NORMAL INTEGRAL BASES AND RAY CLASS GROUPS, II

By

HUMIO ICHIMURA*

(Received June 15, 2005)

Abstract. Let p be an odd prime number, F a number field, and $K = F(\zeta_p)$. We say that F satisfies the condition (A_p) when any tame cyclic extension N/Fof degree p has a normal integral basis (NIB for short), and that it satisfies (B_p) when for any $a \in F^{\times}$, the cyclic extension $K(a^{1/p})/K$ has a NIB if it is tame. We prove that F satisfies (A_p) only when it satisfies (B_p) under the assumption that the Stickelberger ideal associated to the Galois group $\operatorname{Gal}(K/F)$ is "trivial".

1. Introduction

Let p be an odd prime number, F a number field, and $K = F(\zeta_p)$. Here, ζ_p is a fixed primitive p-th root of unity. We say that F satisfies the condition (A_p) when any tame cyclic extension N/F of degree p has a normal integral basis (NIB for short), and that it satisfies (B_p) when for any $a \in F^{\times}$, the cyclic extension $K(a^{1/p})/K$ has a NIB if it is tame. It is known that the rationals Qsatisfy (A_p) for all p by Hilbert and Speiser, and that $F \neq Q$ does not satisfy (A_p) for infinitely many p by Greither *et al* [5]. Corresponding results for (B_p) were obtained by Kawamoto [12, 13] and the author [7, IV], respectively. When $\zeta_p \in F^{\times}$, the conditions (A_p) and (B_p) are clearly equivalent. When $\zeta_p \notin F^{\times}$, the conditions appear, superficially, to be irrelevant to each other. However, in [8, Theorem 2], we proved the following relation between the two conditions.

THEOREM 1. Let p be an odd prime number, F a number field, and $K = F(\zeta_p)$. Assume that [K:F] = 2 and that K/F is totally ramified at least for one prime divisor of F. Then, F satisfies the condition (A_p) only when it satisfies (B_p) .

The purpose of this paper is to relax the assumption [K : F] = 2 and generalise the assertion. Let us introduce some notation. The Galois group $\Delta = \text{Gal}(K/F)$ is naturally identified with a subgroup $H = H_F$ of the multi-

^{*}The author was partially supported by Grant-in-Aid for Scientific Research (C) (No.16540033), the Ministry of Education, Culture, Sports, Science and Technology of Japan. 2000 Mathematics Subject Classification: 11R33

Key words and phrases: normal integral basis, ray class group

H. ICHIMURA

plicative group $(\mathbb{Z}/p)^{\times} = (\mathbb{Z}/p\mathbb{Z})^{\times}$ through the Galois action on ζ_p . For each subgroup H of $(\mathbb{Z}/p)^{\times}$, we defined in [10] a Stickelberger ideal \mathcal{S}_H of the group ring $\mathbb{Z}[H]$. When $H = (\mathbb{Z}/p)^{\times}$, it coincides with the classical one given in Washington's textbook [16, Chap. 6]. There are several cases where $\mathcal{S}_H = \mathbb{Z}[H]$ (see Lemma 1 in Section 2). For instance, $\mathcal{S}_H = \mathbb{Z}[H]$ when $|H| \leq 3$. The following is a generalization of Theorem 1.

THEOREM 2. Let p, F, K be as in Theorem 1. Let $H = H_F$ be the subgroup of $(\mathbb{Z}/p)^{\times}$ corresponding to $\Delta = \operatorname{Gal}(K/F)$. Assume that $S_H = \mathbb{Z}[H]$. Then, Fsatisfies the condition (A_p) only when it satisfies (B_p) .

REMARK 1. (1) As we have seen in [8, Remark 3], the condition (A_p) is stronger than (B_p) in general. (2) A *p*-integer version of Theorem 2 is given in [10, Corollary 4].

After Hilbert [6, Theorem 136] gave his alternative proof of the classical Stickelberger theorem for the ideal class group of the *p*-cyclotomic field $Q(\zeta_p)$, several authors, in particular McCulloh [14, 15], pursued a relation between Stickelberger ideals and Galois module structure of rings of integers. (For details, see Fröhlich [3, Chapter IV].) We prove Theorem 2 using the main theorem of [15].

