PIVOTAL INVERSIONS OF A FINITE POINT-SET

By
Hiroshi Maehara and Sumie Ueda

(Received November 9, 2005)

Abstract

For two distinct points P, Q in the plane, let Q^{P} denote the point on the ray $\overrightarrow{P Q}$ such that $P Q \cdot P Q^{P}=1$, and let $P^{P}=P$. For a point-set τ in the plane and $P \in \tau$, define $\tau^{P}=\left\{Q^{P} \mid Q \in \tau\right\}$. The transformation $\tau \rightarrow \tau^{P}$ is called the pivotal inversion at $P \in \tau$. We show that if $n \geq 4$ then starting from any n-point-set, it is possible, by applying a sequence of pivotal inversions, to produce an n-point-set whose diameter exceeds any prescribed value, but it is impossible to produce more than $n+1$ mutually non-similar n-point-sets. The latter part is proved by showing a group induced by pivotal inversions of ordered n-point-sets is isomorphic to the symmetric group of degree $n+1$.

1. Introduction

For two points P, Q in the plane, denote by Q^{P} the inversion of Q with respect to the unit circle centered at P. Thus, Q^{P} is the point on the ray $\overrightarrow{P Q}$ satisfying $P Q \cdot P Q^{P}=1$, where $P Q$ denotes the length of the line segment connecting P and Q. For $Q=P$, usually P^{P} is either not defined, or defined to be the point ∞ at 'infinity'. For inversions, see Coxeter [1].

Suppose $n \geq 3$, and let σ be a set of n points in the plane in general position in the sense that no three points are collinear and no four points are concyclic. Then σ determines a set of $\binom{n}{2}$ lines and $\binom{n}{3}$ circles, which is called the line-circle-system on σ, and σ itself is called the pivot set of the line-circle-system. Figure 1 shows a line-circle-system on $\{P, Q, R\}$. Since an inversion of the plane transforms a circle or a line into a circle or line, an inversion with respect to a unit circle centered at a point of σ, say P, transforms the line-circle-system on σ into another line-circle-system, whose pivot set is denoted by σ^{P}. Then σ^{P} is also an n-point-set. The transformation $\sigma \rightarrow \sigma^{P}$ is called the pivotal transformation of σ at P. For example, the line-circle-system on $\{P, Q, R\}$ is transformed by the inversion with center P into the line-circle-system on $\left\{P, Q^{P}, R^{P}\right\}$. Thus, $\{P, Q, R\}^{P}=\left\{P, Q^{P}, R^{P}\right\}$.

Formally, for every finite point-set τ in the plane, and a point $P \in \tau$, we

[^0]

Figure 1 A line-circle-system on $\{P, Q, R\}$
define a new point-set τ^{P} by

$$
\tau^{P}=\left\{Q^{P} \mid Q \in \tau\right\} \text { with } P^{P}=P
$$

and call this transformation $\tau \rightarrow \tau^{P}$ the pivotal inversion of τ at $P \in \tau$. The point P is called the center of the pivotal inversion. Note that the center of every pivotal inversion of a point-set τ is supposed to be a point of τ.

Now, from an n-point-set τ in the plane, by a pivotal inversion of τ, a new n-point-set is produced. Next, by a pivotal inversion of this new n-point-set, another n-point-set is produced. Proceeding in this way, many n-point-sets will be produced. These newly produced point-sets are called relatives of τ. More precisely, an n-point-set σ is a relative of τ if σ is produced from τ by applying a sequence of pivotal inversions.

Then, how many, mutually non-congruent relatives can be produced from an n-point-set? Here, two point set τ and σ are congruent if there is a bijection form τ to σ that preserves the distances. Two point-sets τ, σ are similar if there is a similarity $f: \tau \rightarrow \sigma$, that is, a bijection f such that for every pair $P, Q \in \tau$ the distance between $f(P)$ and $f(Q)$ is equal to λ times the distance between P and Q for a common constant $\lambda>0$. The diameter of an n-point-set is the longest distance between the n points in the set.

