PIVOTAL INVERSIONS OF A FINITE POINT-SET

By

HIROSHI MAEHARA AND SUMIE UEDA

(Received November 9, 2005)

Abstract. For two distinct points P,Q in the plane, let Q^P denote the point on the ray \overrightarrow{PQ} such that $PQ \cdot PQ^P = 1$, and let $P^P = P$. For a point-set τ in the plane and $P \in \tau$, define $\tau^P = \{Q^P \mid Q \in \tau\}$. The transformation $\tau \to \tau^P$ is called the pivotal inversion at $P \in \tau$. We show that if $n \geq 4$ then starting from any n-point-set, it is possible, by applying a sequence of pivotal inversions, to produce an n-point-set whose diameter exceeds any prescribed value, but it is impossible to produce more than n+1 mutually non-similar n-point-sets. The latter part is proved by showing a group induced by pivotal inversions of ordered n-point-sets is isomorphic to the symmetric group of degree n+1.

1. Introduction

For two points P, Q in the plane, denote by Q^P the inversion of Q with respect to the unit circle centered at P. Thus, Q^P is the point on the ray \overrightarrow{PQ} satisfying $PQ \cdot PQ^P = 1$, where PQ denotes the length of the line segment connecting P and Q. For Q = P, usually P^P is either not defined, or defined to be the point ∞ at 'infinity'. For inversions, see Coxeter [1].

Suppose $n \geq 3$, and let σ be a set of n points in the plane in general position in the sense that no three points are collinear and no four points are concyclic. Then σ determines a set of $\binom{n}{2}$ lines and $\binom{n}{3}$ circles, which is called the line-circle-system on σ , and σ itself is called the pivot set of the line-circle-system. Figure 1 shows a line-circle-system on $\{P,Q,R\}$. Since an inversion of the plane transforms a circle or a line into a circle or line, an inversion with respect to a unit circle centered at a point of σ , say P, transforms the line-circle-system on σ into another line-circle-system, whose pivot set is denoted by σ^P . Then σ^P is also an n-point-set. The transformation $\sigma \to \sigma^P$ is called the pivotal transformation of σ at P. For example, the line-circle-system on $\{P,Q,R\}$ is transformed by the inversion with center P into the line-circle-system on $\{P,Q,R\}$ Thus, $\{P,Q,R\}^P = \{P,Q^P,R^P\}$. Thus,

Formally, for every finite point-set τ in the plane, and a point $P \in \tau$, we

²⁰⁰⁰ Mathematics Subject Classification: Primary 52C35, Secondary 20B25, 05A99 Key words and phrases: inversion, metric cone, symmetric group

Figure 1 A line-circle-system on $\{P, Q, R\}$

define a new point-set τ^P by

$$\tau^P = \{Q^P \mid Q \in \tau\} \text{ with } P^P = P,$$

and call this transformation $\tau \to \tau^P$ the pivotal inversion of τ at $P \in \tau$. The point P is called the center of the pivotal inversion. Note that the center of every pivotal inversion of a point-set τ is supposed to be a point of τ .

Now, from an n-point-set τ in the plane, by a pivotal inversion of τ , a new n-point-set is produced. Next, by a pivotal inversion of this new n-point-set, another n-point-set is produced. Proceeding in this way, many n-point-sets will be produced. These newly produced point-sets are called relatives of τ . More precisely, an n-point-set σ is a relative of τ if σ is produced from τ by applying a sequence of pivotal inversions.

Then, how many, mutually non-congruent relatives can be produced from an n-point-set? Here, two point set τ and σ are congruent if there is a bijection form τ to σ that preserves the distances. Two point-sets τ , σ are similar if there is a similarity $f:\tau\to\sigma$, that is, a bijection f such that for every pair $P,Q\in\tau$ the distance between f(P) and f(Q) is equal to λ times the distance between P and P0 for a common constant P1. The diameter of an P1-point-set is the longest distance between the P1-points in the set.

Since $(\tau^P)^P = \tau$ holds for every τ and for every $P \in \tau$, the following result may be slightly curious.

THEOREM 1. Let ΔPQR be a non-equilateral (possibly degenerate) triangle. Then, for any prescribed value d, the 3-point-set $\{P,Q,R\}$ has a relative that is similar to $\{P,Q,R\}$ and whose diameter is greater than d.

