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Abstract. We will study a notion of strong shift equivalence between two
Hilbert C*-bimodules as a generalization of strong shift equivalence between two
nonnegative matrices. We will prove that if two finite projective Hilbert C*-
bimodules are strong shift equivalent, the gauge actions of the C*-algebras of the
Hilbert C*-bimodules are stably outer conjugate. Hence the K-theoretic groups
of the C*-algebras of strong shift equivalent Hilbert C*-bimodules are invariant.

1. Introduction

Let A be a C*-algebra. Let X be a Hibert C*-right .A-module with left ac-
tion of A. It is called a Hilbert C*-bimodule over .A. M. Pimsner constructed
a C*-algebra for a Hilbert C*-bimodule ([19], cf. [9]). The C*-algebra is a gen-
eralization of both Cuntz-Krieger algebras and crossed products .A x Z by the
integer Z. If A is finite dimensional and commutative and the bimodule X has an
orthogonal finite basis, the C*-algebra is isomorphic to a Cuntz-Krieger algebra.
Let A = [A(4, j)]i,j=1,...,n be an n X n matrix with entries in nonnegative integers,
that is called a nonnegative matrix for brevity. Let G4 be a finite directed graph
with n vertices {v1,...,v,} and with A(4, j) directed edges whose source vertices
are v; and terminal vertices are v;. For a directed edge e, we denote by s(e) the
source vertex of e and by ¢(e) the terminal vertex of e. Let Eg, be the edge set of
the graph G 4. Let A4 be the compact set of all biinfinte sequences (a;):cz € E% .
of edges a; of G4 such that t(a;) = s(a;4;) for all i € Z. We denote by o4 the
shift transformation on A4 defined by o4((a:)icz) = (ai+1)iez. The topologi-
cal dynamical system (A4,04) is called the topological Markov shift associated
with A. For the classification problem of the topological Markov shifts up to
topological conjugacy, R. F. Williams in proved that the topological Markov
shifts (A4,04) and (Ap,opB) are topologically conjugate if and only if the ma-
trices A and B are strong shift equivalent. Two nonnegative square matrices M
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and N are said to be strong shift equivalent in 1-step if there exist nonnegative
rectangular matrices R, S such that M = RS, N = SR. If there exists a finite
sequence of nonnegative matrices Aj, Ao, ..., Ax such that A = A;, B = Ay and
A; is strong shift equivalent to A;,; in 1-step for ¢ =1,2,...,k — 1, then A and
B are said to be strong shift equivalent.

Let K be the C*-algebra of all compact operators on a separable infinite
dimensional Hilbert space. Cuntz and Krieger proved that if two topological
Markov shifts (A4,04) and (Ap, o) are topologically conjugate, the gauge ac-
tions 74 and v2 of the Cuntz-Krieger algebras O4 and Op are stably conjugate.
That is, there exists an isomorphism ¢ from O4 ® K to Op ® K such that
po (2 ®id) = (v2 ® id) o ¢ ([5, Theorem 3.8),cf.[4]). Their proof is due to
a dynamical method without using strong shift equivalence condition on the
underlying nonnegative matrices.

In [15], a notion of C*-symbolic dynamical system has been introduced as
a C*-algebraic generalization of a finite directed labeled graph. C*-symbolic
dynamical systems naturally yield Hilbert C*-bimodules with finite bases so
that they give rise to C*-algebras of the Hilbert C*-bimodules. The author has
formulated strong shift equivalences of C*-symbolic dynamical systems and of
Hilbert C*-bimodules and proved that if two C*-symbolic dynamical systems are
strong shift equivalent, the gauge actions of the C*-algebras of the Hilbert C*-
bimodules are stably outer conjugate. In this short note, we will directly prove
that if two Hilbert C*-bimodules are strong shift equivalent, the gauge actions
of the C*-algebras of the Hilbert C*-bimodules are stably outer conjugate. This
result is a generalization of the similar result for C*-symbolic dynamical systems.
Hence it is a generalization of the main result of for the C*-algebras of A-
graph systems and of [5, Theorem 3.8] for the Cuntz-Krieger algebras. We
will also give an exact proof for the result that two nonnegative matrices are
strong shift equivalent if and only if the Hilbert C*-bimodules associated with
the matrices are strong shift equivalent.