Since $\left(\tau^{P}\right)^{P}=\tau$ holds for every τ and for every $P \in \tau$, the following result may be slightly curious.

THEOREM 1. Let $\triangle P Q R$ be a non-equilateral (possibly degenerate) triangle. Then, for any prescribed value d, the 3-point-set $\{P, Q, R\}$ has a relative that is similar to $\{P, Q, R\}$ and whose diameter is greater than d.

Thus $\{P, Q, R\}$ has infinitely many mutually non-congruent relatives unless $\triangle P Q R$ is an equilateral triangle. Since every 4 -point-set in the plane contains three points that do not span an equilateral triangle, we have the following.

Corollary 1. For $n \geq 4$, every n-point-set has a relative with diameter greater than any prescribed value.

Now, how many mutually non-similar relatives can be produced from an n-point-set? The case $n=3$ is easy: Since

$$
\begin{equation*}
\Delta P Q R \sim \Delta P^{P} R^{P} Q^{P} \tag{1}
\end{equation*}
$$

holds (Lemma 1), where \sim implies 'be similar to', all relatives of a 3-point-set are mutually similar. Generally we have the following.

Theorem 2. No n-point-set has more than $n+1$ mutually non-similar relatives. If $n \geq 4$, then there is an n-point-set that has exactly $n+1$ mutually non-similar relatives.

An ordered point-set is a point-set whose points are ordered. For every ordered point-set, we denote by φ_{i} the pivotal inversion with center at the i th point. Then, for every ordered n-point-set τ and for every $i, 1 \leq i \leq n, \varphi_{i}(\tau)$ can be defined, and it becomes an ordered n-point-set by the ordering induced from τ via φ_{i}. Thus, we can regard $\varphi_{i}(1 \leq i \leq n)$ as a transformation of the set of all ordered n-point-sets.

Two ordered n-point-sets τ and σ are called order-preservingly similar (written $\tau \sim \sigma$) if the bijection $f: \tau \rightarrow \sigma$ that preserves the order of the points is a similarity. The set of all ordered n-point-sets can be partitioned into equivalence classes by the relation \sim. Let Σ_{n} be a family of complete representatives of these equivalence classes, that is, Σ_{n} is a set of ordered n-point-sets composed by taking one ordered n-point-set from each equivalence class. It follows easily from the fact (1) that $\tau \sim \sigma$ implies $\varphi_{i}(\tau) \sim \varphi_{i}(\sigma)$ for every $1 \leq i \leq n$. Therefore, each φ_{i} induces naturally a transformation $\phi_{i}: \Sigma_{n} \rightarrow \Sigma_{n}$. Let G_{n} denote the transformation group of Σ_{n} generated by $\phi_{1}, \phi_{2}, \phi_{3}, \ldots, \phi_{n}$. We prove the following.

Theorem 3. If $n>3$, then the transformation group G_{n} of Σ_{n} is isomorphic to the symmetric group S_{n+1}.

Remark 1. Clearly G_{2} is the identity group, and it is also easy to see that G_{3} is isomorphic to the symmetric group S_{3} (see Example in Section 3).

Remark 2. Pivotal inversions for a finite point-set in higher dimensional space are defined similarly, and Theorems 1, 2, 3 also hold.

2. The cone of Euclidean metrics

Let $n \geq 3$. An ordered n-point-set is determined, up to order-preserving congruence, by the $\binom{n}{2}$ distances $x_{i j}(1 \leq i<j \leq n)$ between the i th point and the j th point in the set, and hence represented by a point $\left(x_{12}, x_{13}, \ldots\right)$ of $R^{\binom{n}{2}}$ with coordinates $x_{i j}$ in lexicographic order of the suffixes. The set of such points in $R^{\binom{n}{2}}$ forms a cone Γ_{n}, called the cone of Euclidean metrics on n points in the plane. For general metric cone, see Deza and Laurent [2]. Thus, each congruence class of ordered n-point-sets is represented by a point of Γ_{n}. For each $1 \leq i \leq n$ and two ordered n-point-sets τ, σ, if τ is order-preservingly congruent to τ, then $\varphi_{i}(\tau)$ is order-preservingly congruent to $\varphi_{i}(\sigma)$. Hence φ_{i} induces a transformation $f_{i}: \Gamma_{n} \rightarrow \Gamma_{n}$.