Thus $\{P,Q,R\}$ has infinitely many mutually non-congruent relatives unless ΔPQR is an equilateral triangle. Since every 4-point-set in the plane contains three points that do not span an equilateral triangle, we have the following.

COROLLARY 1. For $n \geq 4$, every n-point-set has a relative with diameter greater than any prescribed value.

Now, how many mutually *non-similar* relatives can be produced from an n-point-set? The case n = 3 is easy: Since

$$\Delta PQR \sim \Delta P^P R^P Q^P \tag{1}$$

holds (Lemma 1), where \sim implies 'be similar to', all relatives of a 3-point-set are mutually similar. Generally we have the following.

THEOREM 2. No n-point-set has more than n+1 mutually non-similar relatives. If $n \geq 4$, then there is an n-point-set that has exactly n+1 mutually non-similar relatives.

An ordered point-set is a point-set whose points are ordered. For every ordered point-set, we denote by φ_i the pivotal inversion with center at the *i*th point. Then, for every ordered *n*-point-set τ and for every i, $1 \le i \le n$, $\varphi_i(\tau)$ can be defined, and it becomes an ordered *n*-point-set by the ordering induced from τ via φ_i . Thus, we can regard φ_i $(1 \le i \le n)$ as a transformation of the set of all ordered *n*-point-sets.

Two ordered n-point-sets τ and σ are called order-preservingly similar (written $\tau \sim \sigma$) if the bijection $f: \tau \to \sigma$ that preserves the order of the points is a similarity. The set of all ordered n-point-sets can be partitioned into equivalence classes by the relation \sim . Let Σ_n be a family of complete representatives of these equivalence classes, that is, Σ_n is a set of ordered n-point-sets composed by taking one ordered n-point-set from each equivalence class. It follows easily from the fact (1) that $\tau \sim \sigma$ implies $\varphi_i(\tau) \sim \varphi_i(\sigma)$ for every $1 \leq i \leq n$. Therefore, each φ_i induces naturally a transformation $\phi_i: \Sigma_n \to \Sigma_n$. Let G_n denote the transformation group of Σ_n generated by $\phi_1, \phi_2, \phi_3, \ldots, \phi_n$. We prove the following.

THEOREM 3. If n > 3, then the transformation group G_n of Σ_n is isomorphic to the symmetric group S_{n+1} .

REMARK 1. Clearly G_2 is the identity group, and it is also easy to see that G_3 is isomorphic to the symmetric group S_3 (see Example in Section 3).

REMARK 2. Pivotal inversions for a finite point-set in higher dimensional space are defined similarly, and Theorems 1, 2, 3 also hold.

2. The cone of Euclidean metrics

Let $n \geq 3$. An ordered n-point-set is determined, up to order-preserving congruence, by the $\binom{n}{2}$ distances x_{ij} $(1 \leq i < j \leq n)$ between the *i*th point and the *j*th point in the set, and hence represented by a point (x_{12}, x_{13}, \ldots) of $R^{\binom{n}{2}}$ with coordinates x_{ij} in lexicographic order of the suffixes. The set of such points in $R^{\binom{n}{2}}$ forms a cone Γ_n , called the cone of Euclidean metrics on n points in the plane. For general metric cone, see Deza and Laurent [2]. Thus, each congruence class of ordered n-point-sets is represented by a point of Γ_n . For each $1 \leq i \leq n$ and two ordered n-point-sets τ, σ , if τ is order-preservingly congruent to τ , then $\varphi_i(\tau)$ is order-preservingly congruent to $\varphi_i(\sigma)$. Hence φ_i induces a transformation $f_i: \Gamma_n \to \Gamma_n$.

We need the following lemma.

LEMMA 1. Let ΔPQR be a triangle with PQ = x, PR = y, QR = z. Then $\Delta PQR \sim \Delta P^PR^PQ^P$ and $P^PQ^P = \frac{1}{x}, P^PR^P = \frac{1}{y}, Q^PR^P = \frac{z}{xy}$.