2. Hilbert C*-bimodules andr its C*-algebras

We review briefly Pimsner’s C*-algebras from Hilbert C*-bimodules following
and [7] (cf.[9], [8]). For a C*-algebra A, a Hilbert C*-right A-module X is a
C-vector space with a right A-module structure and an .A-valued inner product
(,) satisfying the following conditions [8, Definition 1.2]:

(a) (,) is left conjugate and right linear.

(b) (z,ya) = (z,y)a and (za,y) = a*(z,y) for all z,y € X and a € A.
(¢) (z,z) >0forall z € X, and (z,z) =0 if and only if z =0

(d) (z,y) = (y,z)* for all z,y € X.
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(e) X is complete with respect to the norm |z|| = ||(z, z)||*/2.

A Hilbert C*-right A-module X is said to be full if the closed linear span of
{{z,y) | z,y € X} is equal to A. Let L4(X) be the algebra of bounded linear
right .A-module maps on X with adjoints with respect to the .A-valued inner
product on X. We denote by K 4(X) the norm closure of linear combinations of
rank one operators 8, , € L 4(X) for z,y € X defined by 6, ,(z) = z(y, 2) for z €
X. A finite subset {u;,...,un} of X is called a basis for X if z = Y_&- | u;(u;, z)
for all z € X. Recall that X has a finite basis if and only if K 4(X) = L4(X)
([8]). 1t is equivalent to the condition that X is finite projective. Throughout this
paper, we assume for simplicity that the C*-algebras A are unital and Hilbert
C*-modules are full and finite projective.

Let ¢ : A = L 4(X) be a unital isometric *-homomorphism. The pair (¢, X)
is called a Hilbert C*-bimodule over A (cf.[8]). M. Pimsner constructed
a C*-algebra Oy x) from Hilbert C*-bimodule (¢, X). It is simply written as
Ox. The C*-algebra is the universal C*-algebra generated by {S; | z € X}
together with a contraction X > z — S, € Ox, and unital *-homomorphisms
ma: A= Ox and 7g : K4(X) — Ox satisfying the following relations:

@.1) Ske =Tk (k)Sz,  Sea = Soma(a), Tx(#(a)) = ma(a),
) SzS; = WK(ga:,y) and S;Sy = WA((:B’ y))

for z,y € X,k € K4(X),a € A. The universality means that the algebra Ox
is the biggest C*-algebra in the C*-algebras satisfying the above systems. For
2 € T = {z € C| |z] = 1}, the correspondence S, — zS; gives rise to an
automorphism v, of Ox. It yields an action v of T, that is called the gauge
action.

Ideal structure and simplicity condition on the C*-algebras have been studied

in [7] and (cf[21]).

3. Strong shift equivalence of nonnegative matrices and Hilbert
C*-bimodules

Let A = [A(%,j)}i,j=1,....n be an n X n nonnegative matrix. Assume that both
every row and every column have at least one nonzero entry. Hence every vertex
of the graph G4 has at least both one in-coming edge and one out-going edge.
Consider the n-dimensional commutative C*-algbera Ag, = CE, ® --- ® CE,
where E;,i = 1,...,n are mutually orthogonal minimal projections of A that
correspond to the vertices v;,i = 1,...,n of G4. Define an n x n-matrix A, for
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e € Eg, with entries in {0,1} by

Al ) 1 if s(e) = vi, t(e) = vy,
ell, =
J 0 otherwise,

fori,j=1,...,n. We set

n
pAE) = Ac(i,j)E;, i=1,...,n
j=1
so that p# defines a x-endomorphism of Ag, . Put the projections P2 = pZ'(1) in
Ag .- Let {e.}eecr, denote the standard basis of the |Eg, |-dimensional vector
space C!Fcal) where |Eg, | denotes the cardinal number of Eg,. Set

Xa= Y Ce®PlAc,.
e€Eg, ‘

Define a right Ag ,-action and an Ag ,-valued inner product on X4 by setting
(€e®PeA:z:)y = Ee®Pé4my,

A A z*PAy ife=f,
@ Fleler®Pru): {0 otherwise
fore,f € Eg, and z,y € Ag,. Then X4 forms a Hilbert C*-right Ag ,-module.
We put u, := €, ® P2 for e € Eg,. The family u.,e € Eg, forms an orthogonal
finite basis of X4 in the sense of [7] such that )_ . g - (e | ue) > 1. We say
that a finite basis of a Hilbert C*-module is essential if the basis satisfies this
inequality. Define a left-action ¢4 of Ag, to L g, (X4) by setting

b 4(a)ueT 1= uep(a)z, a,z € Ag,,e € Eg,.

