ON STRONG SHIFT EQUIVALENCE OF HILBERT C*-BIMODULES

 $\mathbf{B}\mathbf{y}$

KENGO MATSUMOTO

(Received March 30, 2006)

Abstract. We will study a notion of strong shift equivalence between two Hilbert C^* -bimodules as a generalization of strong shift equivalence between two nonnegative matrices. We will prove that if two finite projective Hilbert C^* -bimodules are strong shift equivalent, the gauge actions of the C^* -algebras of the Hilbert C^* -bimodules are stably outer conjugate. Hence the K-theoretic groups of the C^* -algebras of strong shift equivalent Hilbert C^* -bimodules are invariant.

1. Introduction

Let \mathcal{A} be a C^* -algebra. Let X be a Hibert C^* -right \mathcal{A} -module with left action of A. It is called a Hilbert C^* -bimodule over A. M. Pimsner constructed a C^* -algebra for a Hilbert C^* -bimodule ([19], cf. [9]). The C^* -algebra is a generalization of both Cuntz-Krieger algebras and crossed products $A \rtimes \mathbb{Z}$ by the integer \mathbb{Z} . If \mathcal{A} is finite dimensional and commutative and the bimodule X has an orthogonal finite basis, the C^* -algebra is isomorphic to a Cuntz-Krieger algebra. Let $A = [A(i,j)]_{i,j=1,...,n}$ be an $n \times n$ matrix with entries in nonnegative integers, that is called a nonnegative matrix for brevity. Let G_A be a finite directed graph with n vertices $\{v_1, \ldots, v_n\}$ and with A(i,j) directed edges whose source vertices are v_i and terminal vertices are v_j . For a directed edge e, we denote by s(e) the source vertex of e and by t(e) the terminal vertex of e. Let E_{G_A} be the edge set of the graph G_A . Let Λ_A be the compact set of all biinfinte sequences $(a_i)_{i\in\mathbb{Z}}\in E_{G_A}^{\mathbb{Z}}$ of edges a_i of G_A such that $t(a_i) = s(a_{i+1})$ for all $i \in \mathbb{Z}$. We denote by σ_A the shift transformation on Λ_A defined by $\sigma_A((a_i)_{i\in\mathbb{Z}})=(a_{i+1})_{i\in\mathbb{Z}}$. The topological dynamical system (Λ_A, σ_A) is called the topological Markov shift associated with A. For the classification problem of the topological Markov shifts up to topological conjugacy, R. F. Williams in [22] proved that the topological Markov shifts (Λ_A, σ_A) and (Λ_B, σ_B) are topologically conjugate if and only if the matrices A and B are strong shift equivalent. Two nonnegative square matrices M

²⁰⁰⁰ Mathematics Subject Classification: Primary 46L35, Secondary 37B10, 46L05 Key words and phrases: Hilbert C^* -bimodule, C^* -algebra, topological Markov shift, strong shift equivalence

and N are said to be strong shift equivalent in 1-step if there exist nonnegative rectangular matrices R, S such that M = RS, N = SR. If there exists a finite sequence of nonnegative matrices A_1, A_2, \ldots, A_k such that $A = A_1, B = A_k$ and A_i is strong shift equivalent to A_{i+1} in 1-step for $i = 1, 2, \ldots, k-1$, then A and B are said to be strong shift equivalent.

Let \mathcal{K} be the C^* -algebra of all compact operators on a separable infinite dimensional Hilbert space. Cuntz and Krieger proved that if two topological Markov shifts (Λ_A, σ_A) and (Λ_B, σ_B) are topologically conjugate, the gauge actions γ^A and γ^B of the Cuntz-Krieger algebras \mathcal{O}_A and \mathcal{O}_B are stably conjugate. That is, there exists an isomorphism ϕ from $\mathcal{O}_A \otimes \mathcal{K}$ to $\mathcal{O}_B \otimes \mathcal{K}$ such that $\phi \circ (\gamma^A \otimes \mathrm{id}) = (\gamma^B \otimes \mathrm{id}) \circ \phi$ ([5, Theorem 3.8],cf.[4]). Their proof is due to a dynamical method without using strong shift equivalence condition on the underlying nonnegative matrices.

In [15], a notion of C^* -symbolic dynamical system has been introduced as a C^* -algebraic generalization of a finite directed labeled graph. C^* -symbolic dynamical systems naturally yield Hilbert C^* -bimodules with finite bases so that they give rise to C^* -algebras of the Hilbert C^* -bimodules. The author has formulated strong shift equivalences of C^* -symbolic dynamical systems and of Hilbert C^* -bimodules and proved that if two C^* -symbolic dynamical systems are strong shift equivalent, the gauge actions of the C^* -algebras of the Hilbert C^* bimodules are stably outer conjugate. In this short note, we will directly prove that if two Hilbert C^* -bimodules are strong shift equivalent, the gauge actions of the C^* -algebras of the Hilbert C^* -bimodules are stably outer conjugate. This result is a generalization of the similar result for C^* -symbolic dynamical systems. Hence it is a generalization of the main result of [14] for the C^* -algebras of λ graph systems and of [5, Theorem 3.8] for the Cuntz-Krieger algebras. We will also give an exact proof for the result that two nonnegative matrices are strong shift equivalent if and only if the Hilbert C^* -bimodules associated with the matrices are strong shift equivalent.

2. Hilbert C^* -bimodules and its C^* -algebras

We review briefly Pimsner's C^* -algebras from Hilbert C^* -bimodules following [19] and [7] (cf.[9], [8]). For a C^* -algebra \mathcal{A} , a Hilbert C^* -right \mathcal{A} -module X is a \mathbb{C} -vector space with a right \mathcal{A} -module structure and an \mathcal{A} -valued inner product \langle , \rangle satisfying the following conditions [8, Definition 1.2]:

- (a) \langle , \rangle is left conjugate and right linear.
- (b) $\langle x, ya \rangle = \langle x, y \rangle a$ and $\langle xa, y \rangle = a^* \langle x, y \rangle$ for all $x, y \in X$ and $a \in A$.
- (c) $\langle x, x \rangle \geq 0$ for all $x \in X$, and $\langle x, x \rangle = 0$ if and only if x = 0.
- (d) $\langle x, y \rangle = \langle y, x \rangle^*$ for all $x, y \in X$.

(e) X is complete with respect to the norm $||x|| = ||\langle x, x \rangle||^{1/2}$.

A Hilbert C^* -right \mathcal{A} -module X is said to be full if the closed linear span of $\{\langle x,y\rangle\mid x,y\in X\}$ is equal to \mathcal{A} . Let $\mathbb{L}_{\mathcal{A}}(X)$ be the algebra of bounded linear right \mathcal{A} -module maps on X with adjoints with respect to the \mathcal{A} -valued inner product on X. We denote by $\mathbb{K}_{\mathcal{A}}(X)$ the norm closure of linear combinations of rank one operators $\theta_{x,y}\in\mathbb{L}_{\mathcal{A}}(X)$ for $x,y\in X$ defined by $\theta_{x,y}(z)=x\langle y,z\rangle$ for $z\in X$. A finite subset $\{u_1,\ldots,u_n\}$ of X is called a basis for X if $x=\sum_{i=1}^n u_i\langle u_i,x\rangle$ for all $x\in X$. Recall that X has a finite basis if and only if $\mathbb{K}_{\mathcal{A}}(X)=\mathbb{L}_{\mathcal{A}}(X)$ ([8]). It is equivalent to the condition that X is finite projective. Throughout this paper, we assume for simplicity that the C^* -algebras \mathcal{A} are unital and Hilbert C^* -modules are full and finite projective.

Let $\phi: \mathcal{A} \to \mathbb{L}_{\mathcal{A}}(X)$ be a unital isometric *-homomorphism. The pair (ϕ, X) is called a Hilbert C^* -bimodule over \mathcal{A} (cf.[8]). M. Pimsner [19] constructed a C^* -algebra $\mathcal{O}_{(\phi,X)}$ from Hilbert C^* -bimodule (ϕ,X) . It is simply written as \mathcal{O}_X . The C^* -algebra is the universal C^* -algebra generated by $\{S_x \mid x \in X\}$ together with a contraction $X\ni x\to S_x\in \mathcal{O}_X$, and unital *-homomorphisms $\pi_{\mathcal{A}}:\mathcal{A}\to\mathcal{O}_X$ and $\pi_{\mathbb{K}}:\mathbb{K}_{\mathcal{A}}(X)\to\mathcal{O}_X$ satisfying the following relations:

(2.1)
$$\begin{cases} S_{kx} = \pi_{\mathbb{K}}(k)S_x, & S_{xa} = S_x\pi_{\mathcal{A}}(a), & \pi_{\mathbb{K}}(\phi(a)) = \pi_{\mathcal{A}}(a), \\ S_xS_y^* = \pi_{\mathbb{K}}(\theta_{x,y}) & \text{and} & S_x^*S_y = \pi_{\mathcal{A}}(\langle x, y \rangle) \end{cases}$$

for $x, y \in X, k \in \mathbb{K}_{\mathcal{A}}(X), a \in \mathcal{A}$. The universality means that the algebra \mathcal{O}_X is the biggest C^* -algebra in the C^* -algebras satisfying the above systems. For $z \in \mathbb{T} = \{z \in \mathbb{C} \mid |z| = 1\}$, the correspondence $S_x \to zS_x$ gives rise to an automorphism γ_z of \mathcal{O}_X . It yields an action γ of \mathbb{T} , that is called the gauge action.

