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Abstract. For two distinct points $P,$ $Q$ in the plane, let $Q^{P}$ denote the point
on the ray $\overline{PQ}$ such that $PQ\cdot PQ^{P}=1$ , and let $P^{P}=P$ . For a point-set $\tau$ in
the plane and $ P\in\tau$ , define $\tau^{P}=\{Q^{P}|Q\in\tau\}$ . The transformation $\tau\rightarrow\tau^{P}$

is called the pivotal inversion at $ P\in\tau$ . We show that if $n\geq 4$ then starting
from any n-point-set, it is possible, by applying a sequence of pivotal inversions,
to produce an n-point-set whose diameter exceeds any prescribed value, but it is
impossible to produce more than $n+1$ mutually non-similar $n-point-sets$ . The
latter part is proved by showing a group induced by pivotal inversions of ordered
$n-point$-sets is isomorphic to the symmetric group of degree $n+1$ .

1. Introduction

For two points $P,$ $Q$ in the plane, denote by $Q^{P}$ the inversion of $Q$ with respect
to the unit circle centered at $P$ . Thus, $Q^{P}$ is the point on the ray $P7SatiS\mathfrak{h}ing$

$PQ\cdot PQ^{P}=1$ , where $PQ$ denotes the length of the line segment connecting $P$

and $Q$ . For $Q=P$ , usually $P^{P}$ is either not defined, or defined to be the point
$\infty$ at ‘infinity’. For inversions, see Coxeter [1].

Suppose $n\geq 3$ , and let $\sigma$ be a set of $n$ points in the plane in general position
in the sense that no three points are collinear and no four points are concyclic.
Then $\sigma$ determines a set of $(_{2}^{n})$ lines and $(_{3}^{n})$ circles, which is called the line-
circle-system on $\sigma$ , and $\sigma$ itself is called the pivot set of the line-circle-system.
Figure 1 shows a line-circle-system on $\{P, Q, R\}$ . Since an inversion of the plane
transforms a circle or a line into a circle or line, an inversion with respect to a
unit circle centered at a point of $\sigma$ , say $P$ , transforms the line-circle-system on $\sigma$

into another line-circle-system, whose pivot set is denoted by $\sigma^{P}$ . Then $\sigma^{P}$ is also
an n-point-set. The transformation $\sigma\rightarrow\sigma^{P}$ is called the pivotal transformation
of $\sigma$ at $P$ . For example, the line-circle-system on $\{P, Q, R\}$ is transformed by
the inversion with center $P$ into the line-circle-system on $\{P, Q^{P}, R^{P}\}$ . Thus,
$\{P, Q, R\}^{P}=\{P, Q^{P}, R^{P}\}$ .

Formally, for every finite point-set $\tau$ in the plane, and a point $ P\in\tau$ , we
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Figure 1 A line-circle-system on $\{P, Q, R\}$

define a new point-set $\tau^{P}$ by

$\tau^{P}=\{Q^{P}|Q\in\tau\}$ with $P^{P}=P$,

and call this transformation $\tau\rightarrow\tau^{P}$ the pivotal inversion of $\tau$ at $ P\in\tau$ . The
point $P$ is called the center of the pivotal inversion. Note that the center of every
pivotal inversion of a point-set $\tau$ is supposed to be a point of $\tau$ .

Now, from an n-point-set $\tau$ in the plane, by a pivotal inversion of $\tau$ , a new
n-point-set is produced. Next, by a pivotal inversion of this new n-point-set,
another n-point-set is produced. Proceeding in this way, many n-point-sets will
be produced. These newly produced point-sets are called relatives of $\tau$ . More
precisely, an n-point-set $\sigma$ is a relative of $\tau$ if $\sigma$ is produced from $\tau$ by applying
a sequence of pivotal inversions.