We need the following lemma.
LEMMA 1. Let $\triangle P Q R$ be a triangle with $P Q=x, P R=y, Q R=z$. Then $\Delta P Q R \sim \Delta P^{P} R^{P} Q^{P}$ and $P^{P} Q^{P}=\frac{1}{x}, P^{P} R^{P}=\frac{1}{y}, Q^{P} R^{P}=\frac{z}{x y}$.

Proof. $P Q \cdot P^{P} Q^{P}=P R \cdot P^{P} R^{P}=1$ implies $P Q: P R=P^{P} R^{P}: P^{P} Q^{P}$. Hence $\triangle P Q R \sim \Delta P^{P} R^{P} Q^{P}$.

Let $f_{i}: \Gamma_{3} \rightarrow \Gamma_{3}(i=1,2,3)$ be the transformation induced by $\varphi_{i}(i=1,2,3)$. Then by Lemma 1, f_{1}, f_{2}, f_{3} transform Γ_{3} in the following way:

$$
\begin{aligned}
f_{1}(x, y, z) & =\left(\frac{1}{x}, \frac{1}{y}, \frac{z}{x y}\right) \\
f_{2}(x, y, z) & =\left(\frac{1}{x}, \frac{y}{x z}, \frac{1}{z}\right) \\
f_{3}(x, y, z) & =\left(\frac{x}{y z}, \frac{1}{y}, \frac{1}{z}\right)
\end{aligned}
$$

where $(x, y, z):=\left(x_{12}, x_{13}, x_{23}\right)$.
Proof of Theorem 1. Let $P Q=x, P R=y, Q R=z$ with $x>z$. Then the ordered 3-point-set $\{P, Q, R\}$ corresponds to $(x, y, z) \in \Gamma_{3}$. By the formulae for f_{1}, f_{2}, f_{3}, we have

$$
\begin{aligned}
f_{1}(x, y, z) & =\left(\frac{1}{x}, \frac{1}{y}, \frac{z}{x y}\right) \\
f_{2}\left(\frac{1}{x}, \frac{1}{y}, \frac{z}{x y}\right) & =\left(x, \frac{x^{2}}{z}, \frac{x y}{z}\right) \\
f_{3}\left(x, \frac{x^{2}}{z}, \frac{x y}{z}\right) & =\left(\frac{z^{2}}{x^{2} y}, \frac{z}{x^{2}}, \frac{z}{x y}\right)
\end{aligned}
$$

Hence, if $g=f_{3} f_{2} f_{1}$, the composition of f_{1}, f_{2}, f_{3}, then

$$
g(x, y, z)=\left(\frac{z^{2}}{x^{2} y}, \frac{z}{x^{2}}, \frac{z}{x y}\right)
$$

and

$$
g^{2}(x, y, z)=\left(\frac{x^{4}}{z^{3}}, \frac{x^{3} y}{z^{3}}, \frac{x^{3}}{z^{2}}\right)=\left(\frac{x}{z}\right)^{3}(x, y, z)
$$

Hence, $g^{2}(\lambda x, \lambda y, \lambda z)=\left(\frac{x}{z}\right)^{3}(\lambda x, \lambda y, \lambda z)=\lambda g^{2}(x, y, z)$. Therefore

$$
g^{2 k}(x, y, z)=\left(\frac{x}{z}\right)^{3 k}(x, y, z), \quad k=1,2,3, \ldots
$$

Since $x / z>1,(x / z)^{3 k} \rightarrow \infty$ as $k \rightarrow \infty$. Thus $\left(\varphi_{3} \varphi_{2} \varphi_{1}\right)^{2 k}(\{P, Q, R\})$ is similar to $\{P, Q, R\}$ and its diameter tends to infinity as $k \rightarrow \infty$.