Ideal structure and simplicity condition on the C^* -algebras have been studied in [7] and [16] (cf.[21]).

3. Strong shift equivalence of nonnegative matrices and Hilbert C^* -bimodules

Let $A = [A(i,j)]_{i,j=1,...,n}$ be an $n \times n$ nonnegative matrix. Assume that both every row and every column have at least one nonzero entry. Hence every vertex of the graph G_A has at least both one in-coming edge and one out-going edge. Consider the n-dimensional commutative C^* -algbera $\mathcal{A}_{G_A} = \mathbb{C}E_1 \oplus \cdots \oplus \mathbb{C}E_n$ where $E_i, i = 1, \ldots, n$ are mutually orthogonal minimal projections of \mathcal{A} that correspond to the vertices $v_i, i = 1, \ldots, n$ of G_A . Define an $n \times n$ -matrix A_e for

 $e \in E_{G_A}$ with entries in $\{0,1\}$ by

$$A_e(i,j) = egin{cases} 1 & ext{if } s(e) = v_i, t(e) = v_j, \\ 0 & ext{otherwise,} \end{cases}$$

for $i, j = 1, \ldots, n$. We set

$$ho_e^A(E_i) = \sum_{j=1}^n A_e(i,j)E_j, \qquad i=1,\ldots,n$$

so that ρ_e^A defines a *-endomorphism of \mathcal{A}_{G_A} . Put the projections $P_e^A = \rho_e^A(1)$ in \mathcal{A}_{G_A} . Let $\{\epsilon_e\}_{e \in E_{G_A}}$ denote the standard basis of the $|E_{G_A}|$ -dimensional vector space $\mathbb{C}^{|E_{G_A}|}$, where $|E_{G_A}|$ denotes the cardinal number of E_{G_A} . Set

$$X_A = \sum_{e \in E_{G_A}} \mathbb{C}\epsilon_e \otimes P_e^A \mathcal{A}_{G_A}.$$

Define a right \mathcal{A}_{G_A} -action and an \mathcal{A}_{G_A} -valued inner product on X_A by setting

$$(\epsilon_e \otimes P_e^A x) y := \epsilon_e \otimes P_e^A x y,$$

$$\langle \epsilon_e \otimes P_e^A x \mid \epsilon_f \otimes P_f^A y
angle := egin{cases} x^* P_e^A y & ext{ if } e = f, \ 0 & ext{ otherwise} \end{cases}$$

for $e, f \in E_{G_A}$ and $x, y \in \mathcal{A}_{G_A}$. Then X_A forms a Hilbert C^* -right \mathcal{A}_{G_A} -module. We put $u_e := \epsilon_e \otimes P_e^A$ for $e \in E_{G_A}$. The family $u_e, e \in E_{G_A}$ forms an orthogonal finite basis of X_A in the sense of [7] such that $\sum_{e \in E_{G_A}} \langle u_e \mid u_e \rangle \geq 1$. We say that a finite basis of a Hilbert C^* -module is essential if the basis satisfies this inequality. Define a left-action ϕ_A of \mathcal{A}_{G_A} to $\mathbb{L}_{\mathcal{A}_{G_A}}(X_A)$ by setting

$$\phi_A(a)u_ex:=u_e
ho_e^A(a)x, \qquad a,x\in\mathcal{A}_{G_A},e\in E_{G_A}.$$

Hence we have a Hilbert C^* -bimodule (ϕ_A, X_A) over \mathcal{A}_{G_A} , that is finite projective.

Let us formulate strong shift equivalence of Hilbert C^* -bimodules. Let \mathcal{A} and \mathcal{B} be unital C^* -algebras. We mean by a Hilbert C^* -right \mathcal{B} -module $(\eta, {}_{\mathcal{A}}X_{\mathcal{B}})$ with left \mathcal{A} -action a Hilbert C^* -right \mathcal{B} -module ${}_{\mathcal{A}}X_{\mathcal{B}}$ with a unital *-homomorphism $\eta: \mathcal{A} \to \mathbb{L}({}_{\mathcal{A}}X_{\mathcal{B}})$. Let $(\eta, {}_{\mathcal{A}}X_{\mathcal{B}})$ be a Hilbert C^* -right \mathcal{B} -module with left \mathcal{A} -action and $(\zeta, {}_{\mathcal{B}}X_{\mathcal{C}})$ a Hilbert C^* -right \mathcal{C} -module with left \mathcal{B} -action. Define the relative tensor product

$$(\eta, {}_{\mathcal{A}}\!X_{\mathcal{B}})\otimes_{\mathcal{B}}(\zeta, {}_{\mathcal{B}}\!X_{\mathcal{C}}):=(\eta\otimes 1, {}_{\mathcal{A}}\!X_{\mathcal{B}}\otimes_{\mathcal{B}}{}_{\mathcal{B}}\!X_{\mathcal{C}})$$

where $_{\mathcal{A}}X_{\mathcal{B}}\otimes_{\mathcal{B}\mathcal{B}}X_{\mathcal{C}}$ is the Hilbert C^* -right \mathcal{C} -module of the tensor product relative to \mathcal{B} , and $\eta\otimes 1$ is the natural left \mathcal{A} -action on it. It is easy to check that if both $(\eta,_{\mathcal{A}}X_{\mathcal{B}})$ and $(\zeta,_{\mathcal{B}}X_{\mathcal{C}})$ are full (resp. finite projective), then the relative tensor product are full (resp. finite projective).

DEFINITION. Let $(\phi, X_{\mathcal{A}})$ be a Hilbert C^* -bimodule over \mathcal{A} and $(\psi, X_{\mathcal{B}})$ a Hilbert C^* -bimodule over \mathcal{B} . They are said to be *strong shift equivalent in* 1-*step* if there exist a full, finite projective Hilbert C^* -right \mathcal{B} -module $(\eta, {}_{\mathcal{A}}X_{\mathcal{B}}^1)$ with left \mathcal{A} -action and a full, finite projective Hilbert C^* -right \mathcal{A} -module $(\zeta, {}_{\mathcal{B}}X_{\mathcal{A}}^2)$ with left \mathcal{B} -action such that

$$(\eta \otimes 1, {}_{\mathcal{A}}\!X^1_{\mathcal{B}} \otimes_{\mathcal{B}} {}_{\mathcal{B}}\!X^2_{\mathcal{A}}) = (\phi, X_{\mathcal{A}}) \quad \text{as a Hilbert C^*-bimodule over \mathcal{A},}$$
$$(\zeta \otimes 1, {}_{\mathcal{B}}\!X^2_{\mathcal{A}} \otimes_{\mathcal{A}} {}_{\mathcal{A}}\!X^1_{\mathcal{B}}) = (\psi, X_{\mathcal{B}}) \quad \text{as a Hilbert C^*-bimodule over \mathcal{B}.}$$

The above equalities of Hilbert C^* -bimodules mean unitary equivalences as Hilbert C^* -bimodules. In this situation, we say that $(\eta, \mathcal{A}X^1_{\mathcal{B}})$ and $(\zeta, \mathcal{B}X^2_{\mathcal{A}})$ satisfy the strong shift equivalence relations between $(\phi, X_{\mathcal{A}})$ and $(\psi, X_{\mathcal{B}})$. Consider the direct sum

$$(\eta, \mathcal{A}X^1_{\mathcal{B}}) \oplus (\zeta, \mathcal{B}X^2_{\mathcal{A}}) := (\eta \oplus \zeta, \mathcal{A}X^1_{\mathcal{B}} \oplus \mathcal{B}X^2_{\mathcal{A}})$$

as a Hilbert C^* -right $\mathcal{B} \oplus \mathcal{A}$ -module with left $\mathcal{A} \oplus \mathcal{B}$ -action. It is denoted by (ξ, \widehat{X}) and satisfies

$${}_{\mathcal{A}}\!X^1_{\mathcal{B}} = \xi(\mathcal{A})\widehat{X} = \widehat{X}\mathcal{B}, \qquad {}_{\mathcal{B}}\!X^2_{\mathcal{A}} = \xi(\mathcal{B})\widehat{X} = \widehat{X}\mathcal{A}.$$

As \widehat{X} is naturally regarded as a Hilbert C^* -right $\mathcal{A} \oplus \mathcal{B}$ -module, (ξ, \widehat{X}) is considered to be a Hilbert C^* -bimodule over $\mathcal{A} \oplus \mathcal{B}$. It is called a *bipartite* Hilbert C^* -bimodule. If there exists an N-chain of strong shift equivalences in 1-step between $(\phi, X_{\mathcal{A}})$ and $(\psi, X_{\mathcal{B}})$, they are said to be *strong shift equivalent (in* N-step) and written as $(\phi, X_{\mathcal{A}}) \approx (\psi, X_{\mathcal{B}})$.

We note that the two equalities of the strong shift equivalence relations above are equivalent to the equality:

$$(\xi, \widehat{X} \otimes_{\mathcal{A} \oplus \mathcal{B}} \widehat{X}) = (\phi, X_{\mathcal{A}}) \oplus (\psi, X_{\mathcal{B}})$$
 as a Hilbert C^* -bimodule over $\mathcal{A} \oplus \mathcal{B}$.

