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Abstract. Let $p$ be an odd prime number, $F$ anumber field, and $K=F(\zeta_{p})$ .
We say that $F_{8}atisfie8$ the condition $(A_{p})$ when any tame cyclic extension $N/F$

of degree $p$ has a normal integral basis (NIB for short), and that it satisfie8 $(B_{p})$

when for any $a\in F^{X}$ , the cyclic extension $K(a^{1/p})/K$ has a NIB if it is tame.
We prove that $F$ satisfies $(A_{p})$ only when it satisfies $(B_{p})$ under the assumption
that the Stickelberger ideal associated to the Galois group $Ga1(K/F)$ is “trivial”.

1. Introduction

Let $p$ be an odd prime number, $F$ a number field, and $K=F(\zeta_{p})$ . Here,
$\zeta_{p}$ is a fixed primitive p-th root of unity. We say that $F$ satisfies the condition
$(A_{p})$ when any tame cyclic extension $N/F$ of degree $p$ has a normal integral
basis (NIB for short), and that it satisfies $(B_{p})$ when for any $a\in F^{x}$ , the cyclic
extension $K(a^{1/p})/K$ has a NIB if it is tame. It is known that the rationals $Q$

satisfy $(A_{p})$ for all $p$ by Hilbert and Speiser, and that $F\neq Q$ does not satisfy
$(A_{p})$ for infinitely many $p$ by Greither et $al[5]$ . Corresponding results for $(B_{p})$

were obtained by Kawamoto $[12, 13]$ and the author [7, IV], respectively. When
$\zeta_{p}\in F^{x}$ , the $nditions(A_{p})$ and $(B_{p})$ are clearly equivalent. When $\zeta_{p}\not\in F^{x}$ ,
the conditions appear, superficially, to be irrelevant to each other. However, in
[8, Theorem 2], we proved the following relation between the two conditions.

THEOREM 1. Letp be an odd pmme number, $F$ a numberfield, and $K=F(\zeta_{p})$ .
Assume that $[K:F]=2$ and that $K/F$ is totally ramified at least for one prime

divisor of F. Then, $F$ satisfies the condition $(A_{p})$ only when it satisfies $(B_{p})$ .

The purpose of this paper is to relax the assumption $[K : F]=2$ and
generalise the assertion. Let us introduce some notation. The Galois group
$\Delta=Ga1(K/F)$ is naturally identified with a subgroup $H=H_{F}$ of the multi-
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plicative group $(Z/p)^{x}=(Z/pZ)^{x}$ through the Galois action on $\zeta_{p}$ . For each
subgroup $H$ of $(Z/p)^{x}$ , we defined in [10] a Stickelberger ideal $S_{H}$ of the group
ring $Z[H]$ . When $H=(Z/p)^{\times}$ , it coincides with the classical one given in Wash-
ington’s textbook [16, Chap. 6]. There are several cases where $S_{H}=Z[H]$ (see
Lemma 1 in Section 2). For instance, $S_{H}=Z[H]$ when $|H|\leq 3$ . The following
is a generalization of Theorem 1.

THEOREM 2. Let $p,$ $F,$ $K$ be as in Theorem 1. Let $H=H_{F}$ be the subgroup
of $(Z/p)$ ’ $co$rresponding to $\Delta=Ga1(K/F)$ . Assume that $S_{H}=Z[H]$ . Then, $F$

satisfies the condition $(A_{p})$ only when it satisfies $(B_{p})$ .

REMARK 1. (1) As we have seen in [8, Remark 3], the condition $(A_{p})$ is
stronger than $(B_{p})$ in general. (2) A p.integer version of Theorem 2 is given
in [10, Corollary 4].

After Hilbert [6, Theorem 136] gave his alternative proof of the classical
Stickelberger theorem for the ideal class group of the p-cyclotomic field $Q(\zeta_{p})$ ,
several authors, in particular McCulloh $[14, 15]$ , pursued a relation between
Stickelberger ideals and Galois module structure of rings of integers. (For details,
see R\"ohlii [3, Chapter IV].) We prove Theorem 2 using the main theorem of
[15].

