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Abstract. In this paper we introduce a new class $\mathcal{L}(\phi,\psi;\alpha)$ involving Hadamard
product of meromorphic functions $\phi$ and $\psi$ having simple poles at $z=0$ . We
establish some results concerning partial sums for the functions belonging to the
class $\mathcal{L}(\phi, \psi;\alpha)$ . Applications of the main results are also considered.

1. Introduction

Let $\Sigma$ be the class of functions $f(z)$ defined by

$f(z)=\frac{1}{z}+\sum_{k=1}^{\infty}a_{k}z^{k}$ (1. 1)

(1. 2)

which are analytic in the punctured unit disk

$\mathcal{D}=\{z : z\in \mathbb{C}, 0<|z|<1\};\mathcal{U}=\mathcal{D}\cup\{0\}$ .

We denote by $\Sigma^{*}(\alpha),$ $\Sigma_{k}(\alpha)$ and $\Sigma_{c}(\alpha)$ the three subclasses of the class $\Sigma$ which
are defined (for $\alpha\in[0,1$ )) as follows:

$\Sigma^{*}(\alpha)=\{f$ : $f\in\Sigma,$ $\Re(-\frac{zf^{\prime}(z)}{f(z)})>\alpha\}$

(1. 3)$\Sigma_{k}(\alpha)=\{f$ : $f\in\Sigma,$ $\Re(-(1+\frac{zf^{\prime\prime}(z)}{f’(z)}))>\alpha\}$

and

$\Sigma_{c}(\alpha)=\{f : f\in\Sigma, \Re(-z^{2}f^{\prime}(z))>\alpha\}$ , (1. 4)

where the subclasses of the class $\Sigma$ denoted, respectively, by $\Sigma^{*}(\alpha),$ $\Sigma_{k}(\alpha)$ and
$\Sigma_{c}(\alpha)$ are the well known subclasses of meromorphic starlike functions of order
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$\alpha(0\leqq\alpha<1)$ in $\mathcal{U}$ , meromorphic convex functions of order $\alpha(0\leqq\alpha<1)$ in
$\mathcal{U}$ , and meromorphic close-to-convex functions of order $\alpha(0\leqq\alpha<1)$ in $\mathcal{U}$ . We
observe that every function belonging to the class $\Sigma_{c}(\alpha)$ is meromorphic close
to-convex of order $\alpha$ in $\mathcal{U}$ (see [2]). We also refer to Libera and Robertson [3],
Miller [4], Mogra et al. [5], Mogra [6], Pommerenke [7], Raina and Srivastava
[8], and Xu and Yang [10] for the related works on the subject of meromorphic
functions.
If

$h_{1}(z)=\frac{a}{z}+\sum_{k=1}^{\infty}a_{k}z^{k}$ $(a\in R-\{0\})$ (1.5)

and

$h_{2}(z)=\frac{b}{z}+\sum_{k=1}^{\infty}b_{k}z^{k}$ $(b\in R-\{0\})$ (1.6)

are analytic in $\mathcal{D}$ , then their Hadamard product (or convolution) is defined by

$(h_{1}*h_{2})(z)=\frac{ab}{z}+\sum_{k=1}^{\infty}a_{k}b_{k}z^{k}$ . (1.7)

We now introduce a class $\mathcal{L}(\phi,\psi;\alpha)$ of meromorphic functions of the form
(1.1) which is defined as follows:
Suppose the functions $\phi(z)$ and $\psi(z)$ are given by

$\phi(z)=\frac{c_{1}}{z}+\sum_{k=1}^{\infty}\lambda_{k}z^{k}$ $(c_{1}\in \mathbb{R}-\{0\})$ (1.8)

and

$\psi(z)=\frac{c_{2}}{z}+\sum_{k=1}^{\infty}\mu_{k}z^{k}$ $(c_{2}\in \mathbb{R}-\{0\})$ (1.9)

then we say that $ f\in\Sigma$ is in the class $\mathcal{L}(\phi,\psi;\alpha)$ if

$\Re(-\frac{(f*\phi)(z)}{(f*\psi)(z)})>\alpha(\alpha\in[0,1))$ , (1. 10)

provided that $(f*\psi)(z)\neq 0;\langle\lambda_{k}\rangle_{k=1}^{\infty}$ and $\langle\mu_{k}\rangle_{k=1}^{\infty}$ are increasing sequences such
that $\lambda_{k}\geqq\mu_{k}\geqq 0$ ( $\lambda_{k}$ and $\mu_{k}$ are not both simultaneously equal to zero).