Then, how many, mutually non-congruent relatives can be produced from an
n-point-set? Here, two point set $\tau$ and $\sigma$ are congruent if there is a bijection
form $\tau$ to $\sigma$ that preserves the distances. Two point-sets $\tau,$

$\sigma$ are similar if there
is a similarity $ f:\tau\rightarrow\sigma$ , that is, a bijection $f$ such that for every pair $P,$ $ Q\in\tau$

the distance between $f(P)$ and $f(Q)$ is equal to $\lambda$ times the distance between
$P$ and $Q$ for a common constant $\lambda>0$ . The diameter of an n-point-set is the
longest distance between the $n$ points in the set.

Since $(\tau^{P})^{P}=\tau$ holds for every $\tau$ and for every $ P\in\tau$ , the following result
may be slightly curious.

THEOREM 1. Let $\Delta PQR$ be a non-equilateral (possibly degenerate) triangle.
Then, for any prescribed value $d$ , the 3-point-set $\{P, Q, R\}$ has a relative that is
similar to $\{P, Q, R\}$ and whose diameter is greater than $d$ .

Thus $\{P, Q, R\}$ has infinitely many mutually non-congruent relatives unless
$\Delta PQR$ is an equilateral triangle. Since every 4-point-set in the plane contains
three points that do not span an equilateral triangle, we have the following.
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COROLLARY 1. For $n\geq 4$ , every n-point-set has a relative with diameter
greater than any prescribed value.

Now, how many mutually non-similar relatives can be produced from an
n-point-set? The case $n=3$ is easy: Since

$\Delta PQR\sim\Delta P^{P}R^{P}Q^{P}$ (1)

holds (Lemma 1), $where\sim implies$ ‘be similar to’, all relatives of a 3-point-set
are mutually similar. Generally we have the following.

THEOREM 2. No n-point-set has more than $n+1$ mutually non-similar rel-
atives. If $n\geq 4$ , then there is an n-point-set that has exactly $n+1$ mutually
non-similar relatives.

An ordered point-set is a point-set whose points are ordered. For every or-
dered point-set, we denote by $\varphi_{i}$ the pivotal inversion with center at the ith
point. Then, for every ordered n-point-set $\tau$ and for every $i,$ $1\leq i\leq n,$ $\varphi_{i}(\tau)$

can be defined, and it becomes an ordered n-point-set by the ordering induced
from $\tau$ via $\varphi_{i}$ . Thus, we can regard $\varphi_{i}(1\leq i\leq n)$ as a transformation of the
set of all ordered n-point-sets.

Two ordered n-point-sets $\tau$ and $\sigma$ are called $order- presen\dot{n}ngly$ similar (writ-
ten $\tau\sim\sigma$ ) if the bijection $f$ : $\tau\rightarrow\sigma$ that preserves the order of the points is a
similarity. The set of all ordered n-point-sets can be partitioned into equivalence
classes by the relation $\sim$ . Let $\Sigma_{n}$ be a family of complete representatives of
these equivalence classes, that is, $\Sigma_{n}$ is a set of ordered n-point-sets composed
by taking one ordered n-point-set from each equivalence class. It follows easily
from the fact (1) that $\tau\sim\sigma$ implies $\varphi_{i}(\tau)\sim\varphi_{i}(\sigma)$ for every $1\leq i\leq n$ . There-
fore, each $\varphi_{i}$ induces naturally a transformation $\phi_{i}$ : $\Sigma_{n}\rightarrow\Sigma_{n}$ . Let $G_{n}$ denote
the transformation group of $\Sigma_{n}$ generated by $\phi_{1},$ $\phi_{2},$ $\phi_{3},$

$\ldots$ , $\phi_{n}$ . We prove the
following.

THEOREM 3. If $n>3$ , then the transformation group $G_{n}$ of $\Sigma_{n}$ is isomorphic
to the symmetmc group $S_{n+1}$ .

REMARK 1. Clearly $G_{2}$ is the identity group, and it is also easy to see that
$G_{3}$ is isomorphic to the symmetric group $S_{3}$ (see Example in Section 3).