2. Stickelberger ideals of conductor $p$

Let $p$ be an odd prime number, $C=(Z/p)^{x}$ , and $H$ a subgroup of $C$ . For
an integer $i,$ $\overline{i}\in Z/pZ$ denotes the class containing $i$ . We often write an element
$\overline{i}$ of $C$ as $\delta_{i}$ . For a real number $x,$ $[x]$ denotes the largest integer $\leq x$ . For an
integer $r\in Z$ , let

$\theta_{r}=\theta_{r,H}=\sum_{:}’[\frac{ri}{p}]\delta_{i}^{-1}\in Z[H]$ ,

where in the sum $\sum_{i}^{\prime},$ $i$ runs over the integers with $1\leq i\leq p-1$ and $\overline{i}\in H$ . Let
$S_{H}$ be the submodule of $Z[H]$ generated by $\theta_{r}$ for all $r$ over $Z$ :

$S_{H}=\langle\theta_{r}|r\in Z\rangle_{Z}$ .

This is an ideal of $Z[H]$ as $\delta_{s}\theta_{r}=\theta_{sr}-r\theta_{s}$ for $\overline{s}\in H$ (cf. [10, Section 2]). When
$H=C$ , the ideal $S_{C}$ coincides with the classical Stickelberger ideal for the $p$

cyclotomic field and the one used by McCulloh in [14]. The following assertion
was shown in $[10, 11]$ .
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LEMMA 1. (1) When $|H|\leq 3,$ $S_{H}=Z[H]$ for any $p$ . When $|H|\geq 4$ is even,
$S_{H}\subsetneqq Z[H]$ for any $p$ .

(2) Let $p$ be an odd prime number with $p\leq 499$ , and $H$ a nontrivial subgroup
of $(Z/p)^{x}$ such that $|H|$ is odd and $(p-1)/|H|>2$ . Then, we have $S_{H}=$

$Z[H]$ except for the case where $(p, (p-1)/|H|)=(277,4),$ $(331,10),$ $(349,4)$

or $(397, 4)$

(3) Let $\ell\geq 5$ be an odd preme number, and $g\geq 2$ an integer. Assume that
$p=(g^{\ell}-1)/(g-1)$ is a prime number, and let $H$ be the subgroup of $(Z/p)^{x}$ of
order $\ell$ generated by the class $\overline{g}$ . Then, $S_{H}=Z[H]$ .

For an integer $x\in Z$ , let $(x)_{p}$ be the unique integer with $(x)_{p}\equiv x$ mod $p$

and $0\leq(x)_{p}<p$ . Clearly, we have

$x=[x/p]p+(x)_{p}$ . (1)

We see that

$[\frac{xy(z)_{p}}{p}]=[\frac{x(yz)_{p}}{p}]+x[\frac{y(z)_{p}}{p}]$ (2)

for $x,$ $y,$ $z\in Z$ applying the formula (1) for the integer $y(z)_{p}$ . Let $H$ be a
subgroup of $C$ , and let $d=|H|,$ $t=[C : H]$ . Let $g$ be a primitive root modulo
$p$, and $\rho=\delta_{g}\in C$ . Then, $ C=\langle\rho\rangle$ and $ H=\langle\rho^{t}\rangle$ . Using (2), we see that

$\theta_{r,C}=\sum_{\lambda=0}^{t-1}\rho^{-\lambda}\sum_{i=0}^{d-1}[\frac{r(g^{ti+\lambda})_{p}}{p}]\rho^{-ti}$ (3)

$=\sum_{\lambda=0}^{t-1}\rho^{-\lambda}\sum_{i=0}^{d-1}\{[\frac{rg^{\lambda}(g^{\iota_{1}})_{p}}{p}]-r[\frac{g^{\lambda}(g^{ti})_{p}}{p}]\}\rho^{-ti}$

$=\theta_{r,H}+\sum_{\lambda=1}^{t-1}\rho^{-\lambda}(\theta_{rg^{\lambda},H}-r\theta_{g^{\lambda},H})$

$=\theta_{r,H}+\sum_{\lambda=1}^{t-1}\rho^{\lambda}s_{\lambda}$ for some $s_{\lambda}\in S_{H}$ .