Proof. $PQ \cdot P^PQ^P = PR \cdot P^PR^P = 1$ implies $PQ : PR = P^PR^P : P^PQ^P$. Hence $\Delta PQR \sim \Delta P^PR^PQ^P$. \square

Let $f_i: \Gamma_3 \to \Gamma_3$ (i=1,2,3) be the transformation induced by φ_i (i=1,2,3). Then by Lemma 1, f_1, f_2, f_3 transform Γ_3 in the following way:

$$f_1(x,y,z) = \left(rac{1}{x},rac{1}{y},rac{z}{xy}
ight)$$
 $f_2(x,y,z) = \left(rac{1}{x},rac{y}{xz},rac{1}{z}
ight)$ $f_3(x,y,z) = \left(rac{x}{yz},rac{1}{y},rac{1}{z}
ight)$

where $(x, y, z) := (x_{12}, x_{13}, x_{23}).$

Proof of Theorem 1. Let PQ = x, PR = y, QR = z with x > z. Then the ordered 3-point-set $\{P, Q, R\}$ corresponds to $(x, y, z) \in \Gamma_3$. By the formulae for f_1, f_2, f_3 , we have

$$egin{aligned} f_1(x,y,z) &= \left(rac{1}{x},rac{1}{y},rac{z}{xy}
ight) \ f_2\left(rac{1}{x},rac{1}{y},rac{z}{xy}
ight) &= \left(x,rac{x^2}{z},rac{xy}{z}
ight) \ f_3\left(x,rac{x^2}{z},rac{xy}{z}
ight) &= \left(rac{z^2}{x^2y},rac{z}{x^2},rac{z}{xy}
ight) \end{aligned} .$$

Hence, if $g = f_3 f_2 f_1$, the composition of f_1, f_2, f_3 , then

$$g(x,y,z) = \left(rac{z^2}{x^2y},rac{z}{x^2},rac{z}{xy}
ight),$$

and

$$g^{2}(x,y,z) = \left(\frac{x^{4}}{z^{3}}, \frac{x^{3}y}{z^{3}}, \frac{x^{3}}{z^{2}}\right) = \left(\frac{x}{z}\right)^{3}(x,y,z).$$

Hence, $g^2(\lambda x, \lambda y, \lambda z) = (\frac{x}{z})^3(\lambda x, \lambda y, \lambda z) = \lambda g^2(x, y, z)$. Therefore

$$g^{2k}(x,y,z) = \left(\frac{x}{z}\right)^{3k}(x,y,z), \quad k = 1,2,3,\ldots.$$

Since x/z > 1, $(x/z)^{3k} \to \infty$ as $k \to \infty$. Thus $(\varphi_3 \varphi_2 \varphi_1)^{2k} (\{P, Q, R\})$ is similar to $\{P, Q, R\}$ and its diameter tends to infinity as $k \to \infty$. \square

REMARK 3. If $n \ge 4$ then for every ordered *n*-point-set τ with $x_{12} > x_{23}$, each $(\phi_1 \phi_2 \phi_3)^{4k}(\tau)$ becomes similar to τ and its diameter tends to ∞ as $k \to \infty$.

3. Homogeneous coordinates

Two ordered *n*-point-sets represented by $\mathbf{x}, \mathbf{y} \in \Gamma_n$ are order-preservingly similar, if and only if there is a $\lambda > 0$ such that $\mathbf{x} = \lambda \mathbf{y}$. Therefore, every member of Σ_n can be represented by a set of homogeneous coordinates $[x_{12}, x_{13}, \ldots]$ in lexicographic order of the suffixes. The word homogeneous implies that $[\lambda x_{12}, \lambda x_{13}, \ldots] = [x_{12}, x_{13}, \ldots]$ for all $\lambda \neq 0$.

The transformation $f_i: \Gamma_n \to \Gamma_n$ naturally induces the transformation $\phi_i: \Sigma_n \to \Sigma_n$, and G_n is the group generated by the transformations $\phi_1, \phi_2, \ldots, \phi_n$ of Σ_n . By Lemma 1, ϕ_i transforms the coordinates of $[x_{12}, x_{13}, \ldots]$ in the following way: For i < j < k,

$$x_{ij} o rac{1}{x_{ij}} \quad ext{ and } \quad x_{jk} o rac{x_{jk}}{x_{ij}x_{ik}}.$$

EXAMPLE. Let n = 3, and put $[x_{12}, x_{13}, x_{23}] = [x, y, z]$. Then

$$\phi_1[x,y,z] = \left[\frac{1}{x},\frac{1}{y},\frac{z}{xy}\right] = [y,x,z]$$

$$\phi_2[x,y,z] = \left[rac{1}{x},rac{y}{xz},rac{1}{z}
ight] = [z,y,x]$$

$$\phi_3[x,y,z] = \left[rac{x}{yz},rac{1}{y},rac{1}{z}
ight] = [x,z,y].$$

Hence ϕ_i is a transposition of a pair of coordinates in [x, y, z], and hence, ϕ_1, ϕ_2, ϕ_3 generate all permutations of three coordinates, and $G_3 \cong S_3$.

