpha n-m|$ ,

$|\alpha n-m|\leq\frac{1}{2}$

and also an integer $m^{j}$ :

(3.2) $|f^{n}(x)-x|=|h^{-1}oR_{\alpha}^{n}oh(x)-(h^{-1}oh)(x)|$

$\geq C_{2}^{-1}|\alpha n-m^{\prime}|$ ,

$|\alpha n-m^{\prime}|\leq\frac{1}{2}$

Let $\{q_{k}/p_{k}\}$ be the Diophantine sequence of the rotation number $\alpha$ of $f$ . It
follows from $d_{0^{-}}(D)$ condition and the equivalent relations of Roth numbers (see
[9]) that for every $\epsilon>0$ the irrational number $\alpha$ becomes a Roth number with
its order $ d_{0}+\epsilon$ , which satisfies

$p_{k+1}\leq\varphi_{k}^{1+d_{O}+\epsilon}$

for some $c:=c_{\epsilon}>0$ .
Here we use the following elementary property of the Dophantine sequence

that

(3. 3) $\frac{1}{p_{k}(p_{k+1}+p_{k})}<|\alpha-\frac{q_{k}}{p_{k}}|<\frac{1}{p_{k}p_{k+1}}<\frac{1}{p_{k}^{2}}$

and

(3.4) $\inf_{r\in N}|\alpha n-r|\geq|\alpha p_{k}-q_{k}|$
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holds for every $n:1\leq n<p_{k+1}$ .
It follows from (3.2), (3.3) and (3.4) that we have

1 $f^{n}(x)-x|\geq C_{2}^{-1}|\alpha p_{k}-q_{k}|\geq\frac{1}{2C_{2}p_{k+1}}\geq\frac{1}{2cC_{2}p_{k}^{1+d_{0}+\epsilon}}$ $:=\epsilon_{k}$

for every $n:1\leq n<p_{k+1}$ . Thus we can estimate the lower recurrent dimension
as follows.

$\underline{D}_{x}=\lim_{e\rightarrow}\inf_{\infty}\frac{\log M(\epsilon)}{-\log\epsilon}$

$=\lim_{k\rightarrow}\inf_{\infty e_{k+}}\inf_{\iota\leq e\leq\epsilon_{k}}\frac{\log M(\epsilon)}{-\log\epsilon}$

$\geq\lim_{k\rightarrow}\inf_{\infty}\frac{\log M(\epsilon_{k})}{-\log\epsilon_{k+1}}$

$\geq\lim_{k\rightarrow\infty}\frac{\log p_{k+1}}{\log 2c+\log C_{2}+(1+d_{0}+\epsilon)\log p_{k+1}}$

$=\frac{1}{1+d_{0}+\epsilon}$

for every $\epsilon>0$ .
Next we show the upper estimate. It follows from (3. 1) and (3.3) that we

have

I $f^{p_{k}}(x)-x|\leq C_{1}^{-1}|\alpha p_{k}-q_{k}|\leq\frac{1}{C_{1}p_{k+1}}$ $:=\epsilon_{k+1}$ .

Thus we can estimate the upper recurrent dimension

$\overline{D}_{x}=\lim_{\epsilon\rightarrow}\sup_{\infty}\frac{\log M(\epsilon)}{-\log\epsilon}$

$=\lim\sup_{\epsilon_{k+}k\rightarrow\infty 1}\sup_{\leq e\leq\epsilon_{k}}\frac{\log M(\epsilon)}{-\log\epsilon}$

$\leq\lim_{k\rightarrow}\sup_{\infty}\frac{\log M(\epsilon_{k+1})}{-\log\epsilon_{k}}$

$\leq\lim_{k\rightarrow\infty}\frac{\log p_{k}}{\log C_{l}+\log p_{k}}=1$

and from the definition of the gap values we obtain the conclusion. $\square $

4. topological conjugate case

Next we consider the case (II) by applying the same argument used in [11]. $f$

has a unique invariant probability measure $\mu$ , defined by $\mu(A)=\lambda(h(A))$ where
$h$ is the conjugacy between $f$ and the rotation and $\lambda$ is a Lebesgue measure.
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Let $\{q_{k}/p_{k}\}$ be the Diophantine sequence of the rotation number $\alpha$ of $f$ and
denote