REMARK 3. If $n \geq 4$ then for every ordered n-point-set τ with $x_{12}>x_{23}$, each $\left(\phi_{1} \phi_{2} \phi_{3}\right)^{4 k}(\tau)$ becomes similar to τ and its diameter tends to ∞ as $k \rightarrow \infty$.

3. Homogeneous coordinates

Two ordered n-point-sets represented by $\mathbf{x}, \mathbf{y} \in \Gamma_{n}$ are order-preservingly similar, if and only if there is a $\lambda>0$ such that $\mathbf{x}=\lambda \mathbf{y}$. Therefore, every member of Σ_{n} can be represented by a set of homogeneous coordinates $\left[x_{12}, x_{13}, \ldots\right]$ in lexicographic order of the suffixes. The word homogeneous implies that $\left[\lambda x_{12}, \lambda x_{13}, \ldots\right]=\left[x_{12}, x_{13}, \ldots\right]$ for all $\lambda \neq 0$.

The transformation $f_{i}: \Gamma_{n} \rightarrow \Gamma_{n}$ naturally induces the transformation ϕ_{i} : $\Sigma_{n} \rightarrow \Sigma_{n}$, and G_{n} is the group generated by the transformations $\phi_{1}, \phi_{2}, \ldots, \phi_{n}$ of Σ_{n}. By Lemma 1, ϕ_{i} transforms the coordinates of $\left[x_{12}, x_{13}, \ldots\right]$ in the following way: For $i<j<k$,

$$
x_{i j} \rightarrow \frac{1}{x_{i j}} \quad \text { and } \quad x_{j k} \rightarrow \frac{x_{j k}}{x_{i j} x_{i k}} .
$$

ExAmple. Let $n=3$, and put $\left[x_{12}, x_{13}, x_{23}\right]=[x, y, z]$. Then

$$
\begin{aligned}
& \phi_{1}[x, y, z]=\left[\frac{1}{x}, \frac{1}{y}, \frac{z}{x y}\right]=[y, x, z] \\
& \phi_{2}[x, y, z]=\left[\frac{1}{x}, \frac{y}{x z}, \frac{1}{z}\right]=[z, y, x] \\
& \phi_{3}[x, y, z]=\left[\frac{x}{y z}, \frac{1}{y}, \frac{1}{z}\right]=[x, z, y] .
\end{aligned}
$$

Hence ϕ_{i} is a transposition of a pair of coordinates in $[x, y, z]$, and hence, $\phi_{1}, \phi_{2}, \phi_{3}$ generate all permutations of three coordinates, and $G_{3} \cong S_{3}$.

Suppose $n \geq 4$, and put

$$
\left[x_{12}, x_{13}, x_{14}, \ldots, x_{23}, x_{24}, \ldots, x_{34}, \ldots\right]=[u, v, w, \ldots, x, y, \ldots, z, \ldots]
$$

see Figure 2. Then ϕ_{1}, ϕ_{2} change the coordinates as follows:

Figure 2 Distances u, v, w, x, y, z

$$
\begin{align*}
& \phi_{1}[u, v, w, \ldots, x, y, \ldots, z, \ldots]=\left[\frac{1}{u}, \frac{1}{v}, \frac{1}{w}, \ldots, \frac{x}{u v}, \frac{y}{u w}, \ldots, \frac{z}{v w}, \ldots\right] \tag{2}\\
& \phi_{2}[u, v, w, \ldots, x, y, \ldots, z, \ldots]=\left[\frac{1}{u}, \frac{v}{u x}, \frac{w}{u y}, \ldots, \frac{1}{x}, \frac{1}{y}, \ldots, \frac{z}{x y}, \ldots\right] \tag{3}
\end{align*}
$$