PROPOSITION 3.1. Two nonnegative matrices A and B are strong shift equivalent if and only if the Hilbert C^* -bimodules (ϕ_A, X_A) and (ϕ_B, X_B) are strong shift equivalent.

Proof. Let $A = [A(i,j)]_{i,j=1,...,n}$ and $B = [B(k,l)]_{k,l=1,...,m}$ be an $n \times n$ nonnegative matrix and an $m \times m$ nonnegative matrix respectively. We denote by \mathcal{A}_A and \mathcal{A}_B the algebras $C(V_A)$ and $C(V_B)$ of all continuous functions on the vertex sets $V_A = \{v_1^A, \ldots, v_n^A\}$ and $V_B = \{v_1^B, \ldots, v_m^B\}$ of the garphs G_A and G_B respectively. Let E_1, \ldots, E_n and F_1, \ldots, F_m be the minimal projections of \mathcal{A}_A and of \mathcal{A}_B respectively so that

$$\mathcal{A}_A = \mathbb{C}E_1 \oplus \cdots \oplus \mathbb{C}E_n, \qquad \mathcal{A}_B = \mathbb{C}F_1 \oplus \cdots \oplus \mathbb{C}F_m.$$

Suppose that A and B are strong shift equivalent in 1-step. Let R and S be the nonnegative rectangular matrices such that A = RS and B = SR. The graph of the matrix R is the directed graph G_R with vertices $V_A \sqcup V_B$, and with R(i,j) distinct edges $E_R(i,j)$ with initial vertex v_i^A and terminal vertex v_j^B for $i=1,\ldots,n,\ j=1,\ldots,m$. We denote by E_R the edge set $\bigcup_{i=1,\ldots,n} E_R(i,j)$.

Define a *-homomorphism ρ_e^R for $e \in E_R$ from A_A to A_B by setting

$$\rho_e^R(E_i) = \sum_{j=1}^m R_e(i,j)F_j, \qquad i = 1, \dots, n$$

where $R_e(i,j) = 1$ if $s(e) = v_i^A, t(e) = v_j^B$, otherwise $R_e(i,j) = 0$. Put the projections $P_e^R = \rho_e^R(1_A)$ in A_B . Let $\{\epsilon_e\}_{e \in E_R}$ denote the standard basis of the $|E_R|$ -dimensional vector space $\mathbb{C}^{|E_R|}$. Set

$$X_R = \sum_{e \in E_R} \mathbb{C}\epsilon_e \otimes P_e^R \mathcal{A}_B.$$

Define a right A_B -action and an A_B -valued inner product on X_R by similar way to the situation in the begining of this section. We have a Hilbert C^* -right A_B -module X_R . By using the *-homomorphism ρ_e^R from A_A to A_B , we similarly define a left-action ϕ_R of A_A on A_B so that we have a Hilbert C^* -right A_B -module (ϕ_R, X_R) with left A_A -action. By using the matrix S, we similarly have a Hilbert C^* -right A_A -module (ϕ_S, X_S) with left A_B -action. It is straightforward to see that the tensor product Hilbert C^* -module $(\phi_R \otimes 1, X_R \otimes_{A_B} X_S)$ is unitarily equivalent to the Hilbert C^* -bimodule $(\phi_S \otimes 1, X_S \otimes_{A_A} X_R)$, and similarly the tensor product Hilbert C^* -module $(\phi_S \otimes 1, X_S \otimes_{A_A} X_R)$ is unitarily equivalent to the Hilbert C^* -bimodule (ϕ_S, X_S) . Therefore (ϕ_S, X_S) and (ϕ_S, X_S) are strong shift equivalent.

Conversely assume that (ϕ_A, X_A) and (ϕ_B, X_B) are strong shift equivalent in 1-step. Take a full, finite projective Hilbert C^* -right \mathcal{A}_B -module $(\eta, _{\mathcal{A}_A}X^1_{\mathcal{A}_B})$ with left \mathcal{A}_A -action and a full, finite projective Hilbert C^* -right \mathcal{A}_A -module $(\zeta, _{\mathcal{A}_B}X^2_{\mathcal{A}_A})$ with left \mathcal{A}_B -action that satisfy the strong shift equivalence relations between (ϕ_A, X_A) and (ψ_B, X_B) . Let $\{u_c^1\}_{c \in E^1}$ be a finite basis of $_{\mathcal{A}_A}X^1_{\mathcal{A}_B}$ and $\{u_d^2\}_{d \in E^2}$ be a finite basis of $_{\mathcal{A}_B}X^2_{\mathcal{A}_A}$ respectively. For $c \in E^1$, define an $n \times m$ matrix R_c by

$$R_c(i,j)F_j = \langle u_c^1 \mid \phi_A(E_i)u_c^1 \rangle F_j, \qquad i=1,\ldots,n, \ j=1,\ldots,m.$$

Since $\langle u_c^1 \mid \phi_A(E_i)u_c^1 \rangle$ is a projection in \mathcal{A}_B , the matrix R_c has its entries in $\{0,1\}$. Define the $n \times m$ matrix $R = [R(i,j)]_{i,j}$ by setting

$$R(i,j) = \sum_{c \in E^1} R_c(i,j), \qquad i = 1, \dots, n, \ j = 1, \dots, m.$$

We similarly define an $m \times n$ matrix $S = [S(j,i)]_{j,i}$ from the left \mathcal{A}_B -action ϕ_B to $\mathcal{A}_B X_{\mathcal{A}_A}^2$. It is direct to see that the Hilbert C^* -bimodule $(\eta \otimes 1, \mathcal{A}_A X_{\mathcal{A}_B}^1 \otimes \mathcal{A}_B \mathcal{A}_B X_{\mathcal{A}_A}^2)$ over \mathcal{A}_A is unitarily equivalent to (ϕ_{RS}, X_{RS}) , and the Hilbert C^* -bimodule $(\zeta \otimes 1, \mathcal{A}_B X_{\mathcal{A}_A}^2 \otimes \mathcal{A}_A \mathcal{A}_A X_{\mathcal{A}_B}^1)$ over \mathcal{A}_B is unitarily equivalent to (ϕ_{SR}, X_{SR}) . Hence (ϕ_A, X_A) is unitarily equivalent to (ϕ_{RS}, X_{RS}) , and (ϕ_B, X_B) is unitarily equivalent to (ϕ_{SR}, X_{SR}) . Let $\{u_\alpha^A\}_{\alpha \in E_A}$ be the canonical basis of X_A , and $\{u_\beta^{RS}\}_{\beta \in E_{RS}}$ the canonical basis of X_{RS} . Let $\Phi: X_A \to X_{RS}$ be a unitary that intertwines between (ϕ_A, X_A) and (ϕ_{RS}, X_{RS}) . We put

$$U_{lpha,eta} = \langle \Phi(u_lpha^A) \mid u_eta^{RS}
angle, \qquad lpha \in E_A, eta \in E_{RS}.$$

As $\Phi(\phi_A(a)x) = \phi_{RS}(a)\Phi(x)$ for $a \in \mathcal{A}_A, x \in X_A$, one sees that for $\alpha \in E_A, \beta \in E_{RS}$ and $a \in \mathcal{A}_A (= \mathcal{A}_{RS})$

$$\rho_{\alpha}^{A}(a) = \sum_{\beta \in E_{RS}} U_{\alpha,\beta} \rho_{\beta}^{RS}(a) U_{\alpha,\beta}^{*}, \qquad \rho_{\beta}^{RS}(a) = \sum_{\alpha \in E_{A}} U_{\alpha,\beta}^{*} \rho_{\alpha}^{A}(a) U_{\alpha,\beta}.$$

We also have

$$\sum_{\gamma \in E_A} U_{\gamma,\epsilon}^* U_{\gamma,\beta} = \delta_{\epsilon,\beta} P_\beta^{RS}, \qquad \sum_{\beta \in E_{RS}} U_{\gamma,\beta} U_{\alpha,\beta}^* = \delta_{\gamma,\alpha} P_\alpha^A.$$

Since X_{RS} and X_A are unitarily equivalent, one sees that $|E_A| = |E_{RS}|$. By the above equalities, for i = 1, ..., n the diagonal matrices $[\rho_{\alpha}^A(E_i)]_{\alpha \in E_A}$ and $[\rho_{\beta}^{RS}(E_i)]_{\beta \in E_{RS}}$ are unitarily equivalent through $\{U_{\alpha,\beta}\}_{\alpha \in E_A, \beta \in E_{RS}}$. Thus we have

$$\sum_{\alpha \in E_A} \rho_\alpha^A(E_i) = \sum_{\beta \in E_{RS}} \rho_\beta^{RS}(E_i) \quad \text{ so that } \quad \sum_{\alpha \in E_A} \rho_\alpha^A(E_i) E_j = \sum_{\beta \in E_{RS}} \rho_\beta^{RS}(E_i) E_j.$$

This means A(i,j) = (RS)(i,j) for all $i,j = 1,2,\ldots,n$ so that A = RS. Similarly one sees B = SR. Therefore A is strong shift equivalent to B in 1-step. \square

Shift equivalence of Hilbert C^* -bimodules are similarly defined in [15] as in the following way.