$m_{k}(x)=|f^{p_{k}}(x)-x|$ ,
$\alpha_{k}=|p_{k}\alpha-q_{k}|$ ,

then we consider the subsets $A^{\prime},$
$B^{\prime}$ of $S^{1}$ , defined by

$ B^{\prime}=\{x\in S^{1}:\lim_{k\rightarrow}^{\lim}\inf_{\infty}^{\inf}>0\}A^{\prime}=\{x\in S^{1}:\frac{m_{k}(x)}{\frac{\alpha_{k}\alpha_{k}}{m_{k}(x)}}>0\}k\rightarrow\infty$

.

In [11] we proved that

$\lambda(A)=\lambda(B)=1$

for

$A=\{x\in S^{1} : \lim_{k\rightarrow}\sup_{\infty}\frac{m_{k}(x)}{\alpha_{k}}>0\}$ ,

$B=\{x\in S^{1} : \lim_{k\rightarrow}\sup_{\infty}\frac{\alpha_{k}}{m_{k}(x)}>0\}$ .

Here we can also show that

$\lambda(A^{\prime})=\lambda(B^{\prime})=1$ .

We note that

(4. 1) $\alpha_{k}=\int_{S^{1}}m_{k}(x)d\mu(x)$

(see [4]).
We can estimate the measure of these subsets:

LEMMA 4.1. Let $f:S^{1}\rightarrow S^{1}$ be a $C^{2}$ -diffeomorphism. Then we have

(4.2) $\lambda(A^{\prime})=\lambda(B^{\prime})=1$ .

Proof. Since $f$ and $f^{-1}$ is differentiable, it follows from the Mean Value $Threm$
that

$K_{1}|x-y|\leq|f(x)-f(y)|\leq K_{2}|x-y|$ , $x,$
$y\in S^{1}$ : $|x-y|\leq\frac{1}{2}$
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for some $K_{2}>K_{1}>0$ . Thus we can easily show that

$x\in A^{\prime}\Leftrightarrow f(x)\in A^{\prime}$ ,
$x\in B^{\prime}\Leftrightarrow f(x)\in B^{\prime}$ .

Since $f$ is ergodic (cf.[4]), the invariant sets $A^{\prime}$ and $B^{\prime}$ have full measures or null
measures.

First we show that $\lambda(A^{\prime})>0$ . Define

$A_{0}^{\prime}=\{x\in S^{1} : \lim_{k\rightarrow}\inf_{\infty}\frac{m_{k}(x)}{\alpha_{k}}>c_{0}\}$

for sufficiently small $c_{0}>0$ and assume that $\mu(A_{0}^{\prime})=0$ , that is, $\mu(A_{0}^{\prime c})=1$ .
Since

$A_{0}^{\prime c}=\{x\in S^{1} : \lim_{k\rightarrow}\inf_{\infty}\frac{m_{k}(x)}{\alpha_{k}}\leq c_{0}\}$ ,

for $x\in A_{0}^{\prime c}$ and a sufficiently small constant $\epsilon_{0}>0$ there exist a subsequence
$ k_{j}\rightarrow\infty$ and a large number $j_{0}$ such that, if $k_{j}\geq k_{j_{0}}$ ,

$\frac{m_{k_{j}}(x)}{\alpha_{kg}}\leq c_{0}+\epsilon_{0}$ .

It follows from (4. 1) that we have a contradiction:

$\alpha_{k_{j_{0}}}=\int_{A_{0}^{\prime e}}m_{k_{j_{0}}}(x)d\mu(x)\leq(c_{0}+\epsilon_{0})\alpha_{k_{j_{0}}}\mu(A_{0}^{\prime c})=(c_{0}+\epsilon_{0})\alpha_{k_{j_{0}}}$ .

Thus $\mu(A^{\prime})>\mu(A_{0}^{\prime})>0$ holds. Since $h$ is a homeomorphism, we have $\lambda(A^{\prime}\int>0$ .
It follows from ergodicity offthat we have $\lambda(A^{\prime})=1$ .