2. Stickelberger ideals of conductor p

Let p be an odd prime number, $C = (\mathbb{Z}/p)^{\times}$, and H a subgroup of C. For an integer $i, \bar{i} \in \mathbb{Z}/p\mathbb{Z}$ denotes the class containing i. We often write an element \bar{i} of C as δ_i . For a real number x, [x] denotes the largest integer $\leq x$. For an integer $r \in \mathbb{Z}$, let

$$heta_r = heta_{r,H} = \sum_i' \left[rac{ri}{p}
ight] \delta_i^{-1} \in oldsymbol{Z}[H],$$

where in the sum \sum_{i}^{\prime} , *i* runs over the integers with $1 \leq i \leq p-1$ and $\overline{i} \in H$. Let \mathcal{S}_{H} be the submodule of $\mathbb{Z}[H]$ generated by θ_{r} for all r over \mathbb{Z} :

$$\mathcal{S}_H = \langle \theta_r \mid r \in \mathbf{Z} \rangle_{\mathbf{Z}}.$$

This is an ideal of Z[H] as $\delta_s \theta_r = \theta_{sr} - r\theta_s$ for $\bar{s} \in H$ (cf. [10, Section 2]). When H = C, the ideal S_C coincides with the classical Stickelberger ideal for the *p*-cyclotomic field and the one used by McCulloh in [14]. The following assertion was shown in [10, 11].

LEMMA 1. (1) When $|H| \leq 3$, $S_H = \mathbb{Z}[H]$ for any p. When $|H| \geq 4$ is even, $S_H \subsetneq \mathbb{Z}[H]$ for any p.

(2) Let p be an odd prime number with $p \leq 499$, and H a nontrivial subgroup of $(\mathbb{Z}/p)^{\times}$ such that |H| is odd and (p-1)/|H| > 2. Then, we have $S_H = \mathbb{Z}[H]$ except for the case where (p, (p-1)/|H|) = (277, 4), (331, 10), (349, 4)or (397, 4)

(3) Let $\ell \geq 5$ be an odd prime number, and $g \geq 2$ an integer. Assume that $p = (g^{\ell} - 1)/(g - 1)$ is a prime number, and let H be the subgroup of $(\mathbb{Z}/p)^{\times}$ of order ℓ generated by the class \bar{g} . Then, $S_H = \mathbb{Z}[H]$.

For an integer $x \in \mathbb{Z}$, let $(x)_p$ be the unique integer with $(x)_p \equiv x \mod p$ and $0 \leq (x)_p < p$. Clearly, we have

$$x = [x/p]p + (x)_p.$$
 (1)

We see that

$$\left[\frac{xy(z)_p}{p}\right] = \left[\frac{x(yz)_p}{p}\right] + x\left[\frac{y(z)_p}{p}\right]$$
(2)

for $x, y, z \in \mathbb{Z}$ applying the formula (1) for the integer $y(z)_p$. Let H be a subgroup of C, and let d = |H|, t = [C : H]. Let g be a primitive root modulo p, and $\rho = \delta_g \in C$. Then, $C = \langle \rho \rangle$ and $H = \langle \rho^t \rangle$. Using (2), we see that

$$\theta_{r,C} = \sum_{\lambda=0}^{t-1} \rho^{-\lambda} \sum_{i=0}^{d-1} \left[\frac{r(g^{ti+\lambda})_p}{p} \right] \rho^{-ti}$$

$$= \sum_{\lambda=0}^{t-1} \rho^{-\lambda} \sum_{i=0}^{d-1} \left\{ \left[\frac{rg^{\lambda}(g^{ti})_p}{p} \right] - r \left[\frac{g^{\lambda}(g^{ti})_p}{p} \right] \right\} \rho^{-ti}$$

$$= \theta_{r,H} + \sum_{\lambda=1}^{t-1} \rho^{-\lambda} \left(\theta_{rg^{\lambda},H} - r\theta_{g^{\lambda},H} \right)$$

$$= \theta_{r,H} + \sum_{\lambda=1}^{t-1} \rho^{\lambda} s_{\lambda} \quad \text{for some } s_{\lambda} \in \mathcal{S}_{H}.$$

$$(3)$$

This formula is used in the proof of Theorem 2.