This formula is used in the proof of Theorem 2.

3. Proof of Theorem 2

First, let us recall the theorem of McCulloh [15] mentioned in Section 1. Let
$F$ be a number field, and $G$ the additive group $(Z/p)^{+}$ . Let $Cl_{F}=Cl(O_{F})$ be
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the ideal class group of $\mathcal{O}_{F}$ , and let $Cl(\mathcal{O}_{F}G)$ and $R(\mathcal{O}_{F}G)$ be the locally free
class group of the group ring $O_{F}G$ and the subset of classes realised by rings of
integers of tame G-extensions over $F$ , respectively. Let $Cl^{0}(\mathcal{O}_{F}G)$ be the kernel
of the homomorphism $Cl(O_{F}G)\rightarrow Cl_{F}$ induced from the augmentation map
$\mathcal{O}_{F}G\rightarrow O_{F}$ . The group $C=(Z/p)^{\times}$ acts on $G$ by multiplication;

$\sigma^{\delta_{i}}=\overline{i}\cdot\sigma$ for $\delta_{i}\in C,$ $\sigma\in G$ . (4)

Via this action, the group ring $Z[C]$ and the Stickelberger ideal $S_{C}$ naturally act
on $Cl(\mathcal{O}_{F}G)$ and $Cl^{0}(O_{F}G)$ .

THEOREM 3 (McCulloh). Under the abo $ve$ seuing, we have

$R(\mathcal{O}_{F}G)=Cl^{0}(\mathcal{O}_{F}G)^{S_{C}}$ .

We derive the following assertion from this. For an integer $a\in \mathcal{O}_{K}$ , let $Cl_{K}(a)$

be the ray class group of $K$ defined modulo the ideal $a\mathcal{O}_{K}$ . Put $\pi=\zeta_{p}-1$ .

LEMMA 2. Let $F$ be a number field, $K=F(\zeta_{p})$ , and $H=Ga1(K/F)\leq C$ . If
$F$ satisfies the condition $(A_{p})$ , then $Cl_{K}(\pi)^{S_{H}}=\{0\}$ .

Before showing this, we recall some facts on class groups. Let $\mathcal{O}_{F}^{\prime}=O_{F}[1/p]$ ,
and $\mathcal{O}_{F,p}$ be the elements of $F$ integral at the primes over $p$ . Clearly, we have
$\mathcal{O}_{F}=O_{F}^{\prime}\cap O_{F,p}$ . Let $I(O_{F}^{\prime})$ be the group of fractional ideals of $O_{F}^{\prime}$ , and $P_{F}$ the
subgroup consisting of principal ideals $\alpha O_{F}^{\prime}$ for units $\alpha\in O_{F,p}^{x}$ . The following
canonical isomorphism is well known.

$Cl_{F}\cong I(\mathcal{O}_{F}^{\prime})/P_{F}$ . (5)

Let $I(\mathcal{O}_{F}^{\prime}G)$ be the group of fractional $\mathcal{O}_{F}^{\prime}$ G-ideals in $FG$ , and $P_{F,G}$ the subgroup
consisting of principal ideals $a0_{F}G$ for units $\alpha\in(\mathcal{O}_{F,p}G)^{x}$ . Via (4), the group
ring $Z[C]$ naturally acts on $I(\mathcal{O}_{F}^{\prime}G)$ and the quotient $I(O_{F}^{\prime}G)/P_{F,G}$ . Similarly to
(5), we have the following natural isomorphism compatible with the $Z[C]$-action
(see Fr\"ohlich [2, X] or [15, p. 113]).