Silverman [9] determined sharp lower bounds for the real part of the quotients
of the normalized starlike or convex functions and their sequences of partial sums.
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Motivated essentially by the work in [9], Cho and Owa [1] investigated the sharp
lower bounds for the real part of the quotients between the function of the form
(1.1) to its sequence of partial sums

$f_{n}(z)=\frac{1}{z}+\sum_{k=1}^{n}a_{k}z^{k}$

when the coefficients are sufficiently small satisfying the coefficient inequalities
for the classes defined by (1.2) and (1.3).

In the present paper, we establish some results concerning partial sums for
the meromorphic functions belonging to the class $\mathcal{L}(\phi,\psi;\alpha)$ (defined above by
(1.10)). The results not only provide unification of the various results (proved
rather independently) of Cho and Owa [1], but also yield some new results. The
various consequences of our main results are mentioned in the concluding section.

Special cases of the class $\mathcal{L}(\phi, \psi;\alpha)$

We mention below some known subclasses of $\Sigma$ defined by (1.1) which emerge
from the class $\mathcal{L}(\phi,\psi;\alpha)$ (defined by (1.10))

Let us choose

$\phi(z)=\frac{2z-1}{z(1-z)^{2}}=\frac{-1}{z}+\sum_{k=1}^{\infty}kz^{k}$ ,

and

$\psi(z)=\frac{z^{2}-z+1}{z(1-z)}=\frac{1}{z}+\sum_{k=1}^{\infty}z^{k}$ ,

then in view of the convolution defined by (1.7), and performing simple calcula-
tions, we observe that

$(f*\phi)(z)=zf^{\prime}(z)$

and

$(f*\psi)(z)=f(z)$ .
Thus, the class $\mathcal{L}(\phi, \psi;\alpha)$ reduces to $\Sigma^{*}(\alpha)$ satisfying the relationship

$c(\frac{2z-1}{z(1-z)^{2}},$ $\frac{z^{2}-z+1}{z(1-z)};\alpha)=\Sigma^{*}(\alpha)$ . (1. 11)

Similarly, by putting

$\phi(z)=\frac{1-3z+4z^{2}}{z(1-z)^{3}}=\frac{1}{z}+\sum_{k=1}^{\infty}k^{2}z^{k}$
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and

$\psi(z)=\frac{2z-1}{z(1-z)^{2}}=\frac{-1}{z}+\sum_{k=1}^{\infty}kz^{k}$ ,

then in view of the convolution defined by (1.7), we find that

$(f*\phi)(z)=zf^{\prime}(z)+z^{2}f^{\prime\prime}(z)$ ,

and
$(f*\psi)(z)=zf^{\prime}(z)$ .

The class $\mathcal{L}(\phi, \psi;\alpha)$ then reduces to $\Sigma_{k}(\alpha)$ and satisfies the relation

$c(\frac{1-3z+4z^{2}}{z(1-z)^{3}},$ $\frac{2z-1}{z(1-z)^{2}};\alpha)=\Sigma_{k}(\alpha)$ . (1. 12)

Lastly, choosing

$\phi(z)=\frac{2z-1}{z(1-z)^{2}}=\frac{-1}{z}+\sum_{k=1}^{\infty}kz^{k}$ ,

and
$\psi(z)=\frac{1}{z}$ ,

in (1.7), we obtain
$(f*\phi)(z)=zf^{\prime}(z)$ ,

and
$(f*\psi)(z)=\frac{1}{z}$ .