3. Proof of Theorem 2

First, let us recall the theorem of McCulloh [15] mentioned in Section 1. Let F be a number field, and G the additive group $(\mathbb{Z}/p)^+$. Let $Cl_F = Cl(\mathcal{O}_F)$ be

77

H. ICHIMURA

the ideal class group of \mathcal{O}_F , and let $Cl(\mathcal{O}_F G)$ and $R(\mathcal{O}_F G)$ be the locally free class group of the group ring $\mathcal{O}_F G$ and the subset of classes realised by rings of integers of tame *G*-extensions over *F*, respectively. Let $Cl^0(\mathcal{O}_F G)$ be the kernel of the homomorphism $Cl(\mathcal{O}_F G) \to Cl_F$ induced from the augmentation map $\mathcal{O}_F G \to \mathcal{O}_F$. The group $C = (\mathbb{Z}/p)^{\times}$ acts on *G* by multiplication:

$$\sigma^{o_i} = \overline{i} \cdot \sigma \quad \text{for } \delta_i \in C, \, \sigma \in G. \tag{4}$$

Via this action, the group ring $\mathbb{Z}[C]$ and the Stickelberger ideal \mathcal{S}_C naturally act on $Cl(\mathcal{O}_F G)$ and $Cl^0(\mathcal{O}_F G)$.

THEOREM 3 (McCulloh). Under the above setting, we have

$$R(\mathcal{O}_F G) = Cl^0(\mathcal{O}_F G)^{\mathcal{S}_C}$$
 .

We derive the following assertion from this. For an integer $a \in \mathcal{O}_K$, let $Cl_K(a)$ be the ray class group of K defined modulo the ideal $a\mathcal{O}_K$. Put $\pi = \zeta_p - 1$.

LEMMA 2. Let F be a number field, $K = F(\zeta_p)$, and $H = \text{Gal}(K/F) \leq C$. If F satisfies the condition (A_p) , then $Cl_K(\pi)^{S_H} = \{0\}$.

Before showing this, we recall some facts on class groups. Let $\mathcal{O}'_F = \mathcal{O}_F[1/p]$, and $\mathcal{O}_{F,p}$ be the elements of F integral at the primes over p. Clearly, we have $\mathcal{O}_F = \mathcal{O}'_F \cap \mathcal{O}_{F,p}$. Let $I(\mathcal{O}'_F)$ be the group of fractional ideals of \mathcal{O}'_F , and P_F the subgroup consisting of principal ideals $\alpha \mathcal{O}'_F$ for units $\alpha \in \mathcal{O}_{F,p}^{\times}$. The following canonical isomorphism is well known.

$$Cl_F \cong I(\mathcal{O}'_F)/P_F.$$
 (5)

Let $I(\mathcal{O}'_F G)$ be the group of fractional $\mathcal{O}'_F G$ -ideals in FG, and $P_{F,G}$ the subgroup consisting of principal ideals $\alpha \mathcal{O}'_F G$ for units $\alpha \in (\mathcal{O}_{F,p}G)^{\times}$. Via (4), the group ring $\mathbb{Z}[C]$ naturally acts on $I(\mathcal{O}'_F G)$ and the quotient $I(\mathcal{O}'_F G)/P_{F,G}$. Similarly to (5), we have the following natural isomorphism compatible with the $\mathbb{Z}[C]$ -action (see Fröhlich [2, X] or [15, p. 113]).

$$Cl(\mathcal{O}_F G) \cong I(\mathcal{O}'_F G)/P_{F,G}.$$
 (6)

Proof of Lemma 2. Let χ_0 be the trivial character of G, and χ a fixed nontrivial character of G with values in μ_p . Let $\rho = \delta_g$ be a generator of C where g is a primitive root modulo p. Let t = [C : H]. Then, ρ^t is a generator of $H = \operatorname{Gal}(K/F)$ sending ζ_p to $\zeta_p^{g^t}$. For an element $\alpha = \sum_{\sigma} a_{\sigma} \sigma$ of FG and a μ_p -valued character ψ of G, let

$$\psi(lpha) = \sum_{\sigma} a_{\sigma} \psi(\sigma).$$

Here, σ runs over G. We have a natural isomorphism of \mathcal{O}'_F -algebras

$$\varphi: \mathcal{O}'_F G \to \mathcal{O}'_F \oplus \mathcal{O}'_K \oplus \mathcal{O}'_K \oplus \cdots \oplus \mathcal{O}'_K$$

 \mathbf{with}

$$\varphi(\alpha) = (\chi_0(\alpha), \chi(\alpha), \chi^g(\alpha), \cdots, \chi^{g^{t-1}}(\alpha)).$$

We easily see that

$$\varphi(\alpha^{\rho^{\lambda}}) = (\chi_0(\alpha), \chi^{g^{\lambda}}(\alpha), * \cdots, *) \quad \text{for } 0 \le \lambda \le t - 1$$
(7)

and

$$\varphi(\alpha^{\delta}) = (\chi_0(\alpha), \, \chi(\alpha)^{\delta}, \, \chi^g(\alpha)^{\delta}, \cdots, \chi^{g^{t-1}}(\alpha)^{\delta}) \quad \text{for } \delta \in H = \langle \rho^t \rangle.$$
(8)

Here, $\chi^{g^{\lambda}}(\alpha)^{\delta}$ denotes the Galois action of $\delta \in H$ on $\chi^{g^{\lambda}}(\alpha) \in K$.