DEFINITION. Let $(\phi, X_{\mathcal{A}})$ be a Hilbert C^* -bimodule over \mathcal{A} and $(\psi, X_{\mathcal{B}})$ a Hilbert C^* -bimodule over \mathcal{B} . They are said to be *shift equivalent (of lag N)* if there exist a full, finite projective Hilbert C^* -right \mathcal{B} -module $(\eta, {}_{\mathcal{A}}X_{\mathcal{B}})$ with left \mathcal{A} action and a full, finite projective Hilbert C^* -right \mathcal{A} -module $(\zeta, {}_{\mathcal{B}}X'_{\mathcal{A}})$ with left \mathcal{B} action such that

$$(\phi \otimes 1, \underbrace{X_{\mathcal{A}} \otimes_{\mathcal{A}} \cdots \otimes_{\mathcal{A}} X_{\mathcal{A}}}_{N}) = (\eta \otimes 1, {}_{\mathcal{A}}X_{\mathcal{B}} \otimes_{\mathcal{B}} {}_{\mathcal{B}}X'_{\mathcal{A}}),$$
$$(\psi \otimes 1, \underbrace{X_{\mathcal{B}} \otimes_{\mathcal{B}} \cdots \otimes_{\mathcal{B}} X_{\mathcal{B}}}_{N}) = (\zeta \otimes 1, {}_{\mathcal{B}}X'_{\mathcal{A}} \otimes_{\mathcal{A}} {}_{\mathcal{A}}X_{\mathcal{B}}),$$

and

$$(\eta \otimes 1, \mathcal{A}X_{\mathcal{B}} \otimes_{\mathcal{B}} X_{\mathcal{B}}) = (\phi \otimes 1, X_{\mathcal{A}} \otimes_{\mathcal{A}} \mathcal{A}X_{\mathcal{B}}), \ (\zeta \otimes 1, \mathcal{B}X_{\mathcal{A}}' \otimes_{\mathcal{A}} X_{\mathcal{A}}) = (\psi \otimes 1, X_{\mathcal{B}} \otimes_{\mathcal{B}} \mathcal{B}X_{\mathcal{A}}')$$

We write this situation as $(\phi, X_{\mathcal{A}}) \sim (\psi, X_{\mathcal{B}})$.

The following proposition is shown in [15].

PROPOSITION 3.2. Let (ϕ, X_A) , (ψ, X_B) and (φ, X_C) be Hilbert C^* -bimodules.

- (i) $(\phi, X_A) \approx (\psi, X_B)$ implies $(\phi, X_A) \approx (\psi, X_B)$.
- (ii) $(\phi, X_{\mathcal{A}}) \stackrel{\sim}{\underset{N}{\sim}} (\psi, X_{\mathcal{B}})$ implies $(\phi, X_{\mathcal{A}}) \stackrel{\sim}{\underset{N'}{\sim}} (\psi, X_{\mathcal{B}})$ for all $N' \geq N$.
- (iii) $(\phi, X_{\mathcal{A}}) \stackrel{\sim}{\underset{N}{\sim}} (\psi, X_{\mathcal{B}})$ and $(\psi, X_{\mathcal{B}}) \stackrel{\sim}{\underset{L}{\sim}} (\varphi, X_{\mathcal{C}})$ imply $(\phi, X_{\mathcal{A}}) \stackrel{\sim}{\underset{N+L}{\sim}} (\varphi, X_{\mathcal{C}})$.

Similarly to Proposition 3.1, we may straightforwardly prove that two non-negative matrices A and B are shift equivalent if and only if the Hilbert C^* -bimodules (ϕ_A, X_A) and (ϕ_B, X_B) are shift equivalent.

4. Strong shift equivalence of Hilbert C^* -bimodules and their C^* -algebras

We will prove the following theorem.

THEOREM 4.1. Let (ϕ, X_A) and (ψ, X_B) be finite projective Hilbert C*-bimodules over unital C*-algebras A and B respectively. If (ϕ, X_A) and (ψ, X_B) are strong shift equivalent, the C*-algebras \mathcal{O}_{X_A} and \mathcal{O}_{X_B} with gauge actions are stably outer conjugate.

This theorem and its proof are generalizations of [14, Theorem 3.15].

Suppose that $(\phi, X_{\mathcal{A}})$ and $(\psi, X_{\mathcal{B}})$ are strong shift equivalent in 1-step. Hence there exist a Hilbert C^* -right \mathcal{B} -module $(\eta, {}_{\mathcal{A}}\!X_{\mathcal{B}}^1)$ with left \mathcal{A} -action and a Hilbert C^* -right \mathcal{A} -module $(\zeta, {}_{\mathcal{B}}\!X_{\mathcal{A}}^2)$ with left \mathcal{B} -action satisfying the strong shift equivalence relations between $(\phi, X_{\mathcal{A}})$ and $(\psi, X_{\mathcal{B}})$. Let $(\xi, \widehat{X}) = (\eta, {}_{\mathcal{A}}\!X_{\mathcal{B}}^1) \oplus (\zeta, {}_{\mathcal{B}}\!X_{\mathcal{A}}^2)$ be the bipartite Hilbert C^* -bimodule over $\mathcal{A} \oplus \mathcal{B}$. The C^* -algera $\mathcal{O}_{\widehat{X}}$ of (ξ, \widehat{X}) is a universal C^* -algebra generated by $S_x, x \in \widehat{X}$ subject to the system of the relations corresponding to (2.1). Let $\pi_{\widehat{X}}: \mathcal{A} \oplus \mathcal{B} \to \mathcal{O}_{\widehat{X}}$ be the unital *-homomorphism satisfying $S_{x(a,b)} = S_x \pi_{\widehat{X}}(a,b)$ for $x \in \widehat{X}, (a,b) \in \mathcal{A} \oplus \mathcal{B}$. Let $C^*(S_{12},\mathcal{A})$ and $C^*(S_{21},\mathcal{B})$ be the C^* -subalgebras of $\mathcal{O}_{\widehat{X}}$ defined by setting

$$C^*(S_{12}, \mathcal{A}) = C^*(S_{x^{(1)}x^{(2)}}, \pi_{\widehat{X}}(a, 0) \mid x^{(1)} \in \mathcal{A}X^1_{\mathcal{B}}, x^{(2)} \in \mathcal{B}X^2_{\mathcal{A}}, a \in \mathcal{A}) \quad \text{and} \quad C^*(S_{21}, \mathcal{B}) = C^*(S_{x^{(2)}x^{(1)}}, \pi_{\widehat{X}}(0, b) \mid x^{(1)} \in \mathcal{A}X^1_{\mathcal{B}}, x^{(2)} \in \mathcal{B}X^2_{\mathcal{A}}, b \in \mathcal{B})$$

respectively, where $S_{x^{(1)}x^{(2)}} = S_{x^{(1)}}S_{x^{(2)}}$ and $S_{x^{(2)}x^{(1)}} = S_{x^{(2)}}S_{x^{(1)}}$. Let $1_{\mathcal{A}}$ and $1_{\mathcal{B}}$ be the units of \mathcal{A} and \mathcal{B} respectively. Put the projections

$$P_{\mathcal{A}} = \pi_{\widehat{X}}(1_{\mathcal{A}}, 0), \qquad P_{\mathcal{B}} = \pi_{\widehat{X}}(0, 1_{\mathcal{B}}) \qquad \text{in } \mathcal{O}_{\widehat{X}}.$$

Hence $P_A + P_B = 1$. Let us first prove the following proposition.

PROPOSITION 4.2.
$$C^*(S_{12}, \mathcal{A}) = P_{\mathcal{A}} \mathcal{O}_{\widehat{X}} P_{\mathcal{A}}, \quad C^*(S_{21}, \mathcal{B}) = P_{\mathcal{B}} \mathcal{O}_{\widehat{X}} P_{\mathcal{B}}.$$

We provide some lemmas to show this proposition. The following lemma is clear from the strong shift equivalence relations.

LEMMA 4.3. For $x^{(1)} \in \mathcal{A}X^1_{\mathcal{B}}$, $x^{(2)} \in \mathcal{B}X^2_{\mathcal{A}}$ we have

(i)
$$\xi(1_A,0)x^{(2)} = x^{(2)}(0,1_B) = 0$$
 and $\xi(0,1_B)x^{(1)} = x^{(1)}(1_A,0) = 0$. Hence $x^{(2)} = \xi(0,1_B)x^{(2)} = x^{(2)}(1_A,0)$ and $x^{(1)} = \xi(1_A,0)x^{(1)} = x^{(1)}(0,1_B)$.

(ii)
$$P_{\mathcal{A}}\pi_{\widehat{X}}(0,b) = \pi_{\widehat{X}}(0,b)P_{\mathcal{A}} = 0$$
 for $b \in \mathcal{B}$ and $P_{\mathcal{B}}\pi_{\widehat{X}}(a,0) = \pi_{\widehat{X}}(a,0)P_{\mathcal{B}} = 0$ for $a \in \mathcal{A}$.