The class $\mathcal{L}(\phi, \psi;\alpha)$ then reduces to $\Sigma_{c}(\alpha)$ , satisfying the relationship

$c(\frac{2z-1}{z(1-z)^{2}},$ $\frac{1}{z};\alpha)=\Sigma_{c}(\alpha)$ . (1. 13)

2. Main Results

In this section we shall investigate the sharp bounds for $\Re(\frac{f(z)}{f_{n}(z)}),$ $\Re(\frac{f_{n}(z)}{f(z)})$ ,

$\Re(,\frac{f^{\prime}(z)}{f_{n}(z)})$ and $\Re(,\frac{f_{n}^{\prime}(z)}{f(z)})$ , where $f(z)$ is defined by (1.1), and $f_{n}(z)=\frac{1}{z}+\sum_{k=1}^{n}a_{k}z^{k}$

$(n\in N)$ is the sequence of partial sums of (1.1).
In order to prove our main results, we require the following assertion giving

the $efficient$ inequality of the fucntion $f(z)$ defined by (1.1) to belong to the
class $\mathcal{L}(\phi, \psi;\alpha)$ .
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LEMMA 1. If $ f(z)\in\Sigma$ satisfies

$\sum_{k=1}^{\infty}A(\alpha, k)|a_{k}|\leqq\frac{1}{2}[|c_{1}+(2\alpha-1)c_{2}|-|c_{1}+c_{2}|]$ , (2. 1)

where $A(\alpha, k)$ is given by

$A(\alpha, k)=\lambda_{k}+\alpha\mu_{k}$ , (2.2)

then $f(z)\in \mathcal{L}(\phi,\psi;\alpha)$ , provided that $\lrcorner^{c}c_{2}\leqq-1(c_{1}, c_{2}\in R-\{0\};0\leq\alpha<1)$ .

Proof. In order to prove the lemma, we observe that the left-hand side of (2.1)
is a series of positive terms. To make the right-hand side of (2.1) also positive,
we show that

$|c_{1}+(2\alpha-1)c_{2}|>|c_{1}+c_{2}|$ ,

or, we show that

$|\frac{c1+(2\alpha-1)c_{2}}{c1+c2}|>1$ .
Elementary calculations reveal that the above inequality is true provided that
$\lrcorner c_{2}c\leqq-1(c_{1}, c_{2}\in R-\{0\};0\leq\alpha<1)$ . This condition stated in the lemma thus
ensures the validity of the coefficient inequality (2.1).

Let the condition (2.1) be satisfied for the function $ f(z)\in\Sigma$ . By virtue of
the definition (1.10), it is sufficient to show that

$|\frac{(f*\phi)+(f*\psi)}{(f*\phi)+(2\alpha-1)(f*\psi)}|<1$

Using (1.1), (1.8) and (1.9), we obtain

$|\frac{(f*\phi)+(f*\psi)}{(f*\phi)+(2\alpha-1)(f*\psi)}|=|\frac{\lrcorner^{c}z+\sum_{k=1}^{\infty}\lambda_{ka_{k}z+_{z}+\sum_{k=1}^{\infty}\mu_{k}a_{k^{Z^{k}}}}^{kg}}{\lrcorner^{C},z+\sum_{k=1}^{\infty}\lambda_{k}a_{k}z^{k}+(2\alpha-l)\{za+\sum_{k=1}^{\infty}\mu_{k}a_{k}z^{k}\}}|$

$=|\frac{(c_{1}+c_{2})+\sum_{k=1}^{\infty}(\lambda_{k}+\mu_{k})a_{k}z^{k+1}}{c_{1}+(2\alpha-1)c_{2}+\sum_{k=1}^{\infty}\{\lambda_{k}+(2\alpha-1)\mu_{k}\}a_{k}z^{k+1}}|$

$|c_{1}+c_{2}|+\sum(\lambda_{k}+\mu_{k})|a_{k}|\infty$

$\leqq\frac{k=1}{\infty}$ .
$|c_{1}+(2\alpha-1)c_{2}|-\sum_{k=1}\{\lambda_{k}+(2\alpha-1)\mu_{k}\}|a_{k}|$
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The last expression is bounded by 1 if which is true by virtue of (2.1), and the
proof is complete.

