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Abstx;act. We give the explicit classifications of orbits in Cayley algebras CC, <
and € by the natural actions of the exceptional Lie groups of type Ga.

1. Introduction

In [2], [3], [4], [6], [7], [8], [9] and [13], we studied the structure of orbits of

representation spaces by the natural actions of the exceptional Lie groups.

It is known that the compact group G» acts transitively on the space of
all elements having the same norm in the space €y of pure imaginary Cayley
numbers. In this paper, we shall give another proof for the compact case, and give
the explicit classification of orbits in the space €€ (resp. €o') of pure imaginary
complex (resp. split) Cayley numbers over the non-compact group Go¢ (resp.
G2(2)). As a result, we obtain that their orbits in the non-compact case have
similar properties to the compact case, that is, their orbits are characterized by
their norms. In detail, the following three theorems hold:

THEOREM. Any non-zero element ¢ € €,C can be transformed to the following
canonical form by some element of G2 :

(1) In the case of N(z) #0:
(& +1in)es (§>0 or {757:(()) ),

where (€ +in)? = N(z).
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(2) In the case of N(z) =0:
e1 + iey.

Moreover, all their orbits in €oC over Go€ are distinct, and the union of all
their orbits and {0} is the whole space €.

THEOREM. Any element x € €, can be transformed to the following canonical
form by some element of G2 :

éer (=+/N(z)20).

Moreover, all their orbits in € over G are distinct, and the union of all their
orbits is the whole space €.

THEOREM. Any non-zero element x € €’ can be transformed to the following
canonical form by some element of Ga(2) :

(1) In the case of N(z) >0
ter (£=+/N(z)>0).
(2) In the case of N(z) <0: |
tes' (€= +~N@)>0).
(3) In the case of N(z) =0:
e + es.

Moreover, all their orbits in €' over G2(2) are distinct, and the union of all their
orbits and {0} is the whole space €;'.

Finally, in [5], we have already proved that the group G-° (resp. G2,G2(2))
acts transitively on the sphere (S€)¢ (resp. S®,(S5’)%). This means that the orbit
of an element with a non-zero norm is determined by its norm. We can thus omit
the proof in the case of the non-zero norm. However, in this paper, we shall write
again without omitting its proof in order to make the paper self-contained.

2. Cayley algebras and exceptional Lie groups of type G2

Let R and C = R® = R® Ri (i® = —1) be the fields of real and complex
numbers, respectively. We denote by ¢C the complex Cayley algebra. ¢ is an
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eight-dimensional vector space over C with basis {eg(= 1), €1, €2, €3, €4, €5, €6, €7}
and a (non-commutative non-associative) algebra over C with multiplication that

eo(= 1) is a unit element;

€1€2 = €3, €1€4 = €5, €1€g = €7, €2€5 = €7, €266 = €4, €3E4 = €7, €3€5 = €g;
exl=—1(k#0); exe;=—eex (k,! are distinct, and non-zero);

exel = en, implies e;e,, = ey (k,l, m are distinct, and non-zero).

In Q:C, the conjugation F, the complex conjugation 7z, the inner product
(z,y), the norm N(z) and the C-linear transformations =, y; of €€ are defined
respectively by

7 7
$o+§ xkek=wo~§ Zrer, xx € C,

k=1 k=1
7 7
T(Z(mk + z’yk)ek) = (zx —iyx)ex, Tk, Yk € R,
k=0 k=0

(z,y) = %(xﬁ + yT), N(z) = 2T,

7 3 7
’Y(kaek) = Z Trer — Z-’L’kek, zy € C,
k=4

k=0 k=0

7
’71( E :L'kek) =T — T1€1 + To€2 — T3€3 + T4€4 — T5€5 + Tg€g — T7€7.
k=0

Then, for z,y € €, we have

TY=97T, t(zy)=(r2)(1y), ~(2y) = (vx)(vy), m(zy) = (mz)(my).

Next, we define the Cayley division algebra € over R by
7
(€={a:€€c|rm=m}= {Emkeklxk GR},
‘ k=0
and define the split Cayley algebra €’ over R by

3 7
¢={rec|rz=0}= {Zxkek+2x;¢(iek)lmk GR}.
k=0 k=4

In the case of @, for convenience, we write down

’
eo =1=ep’, e1 =€, e2 =€, e3 = €3/,
'i€4 = 84', z'e5 = 65', ieg = 66', iey = 67'.
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¢ contains the algebra CC of complex numbers over C and the algebra H of
quaternions over C' as

cCt = {.’IJQ + Ti€4 I zy € C}, HC = {zo + z1€1 + T2€9 + T3€3 | TY € C}.
€ contains the field C of complex numbers and the field H of quaternions as
C = {xo+ 14|zt € R}, H = {x0¢ + z1€1 + Z2€3 + T3€3 | 2k € R}.