For the set $B^{\prime}$ we can apply the same argument as above. Denote

$B_{0}^{\prime}=\{x\in S^{1} : \lim_{\rightarrow}\inf_{\infty}\frac{\alpha_{k}}{m_{k}(x)}>c_{0}^{\prime}\}$

for some small $c_{0}^{\prime}>0$ and assume that $\mu(B_{0}^{\prime c})=1$ . If $x\in B_{0}^{\prime c}$ , for a sufficiently
small constant $\epsilon_{0}^{\prime}>0$ , there exists a large number $k_{j_{0}}^{\prime}$ such that

$\alpha_{k_{j_{0}}^{\prime}}\leq(c_{0}^{\prime}+\epsilon_{0}^{\prime})m_{k_{\dot{3}0}^{\prime}}(x)$ .

Thus we have a contradiction,

$\alpha_{k_{\dot{J}0}^{\prime}}=\int_{B_{0}^{\prime c}}m_{k_{j_{0}}^{\prime}}(x)d\mu(x)\geq\frac{\alpha_{k_{j_{0}}^{\prime}}}{c_{0}^{\prime}+\epsilon_{0}^{\prime}}$ .

It follows that $\mu(B^{\prime})>\mu(B_{0}^{\prime})>0$ . Applying the previous argument, we can
conclude that $\lambda(B^{\prime})=1$ . $\square $
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REMARK 4.2. It is known that the circle mapping $f$ is conjugate to an irra-
tional rotation if and only if its minimal invariant set (a non-empty compact
invariant set which is minimal) is equal to $S^{1}$ . Thus we can easily show that the
invariant subsets $A^{\prime},$ $B^{\prime}$ are dense in $S^{1}$ .

THEOREM 4.3. Let $f$ : $S^{1}\rightarrow S^{1}$ be a $C^{2}$ -diffeomorphism without periodic
points and its rotation number $\alpha$ . Then we have

(4.3) $\overline{D}_{x}=1$ , $a.e$ . $x\in S^{1}$ .

Proof. In [11] we have shown that

$\overline{D}_{x}\geq 1$

for $x\in A$ . Thus it is sufficient to show that

$\overline{D}_{x}\leq 1$

for $x\in B^{\prime}$ , since $\lambda(A\cap B^{\prime})=1$ .
Let $x\in B^{\prime}$ , then for a sufficiently small $nstantc_{1}>0$ , there exsts a large

number $k_{1}$ such that

$m_{k}(x)\leq c_{1}^{-1}\alpha_{k}$

for all $k\geq k_{1}$ . It follows from (3.3) that

$|f^{p_{k}}(x)-x|\leq c_{1}^{-1}|\alpha p_{k}-q_{k}|\leq\frac{1}{c_{1}p_{k+1}}$ $:=\epsilon_{k+1}$ .

Thus we have

$\overline{D}_{x}=\lim_{e\rightarrow}\sup_{\infty}\frac{\log M(\epsilon)}{-\log\epsilon}$

$=\lim\sup_{\epsilon_{k+}k\rightarrow\infty 1}\sup_{\leq\epsilon\leq\epsilon_{k}}\frac{\log M(\epsilon)}{-\log\epsilon}$

$\leq\lim_{k\rightarrow}\sup_{\infty}\frac{\log M(\epsilon_{k+1})}{-\log\epsilon_{k}}$

$\leq\lim_{k\rightarrow\infty}\frac{\log p_{k}}{\log c_{1}+\log p_{k}}$

$=1$ .

$\square $
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THEOREM 4.4. Let $f$ : $S^{1}\rightarrow S^{1}$ be a $C^{2}$ -diffeomorphism without $pe7\dot{v}odic$

points and its rotation number $\alpha$ satisfies the $d_{0^{-}}(D)$ condition for $d_{0}>0$ . Then
we have

(4.4) $\underline{D}ae=\frac{1}{1+d_{0}}$ , $a.e$ . $x\in S^{1}$ .

Consequently, we can estimate the gap values by

$G_{x}=\frac{d_{0}}{1+d_{0}}$ , $a.e$ . $x\in S^{1}$ .