$Cl(O_{F}G)\cong I(\mathcal{O}_{F}^{\prime}G)/P_{F,G}$ . (6)

Proof of Lemma 2. Let $\chi_{0}$ be the trivial character of $G$ , and $\chi$ a fixed nontrivial
character of $G$ with values in $\mu_{p}$ . Let $\rho=\delta_{9}$ be a generator of $C$ where $g$

is a primitive root modulo $p$ . Let $t=[C : H]$ . Then, $\rho^{t}$ is a generator of
$H=Ga1(K/F)$ sending $\zeta_{p}$ to $\zeta_{p}^{g^{t}}$ . For an element $\alpha=\sum_{\sigma}a_{\sigma}\sigma$ of $FG$ and a
$\mu_{p}$-valued character $\psi$ of $G$ , let

$\psi(\alpha)=\sum_{\sigma}a_{\sigma}\psi(\sigma)$ .
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Here, $\sigma$ runs over $G$ . We have a natural isomorphism of $O_{F}^{\prime}$-algebras

$\varphi$ : $\mathcal{O}_{F}^{\prime}G\rightarrow O_{F}^{\prime}\oplus O_{K}^{\prime}\oplus \mathcal{O}_{K}^{\prime}\oplus\cdots\oplus \mathcal{O}_{K}^{\prime}$

with

$\varphi(\alpha)=(\chi_{0}(\alpha), \chi(a),$ $\chi^{g}(\alpha),$
$\cdots\chi^{g^{t-1}}(\alpha))$ .

We easily see that

$\varphi(\alpha^{\rho^{\lambda}})=(\chi_{0}(\alpha), \chi^{g^{\lambda}}(\alpha),$ $*\cdots*$ ) for $0\leq\lambda\leq t-1$ (7)

and

$\varphi(a^{\delta})=(\chi_{0}(a), \chi(a)^{\delta},$ $\chi^{g}(a)^{\delta},$ $\cdots\chi^{g^{t-1}}(\alpha)^{\delta})$ for $\delta\in H=\langle\rho^{t}\rangle$ . (8)

Here, $\chi^{g^{\lambda}}(\alpha)^{\delta}$ denotes the Galois action of $\delta\in H$ on $\chi^{g^{\lambda}}(a)\in K$ .
Now, assume that $F$ satisfies $(A_{p})$ or equivalently that $R(O_{F}G)=\{0\}$ . Let

$\mathfrak{U}$ be an ideal of $O_{K}^{\prime}$ , and $A$ the ideal of $O_{F}^{j}G$ with

$\varphi(A)=O_{F}^{\prime}\oplus \mathfrak{U}\oplus O_{K}^{\prime}\oplus\cdots\oplus \mathcal{O}_{K}^{\prime}$ .

Let $r\in Z$ be an arbitrary integer. By Theorem 3 and (6), we have

$A^{\theta_{r,C}}=\alpha O_{F}^{\prime}G$

for some unit $a\in(O_{F,p}G)^{x}$ . We see from (3), (7) and (8) that

$\varphi(A^{\theta_{r,C}})=\mathcal{O}_{F}^{\prime}\oplus \mathfrak{U}^{\theta_{r,H}}\oplus\cdots$ .

Therefore, it follows that

$O_{F}^{\prime}=\chi_{0}(\alpha)\mathcal{O}_{F}^{\prime}$ and $\mathfrak{U}^{\theta_{r,H}}=\chi(\alpha)O_{K}^{\prime}$ .

We see that

$\chi_{0}(a)\in O_{F^{\times}}^{\prime}\cap O_{F,p}^{x}=O_{F}^{x}$ and $\chi(\alpha)\equiv\chi_{0}(a)$ mod $\pi$ .

This implies that $\theta_{r,H}$ kills the class group $Cl_{K}(\pi)$ . $\square $

The following $th\infty rem$ was proved by Greither et $al$ [$5$ , Corollary]. Let $[O_{F}^{x}]_{p}$

be the subgroup of the multiplicative group $(\mathcal{O}_{F}/p)^{x}$ consisting of classes $\infty n-$

taining units of $O_{F}$ .

THEOREM 4 (Greither et al.). If a number field $F$ satisfies the condition $(A_{p})$ ,
then the exponent of the quotient $(O_{F}/p)^{x}/[\mathcal{O}_{F}^{x}]_{p}$ divides $(p-1)^{2}/2$ .
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Using Lemma 2 and Theorem 4, we can show the following:

THEOREM 5. Let $F$ be a number field, $K=F(\zeta_{p})$ , and $H=Ga1(K/F)\leq C$ .
If $F$ satisfies the condition $(A_{p})$ , then we have

$Cl_{K}(\pi)^{S_{H}}=\{0\}$ and $Cl_{K}(p)^{H}\cap Cl_{K}(p)^{S_{H}}=\{0\}$ .