LEMMA 4.4. For $x^{(1)}, y^{(1)} \in {}_{\mathcal{A}}\!X^1_{\mathcal{B}}$ and $x^{(2)}, y^{(2)} \in {}_{\mathcal{B}}\!X^2_{\mathcal{A}}$, one has

(i)
$$S_{x^{(1)}}S_{y^{(1)}} = S_{x^{(2)}}S_{y^{(2)}} = 0.$$

(ii)
$$S_{x^{(1)}}S_{y^{(2)}}^* = S_{x^{(2)}}S_{y^{(1)}}^* = 0.$$

Proof. (i) It follows that

$$\begin{split} (S_{x^{(1)}}S_{y^{(1)}})^*S_{x^{(1)}}S_{y^{(1)}} &= & S_{y^{(1)}}^*\pi_{\widehat{X}}(\langle x^{(1)},x^{(1)}\rangle)S_{y^{(1)}} \\ &= & S_{y^{(1)}}^*\pi_{\mathbb{K}}(\xi(\langle x^{(1)},x^{(1)}\rangle(0,1_{\mathcal{B}}))S_{y^{(1)}} \\ &= & S_{y^{(1)}}^*\pi_{\mathbb{K}}(\xi(\langle x^{(1)},x^{(1)}\rangle)S_{\xi(0,1_{\mathcal{B}})y^{(1)}} = 0. \end{split}$$

The other is similar.

(ii) It follows that

$$\begin{split} S_{x^{(1)}}S_{y^{(2)}}^* = & S_{x^{(1)}}\pi_{\widehat{X}}(1_{\mathcal{A}},0)S_{y^{(2)}}^* + S_{x^{(1)}}\pi_{\widehat{X}}(0,1_{\mathcal{B}})S_{y^{(2)}}^* \\ = & S_{x^{(1)}(1_{\mathcal{A}},0)}S_{y^{(2)}}^* + S_{x^{(1)}}S_{y^{(2)}(0,1_{\mathcal{B}})}^* = 0. \end{split}$$

The other is similar. \Box

LEMMA 4.5. For $x^{(1)} \in \mathcal{A}X^1_{\mathcal{B}}, x^{(2)}, \in \mathcal{B}X^2_{\mathcal{A}}$ and $a \in \mathcal{A}, b \in \mathcal{B}$ one has

(i)
$$S_{x^{(1)}}^*\pi_{\widehat{X}}(0,b)S_{x^{(1)}} = S_{x^{(2)}}^*\pi_{\widehat{X}}(a,0)S_{x^{(2)}} = 0.$$

(ii)
$$S_{x^{(1)}}\pi_{\widehat{X}}(a,0)S_{x^{(1)}}^* = S_{x^{(2)}}\pi_{\widehat{X}}(0,b)S_{x^{(2)}}^* = 0.$$

Proof. (i) It follows that

$$\begin{split} S_{x^{(1)}}^*\pi_{\widehat{X}}(0,b)S_{x^{(1)}} &= S_{x^{(1)}}^*\pi_{\mathbb{K}}(\xi((0,b)(0,1_{\mathcal{B}}))S_{x^{(1)}} \\ &= S_{x^{(1)}}^*\pi_{\mathbb{K}}(\xi((0,b))S_{\xi(0,1_{\mathcal{B}})x^{(1)}} = 0. \end{split}$$

The other is similar.

(ii) It follows that

$$S_{x^{(1)}}\pi_{\widehat{X}}(a,0) = S_{x^{(1)}}\pi_{\widehat{X}}(1_{\mathcal{A}},0)\pi_{\widehat{X}}(a,0) = S_{x^{(1)}(1_{\mathcal{A}},0)}\pi_{\widehat{X}}(a,0) = 0.$$

We similarly have $S_{x^{(2)}}\pi_{\widehat{X}}(0,b)=0$. Hence the assertions hold. \square

Let us show the equality $C^*(S_{12}, \mathcal{A}) = P_{\mathcal{A}} \mathcal{O}_{\widehat{X}} P_{\mathcal{A}}$. The other one is symmetric.

LEMMA 4.6. $C^*(S_{12}, \mathcal{A}) \subset P_{\mathcal{A}} \mathcal{O}_{\widehat{Y}} P_{\mathcal{A}}$.

Proof. Take an arbitrary fixed $x^{(1)} \in {}_{\mathcal{A}}\!X^1_{\mathcal{B}}$ and $x^{(2)} \in {}_{\mathcal{B}}\!X^2_{\mathcal{A}}$. As $x^{(1)} = \xi(1_{\mathcal{A}},0)x^{(1)}$, one sees $P_{\mathcal{A}}S_{x^{(1)}} = S_{\xi(1_{\mathcal{A}},0)x^{(1)}} = S_{x^{(1)}}$ and hence $P_{\mathcal{A}}S_{x^{(1)}}S_{x^{(2)}} = S_{x^{(1)}}S_{x^{(2)}}$. Similarly by the equality $x^{(2)} = x^{(2)}(1_{\mathcal{A}},0)$, one has $S_{x^{(1)}}S_{x^{(2)}} = S_{x^{(1)}}S_{x^{(2)}}P_{\mathcal{A}}$. Since the equality $P_{\mathcal{A}}\pi_{\widehat{X}}(a,0)P_{\mathcal{A}} = \pi_{\widehat{X}}(a,0)$ for $a \in \mathcal{A}$ holds, the algebra $C^*(S_{12},\mathcal{A})$ is contained in the algebra $P_{\mathcal{A}}\mathcal{O}_{\widehat{X}}P_{\mathcal{A}}$. □

LEMMA 4.7. For $x = x_1 x_2 \cdots x_p$, $y = y_1 y_2 \cdots y_q$ where $x_k, y_k \in {}_{\mathcal{A}}X^1_{\mathcal{B}}$ or ${}_{\mathcal{B}}X^2_{\mathcal{A}}$ if $P_{\mathcal{A}}S_x\pi_{\widehat{X}}(a,b)S_y^*P_{\mathcal{A}} \neq 0$, one of the following two conditions holds

- $(1) \ x_1, y_1 \in \mathcal{A}X^1_{\mathcal{B}}, x_p, y_q \in \mathcal{A}X^1_{\mathcal{B}} \ and \ S_x \pi_{\widehat{X}}(a, b) S_y^* = S_x \pi_{\widehat{X}}(0, b) S_y^*,$
- (2) $x_1, y_1 \in \mathcal{A}X^1_{\mathcal{B}}, x_p, y_q \in \mathcal{B}X^2_{\mathcal{A}} \text{ and } S_x\pi^1_{\widehat{X}}(a,b)S^*_y = S_x\pi^1_{\widehat{X}}(a,0)S^*_y$.

In both the cases, the equality $P_{\mathcal{A}}S_x\pi_{\widehat{X}}(a,b)S_y^*P_{\mathcal{A}} = S_x\pi_{\widehat{X}}(a,b)S_y^*$ holds so that $S_x\pi_{\widehat{X}}(a,b)S_y^*$ belongs to $C^*(S_{12},\mathcal{A})$.

Proof. As $P_{\mathcal{A}}S_{x^{(1)}} = S_{x^{(1)}}$ for $x^{(1)} \in {}_{\mathcal{A}}\!X^1_{\mathcal{B}}$ and $P_{\mathcal{A}}S_{x^{(2)}} = 0$ for $x^{(2)} \in {}_{\mathcal{B}}\!X^2_{\mathcal{A}}$, one knows that $x_1, y_1 \in {}_{\mathcal{A}}\!X^1_{\mathcal{B}}$. Hence the equalities $P_{\mathcal{A}}S_x = S_x, S_y^*P_{\mathcal{A}} = S_y^*$ hold. Now if $x_p \in {}_{\mathcal{A}}\!X^1_{\mathcal{B}}, y_q \in {}_{\mathcal{B}}\!X^2_{\mathcal{A}}$, then we have

$$S_{x_p} \pi_{\widehat{X}}(a,b) = S_{x_p} \pi_{\widehat{X}}(0,b), \qquad \pi_{\widehat{X}}(a,b) S_{y_q}^* = \pi_{\widehat{X}}(a,0) S_{y_q}^*$$

so that $S_{x_p}\pi_{\widehat{X}}(a,b)S_{y_q}^*=0$, a contradiction. Hence if $x_p\in {}_{\mathcal{A}}\!X_{\mathcal{B}}^1$, then we have $y_q\in {}_{\mathcal{A}}\!X_{\mathcal{B}}^1$. Similarly $x_p\in {}_{\mathcal{B}}\!X_{\mathcal{A}}^2$ implies $y_q\in {}_{\mathcal{B}}\!X_{\mathcal{A}}^2$. Thus we have $x_p,y_q\in {}_{\mathcal{A}}\!X_{\mathcal{B}}^1$ or $x_p,y_q\in {}_{\mathcal{B}}\!X_{\mathcal{A}}^2$. Suppose that $x_p,y_q\in {}_{\mathcal{A}}\!X_{\mathcal{B}}^1$. The equality $S_{x_p}\pi_{\widehat{X}}(a,b)S_{y_q}^*=S_{x_p}\pi_{\widehat{X}}(0,b)S_{y_q}^*$ implies $S_x\pi_{\widehat{X}}(a,b)S_y^*=S_x\pi_{\widehat{X}}(0,b)S_y^*$. Since the Hilbert C^* -modules ${}_{\mathcal{A}}\!X_{\mathcal{B}}^1$ and ${}_{\mathcal{B}}\!X_{\mathcal{A}}^2$ are finite projective, there exist finite bases $\{u_c^{(1)}\}_{c\in C}$ of ${}_{\mathcal{A}}\!X_{\mathcal{B}}^1$ and $\{u_d^{(2)}\}_{d\in D}$ of ${}_{\mathcal{B}}\!X_{\mathcal{A}}^2$. We put for $\alpha\in C\sqcup D$

$$v_{lpha} = egin{cases} (u_{lpha}^{(1)},0) & ext{if } lpha \in C, \ (0,u_{lpha}^{(2)}) & ext{if } lpha \in D. \end{cases}$$