REMARK 2. Pivotal inversions for a finite point-set in higher dimensional space
are defined similarly, and Theorems 1, 2, 3 also hold.
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2. The cone of Euclidean metrics

Let $n\geq 3$ . An ordered n-point-set is determined, up to order-preserving
congruence, by the $(_{2}^{n})$ distances $x_{ij}(1\leq i<j\leq n)$ between the ith point
and the jth point in the set, and hence represented by a point $(x_{12}, x_{13}, \ldots)$

of $R^{(_{2}^{n})}$ with coordinates $x_{ij}$ in lexicographic order of the suffixes. The set of

such points in $R^{(_{2}^{n})}$ forms a cone $\Gamma_{n}$ , called the cone of Euclidean metrics on $n$

points in the plane. For general metric cone, see Deza and Laurent [2]. Thus,
each congruence class of ordered n-point-sets is represented by a point of $\Gamma_{n}$ .
For each $1\leq i\leq n$ and two ordered n-point-sets $\tau,$

$\sigma$ , if $\tau$ is order-preservingly
congruent to $\tau$ , then $\varphi_{i}(\tau)$ is order-preservingly congruent to $\varphi_{i}(\sigma)$ . Hence $\varphi_{i}$

induces a transformation $f_{i}$ : $\Gamma_{n}\rightarrow\Gamma_{n}$ .
We need the following lemma.

LEMMA 1. Let $\Delta PQR$ be a triangle with $PQ=x,$ $PR=y,$ $QR=z$ . Then
$\Delta PQR\sim\Delta P^{P}R^{P}Q^{P}$ and $P^{P}Q^{P}=\frac{1}{x},$ $P^{P}R^{P}=\frac{1}{y},$ $Q^{P}R^{P}=\frac{z}{xy}$ .

Proof. $PQ\cdot P^{P}Q^{P}=PR\cdot P^{P}R^{P}=1$ implies $PQ$ : $PR=P^{P}R^{P}$ : $P^{P}Q^{P}$ .
Hence $\Delta PQR\sim\Delta P^{P}R^{P}Q^{P}$ . $\square $

Let $f_{i}$ : $\Gamma_{3}\rightarrow\Gamma_{3}(i=1,2,3)$ be the transformation induced by $\varphi_{i}(i=1,2,3)$ .
Then by Lemma 1, $f_{1},$ $f_{2},$ $f_{3}$ transform $\Gamma_{3}$ in the following way:

$f_{1}(x, y, z)=(\frac{1}{x},$ $\frac{1}{y},$ $\frac{z}{xy})$

$f_{2}(x, y, z)=(\frac{1}{x},$ $\frac{y}{xz}$ $\frac{1}{z})$

$f_{3}(x, y, z)=(\frac{x}{yz}$ $\frac{1}{y}$ $\frac{1}{z})$

where $(x, y, z)$ $:=(x_{12}, x_{13}, x_{23})$ .

Proof of Theorem 1. Let $PQ=x,$ $PR=y,$ $QR=z$ with $x>z$ . Then the
ordered 3-point-set $\{P, Q, R\}$ corresponds to $(x, y, z)\in\Gamma_{3}$ . By the formulae for
$f_{1},$ $f_{2},$ $f_{3}$ , we have

$f_{1}(x, y, z)=(\frac{1}{x},$ $\frac{1}{y},$ $\frac{z}{xy})$

$f_{2}(\frac{1}{x},$ $\frac{1}{y},$ $\frac{z}{xy})=(x,$ $\frac{x^{2}}{z},$
$\frac{xy}{z})$

$f_{3}(x,$
$\frac{x^{2}}{z},$ $\frac{xy}{z})=(\frac{z^{2}}{x^{2}y}$ $\frac{z}{x^{2}}$ $\frac{z}{xy})$
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Hence, if $g=f_{3}f_{2}f_{1}$ , the composition of $f_{1},$ $f_{2},$ $f_{3}$ , then

$g(x, y, z)=(\frac{z^{2}}{x^{2}y}$ $\frac{z}{x^{2}}\frac{z}{xy})$ ,

and

$g^{2}(x, y, z)=(\frac{x^{4}}{z^{3}},$ $\frac{x^{3}y}{z^{3}},$ $\frac{x^{3}}{z^{2}})=(\frac{x}{z})^{3}(x, y, z)$ .