¢’ contains the algebra C’ of split complex numbers and the field H of quater-
nions as

C' = {zo+ z1e4' |zx € R}, H = {z0 + 7161 + T2€2 + T3€3 | T4 € R}.
Any z € €% (resp. €) is expressed as

T =xo + T1€1 + T2€2 + T3€3 + T4€4 + Tses + Tees + Trer  xp € C (resp. R)

= (zo + z1€1 + T2€2 + T3€3) + (T4 + T5€1 — Te2 + Tre3)eEy

= (o + T4e4) + (T1 — Tseq)er + (T2 + zees)ea + (T3 — T7e4)e3,
and any z € ¢’ is expressed as
T = T + T1€1 + To€s + T3e3 + Taeq’ + x5€5" + T6€6' + T7€7’ T € R
= (xo + z1€1 + Toez + Z3€3) + (T4 + T5€1 — Tee2 + Tre3)ey’
= (zo + z4e4’) + (z1 — w5€4)e1 + (22 + T6es )ea + (73 — z7€4 )e3.
Hence any z € €° (resp. €) is expressed as
z=a+bes, abe HC (resp. H).

In HC ® HCe, (H & He,), we define the multiplication, the inner product and
the conjugation respectively by

(a + bes)(c + dey) = (ac — db) + (bE + da)ea,
(a + beq,c + deq) = (a,c) + (b,d),

a+ bey =a — bey.

Then, since these operations correspond to their respective operations in €€
(resp. €), we can identify H® & H e, (resp. H & He,4) with €€ (resp. €):
HC @ HC¢, = ¢ (resp. H & Heyq = €). Similarly, any z € ¢’ is expressed as

z=a+bey, abe H.
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In H® Hey4', we define the multiplication, the inner product and the conjugation
respectively by
(a + bey')(c +dey') = (ac + db) + (bt + da)es/,
(a+bey,c+dey) = (a,c) — (b,d),
a+bey =a— bey'.

Then, since these operations correspond to their respective operations in €', we
can identify H & He,' with ¢’ : H® He,' = ¢'.
On the other hand, any z € €€ (resp. €,€) is also expressed as

T =a+mie; +moes +maes, a,my € CC (resp.C,C").

We associate such z with

my
a+ (mz € C° @ (C°)® (resp.C @ C3,C' & (C')3).
m3

In C€ @ (C°)3 (resp.C & C?,C’ @ (C')3), we define the multiplication, the
inner product and the conjugation by

(a+m)(b+n) = (ab-"‘mn)+ (an +bm + m x n),

(a+m,b+n) = (a,b) + (m,n),

at+tm=a—m,
where (a,b), (m,n), m x n are respectively defined by
maong — n2m3>

L ;
(a,b) = E(ab + ba), (m,n)= %(tmﬁ +nm), mxn=|man —nzm
MiNg — N1Ma

ma ny
form = |my|,n = [ny] € (C°)?3 (resp. C%,(C’)?). Then CC & (C°)3
ms3 n3

(resp. C @ C3,C’ @ (C')?) is isomorphic to €€ (resp. €,¢') as algebra.

The connected linear Lie groups of type G are obtained as the automorphism
groups of the Cayley algebras:

G2° = Aut(€°) = {a € Isog(€°) | a(zy) = (az)(ay)},
G2 = Aut(€) = {a € Isor(?) | a(zy) = (azx)(ay)},
Ga(2) = Aut(€’) = {a € Isor (') | a(zy) = (az)(ay)}.

It is known that G2€ and G, are simply connected, and that G is compact,

G2 and Gy () are non-compact([1], [10], [12], [14]).
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PROPOSITION 2.1 ([10, 14]). a € G2 (resp. G2,Gy(2)) leaves the inner prod-
uct (z,y) of €€ (resp. €, €'), in particular, it leaves invariant the norm N(z) :

(az,ay) = (z,y), N(az)=N(z), z,y€ ¢ (resp. €, ).

3. Elements of G2°,G; and Ga(2)

Let a complex six-dimensional unit sphere (S€)8, a six-dimensional unit
sphere S and a Minkowski six-dimensional unit sphere (S’)® be respectively

7 7
(8% = (ue € la=—uwui=1} = { I aner| S a’ =Lax € C},
k=1 k=1

7 7
S={ueClu=—uuua=1}= {Zakekl Zakz =1l,ax € R},
k=1

k=1

7 3 7
(8% = {fuel|a=—uuu=1}= {Zakek'l Zakz ——Zakz =1,ax € R}.
k=1 k=1

k=4

PROPOSITION 3.1. Fora = —% + ?u € €C (resp. €, &), u € (SC)® (resp.