Suppose $n \geq 4$, and put

$$[x_{12}, x_{13}, x_{14}, \ldots, x_{23}, x_{24}, \ldots, x_{34}, \ldots] = [u, v, w, \ldots, x, y, \ldots, z, \ldots],$$

see Figure 2. Then ϕ_1, ϕ_2 change the coordinates as follows:

Figure 2 Distances u, v, w, x, y, z

$$\phi_1[u,v,w,\ldots,x,y,\ldots,z,\ldots] = \left[\frac{1}{u},\frac{1}{v},\frac{1}{w},\ldots,\frac{x}{uv},\frac{y}{uw},\ldots,\frac{z}{vw},\ldots\right]$$
 (2)

$$\phi_2[u,v,w,\ldots,x,y,\ldots,z,\ldots] = \left[\frac{1}{u},\frac{v}{ux},\frac{w}{uy},\ldots,\frac{1}{x},\frac{1}{y},\ldots,\frac{z}{xy},\ldots\right]$$
(3)

4. Group G_n and its subgroup H

In this section, we assume $n \geq 4$.

LEMMA 2. For $1 \leq i \neq j \leq n$, the composite transformation $\phi_i \phi_j \phi_i$ of Σ_n works as the exchange of the order between the ith point and the jth point. In other words, $\phi_i \phi_j \phi_i$ is a permutation of homogeneous coordinates $[x_{12}, x_{13}, \ldots]$ induced by the transposition of the suffixes i and j. For example,

$$\phi_1 \phi_2 \phi_1[x_{12}, x_{13}, x_{14}, \dots, x_{23}, x_{24}, \dots, x_{34}, \dots]$$

$$= [x_{21}, x_{23}, x_{24}, \dots, x_{13}, x_{14}, \dots, x_{34}, \dots]$$
(4)

where $x_{21} \equiv x_{12}$. Therefore $\phi_i \phi_j \phi_i = \phi_j \phi_i \phi_j$.

Proof. It will be enough to show (4). By (2)(3), we have

$$\begin{split} \phi_1 \phi_2 \phi_1 [u, v, w, \dots, x, y, \dots, z, \dots] \\ &= \phi_1 \phi_2 \left[\frac{1}{u}, \frac{1}{v}, \frac{1}{w}, \dots, \frac{x}{uv}, \frac{y}{uw}, \dots, \frac{z}{vw} \dots \right] \\ &= \phi_1 \left[u, \frac{u^2}{x}, \frac{u^2}{y}, \dots, \frac{uv}{x}, \frac{uw}{y}, \dots, \frac{u^2z}{xy}, \dots \right] \\ &= \left[\frac{1}{u}, \frac{x}{u^2}, \frac{y}{u^2}, \dots, \frac{v}{u^2}, \frac{w}{u^2}, \dots, \frac{z}{u^2}, \dots \right] \\ &= [u, x, y, \dots, v, w, \dots, z, \dots]. \end{split}$$

Hence we have (4). \square

COROLLARY 2. The subgroup H of G_n generated by $\phi_i \phi_j \phi_i$, $1 \leq i < j \leq n$, is isomorphic to the symmetric group S_n of all permutations of $\{1, 2, 3, \ldots, n\}$.

Proof. Since $\phi_i \phi_j \phi_i$ corresponds to the transposition of the *i*th point and the *j*th point in a sequence of *n* points, every element of *H* corresponds to a permutation of *n* points. Since the $\binom{n}{2}$ transpositions of *n* points generate all permutations of *n* points, the subgroup *H* generated by $\phi_i \phi_j \phi_i$ $(1 \le i < j \le n)$ is isomorphic to the symmetric group S_n . \square

COROLLARY 3. For any ordered n-point-set τ and for $1 \leq i < j \leq n$, the point-set $\phi_i \phi_j \phi_i(\tau)$ is similar to τ . Hence, for any element h of the subgroup H of G_n generated by $\phi_i \phi_j \phi_i$, $1 \leq i < j \leq n$, two n-point-sets τ and $h(\tau)$ are similar to each other.