4. Group $\boldsymbol{G}_{\boldsymbol{n}}$ and its subgroup \boldsymbol{H}

In this section, we assume $n \geq 4$.
LEMMA 2. For $1 \leq i \neq j \leq n$, the composite transformation $\phi_{i} \phi_{j} \phi_{i}$ of Σ_{n} works as the exchange of the order between the i th point and the j th point. In other words, $\phi_{i} \phi_{j} \phi_{i}$ is a permutation of homogeneous coordinates $\left[x_{12}, x_{13}, \ldots\right]$ induced by the transposition of the suffixes i and j. For example,

$$
\begin{align*}
& \phi_{1} \phi_{2} \phi_{1}\left[x_{12}, x_{13}, x_{14}, \ldots, x_{23}, x_{24}, \ldots, x_{34}, \ldots\right] \\
& =\left[x_{21}, x_{23}, x_{24}, \ldots, x_{13}, x_{14}, \ldots, x_{34}, \ldots\right] \tag{4}
\end{align*}
$$

where $x_{21} \equiv x_{12}$. Therefore $\phi_{i} \phi_{j} \phi_{i}=\phi_{j} \phi_{i} \phi_{j}$.

Proof. It will be enough to show (4). By (2)(3), we have

$$
\begin{aligned}
\phi_{1} \phi_{2} & \phi_{1}[u, v, w, \ldots, x, y, \ldots, z, \ldots] \\
& =\phi_{1} \phi_{2}\left[\frac{1}{u}, \frac{1}{v}, \frac{1}{w}, \ldots, \frac{x}{u v}, \frac{y}{u w}, \ldots, \frac{z}{v w} \ldots\right] \\
& =\phi_{1}\left[u, \frac{u^{2}}{x}, \frac{u^{2}}{y}, \ldots, \frac{u v}{x}, \frac{u w}{y}, \ldots, \frac{u^{2} z}{x y}, \ldots\right] \\
& =\left[\frac{1}{u}, \frac{x}{u^{2}}, \frac{y}{u^{2}}, \ldots, \frac{v}{u^{2}}, \frac{w}{u^{2}}, \ldots, \frac{z}{u^{2}}, \ldots\right] \\
& =[u, x, y, \ldots, v, w, \ldots, z, \ldots]
\end{aligned}
$$

Hence we have (4).
Corollary 2. The subgroup H of G_{n} generated by $\phi_{i} \phi_{j} \phi_{i}, 1 \leq i<j \leq n$, is isomorphic to the symmetric group S_{n} of all permutations of $\{1,2,3, \ldots, n\}$.

Proof. Since $\phi_{i} \phi_{j} \phi_{i}$ corresponds to the transposition of the i th point and the j th point in a sequence of n points, every element of H corresponds to a permutation of n points. Since the $\binom{n}{2}$ transpositions of n points generate all permutations of n points, the subgroup H generated by $\phi_{i} \phi_{j} \phi_{i}(1 \leq i<j \leq n)$ is isomorphic to the symmetric group S_{n}.

Corollary 3. For any ordered n-point-set τ and for $1 \leq i<j \leq n$, the point-set $\phi_{i} \phi_{j} \phi_{i}(\tau)$ is similar to τ. Hence, for any element h of the subgroup H of G_{n} generated by $\phi_{i} \phi_{j} \phi_{i}, 1 \leq i<j \leq n$, two n-point-sets τ and $h(\tau)$ are similar to each other.

Lemma 3. The index of H in G_{n} is $n+1$, that is, G_{n} is the disjoint union of the $n+1$ cosets $H, \phi_{1} H, \phi_{2} H, \phi_{3} H, \ldots, \phi_{n} H$.