S8, (S")8), define aq : €€ — €F (resp. € —» €, & - ') by
oz = az@, « € CC (resp. €,).
Then, ag, belongs to the group G,° (resp. G2,Ga2))-
Proof. We know that formulas
a(zd) = (az)a, z(aa)= (z@)a, z(aa)= (za)a
and Moufang’s formulas

(i) (az)(ya) =a(zyla, (i) x(aya) = ((za)y)a,
V3

for a,z,y € €C, are valid. Note that for a = -_-—;— + 5 U € (S€)8, it holds

that a® = 1,ad@ = 1 and a? = @. Putting az@ instead of z and ya instead of y in
Moufang’s formula (ii), we have

(az@)(aya®) = (((aza)a)(ya))a.
Hence,

(az3)(aya) = ((az)(ya))a = (a(zy)a)a = a(zy)a® = a(zy)a.
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Therefore, we obtain that a, belongs to G2, since ag obviously is a C-linear
isomorphism of €“. Both cases of G2 and Gy(3) are easily seen by the analogous
argument above, because the same formulas of €© are valid in € and ¢’. O

V3

PROPOSITION 3.2. Fora = —% +Sue ¢C (resp. €, €'), u € (SC)8 (resp.
S8, (8")%), it holds that

(1) cga=a, agu=u,

(2) (@) =1, (a.)7!=o0z=0u = (0)?

(3) BaaB! = apa, B € G2 (resp. Ga,Ga))-

Proof. (1),(2) are easily obtained by direct calculation.

(3) follows immediately, since 3Z = Bz, 3 € G, (resp G2,Gz2)), T € ¢
(resp. €,¢). O

1 V3 '
LEMMA 3.3. (1) Fora——§+—2akek€€ ;ak = 1,ax € C, the
images of agex (k =0,1,...,7) are ea:pressed as follows:

Qq€0 = €9,

3
aqe;1 =0+ = ( 1+ 3a,%)e; + —?( —az + \/§a1a2)eg + \/T—(ag + V3aia3)es

V3

3
+ T(-—as + \/§a1a4)e4 + %(04 + \/50105)65

3 3
+ £(—0.7 + \/§a1a6)ee + \/T_(as + \/3;0,1(17)67,

2
3 1 3
aqe2 =0+ —\g——(as + V3aiaz)e, + 5(—-1 + 3az%)e; + -\g—_(——al + V3aza3)es
3
+ %(as + \/50,204)64 + ?(—07 + \/50205)65
3 V3
+ \/T_(”a«t + \/Eazas)ee + %(as + \/§a2a7)e7,

3 | 1
Qqez =0+ —\;—_(—az + \/§a1a3)el + -\;—g(al + \/§a2a3)e2 + 5(—1 + 3a3?)es

3 .
+ %(“07 + V3azas)es + \/Tﬁ(_as + V/3azas)es
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3 3
+ 12_—(05 + \/§a3a6)eﬁ + %(64 + \/§a3a7)e7,

3 3 3
ageqs =0+ %(as + \/§a1a4)el + \/7—(—616 + \/§a2a4)ez + %(07 + \/5(13044)63

' 3
(—1 + 3042)64 + £(—a1 -+ \/§a4a5)e5

2
3
+ ?(02 + \/§a4a6)36 + %(—03 + \/§a4a7)e7,

+

Do =

3 3 3
agqes =0+ %(—a‘; + \/§a1a5)61 + g(wz + \/§a2a5)62 + %—(ae + \/§a3a5)e3

V3

+ (o + V3asas)es + %(—1 +3a5)es
+ _‘[2__:2(_(13 + v3asag)es + ?(—ag + V3asar)er,

aqe =0+ ?(w + V3a1a6)er + _\2_3(% + V3azag)ez + ?(—as + V/3azas)es
+ %—Q(—az + V3asas)es + ?(03 + V3asac)es

i . V3 |
+ §(—1 + 3a62)es + %(—al + \/§a6l17)67»

3 3
ager =0+ %(—aa + V3aiaz)e; + \/T_(—as + V3azar)es

V3

‘ 3 3
+ —5—(—(14 + \/§a3a7)63 + '—\;—_-(ag + \/§a4a7)e4 + %—-(az + \/§a5a7)e5

3 1
+ %((11 + \/-3.(16617)66 + 5(—1 + 3072)67.
(2) For a = -—l+—\/——Zae € ¢, Za = 1l,ax € R, the images of
3 2o k€k 2 k k g
ager (k=0,1,...,7) are expressed as the same form in (1) (replace C by R in