Hence we have a Hilbert C*-bimodule (¢4, X 4) over Ag,, that is finite projec-
tive.

Let us formulate strong shift equivalence of Hilbert C*-bimodules. Let .4 and
B be unital C*-algebras. We mean by a Hilbert C*-right B-module (7, 4Xg) with
left A-action a Hilbert C*-right B-module 4Xg with a unital *-homomorphism
n: A — L(4XB). Let (n, 4XB) be a Hilbert C*-right B-module with left A-
action and (¢, pX¢) a Hilbert C*-right C-module with left B-action. Define the
relative tensor product

(n, 4XB) ®8 (¢, 8Xc) == (n® 1, 4XB ®8 BXC)

where 4 Xp®pprXc is the Hilbert C*-right C-module of the tensor product relative
to B, and n ®1 is the natural left .A-action on it. It is easy to check that if both
(n, AX8) and (¢, 8Xc) are full (resp. finite projective), then the relative tensor
product are full (resp. finite projective).
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DEFINITION. Let (¢, X4) be a Hilbert C*-bimodule over A and (v, Xg) a
Hilbert C*-bimodule over B. They are said to be strong shift equivalent in 1-step
if there exist a full, finte projective Hilbert C*-right B-module (n, 4X3) with left
A-action and a full, finite projective Hilbert C*-right A-module (¢, s3X%) with
left B-action such that

n®1, X5 OB 8X%) =(¢,X4) as a Hilbert C*-bimodule over A,
(®1, BX_2A ®4 4Xg) =(1,XB) as a Hilbert C*-bimodule over B.

The above equalities of Hilbert C*-bimodules mean unitary equivalences as
Hilbert C*-bimodules. In this situation, we say that (1, 4X3) and (¢, 8X2) sat-
isfy the strong shift equivalence relations between (¢, X 4) and (4, X5). Consider
the direct sum

(1, 4X3) ® (¢, BX%) := (n ® ¢, 4X5 ® BX%)

as a Hilbert C*-right B ® A-module with left A @ B-action. It is denoted by
(&, X) and satisfies

X =¢AX =XB, sX%=¢B)X=XA

As X is naturally regarded as a Hilbert C*-right A ® B-module, (¢ X ) is con-
sidered to be a Hilbert C*-bimodule over A @ B. It is called a bipartite Hilbert
C*-bimodule. If there exists an N-chain of strong shift equivalences in 1-step
between (¢, X4) and (4, Xg), they are said to be strong shift equivalent (in
N-step) and written as (¢, X 4) ~ (¥, XB).

We note that the two equalities of the strong shift equivalence relations above
are equivalent to the equality:

(f,)? RAaeB )?) = (¢,X4) ® (¢, XB) as a Hilbert C*-bimodule over A @ B.

PROPOSITION 3.1. Two nonnegative matrices A and B are strong shift equiv-
alent if and only if the Hilbert C*-bimodules (¢4, X4) and (¢B, XB) are strong
shift equivalent.

Proof. Let A = [A(i,§))i,j=1,....,n and B = [B(k,)]x,i=1,...,m be an n x n non-
negative matrix and an m x m nonnegative matrix respectively. We denote by
Aa and Ap the algebras C(V4) and C(Vp) of all continuous functions on the
vertex sets V4 = {v{',...,v2} and Vg = {vE,...,vB} of the garphs G4 and Gp
respectively. Let Ey,...,E, and Fi,...,F,, be the minimal projections of A4
and of Ap respectively so that

.AAZCEléB"'@CEn, ABz‘CFl@@CFm
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Suppose that A and B are strong shift equivalent in 1-step. Let R and S be
the nonnegative rectangular matrices such that A = RS and B = SR. The
graph of the matrix R is the directed graph Gr with vertices V4 U Vg, and with
R(3, j) distinct edges Eg(i,j) with initial vertex v# and terminal vertex vf’ for
i=1,...,n, j = 1,...,m. We denote by Er the edge set Ui=1,..,n Egr(i,7).