Here, $Cl_{K}(p)^{H}$ denotes the Galois invariant part.

Proof. It suffices to show that

X $:=Cl_{K}(p)^{H}\cap Cl_{K}(p)^{S_{H}}=\{0\}$ .

As $Cl_{K}(\pi)^{S_{H}}=\{0\}$ , we see that $Cl_{K}(\pi^{p})^{S_{H}}$ and hence $\mathcal{X}$ are p-abelian groups.
For an integer $a\in O_{K}$ and an ideal $\mathfrak{U}$ of $O_{K}$ relatively prime to $a$ , let $[\mathfrak{U}]_{a}$

be the ray class in $Cl_{K}(a)$ represented by $\mathfrak{U}$ . Let $c$ be a ray class in $\mathcal{X}$ . As
$Cl_{K}(\pi)^{S_{H}}=\{0\}$ , we see that $c=[\mathfrak{P}]_{p}$ for some prime ideal $\mathfrak{P}$ of $K$ with $[\mathfrak{P}]_{\pi}=1$ .
Hence, $\mathfrak{P}=\alpha \mathcal{O}_{K}$ for some integer $\alpha$ . As $c\in Cl_{K}(p)^{H}$ , we have for each $\delta\in H$ ,
$\alpha^{\delta}\equiv\epsilon_{\delta}\alpha$ modp with some unit $\epsilon_{\delta}\in O_{K}^{x}$ . Therefore, $N_{K/F}\alpha\equiv\epsilon\alpha^{d}$ mod p
for some $\epsilon\in O_{K}^{x}$ , where $d=[K : F]$ . On the other hand, $(N_{K/F}a)^{(p-1)^{2}/2}$ is
congruent to a unit of $K$ modulo $p$ by Theorem 4. Therefore, we see that the
order of $c=[\mathfrak{P}]_{p}=[\alpha O_{K}]_{p}$ divides $d(p-1)^{2}/2$ . Hence, we obtain $c=1$ as X is
a pabelian group. $\square $

As for the $ndition(B_{p})$ , the following assertion holds.

THEOREM 6. Under the setting of Theorem 5, assume that the natural map
$Cl_{F}(p)\rightarrow Cl_{K}(p)$ is trivial. Then, $F$ satisfies the condition $(B_{p})$ .

Proof. A slightly weaker version of Theorem 6 is given in [9, Proposition 1].
Theorem 6 is proved exactly similarly. $\square $

Proof of Theorem 2. Assume that $S_{H}=Z[H]$ and that $F$ satisfies $(A_{p})$ . Then,
$Cl_{K}(p)^{H}$ is trivial by Theorem 5. Hence, $F$ satisfies $(B_{p})$ by Theorem 6. $\square $

REMARK 2. The converse of $Threm5$ holds in some cases. (1) When $\zeta_{p}\in$

$F^{x}$ , it is shown in [7, V, Proposition 1, 2] that $F$ satisfies $(A_{p})$ if and only if
$Cl_{K}(p)=\{0\}$ . (2) Let $p=3$ and $\zeta_{3}\not\in F^{x}$ . In this case, we have $S_{H}=Z[H]$

by Lemma 1. It is shown in $[8, Th\infty rem3]$ that $F$ satisfies $(A_{3})$ if and only
if $Cl_{K}(\pi)=\{0\}$ and $Cl_{K}(3)^{H}=\{0\}$ . Using this, all quadratic fields satisfying
$(A_{3})$ were determined ([8, Proposition 1]). Such quadratic fields were determined
also by Carter [1] with a different method.
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REMARK 3. G6mez Ayala [4, Theorem 2.1] gave a very explicit criterion for
a Kummer extension of prime degree to have a NIB in terms of a Kummer
generator. It is possible to show Lemma 2 directly from this criterion without
using McCulloh’s theorem. Actually, in the first version of this paper, the author
showed Lemma 2 in this way.
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