(1)).

wl&

7
Zakek e Zak Zak = 1l,ax € R, the

(3) For a = —%
k=1 k=4
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images of ager’ (k =0,1,...,7) are expressed as follows:

’ l
Qq€0 = €p,

1
aael' =0+ 5(—1 + 3012)61’ + ﬁ(—a@ + \/§(11a2)62, + ?(az + \/_3_(11&3)63,

2
+ \/Tg(—% + V3ajaq)es’ + ?(@ + v3ayas)es’
+ \/Tg(—-a'; + V3ayag)es’ + —?(06 +V3arar)er’,
aqe’ =0+ ?(ag + V3ajaz)ey’ + -;—(—1 + 3az?)ey’ + ?(-—al + V3aza3)es’
+ 1/2—§(a6 + V3aza4)es’ + ?(—07 + V/3azas)es’
+ \/Tg(—% + V3azae)es’ + —é—g(as + V3azar)er/,
ages’ =0+ ?(—az + V3aia3)e;’ + \/Tg(al + V3aza3)es’ + %(—1 + 3a32)es’
+ %g(—a-, + V3azaq)es + \?(—ae + V/3azas)es’
+ \/Tg(ag, + V3azag)es’ + %—g(m + V3azar)er/,

/3

3
oqes =0— —2—(65 + V3ajaq)e’ + ?(as — V3azay)ey’ — ?(m + V3aza,)es’

1 3
- 5(1 + 3(142)64, - —\—/2——(a1 + \/§a4a5)e5'

V3 3
+ 7((12 — V3asa6)es’ + %(03 + V3asaz)er’,
3 .
ages’ =0+ \/T_(GM — V3ajas)e;’ - \/Tg(ay + V3azas)ex’ — ?(aﬁ + V/3azas)es’
3 1 ‘
+ —\g—_(m — \/50.4(15)64, — 5(1 + 3(152)65,
V3

. 5 : A
- —2—(03 + \/ﬁasas)es' - %—(ag + \/§asa7)€7',
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ageg’ =0 — ?(M +V3aiag)er’ - -\-?(aat + V3azas)er + l/é—g(as — V/3asag)es’
— -\g—?-(az + V3asa¢)es’ + ?(as — V/3asas)es’
- -;-(1 + 3a62)es’ — —‘/2—3-(041 + V3asar)er’,

oger =0+ g(as — V3a1a7)er’ + —\g—g(as — V3agar)es’ + —\é—g(a‘; — V3azar)es’
+ ?(a:; — V3asar)es + ?(az — V/3asar)es’
+ '\'/é"§(al — V3agar)es’ — -;—(1 +3ar”)er’.

Proof. These are obtained by direct calculation of the definition of a,. O

We arrange here some groups used later.
SU(n,K)={A € M(n,K)|AA* = E,detA=1}, K =C°C,C,
Sp(n,K)={A e M(n,K)|AA*=E}, K=H° H,

where E is n x n unit matrix: F = diag(1,1,...,1), and detA is the determinant
of A defined as usual. Usually the following symbols are used.

SU(n) = SU(n,C),  Sp(n) = Sp(n, H).
We have the following isomorphisms as groups ([12]).
SU(n,CC) = SL(n,C), SU(n,C') = SL(n, R), Sp(n, H®) = Sp(n,C),
where SL(n,K) = {A € M(n,K)|detA =1}, K = R,C and Sp(n,C) = {A €
M(@n,C) [tAJ A = Jo}, Jn = diag(Jy, ... s J1), Ji = (_01 (1)) .

LEMMA 3.4 ([11, 14]). For A € SU(3,C°) (resp. SU(3), SU(3,C")), we de-
fine a mapping p(A) : €€ — € (resp. € > €, ¢ - &) by

o(A)(a+m)=a+Am, a+mecC°q(C°3=c’
(resp. CoC3=¢, C' & (C')% =¢),

then p(A) € G2 (resp. Ga, Ga2))-
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Proof. First, we have that for A € M(n,K), m,n € K3 K = C°,C,C/, it
holds that -

(i) H(Am) T = 'm (An) (= 'm (‘Am),

(il) Am x An =4 (m x n),
where A is the cofactor matrix of A : AA = AA = (detA)E. Indeed, these

follow from direct calculation similar to the case K = C ([11], [14]), since K is
commutative. Using these properties (i) and (ii), we can show

p(A)((a +m)(b+n)) = p(4)(a+m)p(4)(b+n)

in exactly the same way as in the proof of the case K = C. Thus the lemma
follows. O