j=1,....m
Define a *-homomorphism pZ for e € Eg from A4 to Ap by setting

pR(E:) =Y Re(i,j)Fj;, i=1,...,n
Jj=1

where R.(i,j) = 1 if s(e) = vi,t(e) = vP, otherwise Re(i,j) = 0. Put the
projections PE = pB(14) in Ap. Let {€.}ecEr denote the standard basis of the
|Eg|-dimensional vector space C/Zr|. Set

Xgr = E C€e®PeRAB.
e€ERr

Define a right Apg-action and an Apg-valued inner product on Xz by similar
way to the situation in the begining of this section. We have a Hilbert C*-right
Ag-module Xg. By using the *-homomorphism p? from A4 to Ap, we simi-
larly define a left-action ¢g of A4 on Xpg so that we have a Hilbert C*-right
Ap-module (¢r, Xg) with left As-action. By using the matrix S, we similarly
have a Hilbert C*-right A 4-module (¢s, Xs) with left Ap-action. It is straight-
forward to see that the tensor product Hilbert C*-module (¢r ® 1, Xr @4, X5)
is unitarily equivalent to the Hilbert C*-bimodule (¢rs, Xrs), and similarly the
tensor product Hilbert C*-module (¢s ® 1, Xs ® 4, XRr) is unitarily equivalent
to the Hilbert C*-bimodule (¢sr, Xsr). Therefore (¢4,X4) and (¢B, Xp) are
strong shift equivalent.

Conversely assume that (¢4,X4) and (¢B,Xp) are strong shift equivalent
in 1-step. Take a full, finite projective Hilbert C*-right Ag-module (7, 4 AX}‘B)
with left A4-action and a full, finite projective Hilbert C*-right A 4-module
(¢, 4sX% ) with left Ap-action that satisfy the strong shift equivalence relations
between (¢4, X4) and (¥5, XB). Let {ul}ccr be a finite basis of 4,X}, and
{u3}ack> be a finite basis of 4,X?%, respectively. For ¢ € E', define an n x m
matrix R. by

R.(i,§)F; = (ul | da(E:)ul)F}, i=1,...,m, j=1,...,m.

Since (ul | ¢4(E;)ul) is a projection in Apg, the matrix R. has its entries in
{0,1}. Define the n x m matrix R = [R(i,j)],; by setting

R(i,j)= Y R.(i,j), i=1,...,n j=1...,m
ceE!



STRONG SHIFT EQUIVALENCE OF C*-BIMODULES 167

We similarly define an m x n matrix S = [S(j,4)];,; from the left Ag-action
éB to 45X% . It is direct to see that the Hilbert C*-bimodule (n® 1, 4,X},®
ApAsX%,) over Aa is unitarily equivalent to (¢rs,Xrs), and the Hilbert
C*-bimodule (¢ ® 1, ABX:{‘A RAs A AthB) over Ap is unitarily equivalent to
(¢sr, Xsr). Hence (¢4, X 4) is unitarily equivalent to (¢rs, Xrs), and (é5, XB)
is unitarily equivalent to (¢sr, Xsgr). Let {u2}acp, be the canonical basis of
X4, and {ugs}geERS the canonical basis of Xrs. Let ® : X4 — Xgg be a
unitary that intertwines between (¢4, X4) and (¢rs, Xrs). We put

Uap = (®(us) | uf®), a € Ea,B € Egs.

As ®(pa(a)z) = drs(a)®(x) for a € Ay, z € X 4, one sees that for a € E4,8 €
Ers and a € A4s(= ARgs)

pa@)= D Uappf5@)Uss,  p§5(a)= Y U spa(@)Uap.

BEERs a€EE,
We also have
‘ A
Z U;,eU'y,ﬁ = 56’6});‘5, Z Uw,ﬁUc:,B =0y,aFPs -
YEEA BEERs
Since Xrs and X4 are unitarily equivalent, one sees that [E4| = |Egrs|. By
the above equalities, for ¢ = 1,...,n the diagonal matrices [p2(E;)]acr, and

(05°(E:))peErs are unitarily equivalent through {Usg}acEa,geErs- Thus we
have

D Pa(EB)= ) pE5(E) sothat > pA(E)E;= Y. pfS(E)E;.
acEqp BEERrs acE4 BEERs
This means A(%, j) = (RS)(3,j) forall4,j5 = 1,2,...,nso that A = RS. Similarly
one sees B = SR. Therefore A is strong shift equivalent to B in 1-step. O

Shift equivalence of Hilbert C*-bimodules are similarly defined in as in
the following way.