LEMMA 3. The index of H in G_n is n+1, that is, G_n is the disjoint union of the n+1 cosets H, ϕ_1H , ϕ_2H , ϕ_3H , ..., ϕ_nH .

Proof. Let τ be an ordered n-point-set lying on a circle C. Since every inversion with center on C transforms C into a line, the convex hull of $\phi_i(\tau)$ becomes a triangle for every $1 \leq i \leq n$, and hence $\phi_i(\tau)$ is not similar to τ . Hence $\phi_i \notin H$ and hence H and $\phi_i H$ are disjoint. Now, for $1 \leq i < j \leq n$, since $\phi_i \phi_j \phi_i \in H$ and $\phi_i^2 = 1$, we have

$$\phi_i \phi_i H = \phi_i \phi_i (\phi_i \phi_i \phi_i) H = \phi_i H. \tag{5}$$

Therefore, $\phi_j \phi_i \notin H$, and hence $\phi_i H$, $\phi_j H$ are disjoint. Thus, the n+1 cosets in Lemma 3 are mutually disjoint. Since G_n is generated by $\phi_1, \phi_2, \phi_3, \ldots, \phi_n$, it follows from (5) that every left cosets of H is equal to one of the n+1 left cosets in the lemma. This proves the lemma. \square

Proof of Theorem 2. The former part of the theorem follows from Corollary 3 and Lemma 3. To see the latter part, consider an n-gon with n consecutive edge-lengths $1, 2, 3, \ldots, n$, and inscribed in a circle. (Remark: Every polygon can be deformed with keeping the edge-lengths into a polygon that is inscribed in a circle.) Let τ be the ordered set of n vertices of this n-gon. Then, for any $1 \leq i \leq n$, the convex hull of $\varphi_i(\tau)$ is a triangle, one of whose edges contains n-3 points in its interior. Let us call the other two edges, the empty edges of $\varphi_i(\tau)$. If $i \neq j$ then the ratio of the lengths of two empty edges of $\varphi_i(\tau)$ and that of $\varphi_j(\tau)$ are not equal. Hence $\varphi_i(\tau)$ and $\varphi_j(\tau)$ are not similar. Thus, no two of $\tau, \varphi_1(\tau), \varphi_2(\tau), \ldots, \varphi_n(\tau)$, are similar to each other. \square

Proof of Theorem 3. First observe that by Corollary 2, H has n! elements, and hence, by Lemma 3, G_n has (n+1)! elements. Now, G_n naturally acts on $\{H, \phi_1 H, \phi_2 H, \ldots, \phi_n H\} =: \{\bar{0}, \bar{1}, \bar{2}, \ldots, \bar{n}\}$ from the left as a transformation group.

Now, for $j \neq i$, (5) implies $\phi_j(\bar{i}) = \bar{i}$, and since $\phi_j(\bar{0}) = \bar{j}$, $\phi_j(\bar{j}) = \bar{0}$, the action of ϕ_j corresponds to the transposition $(\bar{0},\bar{j})$. Since the transpositions $(\bar{0},\bar{j})$, $j=1,2,\ldots,n$, generate all permutations of $\{\bar{0},\bar{1},\bar{2},\ldots,\bar{n}\}$, and since G_n is generated by $\phi_1,\phi_2,\ldots,\phi_n$, it follows that G_n is isomorphic to the symmetric group S_{n+1} . \square

References

- [1] H. S. M. Coxeter, Introduction to Geometry, Wiley, New York, 1965.
- [2] M. Deza and M. Laurent, Geometry of Cuts and Metrics, Springer, Berlin, 1997.

H. Maehara
College of Education,
Ryukyu University,
Nishihara, Okinawa, Japan
E-mail: hmaehara@edu.u-ryukyu.ac.jp

S. Ueda
The Institute of Statistical Mathematics,
Minami-Azabu, Tokyo, Japan
E-mail: ueda@ism.ac.jp