LEMMA 3.5 ([12, 14]). (1) For p,q € Sp(1, H®) (resp. Sp(1)), we define a
mapping ¢(p,q) : ¢ — eC (resp. € = €) by

¢ (p, q)(a+bes) = gag+(pbg)es, a+bes € HCOHC ey = € (resp. HoHey = €),
‘then e(p,q) € Go€ (resp. G3).
(2) For p,q € Sp(1), we define a mapping p(p,q) : € — € by
¢(p,q)(a+bes) = gag + (pbg)es’, a+bes’ € H® Hey' =,
then ¢(p,q) € Ga(2)-

LEMMA 3.6. Let 6, : € = €,k =1,2,3,4,5 be R-linear mappings satisfying

51 €o — €p, €1 — €1, €2 —> €4, €3 — €5,
v €4 — €2, €5 — €3, €g —> —€g, €7 — —€7,
6o €p — €p, €1 — €1, €2 —> €g, €3 — €7,
2 €4 — —€4, €5 —> —€5, €g — €2, €7 — €3,

s €p — €9, €1 — €4, €2 — €3, €3 — €g,
3
€4 — €1, €5 —> —e5, € — €3, €7 —> —€7,

5 €o — €p, €1 — €5, €2 — €2, €3 —> —e7,
4 .

€4 —> —€4, €5 — €1, €g —> —€g, €7 —> —E€3,
5 { €9 — €9, €1 — €4, €3 — €7, €3 —> €3,
5 .

é4 — €31, €5 — —e€5, €6 — —E€g, €7 —> €2.

Then 6k2 =1 and 6 € G C Gzc.
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Proof. It needs to check dx(eien) = dx(er)dk(em),l,m =1,2,...,7, however we
can easily check by direct calculation. O

4. Canonical form of an element of ¢,€ and explicit classification of
orbits in Qloc over Gzc

Since it holds that a1 = 1 for any a € G5¢ (resp. G2, Ga(2)), to determine the
canonical form of an element of €€ (resp. €, €') and the classification of orbits
in € (resp. €, €') by the action of the group G2€ (resp. Ga, Ga(2)), it only
has to consider the space €,° (resp. €, €y') of pure imaginary Cayley numbers,
where the space Ko(= €, €, €o’) of pure imaginary Cayley numbers is given
by Ko = {z € K|Z = —z}. For K = C, H, the space Ky of pure imaginary
(complex, quaternion) numbers is also defined as that of Cayley algebra.

THEOREM 4.1. Any non-zero element z € €€ can be transformed to the fol-

lowing canonical form by some element of G2
(1) In the case of N(z) #0:

(& +in)e; (£>O or { f]ig ),
where (€ +in)? = N(z).
(2) In the case of N(z) =0
e1 + iey.
Moreover, all their orbits in €,C over Go€ are distinct, and the union of all

their orbits and {0} is the whole space €,°.

7
Proof. Let x = Z:ckek € €,°.
k=1 .
(1) Since N(z) can be uniquely expressed as N(z) = (£ +in)?, £ > 0 or

=0
{§7>0 , put
7 1 7
z = 2Rl = —— Tre EC’ZC.
’;kk 5_*_”7,;1 k€k 0

Then N(z) = 1. Now, applying 71 € G2€ to z if necessary, we may assume

7
z1 # —1. We solve the equation agze; = z = Z zkex, of Lemma 3.3 (1), then the
k=1
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1 \/g 7 7
solution a = ~3 + - Zakek € QZC, Z ar? =11is given by
k=1 k=1
( ay = 227 +1 ay = 290v2z21 + 1+ 23 a3 = 23221+ 1 — 2o
3 V3(z1+1) V3(z +1)
! aa= Z4v/221 + 1+ z5 o = 25221 +1 — 24 e = zevV2z1+ 1+ 27
T VBt 1) S TP 8 T T B+ 1)
0 = 21221 +1— 2¢
\ ! \/?;(Zl + 1) '

Then a,e; = z, that is, azz = e1, ag € G2€. Thus we obtain

oz = (£ +in)agz = (€ +in)e;.

The uniqueness is obvious from N(az) = N(z),z € €%, a € G,°.