If we choose arbitrary functions $\phi$ and $\psi$ in (1.10) acoording to (1.11), (1.12)
and (1.13), we get the following assertions:

COROLLARY 1. Let the function $ f(z)\in\Sigma$ satish the coefficient inequality

$\sum_{k=1}^{\infty}(k+\alpha)|a_{k}|\leqq 1-\alpha$ , (2.3)

then $f(z)\in\Sigma^{*}(\alpha)$ .

COROLLARY 2. Let the function $ f(z)\in\Sigma$ satisfy the coefficient inequality

$\sum_{k=1}^{\infty}k(k+\alpha)|a_{k}|\leqq 1-\alpha$ , (2.4)

then $f(z)\in\Sigma_{k}(\alpha)$ .

COROLLARY 3. Let the function $ f(z)\in\Sigma$ satish the coefficient inequality

$\sum_{k=1}^{\infty}k|a_{k}|\leqq 1-\alpha$ , (2.5)

then $f(z)\in\Sigma_{c}(\alpha)$ .

REMARK 1. If $c_{1}+c_{2}=0$ with $|c_{1}|=|c_{2}|=1$ , then the inequality (2.1)
simplifies to the form

$\sum_{k=1}^{\infty}A(\alpha, k)|a_{k}|\leqq 1-\alpha$ . (2.6)

To prove our main results we also need the following definition:

DEFINITION 1. For two functions $f$ and $g$ analytic in $\mathcal{U}$ , we say that the
function $f$ is subordinate to $g$ in $\mathcal{U}$ (denoted by $f\prec g$), if there exists a function
$w(z)$ , analytic in $\mathcal{U}$ with $w(O)=0$ , and $|w(z)|<1(z\in \mathcal{U})$ such that $f(z)=$

$g(w(z))$ .

THEOREM 1. If $ f(z)\in\Sigma$ satisfies the coefficient inequality (2.6), then for
$\max\{0,11-\mp\mu_{1}\lambda\}\leqq\alpha<1$ :

$\Re(\frac{f(z)}{f_{n}(z)})\geqq\frac{A(\alpha,n+1)+\alpha-1}{A(\alpha,n+1)}$ (2. 7)
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and

$\Re(\frac{f_{n}(z)}{f(z)})\geqq\frac{A(\alpha,n+1)}{A(\alpha,n+1)-\alpha+1}$ (2.8)

where $A(\alpha,n+1)$ is given by (2.2). The results are sharp for every $n$, urith the
extremal functions given by

$f(z)=\frac{1}{z}+\frac{1-\alpha}{A(\alpha,n+1)}z^{n+1}(n\in N)$ , (2. 9)

where the equality in (2.7) is attained when $z=re^{\pi i/n+1}(r\rightarrow 1^{-})$ , and for (2.8)
equality is attained when $z=re^{2\pi t/n+2}(r\rightarrow 1^{-})$ .

Proof. To prove (2.7), we have to show that

$\frac{A(\alpha,n+1)}{1-\alpha}[\frac{f(z)}{f_{n}(z)}-\frac{A(\alpha,n+1)+\alpha-1}{A(\alpha,n+1)}]\prec\frac{1+z}{1-z}$ (2.10)

Using definition of subordination, and putting the values of $f$ and $f_{n}$ , we have
from (2.10):

$1+\sum^{n}a_{k}z^{k+1}+\frac{A(\alpha,n+1)}{1-\alpha}\sum^{\infty}a_{k}z^{k+1}$

$\frac{k=1k=n+1}{1+\sum_{k=1}^{n}a_{k}z^{k+1}}=\frac{1+w(z)}{1-w(z)}$

. (2. 11)