Then $\{v_{\alpha}\}_{{\alpha}\in C\sqcup D}$ form a finite basis of \widehat{X} . Hence we have

$$\sum_{\alpha \in C \sqcup D} \pi_{\widehat{X}}(\theta_{v_{\alpha},v_{\alpha}}) = \mathrm{id} \quad \text{ and } \quad \sum_{\alpha \in C \sqcup D} S_{v_{\alpha}} S_{v_{\alpha}}^* = 1.$$

As $S_{x_p}S_{v_\alpha}=0$ and hence $S_{v_\alpha}^*S_{y_q}^*=0$ if $\alpha\in C$, we have

$$S_x \pi_{\widehat{X}}(0,b) S_y^* = \sum_{\alpha,\beta \in D} S_x S_{v_\alpha} S_{v_\alpha}^* \pi_{\widehat{X}}(0,b) S_{v_\beta} S_{v_\beta}^* S_y^*.$$

For $\alpha, \beta \in D$ both the vectors v_{α} and $\xi(0,b)v_{\beta}$ belong to ${}_{\mathcal{B}}X_{\mathcal{A}}^2$ so that the inner product $\langle v_{\alpha}, \xi(0,b)v_{\beta} \rangle$ takes its value in \mathcal{A} . By the equality $S_{v_{\alpha}}^*\pi_{\widehat{X}}(0,b)S_{v_{\beta}} = \pi_{\widehat{X}}(\langle v_{\alpha}, \xi(0,b)v_{\beta} \rangle)$, the element $S_{v_{\alpha}}^*\pi_{\widehat{X}}(0,b)S_{v_{\beta}}$ belongs to $\pi_{\widehat{X}}(\mathcal{A},0)$. As $x_1,x_p \in \mathcal{A}X_{\mathcal{B}}^1$, the operator $S_xS_{v_{\alpha}}$ is a finite product of the operators of the form: $S_{x^{(1)}}S_{x^{(2)}}$ for $x^{(1)} \in \mathcal{A}X_{\mathcal{B}}^1, x^{(2)} \in \mathcal{B}X_{\mathcal{A}}^2$. Similarly the operator $S_{v_{\beta}}^*S_y^*$ is a finite product of the operators of the form: $S_{x^{(2)}}^*S_{x^{(1)}}^*$ for $x^{(1)} \in \mathcal{A}X_{\mathcal{B}}^1, x^{(2)} \in \mathcal{B}X_{\mathcal{A}}^2$. Hence $\sum_{\alpha,\beta\in D} S_xS_{v_{\alpha}} \cdot S_{v_{\alpha}}^*\pi_{\widehat{X}}(0,b)S_{v_{\beta}} \cdot S_{v_{\beta}}^*S_y^*$ belongs to $C^*(S_{12},\mathcal{A})$. Therefore $S_x\pi_{\widehat{X}}(0,b)S_y^*$ and hence $S_x\pi_{\widehat{X}}(a,b)S_y^*$ belong to $C^*(S_{12},\mathcal{A})$.

Suppose next that $x_p, y_q \in {}_{\mathcal{B}}X^2_{\mathcal{A}}$. We then have $S_{x_p}\pi_{\widehat{X}}(0,b)S^*_{y_q} = 0$ so that

$$S_x\pi_{\widehat{X}}(a,b)S_y^*=S_x\pi_{\widehat{X}}(a,0)S_y^*.$$

Since the operators S_x and S_y are finite products of the operators of the form: $S_{x^{(1)}}S_{x^{(2)}}$ for $x^{(1)} \in {}_{\mathcal{A}}\!X_{\mathcal{B}}^1, x^{(2)} \in {}_{\mathcal{B}}\!X_{\mathcal{A}}^2$, the element $S_x\pi_{\widehat{X}}(a,b)S_y^*$ belongs to $C^*(S_{12},\mathcal{A})$. \square

Proof of Proposition 4.2. The algebra of all finite linear combinations of elements of the form:

$$S_{x_1\cdots x_p}\pi_{\widehat{X}}(a,b)S_{y_1\cdots y_q}^*, \quad \pi_{\widehat{X}}(a,b)$$

where $a \in \mathcal{A}, b \in \mathcal{B}, x_1, \ldots, x_p, y_1, \ldots, y_q \in {}_{\mathcal{A}}\!X^1_{\mathcal{B}}$ or ${}_{\mathcal{B}}\!X^2_{\mathcal{A}}$, is dense in $\mathcal{O}_{\widehat{X}}$. One obtains the inclusion relation $C^*(S_{12}, \mathcal{A}) \supset P_{\mathcal{A}}\mathcal{O}_{\widehat{X}}P_{\mathcal{A}}$ by Lemma 4.6. Thus the equality $C^*(S_{12}, \mathcal{A}) = P_{\mathcal{A}}\mathcal{O}_{\widehat{X}}P_{\mathcal{A}}$ holds by Lemma 4.5. \square

We will second prove the following proposition.

PROPOSITION 4.8. The C^* -algebras $\mathcal{O}_{\mathcal{A}X_{\mathcal{B}}^1\otimes\mathcal{B}\mathcal{B}X_{\mathcal{A}}^2}$ and $\mathcal{O}_{\mathcal{B}X_{\mathcal{A}}^2\otimes\mathcal{A}\mathcal{A}X_{\mathcal{B}}^1}$ of the Hilbert C^* -bimodules $(\eta\otimes 1, {}_{\mathcal{A}}X_{\mathcal{B}}^1\otimes\mathcal{B}\mathcal{B}X_{\mathcal{A}}^2)$ and $(\zeta\otimes 1, {}_{\mathcal{B}}X_{\mathcal{A}}^2\otimes\mathcal{A}\mathcal{A}X_{\mathcal{B}}^1)$ respectively are canonically isomorphic to the algebras $C^*(S_{12}, \mathcal{A})$ and $C^*(S_{21}, \mathcal{B})$ respectively.

Proof. The algebra $\mathcal{O}_{\mathcal{A}X_{\mathcal{B}}^{1}\otimes_{\mathcal{B}\mathcal{B}X_{\mathcal{A}}^{2}}$ is the universal C^{*} -algebra generated by $\{s_{x} \mid x\in_{\mathcal{A}}X_{\mathcal{B}}^{1}\otimes_{\mathcal{B}}\mathcal{B}X_{\mathcal{A}}^{2}\}$ with a contraction $\mathcal{A}X_{\mathcal{B}}^{1}\otimes_{\mathcal{B}}\mathcal{B}X_{\mathcal{A}}^{2}\ni x\to s_{x}\in\mathcal{O}_{\mathcal{A}X_{\mathcal{B}}^{1}\otimes_{\mathcal{B}}\mathcal{B}X_{\mathcal{A}}^{2}}$ and unital *-homomorphisms $\pi_{\mathcal{A}}:\mathcal{A}\ni a\to \pi_{\mathcal{A}}(a)\in\mathcal{O}_{\mathcal{A}X_{\mathcal{B}}^{1}\otimes_{\mathcal{B}}\mathcal{B}X_{\mathcal{A}}^{2}}$ and $\pi_{\mathbb{K}}^{\mathcal{A}}:\mathbb{K}_{\mathcal{A}}(\mathcal{A}X_{\mathcal{B}}^{1}\otimes_{\mathcal{B}}\mathcal{B}X_{\mathcal{A}}^{2})\ni\theta_{x,y}\to\pi_{\mathbb{K}}^{\mathcal{A}}(\theta_{x,y})\in\mathcal{O}_{\mathcal{A}X_{\mathcal{B}}^{1}\otimes_{\mathcal{B}}\mathcal{B}X_{\mathcal{A}}^{2}}$ satisfying the corresponding relations to (2.1) for the Hilbert C^{*} -bimodule $(\eta\otimes 1,\mathcal{A}X_{\mathcal{B}}^{1}\otimes_{\mathcal{B}}\mathcal{B}X_{\mathcal{A}}^{2})$. Hence there exists a surjective *-homomorphism Φ from $\mathcal{O}_{\mathcal{A}X_{\mathcal{B}}^{1}\otimes_{\mathcal{B}}\mathcal{B}X_{\mathcal{A}}^{2}}$ to $C^{*}(S_{12},\mathcal{A})$ such that

$$\begin{split} &\Phi(s_{x^{(1)}\otimes x^{(2)}}) = S_{x^{(1)}}S_{x^{(2)}}, \quad \Phi(\pi_{\mathcal{A}}(a)) = \pi_{\widehat{X}}(a,0), \\ &\Phi(\pi_{\mathbb{K}}^{\mathcal{A}}(\theta_{x^{(1)}\otimes x^{(2)},y^{(1)}\otimes y^{(2)}}) = &\pi_{\mathbb{K}}(\theta_{(x^{(1)},0),(y^{(1)},0)}\theta_{(0,x^{(2)}),(0,y^{(2)})}) \end{split}$$