Proof. Note that $\lambda(A^{\prime}\cap B)=1$ . Since in [11] we have shown that $\underline{D}_{x}\leq 1/(1+d_{0})$

for $x\in B$ , it is sufficient to show that

$\underline{D}_{}\geq\frac{1}{1+d_{0}}$

for $x\in A^{\prime}$ . Let $x\in A^{\prime}$ , then for a sufficiently small constant $c_{2}>0$ there exists
a large number $k_{2}$ such that

$m_{k}(x)\geq c_{2}\alpha_{k}$

for all $k\geq k_{2}$ . By Lemma 5.2 in [11] there exists a constant $b_{0}$ : $0<b_{0}<1$ such
that

(4.5) $|f^{n}(x)-x|\geq b_{0}m_{k}(x)$

holds for every $n<p_{k+1}$ . It follows from the property of Diophantine sequence
that we have

$m_{k}(x)\geq c_{2}\alpha_{k}\geq\frac{c_{2}}{2p_{k+1}}$

Since the irrational number $\alpha$ satisfies the $d_{0^{-}}(D)$ condition, $\alpha$ is a $ d_{0}+\epsilon$ order
Roth number for every $\epsilon>0$ . Then we have

(4.6) $p_{k+1}\leq\varphi_{k}^{1+d_{0}+e}$

for some $c>0$ (see [9]). Thus we have

$|f^{n}(x)-x|\geq\frac{b_{0}c_{2}}{2p_{k+1}}\geq\frac{cb_{0}c_{2}}{2p_{k}^{1+d_{0}+\epsilon}}$ $:=\epsilon_{k}$
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for every $n<p_{k+1}$ and every small $\epsilon>0$ . It follows from the definition of the
lower recurrent dimension that we can estimate

$D=\lim_{\epsilon\rightarrow}\inf_{\infty}\frac{\log M(\epsilon)}{-\log\epsilon}$

$=\lim_{k\rightarrow}\inf_{\infty\epsilon_{k+}1}\inf_{\leq e\leq\epsilon_{k}}\frac{\log M(\epsilon)}{-\log\epsilon}$

$\geq\lim_{k\rightarrow}\inf_{\infty}\frac{\log M(\epsilon_{k})}{-\log\epsilon_{k+1}}$

$\geq\lim_{k\rightarrow\infty}\frac{\log p_{k+1}}{\log 2(cb_{0}c_{2})^{-1}+(1+d_{0}+\epsilon)\log p_{k+1}}=\frac{1}{1+d_{0}+\epsilon}$

for every $\epsilon>0$ . Let $x\in A^{\prime}\cap B$ . Since $\lambda(A^{\prime}\cap B)=1$ , we can obtain

$D=\frac{1}{1+d_{0}}$ , a.e. $x\in S^{1}$ .

Considering $x$ in the set $A\cap A^{\prime}\cap B\cap B^{\prime}$ , which is also of full measure, and
applying the proof of Theorem 4.3, we can $nclude$ that

$G_{x}=\frac{d_{0}}{1+d_{0}}$ , a.e. $x\in S^{1}$ .
$\square $

5. Numerical Calculations

In this section we give some numerical results on the recurrent $di\iota nensions$ ,
especially, gaps of dimensions, of quasi-periodic orbits given by the rotation
$R_{\alpha}(x)=x+\alpha(mod 1)$ .

Since the upper and the lower recurrent dimensions are given by

$\overline{D}_{x}=\lim\sup_{e_{k+}k\rightarrow\infty 1}\sup_{\leq\epsilon\leq e_{k}}\frac{\log M(\epsilon)}{-\log\epsilon}$ ,

$-D_{A}=\lim_{j\rightarrow}\inf_{\infty e_{j+}1}\inf_{\leq\epsilon\leq e_{j}}\frac{\log M(\epsilon)}{-\log\epsilon}$

(the proof of these relations was given in [8]), the asymptotic behavior of the
sequence $\{D_{k}\}$ defined by

$D_{k}=\frac{\log M(\epsilon_{k})}{-\log\epsilon_{k}}$

is most strongly related to the gap values of recurrent dimensions. We can
estimate the lower bound of the gap values by using the variance of the data
$\{D_{k}\}$ as follows.
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LEMMA 5.1. Assume that there exists a subsequence $\{D_{k_{j}}\}$ , which converges
to $D_{0}$ : $\underline{D}\leq D_{0}\leq\overline{D}$ as $ j\rightarrow\infty$ , and satisfies

(5. 1) $\lim_{n\rightarrow}\sup_{\infty}(\frac{1}{n}\sum_{k=1}^{n}|D_{0}-D_{k}|^{2})^{p}1=\sigma>0$ .