DEFINITION. Let (¢, X4) be a Hilbert C*-bimodule over A and (¥, Xg) a
Hilbert C*-bimodule over B. They are said to be shift equivalent (of lag N) if
there exist a full, finite projective Hilbert C*-right B-module (7, 4Xg) with left
A action and a full, finite projective Hilbert C*-right A-module ({, sX’;) with
left B action such that

(¢® lag.A Rp- - R4y X.é) =(n® I’AXB X8 BX,’A)v

N
(¥®1,Xs®5--®s X5) =(( ®1,8X) ®4 4XB),

N
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and

(N®1, AXBR®BXEB)=(¢R1, XA®44XB), ((®1,BX,@4X4)=(¥®1, XsQsBX )

We write this situation as (¢, X 4) N (v, XB).

The following proposition is shown in [15].

PROPOSITION 3.2. Let (¢, X4), (¥,Xg) and (p, X¢) be Hilbert C*-bimodules.
(i) (¢, Xa) 2 (#, Xis) implies (¢, X.a) ~ (36, X).

(i) (8 X.) (%, Xs) implies ($,X.) (%, Xs) for all N > N.

(iii) (¢, Xa) ~ (%, X5) and (v, Xp) » (¢, Xc) imply (6, Xa) ~ (o, Xc).

Similarly to [Proposition 3.1, we may straightforwardly prove that two non-
negative matrices A and B are shift equivalent if and only if the Hilbert
C*-bimodules (¢4, X 4) and (¢p, Xp) are shift equivalent.

4. Strong shift equivalence of Hilbert C*-bimodules and their
C*-algebras

We will prove the following theorem.

THEOREM 4.1. Let(¢, X 4) and(yp, Xg) be finite projective Hilbert C*bimodules
over unital C*-algebras A and B respectively. If (¢, X 4) and (v, XB) are strong
shift equivalent, the C*-algebras Ox, and Ox, with gauge actions are stably
outer conjugate.

This theorem and its proof are generalizations of [14, Theorem 3.15].

Suppose that (¢, X 4) and (v, Xg) are strong shift equivalent in 1-step. Hence
there exist a Hilbert C*-right B-module (7, 4X3) with left .A-action and a Hilbert
C*-right A-moduile (¢, gX%) with left B-action satisfying the strong shift equiv-
alence relations between (¢, X 4) and (¢, Xg). Let (¢, X) = (9, 4Xg) ® (¢, 8X%)
be the bipartite Hilbert C*-bimodule over A @ B. The C*-algera Oy of (¢, X )
is a universal C*-algebra generated by S,,z € X subject to the system of
the relations corresponding to (2.1). Let 73 : A@® B — Oz be the unital
*-homomorphism satisfying S;(a,5) = Sz73(a,b) for z € X,(a,b) € A®B. Let
C*(S12,.A) and C*(S21, B) be the C*-subalgebras of Oy defined by setting

C* (812, A) = C* (S, 7g(a,0) | M € 1 X5,2@ e pX%4,a€ A) and
C*(Sa1,B) = C* (S50, m2(0,0) | 2V € 4XL, 2P € pX3,b € B)
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respectively, where S,z = Sz Sy@ and Sy@ .1 = Sg@Szw. Let 14 and
15 be the units of A and B respectively. Put the projections

PAZWX*(IA,O), PB=71'2(0, 1) in Oz.
Hence P4 + Pg = 1. Let us first prove the following proposition.

PROPOSITION 4.2. C*(S12,A) = P4O%P4, C*(821,B)= PpOgPs.