Our assertion (2.10) is true if we show that $w(O)=0$ and $|w(z)|<1;z\in \mathcal{U}$ .
From (2.11), we get

$\frac{A(\mathfrak{a},n+1)}{1-\alpha}\sum^{\infty}a_{k}z^{k+1}$

$w(z)=\frac{k=n+1}{n\infty}$ ,

$2+2\sum_{k=1}a_{k}z^{k+1}+\frac{A(\alpha,n+1)}{1-\alpha}\sum_{k=n+1}a_{k}z^{k+1}$

and obviously $w(O)=0$ , and

$\frac{A(\alpha,n+1)}{1-\alpha}\sum^{\infty}|a_{k}|$

$|w(z)|\leqq\frac{k=n+1}{n\infty}$ .
$2-2\sum_{k=1}|a_{k}|-\frac{A(\alpha,n+1)}{1-\alpha}\sum_{k=n+1}|a_{k}|$
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Now $|w(z)|\leqq 1$ if and only if

$\sum_{k=1}^{n}|a_{k}|+\frac{A(\alpha,n+1)}{1-\alpha}\sum_{k=n+1}^{\infty}|a_{k}|\leqq 1$ . (2. 12)

This will hold if we show that L.H.S. of (2.12) is bounded above by $\sum_{k=1}^{\infty}\frac{A(\alpha,k}{1-\alpha}\ovalbox{\tt\small REJECT}_{a_{k}}|$

(in view of (2.6)). This is equivalent to

$\sum_{k=1}^{n}(\frac{A(\alpha,k)}{1-\alpha}-1)|a_{k}|+\sum_{k=n+1}^{\infty}(\frac{A(\alpha,k)-A(\alpha,n+1)}{1-\alpha})|a_{k}|\geqq 0$ ,

which is true due to our condition on $\alpha$ , and the increasingness of the sequence
$A(\alpha, k),$ $\forall k\in N$ .

THEOREM 2. If $ f(z)\in\Sigma$ satisfies the coefficient inequality (2.6) such that
$\max\{0,$ $\frac{1-\lambda}{1+\mu}\perp 1\}\leqq\alpha<1$ , and the sequence $\langle\frac{A(\alpha,k)}{k}\rangle_{k=1}^{\infty}$ is nondecreasing, then

$\Re(\frac{f^{\prime}(z)}{f_{n}^{\prime}(z)})\geqq\frac{A(\alpha,n+1)-(1-\alpha)(n+1)}{A(\alpha,n+1)}$ (2. 13)

and

$\Re(\frac{f_{n}^{\prime}(z)}{f(z)})\geqq\frac{A(\alpha,n+1)}{A(\alpha,n+1)+(n+1)(1-\alpha)}$ (2. 14)

The results are sha$7p$ for every $n$ with the extremal functions given by

$f(z)=\frac{1}{z}+\frac{1-\alpha}{A(\alpha,n+1)}z^{n+1}(n\in N)$ , (2. 15)

where the equality in (2.13) is attained when $z=re^{2\pi i/n+2}(r\rightarrow 1^{-})$ , and for
(2.14) equality is attained when $z=re^{\pi t/n+2}(r\rightarrow 1^{-})$ .

Proof. We prove (2.13), and the proof of (2.14) is similar and is here omitted.
Proceeding as in Theorem 1, we set

$\frac{A(\alpha,n+1)}{(1-\alpha)(n+1)}[\frac{f^{\prime}(z)}{f_{n}^{\prime}(z)}-\frac{A(\alpha,n+1)-(1-\alpha)(n+1)}{A(\alpha,n+1)}]$

$1-\sum ka_{k}z^{k+1}-\frac{A(\alpha,n+1)}{(1-\alpha)(n+1)}n\sum^{\infty}ka_{k}z^{k+1}$

$=^{k=1k=n+1}\ovalbox{\tt\small REJECT}=\frac{1+w(z)}{1-w(z)}1-\sum_{k=1}^{n}ka_{k}z^{k+1}$
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Solving for $w(z)$ , we get