for $x^{(1)}, y^{(1)} \in \mathcal{A}X^1_{\mathcal{B}}, x^{(2)}, y^{(2)} \in \mathcal{B}X^2_{\mathcal{A}}, a \in \mathcal{A}$. Let $\epsilon : \mathcal{O}_{\mathcal{A}X^1_{\mathcal{B}} \otimes \mathcal{B}\mathcal{B}X^2_{\mathcal{A}}} \to (\mathcal{O}_{\mathcal{A}X^1_{\mathcal{B}} \otimes \mathcal{B}\mathcal{B}X^2_{\mathcal{A}}})^{\gamma_{12}}$ be the canonical conditional expectation from $\mathcal{O}_{\mathcal{A}X^1_{\mathcal{B}} \otimes \mathcal{B}\mathcal{B}X^2_{\mathcal{A}}}$ onto the fixed point algebra $(\mathcal{O}_{\mathcal{A}X^1_{\mathcal{B}} \otimes \mathcal{B}\mathcal{B}X^2_{\mathcal{A}}})^{\gamma_{12}}$ under the gauge action γ_{12} . Let $\epsilon_X : \mathcal{O}_{\widehat{X}} \to (\mathcal{O}_{\widehat{X}})^{\gamma_{\widehat{X}}}$ be the similarly defined conditional expectation. As in [19] (cf. [7]), the algebras $(\mathcal{O}_{\mathcal{A}X^1_{\mathcal{B}} \otimes \mathcal{B}\mathcal{B}X^2_{\mathcal{A}}})^{\gamma_{12}}$ and $(\mathcal{O}_{\widehat{X}})^{\gamma_{\widehat{X}}}$ are realized as the C^* -subalgebras $\mathcal{F}_{\mathcal{A}X^1_{\mathcal{B}} \otimes \mathcal{B}\mathcal{B}X^2_{\mathcal{A}}}$ generated by $s_{x_1 \otimes \dots \otimes x_p} \pi_{\mathcal{A}}(a) s^*_{y_1 \otimes \dots \otimes y_p}$ for $a \in \mathcal{A}, x_1, \dots, x_p, y_1, \dots, y_p \in \mathcal{A}X^1_{\mathcal{B}}$ or $\mathcal{B}X^2_{\mathcal{A}}, p \in \mathbb{N}$ and $\mathcal{F}_{\widehat{X}}$ generated by $S_{x_1} \cdots S_{x_n} \pi_{\widehat{X}}(a,b) S^*_{w_n} \cdots S^*_{w_1}$ for $(a,b) \in \mathcal{A} \oplus \mathcal{B}, z_1, \dots, z_n, w_1, \dots, w_n \in \widehat{X}, n \in \mathbb{N}$. respectively. Let $\mathcal{F}_{C^*(S_{12},\mathcal{A})}$ be the C^* -subalgebra of $C^*(S_{12},\mathcal{A})$ generated by $S_{x_1} \cdots S_{x_n} \pi_{\widehat{X}}(a,0) S^*_{y_n} \cdots S^*_{y_1}$ where n = 2m and $x_1, x_3, \dots, x_{2m-1}, y_1, y_3, \dots, y_{2m-1} \in \mathcal{A}X^1_{\mathcal{B}}, x_2, x_4, \dots, x_{2m}, y_2, y_4, \dots, y_{2m} \in \mathcal{B}X^2_{\mathcal{A}}, a \in \mathcal{A}$, It is a subalgebra of $\mathcal{F}_{\widehat{X}}$ such that $\epsilon_X(C^*(S_{12},\mathcal{A})) = \mathcal{F}_{C^*(S_{12},\mathcal{A})}$. We then have a following commutative diagram:

$$\begin{array}{ccc} \mathcal{O}_{\mathcal{A}X^1_{\mathcal{B}}\otimes_{\mathcal{B}\mathcal{B}}X^2_{\mathcal{A}}} & \xrightarrow{\Phi} & C^*(S_{12},\mathcal{A}) \\ & & & & & \downarrow^{\epsilon_{X}|_{C^*(S_{12},\mathcal{A})}} \\ \mathcal{F}_{\mathcal{A}X^1_{\mathcal{B}}\otimes_{\mathcal{B}\mathcal{B}}X^2_{\mathcal{A}}} & \xrightarrow{\Phi|_{\mathcal{F}(\mathcal{A},\rho,\Sigma)}} & \mathcal{F}_{C^*(S_{12},\mathcal{A})}. \end{array}$$

Now $\Phi|_{\mathcal{A}}(=\mathrm{id})$ is one-to-one, by [7, Theorem 4.3(i)] one knows that $\Phi|_{\mathcal{F}_{\mathcal{A}X_B^1\otimes\mathcal{B}\mathcal{B}X_A^2}}$: $\mathcal{F}_{\mathcal{A}X_B^1\otimes\mathcal{B}\mathcal{B}X_A^2}\to \mathcal{F}_{C^*(S_{12},\mathcal{A})}$ is one-to-one. For $x\in\mathcal{O}_{\mathcal{A}X_B^1\otimes\mathcal{B}\mathcal{B}X_A^2}$, if $\Phi(x^*x)=0$, then one has $\Phi\circ\epsilon(x^*x)=\epsilon_X\circ\Phi(x^*x)=0$. Hence $\epsilon(x^*x)=0$ so that x=0 because ϵ is faithful. Therefore Φ is isomorphic. The other isomorphism between $\mathcal{O}_{\mathcal{B}X_\mathcal{A}^2\otimes\mathcal{A}\mathcal{A}X_\mathcal{B}^1}$ and $C^*(S_{21},\mathcal{B})$ is similarly shown. \square

We will next prove that the subalgebras $P_{\mathcal{A}}\mathcal{O}_{\widehat{X}}P_{\mathcal{A}}$ and $P_{\mathcal{B}}\mathcal{O}_{\widehat{X}}P_{\mathcal{B}}$ are complementary full corners in $\mathcal{O}_{\widehat{X}}$.

LEMMA 4.9. Assume that both the finite bases $\{u_{\alpha}^{(1)}\}_{\alpha\in C}$ of $_{\mathcal{A}}X_{\mathcal{B}}^{1}$ and $\{u_{\beta}^{(2)}\}_{\beta\in D}$ of $_{\mathcal{B}}X_{\mathcal{A}}^{2}$ are essential. Then the projections $P_{\mathcal{A}}$ and $P_{\mathcal{B}}$ are both full in the algebra $\mathcal{O}_{\widehat{X}}$.

Proof. Let $\{v_{\alpha}\}_{{\alpha}\in C\sqcup D}$ be the finite basis of \widehat{X} defined in the proof of Lemma 4.7. We will prove that $P_{\mathcal{A}}$ is full in $\mathcal{O}_{\widehat{X}}$. By Lemma 4.4, one sees that for $c\in C$

$$S_{v_c}^*P_{\mathcal{A}}S_{v_c} = S_{v_c}^*S_{v_c} = \pi_{\widehat{X}}(\langle v_c, v_c \rangle) = \pi_{\mathcal{B}}(\langle u_c^{(1)}, u_c^{(1)} \rangle).$$

As $\{u_c^{(1)}\}_{c\in C}$ is essential, one has $\sum_{c\in C} S_{v_c}^* P_{\mathcal{A}} S_{v_c} \geq \pi_{\widehat{X}}(0, 1_{\mathcal{B}})$ and hence

$$\sum_{c \in C} S_{v_c}^* P_{\mathcal{A}} S_{v_c} + P_{\mathcal{A}} \ge \pi_{\widehat{X}}(0, 1_{\mathcal{B}}) + \pi_{\widehat{X}}(1_{\mathcal{A}}, 0).$$

This means that the two sided ideal of $\mathcal{O}_{\widehat{X}}$ generated by $P_{\mathcal{A}}$ coincides with $\mathcal{O}_{\widehat{X}}$. That is, $P_{\mathcal{A}}$ and similarly $P_{\mathcal{B}}$ are full projections in $\mathcal{O}_{\widehat{X}}$ (cf.[1]). \square

Proof of Theorem 4.1. Put

$$_{\mathcal{A}}\mathfrak{X}_{\mathcal{B}}=P_{\mathcal{A}}\mathcal{O}_{\widehat{X}}P_{\mathcal{B}}.$$