Proof. Let τ be an ordered n-point-set lying on a circle C. Since every inversion with center on C transforms C into a line, the convex hull of $\phi_{i}(\tau)$ becomes a triangle for every $1 \leq i \leq n$, and hence $\phi_{i}(\tau)$ is not similar to τ. Hence $\phi_{i} \notin H$ and hence H and $\phi_{i} H$ are disjoint. Now, for $1 \leq i<j \leq n$, since $\phi_{i} \phi_{j} \phi_{i} \in H$ and $\phi_{i}^{2}=1$, we have

$$
\begin{equation*}
\phi_{j} \phi_{i} H=\phi_{j} \phi_{i}\left(\phi_{i} \phi_{j} \phi_{i}\right) H=\phi_{i} H . \tag{5}
\end{equation*}
$$

Therefore, $\phi_{j} \phi_{i} \notin H$, and hence $\phi_{i} H, \phi_{j} H$ are disjoint. Thus, the $n+1$ cosets in Lemma 3 are mutually disjoint. Since G_{n} is generated by $\phi_{1}, \phi_{2}, \phi_{3}, \ldots, \phi_{n}$, it follows from (5) that every left cosets of H is equal to one of the $n+1$ left cosets in the lemma. This proves the lemma.

Proof of Theorem 2. The former part of the theorem follows from Corollary 3 and Lemma 3. To see the latter part, consider an n-gon with n consecutive edge-lengths $1,2,3, \ldots, n$, and inscribed in a circle. (Remark: Every polygon can be deformed with keeping the edge-lengths into a polygon that is inscribed in a circle.) Let τ be the ordered set of n vertices of this n-gon. Then, for any $1 \leq i \leq n$, the convex hull of $\varphi_{i}(\tau)$ is a triangle, one of whose edges contains $n-3$ points in its interior. Let us call the other two edges, the empty edges of $\varphi_{i}(\tau)$. If $i \neq j$ then the ratio of the lengths of two empty edges of $\varphi_{i}(\tau)$ and that of $\varphi_{j}(\tau)$ are not equal. Hence $\varphi_{i}(\tau)$ and $\varphi_{j}(\tau)$ are not similar. Thus, no two of $\tau, \varphi_{1}(\tau), \varphi_{2}(\tau), \ldots, \varphi_{n}(\tau)$, are similar to each other.

Proof of Theorem 3. First observe that by Corollary 2, H has n ! elements, and hence, by Lemma 3, G_{n} has $(n+1)$! elements. Now, G_{n} naturally acts on $\left\{H, \phi_{1} H, \phi_{2} H, \ldots, \phi_{n} H\right\}=:\{\overline{0}, \overline{1}, \overline{2}, \ldots, \bar{n}\}$ from the left as a transformation group.

Now, for $j \neq i$, (5) implies $\phi_{j}(\bar{i})=\bar{i}$, and since $\phi_{j}(\overline{0})=\bar{j}, \phi_{j}(\bar{j})=\overline{0}$, the action of ϕ_{j} corresponds to the transposition $(\overline{0}, \bar{j})$. Since the transpositions $(\overline{0}, \bar{j}), j=1,2, \ldots, n$, generate all permutations of $\{\overline{0}, \overline{1}, \overline{2}, \ldots, \bar{n}\}$, and since G_{n} is generated by $\phi_{1}, \phi_{2}, \ldots, \phi_{n}$, it follows that G_{n} is isomorphic to the symmetric group S_{n+1}.

References

[1] H. S. M. Coxeter, Introduction to Geometry, Wiley, New York, 1965.
[2] M. Deza and M. Laurent, Geometry of Cuts and Metrics, Springer, Berlin, 1997.

[^1]
[^0]: 2000 Mathematics Subject Classification: Primary 52C35, Secondary 20B25, 05A99
 Key words and phrases: inversion, metric cone, symmetric group

[^1]: H. Maehara

 College of Education,
 Ryukyu University, Nishihara, Okinawa, Japan
 E-mail: hmaeharacedu.u-ryukyu.ac.jp
 S. Ueda

 The Institute of Statistical Mathematics, Minami-Azabu, Tokyo, Japan
 E-mail: uedaCism.ac.jp