7 3
(2) For z = Zwkek € €°, we define Ny, () = Zwkz. Assume that
k=1 k=1
Np,(z) = 0 and further Ny, (dxz) = 0 for all §; € Gzc(k =1,2,3,4,5) of
Lemma 3.6. Then from

( 12 + x92 + z32 = 0
1,'12 + :1342 + .'1352 = 0
T2 + 262 + 1272 = 0
$ x2? + z42 + zg62 = 0
$22 + $52 + $72 = 0
z32 + z42 + 272 = 0
[ 1% + 222 + 232 + 242 + 25 262 422 = 0
we have 1 = 23 = --- = z7; = 0, which contradicts z # 0. Hence, applying

some & € G2€ to z, we may assume Ny (z) # 0. Now, let

7
T = szek =a+bey € Hoc ® HCe, = COC.
k=1
Then since N(z) = 0 and Ngz,(z) # 0, we have 0 # a@ = —bb ( = A2 e C),
pu

so we have
2

a = —-g—a- = —] = 2
)‘2 = A/\ 1 e1”.
3
Put p2? = N(; + el),u € C. Then for ; = Za,kek, since N(;) = 1, that is,
_ k=1

a12 + a2? + az?2 = 1, we have

a
[L2 =N('X +€1) = (a1 +1)2+a22+a32 = 2(a; +1).



140 O. SHUKUZAWA

Therefore we have p = 0 only in case a; = —1. In this case, applying 71 € G-°,
B |
we may assume u # 0. Put ¢ = ;(g + el). Then we have ¢ € Sp(l,HC) and

A
-3 G eI TGe) - )5 e )

Lt SICRMERIERE SICTe

Further, put p = zg; Then we have p € Sp(1, H), o(p,q) € G2°
(1)) and

@(p,q)(a + bes) = Ap(p, q) (% + i%m) = A(q%‘d + (z‘pg\-a)e‘;) = A(e1 + iea).

On the other hand, for any v € C, v # 0, let

A() = 51;diag(u2 +1- (2 —1)ieq, 20,02 + 1 + (v — 1)ieq) € SU(3, CC).

Then we have ¢(A(v)) € G2€ (Lemma 3.9) and
o(—e1, 1)p(Av))p(e1,1)(e1 + ies) = v(ey + ies).
Indeed,

p(—e1,1)p(A(v))p(e1, 1)(e1 +ies) = p(—e1, 1)p(A(v))(e1 + (e17)es)
= p(—e1,1)p(A(v))(e1 — ieser) = p(—e1, 1)p(A(V))((1 — ieq)er)

1 —iey4 1—ieq
= p(-e1,1)e(Aw) (0 + ( 0 ) ) = vl-e1,1) (A®) ( 0 ) )

0 0

1—’i€4

- <p(—el,1)(1/ ( 0 ) ) = p(—e1,1)(V(1 — des)er)
0

= vp(—e1,1)(e1 + (ie1)es) = v(er + ((—e1)ier)es) = v(ey + iey).

Therefore, the element e; + ies is transformed to the form v(e; + ie4) for any
multiple v (# 0) by some element of G2€. Thus the theorem is proved. 0
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5. Canonical form of an element of €,€ and explicit classification of
orbits in €€ over the maximal compact subgroup of G-°

A maximal compact subgroup (G2)k of G2°:
(G2C)K = {O{ € GZC I (aa:,ay) = (x,y), T,y € cC'} = {a € G2C I TaT = a}

is isomorphic to the compact group G3, where (z,y) := (z,Ty) is a positive
definite inner product in €€. It is clear that this isomorphism is given by cor-
responding a € G2 to a® € (G2°)k(C G2€), where o€ € (G2°)k is defined
by

oC(u+iv) = au +iav, u+ive CPi€=¢cC,

THEOREM 5.1. Any element ¢ = u+iv € € © i€y = €, can be transformed
to the following canonical form by some element of (Gzc) K:

(1) In the case of v # 0 :
Eel+(n+iC)e4 (EZO,C>0,7]€R).
(2) In the case of v=0:

§er (E=+/N(u) 20).

Moreover, all their orbits in €,€ over (ch) Kk are distinct, and the union of all
their orbits is the whole space €,€.

Proof. (1) Let z = u+iv € QZOC('U # 0). Since G2 acts transitively on the
subset of elements of €, with the same norm, there exists some element a € G5
such that av = (es ({ = \/N(v) > 0), that is,

aCz=u' +iCeq, W €Cy (>0

by below. Let further u’ = ney +m € Cy ® C3. Since o’ is already
a canonical form if m = 0, let m # 0. Then, since SU(3) acts transitively on

(Sc)’(:= {n € C? | (n,n) = 1}), there exists some element A € SU(3) such
that A(—;-m) =%1,0,0), £ = v/(m,m) > 0, that is,
P(A)°(a%z) = p(A)° (U +iCes) = (A + ip(A)(Cea)

= p(A) (ne4 + {(—z-m)) + ip(A)(Cea+ 0) = nes + fA(—El-m) + iCeq

=neq + £e; +iCeq = €e1 + (n +i()ey
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by Lemma 3.4. The uniqueness is obvious from (az,az) = (z,z), (azx, az) =
(z,2),0 € (G2%)k, z € € and € > 0, (>0,7€ R.