Then we have

(5.2) $\overline{D}-\underline{D}\geq\sigma$ .

Proof. It follows from (5. 1) that we can choose a subsequence $\{n_{j}\}$ such that
for a sufficiently small $\epsilon>0$ there exits a large number $jo$ , which satisfies

(5. 3) $(\frac{1}{n_{j}}\sum_{k=1}^{n_{j}}|D_{0}-D_{k}|^{2})^{\tau}1>\sigma-\epsilon$

for all $j\geq j_{0}$ . Then we can find an infinite subsequence $\{D_{\ell_{j}}\}$ in $\{D_{k}\}$ , which
satisfies

$|D_{0}-D_{\ell_{j}}|>\sigma-2\epsilon$ .

In fact, if we assume that

$|D_{0}-D_{k}|\leq\sigma-2\epsilon,$ $\forall k\geq k_{0}$ ,

for a large number $k_{0}$ , then we have

$\frac{1}{n_{j}}\sum_{k=1}^{n_{j}}|D_{0}-D_{k}|^{2}\leq\frac{1}{n_{j}}(\sum_{k=1}^{k_{0}}|D_{0}-D_{k}|^{2}+(n_{j}-k_{0})(\sigma-2\epsilon)^{2})$ .

As $ j\rightarrow\infty$ , it contradicts (5.3). Since

$|D_{0}-D_{k_{j}}|<\epsilon,$ $\forall i\geq i_{1}$

holds for a large number $j_{1}$ , we have

$|D_{\ell_{j}}-D_{k_{j}}|\geq|D_{\ell_{j}}-D_{0}|-|D_{0}-D_{k_{j}}|>\sigma-3\epsilon$ .

holds for all $j\geq j_{2}$ $:=\max\{j_{0},j_{1}\}$ . Choose a sufficiently large number $N$ such
that for $l_{j},$ $k_{j}\geq N$ with $j\geq j_{2}$

$\overline{D}+\epsilon\geq\max\{D_{\ell_{j}}, D_{k_{j}}\}$ , $\underline{D}-\epsilon\leq\min\{D_{l_{j}}, D_{k_{j}}\}$

hold, then we have

$\overline{D}-\underline{D}\geq|D_{\ell_{j}}-D_{k_{j}}|-2\epsilon\geq\sigma-5\epsilon$

for every $\epsilon>0$ . $\square $
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Since the definitions of recurrent dimensions are quite simple, we can calcu-
late these dimensions numerically by simple programs. In view of Lemma 5.1,
using “Mathematica” with ”Statistics LinearRegression” package and calculat-
ing “SE”: standard deviations related to the data $\{D_{k}\}$ , we investigate the gaps
of recurrent dimensions in the following cases of the rotation number $\alpha$ :

(1) $\frac{\sqrt{5}+1}{2}$ (2) $\sqrt{2}$ (3) $e$ (4) $[0,2,2^{2},2^{3},2^{4},2^{5},2^{6}]$

(5) $[0,2,2,2,2^{5},2,2]$ (6) $[0,2,2^{2^{2}},2^{2^{3}},2^{2^{4}},2^{2^{5}},2^{2^{6}}]$

where the notations $[\cdot, \cdot, \cdots]$ are continued fraction expansions:

$\frac{\sqrt{5}+1}{2}=[1,1,1,1, \cdots]$ , $\sqrt{2}=[1,2,2,2,2, \cdots]$ ,

$e=[2,1,2,1,1,4,1,1,6,1,1,8,1,1,10, \ldots]$ .
The numbers of (1) and (2) are in the ”constant type” irrational class or called
“badly approximable” such that $d_{0}=0$ and also the numbers of (3) and (4) are
O-order Roth numbers: $d_{0}=0$ and the numbers of (5) and (6) are examples of
an $\alpha$-order weak Liouville number or an $\alpha$-order Roth number, that is, $d_{0}>0$