Hence, $g^{2}(\lambda x, \lambda y, \lambda z)=(\frac{x}{z})^{3}(\lambda x, \lambda y, \lambda z)=\lambda g^{2}(x, y, z)$ . Therefore

$g^{2k}(x, y, z)=(\frac{x}{z})^{3k}(x, y, z),$ $k=1,2,3,$ $\ldots$ .

Since $x/z>1,$ $(x/z)^{3k}\rightarrow\infty$ as $ k\rightarrow\infty$ . Thus $(\varphi_{3}\varphi_{2}\varphi_{1})^{2k}(\{P, Q, R\})$ is similar
to $\{P, Q, R\}$ and its diameter tends to infinity as $ k\rightarrow\infty$ . $\square $

REMARK 3. If $n\geq 4$ then for every ordered n-point-set $\tau$ with $x_{12}>x_{23}$ , each
$(\phi_{1}\phi_{2}\phi_{3})^{4k}(\tau)$ becomes similar to $\tau$ and its diameter tends to $\infty$ as $ k\rightarrow\infty$ .

3. Homogeneous coordinates

Two ordered n-point-sets represented by $x,$ $y\in\Gamma_{n}$ are order-preservingly
similar, if and only if there is a $\lambda>0$ such that $x=\lambda y$ . Therefore, every mem-
ber of $\Sigma_{n}$ can be represented by a set of homogeneous coordinates $[x_{12}, x_{13}, \ldots]$

in lexicographic order of the suffixes. The word homogeneous implies that
$[\lambda x_{12}, \lambda x_{13}, \ldots]=[x_{12}, x_{13}, \ldots]$ for all $\lambda\neq 0$ .

The transformation $f_{i}$ : $\Gamma_{n}\rightarrow\Gamma_{n}$ naturally induces the transformation $\phi_{i}$ :
$\Sigma_{n}\rightarrow\Sigma_{n}$ , and $G_{n}$ is the group generated by the transformations $\phi_{1},$ $\phi_{2},$

$\ldots,$
$\phi_{n}$ of

$\Sigma_{n}$ . By Lemma 1, $\phi_{i}$ transforms the coordinates of $[x_{12}, x_{13}, \ldots]$ in the following
way: For $i<j<k$ ,

$x_{ij}\rightarrow\frac{1}{x_{ij}}$ and $x_{jk}\rightarrow\frac{x_{jk}}{x_{ij^{X}ik}}$

EXAMPLE. Let $n=3$ , and put $[x_{12}, x_{13}, x_{23}]=[x, y, z]$ . Then

$\phi_{1}[x,y, z]=[\frac{1}{x},$ $\frac{1}{y},$ $\frac{z}{xy}]=[y, x, z]$

$\phi_{2}[x, y, z]=[\frac{1}{x}$ $\frac{y}{xz}$ $\frac{1}{z}]=[z, y, x]$

$\phi_{3}[x, y, z]=[\frac{x}{yz}$ $\frac{1}{y}$ $\frac{1}{z}]=[x, z, y]$ .

Hence $\phi_{i}$ is a transposition of a pair of coordinates in $[x, y, z]$ , and hence,
$\phi_{1},$ $\phi_{2},$ $\phi_{3}$ generate all permutations of three coordinates, and $G_{3}\cong S_{3}$ . $\square $
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Suppose $n\geq 4$ , and put

$[x_{12}, x_{13}, x_{14}, \ldots, x_{23}, x_{24}, \ldots, x_{34}, \ldots]=[u, v,w, \ldots, x, y, \ldots, z, \ldots]$ ,

see Figure 2. Then $\phi_{1},$ $\phi_{2}$ change the $ordinates$ as follows:

Figure 2 Distances $u,$ $v,$ $w,$ $x,$ $y,$ $z$

$\phi_{1}[u, v,w, \ldots, x, y, \ldots, z, \ldots]=[\frac{1}{u},$ $\frac{1}{v},$ $\frac{1}{w}$ , , $\frac{x}{uv}$ $\frac{y}{uw}$ $\frac{z}{vw}$ $]$ (2)

$\phi_{2}[u, v, w, \ldots, x, y, \ldots, z, \ldots]=[\frac{1}{u}$ $\frac{v}{ux}$ $\frac{w}{uy}$

$\frac{1}{x}$
$\frac{1}{y}$

$\frac{z}{xy}$
$]$ (3)

4. Group $G_{n}$ and its subgroup $H$

In this section, we assume $n\geq 4$ .

LEMMA 2. For $1\leq i\neq j\leq n$ , the composite transformation $\phi_{i}\phi_{j}\phi_{i}$ of $\Sigma_{n}$

works as the exchange of the order between the ith point and the jth point. $In$

other words, $\phi_{i}\phi_{j}\phi_{i}$ is a permutation of homogeneous coordinates $[x_{12}, x_{13}, \ldots]$

induced by the transposition of the suffixes $i$ and $j$ . For example,

$\phi_{1}\phi_{2}\phi_{1}[x_{12}, x_{13}, x_{14}, \ldots, x_{23}, x_{24}, \ldots, x_{34}, \ldots]$

$=[x_{21}, x_{23}, x_{24}, \ldots, x_{13}, x_{14}, \ldots, x_{34}, \ldots]$ (4)

where $x_{21}\equiv x_{12}$ . Therefore $\phi_{i}\phi_{j}\phi_{i}=\phi_{j}\phi_{i}\phi_{j}$ .
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Proof. It will be enough to show (4). By (2)(3), we have

$\phi_{1}\phi_{2}\phi_{1}[u, v, w, \ldots, x, y, \ldots, z, \ldots]$

$=\phi_{1}\phi_{2}[\frac{1}{u},$ $\frac{1}{v},$ $\frac{1}{w},$
$\frac{x}{uv}$ $\frac{y}{uw}$ $\frac{z}{vw}$ $]$

$=\phi_{1}[u,$ $\frac{u^{2}}{x},$
$\frac{u^{2}}{y},$

$\ldots,$
$\frac{uv}{x},$ $\frac{uw}{y},$

$\ldots,$
$\frac{u^{2}z}{xy},$ $\ldots]$

$=$ $\frac{1}{u}$

$\frac{x}{u^{2}}\frac{y}{u^{2}}$ $\frac{v}{u^{2}}\frac{w}{u^{2}}$ $\frac{z}{u^{2}}$

$=[u, x, y, \ldots, v, w, \ldots, z, \ldots]$ .

Hence we have (4). $\square $

COROLLARY 2. The subgroup $H$ of $G_{n}$ generated by $\phi_{i}\phi_{j}\phi_{i},$ $1\leq i<j\leq n$ , is
isomorphic to the symmetric group $S_{n}$ of all permutations of $\{1, 2, 3, \ldots, n\}$ .

Proof. Since $\phi_{i}\phi_{j}\phi_{i}$ corresponds to the transposition of the ith point and the jth
point in a sequence of $n$ points, every element of $H$ corresponds to a permutation
of $n$ points. Since the $(_{2}^{n})$ transpositions of $n$ points generate all permutations
of $n$ points, the subgroup $H$ generated by $\phi_{i}\phi_{j}\phi_{i}(1\leq i<j\leq n)$ is isomorphic
to the symmetric group $S_{n}$ . $\square $

COROLLARY 3. For any ordered n-point-set $\tau$ and for $1\leq i<j\leq n$ , the
point-set $\phi_{i}\phi_{j}\phi_{i}(\tau)$ is similar to $\tau$ . Hence, for any element $h$ of the subgroup
$H$ of $G_{n}$ generated by $\phi_{i}\phi_{j}\phi_{i},$ $1\leq i<j\leq n$ , two n-point-sets $\tau$ and $h(\tau)$ are
similar to each other.