(2) In this case, it is exactly below. O

6. Canonical form of an element of €, by G2 and explicit classification
of orbits in ¢, over G,

THEOREM 6.1. Any element of x € €, can be transformed to the following
canonical form by some element of G :

§er  (£=+/N(z)>0).
Moreover, all their orbits in €y over G2 are distinct, and the union of all their

orbits is the whole space €.

7
Proof. Let z = Z zrex € €. Since it is trivial when z = 0, we assume z # 0.

k=1
Let { = v/N(z) > 0 and put

7
z = E ZEpCr =

7
E Trex € €.
k=1 k=1

|

Then N(z) = 1. Now, applying 41 € G to z if necessary, we may assume z; > 0.

7
We solve the equation age; = 2z = Z zrex of (2), then the solution
k=1
1

\/3— 4 7 2 . '
a= ~3 +T Z axer € €, Z ar” = 1 is given by the same formula as () of the

k=1 k=1
proof of Theorem 4.1 (1). Then we have ase; = z, that is, agz = €1, az € Ga.
Thus we obtain

oz = Eagz = £e;y.

7. Canonical form of an element of ¢,’ by G2(2) and explicit classifi-
cation of orbits in €y’ over Gy(3)

THEOREM 7.1. Any non-zero element z € €' can be transformed to the fol-
lowing canonical form by some element of Ga2) :
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(1) In the case of N(z) > 0:
(e1  (£=+/N(z)>0).
(2) In the case of N(z) < 0:
s (6=+/-N(z)>0)
(3) In the case of N(z) =0:
e1+eq.

Moreover, all their orbits in €y’ over Ga(2) are distinct, and the union of all their
orbits and {0} is the whole space €y’.

7 3 7
Proof. Let z = Zwkek' € ¢'. In case N(z) (= Zx;ﬁ — Zwk2) # 0, let
k=1 k=1 k=4
€ =+/|N(z)| > 0 and put

7 7
/ I /
zZ= E ke = E e € Cg.
k=1 k=1

(1) In this case, N(z) = 1. Now, applying 7; € G2(2) to z if necessary, we

|-

7
may assume z; > 0. We solve the equation agze;’ = z = szek' of
k=1
1 \/g 7 3 ) 7 )
. - 7 / _ _ .
3.3 (3), then the solution a = —3 + - Zakek eC ,Zak Zak =1is

k=1 k=1 k=4
given by the same formula as () of the proof of (1). Then we have
agqer’ = z, that is, 0gz = €1/, az € G2(2)- Thus we obtain

agT = fagz = Ee;.

(2) In this case, N(z) = —1. We may assume z; < —%. Indeed, since
3 7 7 3
EZ’C2 - szz = —1, that is, szz =1+ szz > 1, at least one of zj
k=1 k=4 k=4 k=1

1 v
(k = 4,5,6,7) satisfies |z| > 3" Hence, applying 7, ¢(ex,1) or p(—ex,1) €

1
Ga@2) (k = 1,2,3) to z if necessary, we may assume z; < —3 (Note that
p(—e1,l)es’ = ed, p(—e1,1)ex’ # ey’ (k #5); plez, 1)es’ = eq’, p(ea,1)er’ #
ey’ (k #6); p(—es3,1)er’ = es',p(—e3,1)er’ # +ey’ (k # 7).) Here we consider
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the following two cases.

7
1° Case —1 # 24 < —=. We solve the equation aseqy’ = z = szek’ of

1

2 k=1

7 3 7
_ 1
(3), then the solution a = ——+—\/—§ Z arer’ € €, Z akz—z ax? =
2 2 paet

k=1 k=4
1 is given by
( o — 21\/—§_224+1)—25 4y = 22\/—(2Z4+1)+25
' V3(ze+1) V3(za+1)
a _ 23 —(2Z4+1)—Z7 0 = _2Z4+1
) : Vzat1) ¢ 3
as = 25\/:(EZ4+1)—21’ ag = 26\/—(2Z4+1)+22,
V3(z4 +1) V3(z4 + 1)
an = 27\/'—(224'*'1)—23
\ § \/3(24+1) '

Then azeq’ = 2, that is, agz = e4’, ag € G2(3). Thus we obtain

azz = agz = Eeq’.