$-\frac{A(\alpha,n+1)}{(1-\alpha)(n+1)}\sum^{\infty}ka_{k}z^{k+1}$

$w(z)_{n\infty}^{k=n+1}=\ovalbox{\tt\small REJECT}$ ,

$2-2\sum_{k=1}ka_{k}z^{k+1}-\frac{A(\alpha,n+1)}{1-\alpha)(n+1)}\sum_{k=n+1}ka_{k}z^{k+1}$

which impies that

$\frac{A(\alpha,n+1)}{(1-\alpha)(n+1)}\sum^{\infty}k|a_{k}|$

$|w(z)|\geqq\frac{k=n+1}{n\infty}$ .
$2-2\sum_{k=1}k|a_{k}|-\frac{A(\alpha,n+1)}{1-\alpha)(n+1)}\sum_{k=n+1}k|a_{k}|$

Now $-w(z)-$ . $1$ if and only if

$\sum_{k=1}^{n}k|a_{k}|+\sum_{k=n+1}^{\infty}\frac{A(\alpha,n+1)}{(1-\alpha)(n+1)}k|a_{k}|\leqq 1$ , (2. 16)

which will hold true if we show that the L.H.S. of (2.16) is bounded above by
$\sum_{k=1}^{\infty}\frac{A(\alpha,k)}{1-\alpha}|a_{k}|$ (in view of (2.6)). This is equivalent to

$\sum_{k=1}^{n}k(\frac{\frac{A(\alpha,k)}{k}}{(1-\alpha)}-1I|a_{k}|+\sum_{k=n+1}^{\infty}k(\frac{(n+1)\frac{A(\alpha,k)}{k}-A(\alpha,n+1)}{(1-\alpha)(n+1)}I$ I $a_{k}|\geqq 0$ ,

which is true due to the condition implied on $\alpha$ , and the increasingness of the
sequence $\langle\frac{A(\alpha,k)}{k}\rangle_{k=1}^{\infty}$ .

3. Applications of Main Results

In this section we consider some applications of the main results (Theorems 1
and 2) as worthwhile consequences of our main results, by properly specializing
the arbitrary functions $\phi(z)$ and $\psi(z)$ occurring in (1.8), (1.9) and (1.10).

Thus, if we set $\phi(z)=\frac{2z-1}{z(1-z)^{2}}$ and $\psi(z)=\frac{z^{2}-z+1}{z(1-z)}$ in (1.10), then as mentioned
in (1.11), the class $\mathcal{L}(\phi, \psi;\alpha)$ reduces to a known class. Also, as a consequence
of the above choice of functions $\phi(z)$ and $\psi(z)$ , the parameters $c_{1}$ and $c_{2}$ are
chosen as $c_{1}=-1$ and $c_{2}=1$ , and the arbitrary sequences $\{\lambda_{k}\}$ and $\{\mu_{k}\}$ set
as $\lambda_{k}=k(k\in N)$ and $\mu_{k}=1(k\in N)$ in (2.7) and (2.8) of Theorem 1, and
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also in (2.13) and (2.14) of Theorem 2, thereby, simplifying considerably the
right-hand members of these inequalities. We eventually obtain the following

result emerging (in combined form) from $Threms1$ and 2. The other results
(Corollaries 5-6) are deducible in similar manner from Theorems 1 and 2 (in

combined forms) by suitably involving the known forms of classes of functions
as mentioned in (1.12) and (1.13), and by 8 setting the arbitrary functions and
sequences of parameters appropriately (as indicated just above).