We provide some lemmas to show this proposition. The following lemma is
clear from the strong shift equivalence relations.
LEMMA 4.3. For z(1) ¢ AX};,.?:@) € BXJ% we have
(i) £€(14,002® = z(0,15) = 0 and £(0,15)c® = z()(14,0) = 0. Hence
z® = £(0,15)2® = (?(14,0) and V) = £(14,0)z = z(0,1p).
(ii) Pamg(0,b) = 7%(0,b)P4 =0 for b € B and Pgm4(a,0) = m5(a,0)Pg =0
fora € A.
LEMMA 4.4. For zW ¢y e XL and z®,y@ € pX?%, one has
(i) Sm(i)sy(l) = Szcz)Sy(z) =0.
(ii) Sm(l)S;(g) = Sm(2) S;(l) = 0-
~ Proof. (i) It follows that
(82 Sy)*Sew Sy =Sz ((zM,2M))Sya)
=S;(1)7TK(€(<$(1) ’ x(1)>(0a 13))Sy(1)
=Sk (2D, 21))Se(0,15)y0 =0-

The other is similar.
(ii) It follows that

Sz(l) S;(2) =9,1) 1T)?(1_A, O)S;(z) + Sz(l)ﬂ')? (O, lB)S;(Z)

= z(l)(l_A,O)S;(z) + S:c(l) S;(2)(0,18) =0.

The other is similar. O

LEMMA 4.5. For (V) € X%,z € gX% and a € A,b € B one has
(i) Sruy72(0,0)S,) = Si75(a,0)S;@ =0.

(li) Sz(l)ﬂf(a, O)S;(l) = Sz(2)7rf(0, b)S;(z) =0.

Proof. (i) It follows that

S:;(l) 7"’)"(‘((-.),b)S:z:(l) = S;(I)WK(S((Oa b)(o’ 13))5:1:(1)
= S5k (€((0,0))S¢(0,15)= = 0-
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The other is similar.
(ii) It follows that

S;ymg(a,0) = Sz(l)w‘?(lA,O)w)?(a, 0) = Sz(l)(lA’o)ﬂX"(a, 0) = 0.

We similarly have S, 7 (0,b) = 0. Hence the assertions hold. [J
Let us show the equality C*(S12, A) = P40 ¢ Pa. The other one is symmetric.
LEMMA 4.6. C*(S12,A) C PAO)?PA.

Proof. Take an arbitrary fixed (1) € 4X} and z® ¢ BX%. Asz(M) = £(14,0)zD,
one sees P4S,a) = SE(I,A,O)x(l) = S, and hence P4 S, ) Sy = Sz S, . Sim-
ilarly by the equality z(?) = @ (14, 0), one has S,1) S, = S, S, Pa. Since
the equality Pamg(a,0)P4 = m5(a,0) for a € A holds, the algebra C*(Si2, A)
is contained in the algebra P4O%P4. O

LEMMA 4.7. For z = 21%2+ - Tp, Y = Y192 - - - Yq where Te,yx € 4X} or gX3
if P4Szmg(a,b)S; P4 # 0, one of the following two conditions holds

(1) 21,91 € AXB, ZTp, Yq € 4AXE and Semz(a,b)Sy = Szm5(0,b)S;,

(2) 1,91 € 4XB, Tp,Yg € BX% and Symg(a,b)S, = Sz75(a,0)S;.
In both the cases, the equality P4S;7(a,b)S;Pa = S;m5 (a,b)S; holds so that
Szm(a,b)S; belongs to C*(S12,.A).

Proof. As P4S,a) = S, for (1) € 4X} and P4S, 2 =0 for 2@ € 8X?2, one
knows that z;,y; € 4X}. Hence the equalities P45, = Sz, SyPa = S, hold.
Now if 2, € 4X}, y, € 8X%, then we have

Sz,mz(a,b) = Sz, 72(0,b), nz(a,b)Sy =1z (a, 0)S,,

so that Sy 7 (a,b)S; = 0, a contradiction. Hence if z, € 4X}, then we have
Yq € 4X%. Similarly z, € pX% implies y, € sX2. Thus we have zp,y, € 4X} or
Tp,Yg € BX%. Suppose that zp,y, € 4Xi. The equality Sz, 7% (a,b)S; =
Sz,m%(0,0)S; implies S;mg(a,b)S; = «7(0,b)S,. Since the Hilbert C*-

modules 4X} and BX? are finite projective, there exist finite bases {uf,l) }eec of
4X% and {uff)}dep of BX_ZA. We put fora € CUD

. @wP,0) faec,
7 10,v?) ifaeD.