LEMMA 3. The index ofH in $G_{n}$ is $n+1$ , that is, $G_{n}$ is the disjoint union of
the $n+1$ cosets $H,$ $\phi_{1}H,$ $\phi_{2}H,$ $\phi_{3}H,$

$\ldots,$
$\phi_{n}H$ .

Proof. Let $\tau$ be an ordered n-point-set lying on a circle $C$ . Since every inversion
with center on $C$ transforms $C$ into a line, the convex hull of $\phi_{i}(\tau)$ becomes a
triangle for every $1\leq i\leq n$ , and hence $\phi_{i}(\tau)$ is not similar to $\tau$ . Hence $\phi_{i}\not\in H$

and hence $H$ and $\phi_{i}H$ are disjoint. Now, for $1\leq i<j\leq n$ , since $\phi_{i}\phi_{j}\phi_{i}\in H$

and $\phi_{i}^{2}=1$ , we have

$\phi_{j}\phi_{i}H=\phi_{j}\phi_{i}(\phi_{i}\phi_{j}\phi_{i})H=\phi_{i}H$. (5)

Therefore, $\phi_{j}\phi_{i}\not\in H$ , and hence $\phi_{i}H,$ $\phi_{j}H$ are disjoint. Thus, the $n+1$ cosets
in Lemma 3 are mutually disjoint. Since $G_{n}$ is generated by $\phi_{1},$ $\phi_{2},$ $\phi_{3},$

$\ldots,$
$\phi_{n}$ ,

it follows from (5) that every left cosets of $H$ is equal to one of the $n+1$ left
cosets in the lemma. This proves the lemma. $\square $
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Proof of Theorem 2. The former part of the theorem follows from Corollary 3
and Lemma 3. To see the latter part, consider an n-gon with $n$ consecutive
edge-lengths 1, 2, 3, . . . , $n$ , and inscribed in a circle. (Remark: Every polygon
can be deformed with keeping the edge-lengths into a polygon that is inscribed
in a circle.) Let $\tau$ be the ordered set of $n$ vertices of this n-gon. Then, for any
$1\leq i\leq n$ , the convex hull of $\varphi_{i}(\tau)$ is a triangle, one of whose edges contains
$n-3$ points in its interior. Let us call the other two edges, the empty edges of
$\varphi_{i}(\tau)$ . If $i\neq j$ then the ratio of the lengths of two empty edges of $\varphi_{i}(\tau)$ and that
of $\varphi_{j}(\tau)$ are not equal. Hence $\varphi_{i}(\tau)$ and $\varphi_{j}(\tau)$ are not similar. Thus, no two of
$\tau,$

$\varphi_{1}(\tau),$ $\varphi_{2}(\tau),$
$\ldots$ , $\varphi_{n}(\tau)$ , are similar to each other. $\square $

Proof of Theorem 3. First observe that by Corollary 2, $H$ has $n!$ elements, and
hence, by Lemma 3, $G_{n}$ has $(n+1)!$ elements. Now, $G_{n}$ naturally acts on
$\{H, \phi_{1}H, \phi_{2}H, \ldots, \phi_{n}H\}=:\{\overline{0}, \overline{1},\overline{2}, \ldots,\overline{n}\}$ from the left as a transformation
group.

Now, for $j\neq i,$ (5) implies $\phi_{j}(\overline{i})=\overline{i}$, and since $\phi_{j}(\overline{0})=\overline{j},$ $\phi_{j}(\overline{j})=\overline{0}$ , the
action of $\phi_{j}$ corresponds to the transposition $(\overline{0},\overline{j})$ . Since the transpositions
$(\overline{0},\overline{j}),$ $j=1,2,$ $\ldots,$

$n$ , generate all permutations of $\{\overline{0}, \overline{1},\overline{2}, \ldots , \overline{n}\}$ , and since $G_{n}$

is generated by $\phi_{1},$ $\phi_{2},$

$\ldots,$
$\phi_{n}$ , it follows that $G_{n}$ is isomorphic to the symmetric

group $S_{n+1}$ . $\square $
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