COROLLARY 4. If $ f(z)\in\Sigma$ satisfies the coefficient inequality (2.3), then

$\Re(\frac{f(z)}{f_{n}(z)})\geqq\frac{n+2\alpha}{n+1+\alpha}(0\leqq\alpha<1)$ (3. 1)

$\Re(\frac{f_{n}(z)}{f(z)})\geqq\frac{n+1+\alpha}{n+2}(0\leqq\alpha<1)$ (3. 2)

$\Re(\frac{f^{\prime}(z)}{f_{n}(z)})\geqq 0$ (for $\alpha=0$ ) (3.3)

and

$\Re(\frac{f_{n}^{\prime}(z)}{f(z)})\geqq\frac{1}{2}$ (for $\alpha=0$). (3.4)

The results are sharp for the extremal functions given by

$f(z)=\frac{1}{z}+\frac{1-\alpha}{n+1+\alpha}z^{n+1}(n\in N)$ . (3. 5)

where the equality in (3.1) is attained when $z=re^{\pi i/n+2}(r\rightarrow 1^{-})$ , and for
(3.2) equality is attained $z=re^{2\pi t/n+2}(r\rightarrow 1^{-})$ . Similarly equality in (3.3) is
attained when $z=re^{2\pi t/n+2}(r\rightarrow 1^{-}),$ $\alpha=0$ ; and for (3.4) equality is attained
when $z=re^{\pi i/n+2}(r\rightarrow 1^{-}),$ $\alpha=0$ .

COROLLARY 5. If $ f(z)\in\Sigma$ satisfies the coefficient inequality (2.4), then

$\Re(\frac{f(z)}{f_{n}(z)})\geqq\frac{(n+2)(n+\alpha)}{(n+1)(n+1+\alpha)}(0\leqq\alpha<1)$ (3. 6)

$\Re(\frac{f_{n}(z)}{f(z)})\geqq\frac{(n+1)(n+1+\alpha)}{(n+1)(n+2)-n(1-\alpha)}(0\leqq\alpha<1)$ (3. 7)

$\Re(\frac{f^{\prime}(z)}{f_{n}^{\prime}(z)})\geqq\frac{n+2\alpha}{n+1+\alpha}(0\leqq\alpha<0)$ (3. 8)

and

$\Re(\frac{f_{n}^{\prime}(z)}{f^{\prime}(z)})\geqq\frac{1}{2}(0\leqq\alpha<1)$ . (3. 9)
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The results are sharp for the extremal functions given by

$f(z)=\frac{1}{z}+\frac{1-\alpha}{(n+1+\alpha)(n+1)}z^{n+1}(n\in N)$ , (3. 10)

where the equality in (3.6) and (3.9) is attained when $z=re^{\pi i/n+2}(r\rightarrow 1^{-})$ ,
and for (3.7) and (3.8) equality is attained when $z=re^{2\pi i/n+2}(r\rightarrow 1^{-})$ .

COROLLARY 6. If $ f(z)\in\Sigma$ satisfies the coefficient inequality (2.5), then

$\Re(\frac{f(z)}{f_{n}(z)})\geqq\frac{n+\alpha}{n+1}(0\leqq\alpha<1)$ (3.11)

$\Re(\frac{f_{n}(z)}{f(z)})\geqq\frac{n+1}{n+2-\alpha}(0\leqq\alpha<1)$ (3.12)

$\Re(\frac{f^{\prime}(z)}{f_{n}^{\prime}(z)})\geqq\alpha(0\leqq\alpha<0)$ (3. 13)

and

$\Re(\frac{f_{n}^{\prime}(z)}{f(z)})\geqq\frac{1}{2-\alpha}(0\leqq\alpha<1)$ . (3.14)

The results are sharp for the extremal functions given by

$f(z)=\frac{1}{z}+\frac{1-\alpha}{n+1}z^{n+1}(n\in N)$ , (3. 15)

where the equality in (3.11) and (3.14) is attained when $z=re^{\pi i/n+2}(r\rightarrow 1^{-})$ ,
and for (3.12) and (3.13) equality is attained when $z=re^{2\pi i/n+2}(r\rightarrow 1^{-})$ .

REMARK 2. Each of the results of Corollaries 4 and 5 were earlier proved
independendy by Cho and Owa [1, Theorems 2.1, 2.2, 2.3, 2.4 and 2.5]. The
results stated in Corollary 6 are believed to be new.
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