3

2° Case z4 = —1. If 25 = 2z = 27 = 0, then since _s_ zk2 = 0 from N(z) =
k=1
—1, we have 27 = z3 = 23 = 0, so z = —ey’ hence 7z = e4’. Next, assume

zr # 0 (k = 5,6,7), for instance, assume 25 # 0. Now, for any § € R, put
p =cosf + e sinf (= e**?). Then we have p € Sp(1) and

’

24’ := (the coeflicient of e’ in ¢(p, 1)z)
= (the coefficient of e4’ in ¢(p,1)(a + bey’)) where z = a + be,’
= (the coefficient of ep in pbl)
= (the coefficient of ep in e*1?(—1 + z5e; — z6e3 + 27€3))
= (the coefficient of eg in e1(—1 + zse;))
= (the coefficient of ey in €:?/1+ 252e®1*)) a€ R
= (the coefficient of ep in /1 + z52e%(#+2))
= v1+ 252 cos( + a).

Hence, if we choose a suitable § € R, then z,’ can attain any value in the range
1
=1+ 252 < 24/ < VT + 252, so we may assume —1 # 24 < —3 Therefore, this
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is reduced to the case 1°. The case zg # 0 or z7 # 0 is also shown in exactly the
same way.

(3) In this case, if we put £ = a + bey’ € Hy ® Hey' = €y’ then it holds that
a@ = bb > 0 from N(z) = 0. Let A = /N(a). Then, applying 71 € Ga(2) to z if

a
necessary, we may assume —fl\— # —ej, that is, ;— +e; #0. Put p = N(X + el)

and g = %(;— +el). Then we have g € Sp(1) and q-;ﬂ = e; by direct calculation

similar to the proof of (2). Further, put p = g,\_b Then we have
P € Sp(1), ¢(p,q) € G2(z) (Lemma 3.5 (2)) and

a

¢(p,q)(a+ bes") = Ap(p, q) (X 3

On the other hand, for any v € R,v # 0, let
1
2v
Then we have p(A(v)) € G and

p(—e1, 1)p(A(v))p(e1,1)(e1 +es') = v(e1 + ed’)

by direct calculation similar to the proof of Theorem 4.1 (2). Therefore, the
element e; + e4’ is transformed to the form v(e; + e4’) for any multiple v (# 0)
by some element of Ga(5). Thus the theorem is proved. O

+ 264') = A(q%ﬁ + (p%j)e‘;') = Ae1 + e4').

A(v) = —diag(t? +1— (12 — 1)es, 20,2 + 1 + (V% — 1)ey’) € SU(3,C").

8. Canonical form of an element of €;’ and explicit classification of
orbits in €’ over the maximal compact subgroup of Gz(2)

A maximal compact subgroup (Gz(2))k of G(2):
(G22))k = {a € Go2) | (az, ay)y = (2,4), 2,y € T} = {a € Go(z) | Yoy = a}

is isomorphic to the compact group (Sp(1) x Sp(1))/Z2, where (z,y), := (z,vY)
is a positive definite inner product in €¢’. This isomorphism is induced by the
homomorphism ¢ : Sp(1) x Sp(1) = Gy(z) in (2). (For detail, see
[10], [12])

THEOREM 8.1. Any element of €' can be transformed to the following canon-
ical form by some element of (Gy(2))k :

€e1+mney’  (£2>0,7>0).
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Moreover, all their orbits in €' over (Gz(z)) K are distinct, and the union of all
their orbits is the whole space ;'

1
Proof. Let x = a+bey € Hy® Hey' = €’. Let further a # 0 and o’ = Ea, €=

v N(a) > 0.

1° Case a’ = —e;. Put ¢ = e3 € Sp(1). Then we have

qag = £(qa’q) = £(e2(—€1)e2) = £(e1e282) = en.

. _
2° Case d’ # —e;. Put ¢ = g(a’ +e1) € Sp(1) N Ho,n = y/N(a’ +e1) >0.

Then we have
= £(ga’y) = —%(a’+el)a'(a'+el) = n%(a’2+ela’)(a’+el)

(-14+e1ad’)(a’ +e) = —(61 + era’)(a’ + e1)

£
,’72
£ er(er + )@ Fer) = geu.

Therefore, including the case of a = 0, we can obtain that for a given z =
a + bey’ € €y, there exists some g € Sp(1) such that

w(1,q)(a+bey') = Le; +bey/, €>0,0 € H.

1 _
Let next b # 0, since it is trivial when ¥ = 0. Put p = Eb, € Sp(1), ¢ =
VN(b') > 0. Then we have

@(p,1)(€e1 + bley) = Eer + Ced’.
Consequently we obtain that for a given € €', there exists some a € (G22))k
such that

az = €e1 + neq’, £§=20,n=0.

The uniqueness is obvious from (az,az) = (z,z), (az,az)y = (z,z)y, @ €
(G22))k,z € €€ and £ > 0,7 > 0. O
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