Then {va}accup form a finite basis of X. Hence we have

> #2(Bun)=id and ¥ 5,85 =1

aceCuD a€CuUD
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As S;,Sy, =0 and hence Sj S; =0if a € C, we have

Sem2(0,0)S; = Y S, svas* 72(0,0)S,, 55, Sy
a,8eD
For a, 3 € D both the vectors v, and £(0,b)ug belong to X% so that the inner
product (va,&(0,b)vg) takes its value in .A. By the equality S;_m(0,5)S,, =
7% ((Va, £(0, b)vug)), the element S;_m(0,b)S,, belongs to 73 (A,0). Aszy,zp €
4X 3, the operator S, is a finite product of the operators of the form: S;1) S
for z) € 4X},2® € pX%. Similarly the operator S; S, is a finite prod-
uct of the operators of the form: S S*., for ) € 4X%,z® € gX%. Hence
> apep SzSv, - Sy, 72(0,b)Sy, - Sy, Sy belongs to C*(S12,.A). Therefore
S:m%(0,b)S; and hence S;7 5 (a,b)S; belong to C*(S12,A).
Suppose next that z,,y, € BX?A. We then have Sz, 75(0, b).S';q = 0 so that

S:7%(a,b)S; = Szmg(a,0)Sy.

Since the operators S, and S, are finite products of the operators of the form:
SewSe@ for M € XL, z® € pX?%, the element S;mg(a,b)S; belongs to
C*(S12,A). O

Proof of[Proposition 4.2, The algebra of all finite linear combinations of elements
of the form:

Seyz,Tg(a,0)Sy,..ys 7Tg(a,b)
where a € A,b € B,Z1,...,Zp,Y1,---,Yq € 4Xp or 8X%, is dense in Oz. One
obtains the inclusion relation C*(S12,.4) O P4OgPa by Lemma 4.6, Thus the
equality C*(S12,4) = P4O% P4 holds by Lemma 4.5. O

We will second prove the following proposition.

PROPOSITION 4.8. The C*-algebras O xigspxy 074 Ogxz.uxi of the

Hilbert C*-bimodules (n®1, 4X3®88X%) and (C ®1, BX 4®44X B) respectwely are
canonically isomorphic to the algebras C*(S12,A) and C*(Sz1, B) respectively.

Proof. The algebra O AXi®ssX? IS the universal C*-algebra generated by {s; |

T € AX} ®B 8BX%4} with a contraction 4Xg ®8 8X34 3 ¢ = 8z € O xiessx?
and unital *-homomorphxsms T4 A3 a— mua) € O xippexy and g

KA(4X3®88X%) 3 0z, = ¢ (02,4) €O Xiessx? satisfying the correspondlng
relations to (2.1) for the Hilbert C*-bimodule (7 ® 1 4X5 ®8 8X2%). Hence there
exists a surjective *-homomorphism & from O AXLi®ssx? tO C*(S12,.A) such that

<I’(.San(n@:,:(z)) =S;08z@, ®P(ra(a)) = 7rf(a, 0),
q’(""u’éwﬂl)@z(?),y(1)®y(2)) =7r]K(o(a:(1)’O),(y(l),0)0(0,3(2)),(0,y(2)))
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for ), y(M e 4 XL, 23,y € X2 ac A Let e: O xiessx2 = (O xy@mmx2 )"
be the canonical conditional expectation from © AXi®ssx? Onto the fixed point
algebra (OAXI]';®BBX§)712 under the gauge action v12. Let ex : O — (Og)'%
be the similarly defined conditional expectation. As in (cf. [7]), the algebras
(O xpessxz)”? and (O%)'® are realized as the C*-subalgebras F XiossX?,
generated by sz,0...92,7.4(a)8}),g..gy, Or @ € A, Z1,...,%p,y1,...,Yp € X5
or X%, p € N and Fg generated by S, -+ S,, g (a,b)S%_--- Sz, for (a,b) €
A® B, 21,...,25,w1,...,w, € )?, n € N. respectively. Let Fc.(s,,,4) be the
C*-subalgebra of C*(S12, A) generated by S, - - S;,m¢(a,0)S;, --- S}, where
n = 2m and T1,%3,...,Tam—1, Y1,Y3;-- -, Y2m—-1 € 4Xp, T2, T4, - ., Tom, Y2, Ya,
.. ,¥2m € BX%, a € A, It is a subalgebra of Fg such that ex(C*(S12,.4))
= FC+(S12,4)- We then have a following commutative diagram:

O xi@ssx? —* C*(S12,A)

el lfxlcwslz,m

fAXé®BBXf4 o > Fen(S12,4)-
' %0,

Now ®| 4 (= id) is one-to-one, by [7, Theorem 4.3(i)] one knows that ®| Foxionpxd

B A
F xi@88x? —> Fo*(S12,4) is one-to-one. For z € O xiessx3y, if ®(z*z) = 0,
then one has ® o ¢(z*z) = ex o ®(z*z) = 0. Hence e(z*z) = 0 so that z = 0
because e is faithful. Therefore @ is isomorphic. The other isomorphism between

Opx2 @4 4x3 and C*(S21, B) is similarly shown. O

We will next prove that the subalgebras P,Og% P4 and POy Pg are comple-
mentary full corners in Oy.