It is well-known that $_{\mathcal{A}}\mathfrak{X}_{\mathcal{B}}$ has a Hilbert C^* -left $P_{\mathcal{A}}\mathcal{O}_{\widehat{X}}P_{\mathcal{A}}$ -module structure with left $P_{\mathcal{A}}\mathcal{O}_{\widehat{X}}P_{\mathcal{A}}$ -valued inner product $_{\mathcal{A}}\langle,\rangle$ and a right $P_{\mathcal{B}}\mathcal{O}_{\widehat{X}}P_{\mathcal{B}}$ -module structure with right $P_{\mathcal{B}}\mathcal{O}_{\widehat{X}}P_{\mathcal{B}}$ -valued inner product $\langle,\rangle_{\mathcal{B}}$ as in the following way:

$$a\cdot x\cdot b:=axb, \qquad {}_{\mathcal{A}}\!\langle x,y
angle:=xy^*, \quad \langle x,y
angle_{\mathcal{B}}:=x^*y$$

for $a \in P_{\mathcal{A}}\mathcal{O}_{\widehat{X}}P_{\mathcal{A}}$, $b \in P_{\mathcal{B}}\mathcal{O}_{\widehat{X}}P_{\mathcal{B}}$ and $x, y \in \mathcal{A}_{\mathcal{B}}$. Regard the algebras $C^*(S_{12}, \mathcal{A})$ and $C^*(S_{21}, \mathcal{B})$ as the C^* -subalgebras $P_{\mathcal{A}}\mathcal{O}_{\widehat{X}}P_{\mathcal{A}}$ and $P_{\mathcal{B}}\mathcal{O}_{\widehat{X}}P_{\mathcal{B}}$ of $\mathcal{O}_{\widehat{X}}$ respectively. Let α^{12} be the gauge action of \mathbb{T} on $C^*(S_{12}, \mathcal{A})$ that satisfies

$$\alpha_z^{12}(S_{x^{(1)}x^{(2)}}) = zS_{x^{(1)}x^{(2)}}, \qquad \alpha_z^{12}(\pi_{\widehat{X}}(a,0)) = \pi_{\widehat{X}}(a,0), \qquad z \in \mathbb{T}$$

for $x^{(1)} \in {}_{\mathcal{A}}\!X^1_{\mathcal{B}}, x^{(2)} \in {}_{\mathcal{B}}\!X^2_{\mathcal{A}}, a \in \mathcal{A}$. The gauge action α^{21} on $C^*(S_{21}, \mathcal{B})$ is similarly defined. The two gauge actions α^{12} on $C^*(S_{12}, \mathcal{A})$ and α^{21} on $C^*(S_{21}, \mathcal{B})$ are canonically isomorphic to γ^{12} on $\mathcal{O}_{{}_{\mathcal{A}}\!X^1_{\mathcal{B}}\otimes_{\mathcal{B}}\!X^2_{\mathcal{A}}}$ and γ^{21} on $\mathcal{O}_{{}_{\mathcal{B}}\!X^2_{\mathcal{A}}\otimes_{\mathcal{A}}\!\mathcal{A}\!X^1_{\mathcal{B}}}$ respectively. Let us consider an action γ^1 of \mathbb{T} on the algebra $\mathcal{O}_{\widehat{X}}$ defined by

$$\gamma_z^1(S_{x^{(1)}}) = S_{x^{(1)}}, \quad \gamma_z^1(S_{x^{(2)}}) = zS_{x^{(2)}}, \quad \gamma_z^1(\pi_{\widehat{X}}(a,b)) = \pi_{\widehat{X}}(a,b), \qquad z \in \mathbb{T}$$

for $x^{(1)} \in {}_{\mathcal{A}}\!X^1_{\mathcal{B}}, x^{(2)} \in {}_{\mathcal{B}}\!X^2_{\mathcal{A}}, (a,b) \in {}_{\mathcal{A}} \oplus {}_{\mathcal{B}}$. The restrictions of γ^1 to the subalgebras $C^*(S_{12}, \mathcal{A})$ and $C^*(S_{21}, \mathcal{B})$ of $\mathcal{O}_{\widehat{X}}$ coincide with the actions α^{12} and α^{21} respectively. Since the projections $P_{\mathcal{A}}$ and $P_{\mathcal{B}}$ are both fixed under γ^1 , the action γ^1 induces a continuous action of \mathbb{T} on the Hilbert C^* -bimodule ${}_{\mathcal{A}}\!\mathfrak{X}_{\mathcal{B}}$. We denote it by u. It satisfies the equalities:

$$\alpha_z^{12}(A\langle x,y\rangle) = A\langle u_z(x), u_z(y)\rangle, \qquad \alpha_z^{21}(\langle x,y\rangle_{\mathcal{B}}) = \langle u_z(x), u_z(y)\rangle_{\mathcal{B}}$$

for $x, y \in \mathcal{A}_{\mathcal{B}}$ and $z \in \mathbb{T}$. Then by Lemma 4.9, two C^* -dynamical systems $(C^*(S_{12}, \mathcal{A}), \alpha^{12}, \mathbb{T})$ and $(C^*(S_{21}, \mathcal{B}), \alpha^{21}, \mathbb{T})$ are Morita equivalent via $(\mathcal{A}_{\mathcal{B}}, u, \mathbb{T})$ in the sense of F. Combes [3] and Curto-Muhly-Williams [6]. Hence by an equivariant version of the Brown-Green-Rieffel Theorem [2] proved by F. Combes in [3] their stabilizations $(C^*(S_{12}, \mathcal{A}) \otimes \mathcal{K}, \alpha^{12} \otimes \mathrm{id}, \mathbb{T})$ and $(C^*(S_{21}, \mathcal{B}) \otimes \mathcal{K}, \alpha^{21} \otimes \mathrm{id}, \mathbb{T})$ are cocycle conjugate. This means that $(\mathcal{O}_{X_{\mathcal{A}}} \otimes \mathcal{K}, \gamma^{\mathcal{A}} \otimes \mathrm{id}, \mathbb{T})$ and $(\mathcal{O}_{X_{\mathcal{B}}} \otimes \mathcal{K}, \gamma^{\mathcal{B}} \otimes \mathrm{id}, \mathbb{T})$ are cocycle conjugate. \square

Remark. Similar results to the main result of this paper have been shown in the following two papers in more general setting:

P. S. Muhly, D. Pask and M. Tomforde: Strong shift equivalence of C^* -correspondences, 2005, Aug.

M. Tomforde: Strong shift equivalence in the C^* -algebra setting: Graphs and C^* -correspondences, 2005, Aug.

References

- L. G. Brown, Stable isomorphism of hereditary subalgebras of C*-algebras, Pacific. J. Math. 71 (1977) 335-348.
- [2] L. G. Brown, P. Green and M. A. Rieffel, Stable isomorphism and strong Morita equivalence of C*-algebras, Pacific. J. Math. 71 (1977) 349-363.
- [3] F. Combes, Crossed products and Morita equivalence, *Proc. London Math. Soc.* 49 (1984) 289-306.
- [4] J. Cuntz, A class of C*-algebras and topological Markov chains II: reducible chains and the Ext-functor for C*-algebras, *Invent. Math.* 63 (1980) 25-40.
- [5] J. Cuntz and W. Krieger, A class of C*-algebras and topological Markov chains, Invent. Math. 56 (1980) 251-268.
- [6] R. E. Curto, P. Muhly and D. P. Williams, Crossed products of strong Morita equivalent C*-algebras, Proc. Amer. Math. Soc. 90 (1984) 528-530.
- [7] T. Kajiwara, C. Pinzari and Y. Watatani, Ideal structure and simplicity of the C*-algebras generated by Hilbert modules, J. Funct. Anal. 159 (1998) 295-322.
- [8] T. Kajiwara and Y. Watatani, Jones index theory by Hilbert C*-bimodules and K-theory, Trans. Amer. Math. Soc. 352 (2000) 3429-3472.
- [9] Y. Katayama, Generalized Cuntz algebras \mathcal{O}_N^M , RIMS kokyuroku 858 (1994) 87-90.
- [10] D. Lind and B. Marcus, An introduction to symbolic dynamics and coding, Cambridge University Press, 1995.
- [11] K. Matsumoto, Presentations of subshifts and their topological conjugacy invariants, Doc. Math. 4 (1999) 285-340.
- [12] K. Matsumoto, Stabilized C*-algebra constructed from symbolic dynamical systems, Ergodic Theory Dynam. Systems 20 (2000) 821-841.
- [13] K. Matsumoto, C^* -algebras associated with presentations of subshifts, *Doc. Math.* 7 (2002) 1-30.
- [14] K. Matsumoto, Strong shift equivalence of symbolic matrix systems and Morita equivalence of C*-algebras, Ergodic Theory Dynam. Systems 24 (2004) 199-215.
- [15] K. Matsumoto, Actions of symbolic dynamical systems on C*-algebras, to appear in J. Reine Angew. Math.
- [16] P.S. Muhly and B. Solel, On the simplicity of some Cuntz-Pimsner algebras, Math. Scand. 83 (1998) 53-73.
- [17] M. Nasu, Topological conjugacy for sofic shifts, Ergodic Theory Dynam. Systems 6 (1986) 265-280.
- [18] M. Nasu, Textile systems for endomorphisms and automorphisms of the shift, Mem. Amer. Math. Soc. No.546, 114 (1995).
- [19] M. V. Pimsner, A class of C*-algebras generalizing both Cuntz-Krieger algebras and crossed product by Z, in Free Probability Theory, Fields Institute Communications 12 (1996) 189-212.
- [20] M. A. Rieffel, Induced representations of C*-algebras, Adv. in Math. 13 (1974) 176-257.
- [21] J. Schweizer, Dilatiions of C*-correspondences and the simplicity of Cuntz-Pimsner algebras, J. Funct. Anal. 180 (2001) 404-425.
- [22] R.F. Williams, Classification of subshifts of finite type, Ann. Math. 98 (1973) 120-153.
 erratum, Ann. Math. 99 (1974), 380-381.

Department of Mathematical Sciences Yokohama City University Seto 22-2, Kanazawa-ku, Yokohama 236-0027, Japan E-mail: kengo@yokohama-cu.ac.jp