(see [9] for details). Since the order $\alpha$ is given by $m_{j+1}\simeq m_{j}^{1+\alpha}$ (see also [9]), we
can numerically calculate the values of $d_{0}$ by estimating $(\log m_{j+1}/\log m_{j})-1$ :
(5) $d_{0}=$ 1.39992 (6) $d_{0}=4.04439$ . We calculate the recurrent dimensions of
the orbits given by the rotation $R_{\alpha}(x)$ as follows:

Let

$x[n]$ $:=n\alpha(mod 1)$ , $E[n]$ $:=|x[n]-x[1]|$ , $n=1,$ $\ldots,$
$M_{1}$ ,

then, define

$e[i]:=c^{-i}$ , $c>1$ ,
$m[i]:=\min\{n:e[i+1]<E[n]<e[i], n=2, \ldots, M_{1}\}$ , $i=1,$

$\ldots,$
$M_{2}$

where we estimate the minimum values by using double loops such that “Do”
and “If’ for $n=2,$ $\ldots,$

$M_{1}$ in the loop “Do” for $i=1,$
$\ldots,$

$M_{2}$ , not using ${\rm Min}’$ ,
but using ”Break”. Define

$X[i]$ $:=$ -log $e[i]$ , $Y[i]:=\log m[i]$ ,

then we apply ‘LinearRegression’ to the data list $\{(X[i], Y[i]) : i=1, ..:’ M_{2}\}$ .
Then we consider the slope of the line as one kind of mean values between upper
and lower recurrent dimensions. We obtain the following results by taking the
constants: $M_{1}=50000$ , $M_{2}=24\sim 30$ , $c=1.37$ for each rotation number $\alpha$

from the case (1) to (6).
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(1) $\alpha=\frac{\sqrt{5}+1}{2}$

FIT: 0.124695+0.958591 $x$ , SE: 0.04771

(2) $\sqrt{2}$

FIT: $0.104476+0.95213x$ , SE: 0.0414112
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(3) $e$

FIT: $0.319348+0.9574x$ , SE: 0.0616199

(4) $[0,2,2^{2},2^{3},2^{4},2^{5},2^{6}]$

FIT: $0.396379+0.978274x$ . SE: 0.0840199
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(5) $[0,2,2,2,2^{5},2,2]$

FIT: $1.16939+0.711111x$, SE: 0.168685

(6) $[0,2,2^{2^{2}},2^{2^{3}},2^{2^{4}},2^{2^{5}},2^{2^{6}}]$

FIT: 2.27988+0.607361 $x$ , SE: 0.185964
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According to the cases from (1) to (6) we can obtain the table of values
$d_{0},$ $G_{0}=d_{0}/(1+d_{0}),$ $D$ : the slope of the line obtained by the linear regression
and $SE$ : standard deviations of D. $G_{1}$ is the gap value of recurrent dimensions
given by $G_{1}=\overline{D}-\underline{D}=2(1-D)$ where we assume that $D=(\overline{D}+\underline{D})/2$ and
note that $\overline{D}=1$ .

Table: Gaps of Recurrent Dimensions

In view of Lemma 5.1 we can see that the SE values give the lower bounds
of the gap values $G_{0}$ or $G_{1}$ . Since $G_{0}\sim G_{1}$ in all cases, we can say that the
assumption $D=(\overline{D}+\underline{D})/2$ is considerable.

The case “Pi” contains the most mysterious problems. Our numerical results
for $\pi$ are

FIT: $2.30816+0.640188x$ , SE: 0.14764.

Since we have $G_{1}=0.719624$ , we can conjecture that

$d_{0}\sim\frac{G_{1}}{1-G_{1}}=2.56664$ .

In [1] Hata estimated the irrationality of $\pi$ as follows:

$|\pi-\frac{n}{m}|\geq m^{-8.0161}$

holds for any integers $n,$ $m$ : $m\geq m_{0}$ where $m_{0}$ is a sufficiently large number. In
our definitions he proved that $\pi$ is a Roth number with its order 6.0161... The
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lower estimate of its order, that is, the estimate of the order as a weak Liouville
number must be the most interesting and mysterious problem on $\pi$ .
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