LEMMA 4.9. Assume that both the finite bases {u&l)}aec of AX% and {ug) }seD

of BX? are essential. Then the projections P4 and Pg are both full in the algebra
O%.

Proof. Let {va}accup be the finite basis of X defined in the proof of
4.7. We will prove that P4 is full in O5. By one sees that for ¢ € C
Sy PaSy, = 858y, = mg ((ve, ve)) = wa((ul?, ulM)).

As {ugl)}cec is essential, one has }° . Sy PaS,, > 7%(0,15) and hence

Z S3.PaSv. + P4 > mw5(0,18) + m5(14,0).
ceC

This means that the two sided ideal of @ % generated by P4 coincides with Oy.
That is, P4 and similarly Pg are full projections in Oz (cf.[1]). O
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Proof of [Theorem 4.1. Put
AXp = P40 Ps.

It is well-known that 4Xp has a Hilbert C*-left P40« P4-module structure with
left P4O¢ Pa-valued inner product 4(,) and a right PsOg Pg-module structure
with right PsOg Ps-valued inner product (,)s as in the following way:

a-z-b:=azxb, Az, ) =zy*, (2,¥)B: =2y

fora € PA4O4Pa,be€ PsOg P and z,y € 4XB. Regard the algebras C*(S12,.A)
and C*(S21,B) as the C*-subalgebras P4O4 P4 and PgOgPg of Oz respec-
tively. Let a!? be the gauge action of T on C*(S12,.4) that satisfies

al?(S,mz@) = 28,42, ol?(nz(a,0)) = 72(a,0), 2z€T

for z) € 4X},2® € gX%,a € A. The gauge action o®! on C*(S21, B) is sim-
ilarly defined. The two gauge actions a!? on C*(Si2,.A) and a?! on C*(S21,B)
are canonically isomorphic to ¥'? on O x1essxz and 72! on Ogxz g, .x} Te
spectively. Let us consider an action v! of T on the algebra O3 defined by

7:(Sm(1)) = Sz(l), 7;(‘5:1:(2)) = szm, 7;(7‘-2(0" b)) = Wf(aﬂb)’ zeT

for z(V € 4X}, 2@ € X%, (a,b) € A @ B. The restrictions of 7! to the subal-
gebras C*(S12,.A) and C*(S21,B) of O coincide with the actions a'? and a?!
respectively. Since the projections P4 and Pg are both fixed under +? the action
~! induces a continuous action of T on the Hilbert C*-bimodule 4X5. We denote
it by u. It satisfies the equalities:

(42, 9) = a(usz(2),u:(9)), o' ((z,9)8) = (uz(2), u:(¥))5

for ¢,y € 4X5 and z € T. Then by Lemma 4.9, two C*-dynamical systems
(C*(S12,A), a'?, T) and (C*(S21, B), a?,, T) are Morita equivalent via ( 4Xs, u, T)
in the sense of F. Combes [3] and Curto-Muhly-Williams [6]. Hence by an equiv-
ariant version of the Brown-Green-Rieffel Theorem [2] proved by F. Combes in
their stabilizations (C*(S12,.4) ® K, a2 ®id, T) and (C*(S21, B) ®K,a®' ®id, T)
are cocycle conjugate. This means that (Ox , ®K,y*®id, T) and (Ox;®K, vB®
id, T) are cocycle conjugate. O

Remark. Similar results to the main result of this paper have been shown in the
following two papers in more general setting:

P. S. Muhly, D. Pask and M. Tomforde: Strong shift equivalence of
C*-correspondences, 2005, Aug.

M. Tomforde : Strong shift equivalence in the C*-algebra setting: Graphs
and C*-correspondences, 2005, Aug.
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