Now, assume that F satisfies (A_p) or equivalently that $R(\mathcal{O}_F G) = \{0\}$. Let \mathfrak{A} be an ideal of \mathcal{O}'_K , and A the ideal of $\mathcal{O}'_F G$ with

$$\varphi(A) = \mathcal{O}'_F \oplus \mathfrak{A} \oplus \mathcal{O}'_K \oplus \cdots \oplus \mathcal{O}'_K.$$

Let $r \in \mathbb{Z}$ be an arbitrary integer. By Theorem 3 and (6), we have

$$A^{\theta_{r,C}} = \alpha \mathcal{O}'_F G$$

for some unit $\alpha \in (\mathcal{O}_{F,p}G)^{\times}$. We see from (3), (7) and (8) that

$$\varphi(A^{\theta_{r,C}}) = \mathcal{O}'_F \oplus \mathfrak{A}^{\theta_{r,H}} \oplus \cdots$$

Therefore, it follows that

$$\mathcal{O}'_F = \chi_0(\alpha)\mathcal{O}'_F$$
 and $\mathfrak{A}^{\theta_{r,H}} = \chi(\alpha)\mathcal{O}'_K$.

We see that

$$\chi_0(lpha)\in \mathcal{O}_F'^ imes\cap\mathcal{O}_{F,m{p}}^ imes=\mathcal{O}_F^ imes \quad ext{and}\quad \chi(lpha)\equiv\chi_0(lpha)m{ ext{mod}}\ \pi.$$

This implies that $\theta_{r,H}$ kills the class group $Cl_K(\pi)$. \Box

The following theorem was proved by Greither *et al* [5, Corollary]. Let $[\mathcal{O}_F^{\times}]_p$ be the subgroup of the multiplicative group $(\mathcal{O}_F/p)^{\times}$ consisting of classes containing units of \mathcal{O}_F .

THEOREM 4 (Greither et al.). If a number field F satisfies the condition (A_p) , then the exponent of the quotient $(\mathcal{O}_F/p)^{\times}/[\mathcal{O}_F^{\times}]_p$ divides $(p-1)^2/2$.

H. ICHIMURA

Using Lemma 2 and Theorem 4, we can show the following:

THEOREM 5. Let F be a number field, $K = F(\zeta_p)$, and $H = \text{Gal}(K/F) \leq C$. If F satisfies the condition (A_p) , then we have

$$Cl_{K}(\pi)^{S_{H}} = \{0\}$$
 and $Cl_{K}(p)^{H} \cap Cl_{K}(p)^{S_{H}} = \{0\}.$

Here, $Cl_{K}(p)^{H}$ denotes the Galois invariant part.

Proof. It suffices to show that

$$\mathcal{X} := Cl_K(p)^H \cap Cl_K(p)^{\mathcal{S}_H} = \{0\}.$$

As $Cl_K(\pi)^{S_H} = \{0\}$, we see that $Cl_K(\pi^p)^{S_H}$ and hence \mathcal{X} are *p*-abelian groups. For an integer $a \in \mathcal{O}_K$ and an ideal \mathfrak{A} of \mathcal{O}_K relatively prime to a, let $[\mathfrak{A}]_a$ be the ray class in $Cl_K(a)$ represented by \mathfrak{A} . Let c be a ray class in \mathcal{X} . As $Cl_K(\pi)^{S_H} = \{0\}$, we see that $c = [\mathfrak{P}]_p$ for some prime ideal \mathfrak{P} of K with $[\mathfrak{P}]_{\pi} = 1$. Hence, $\mathfrak{P} = \alpha \mathcal{O}_K$ for some integer α . As $c \in Cl_K(p)^H$, we have for each $\delta \in H$, $\alpha^{\delta} \equiv \epsilon_{\delta} \alpha \mod p$ with some unit $\epsilon_{\delta} \in \mathcal{O}_K^{\times}$. Therefore, $N_{K/F} \alpha \equiv \epsilon \alpha^d \mod p$ for some $\epsilon \in \mathcal{O}_K^{\times}$, where d = [K : F]. On the other hand, $(N_{K/F}\alpha)^{(p-1)^2/2}$ is congruent to a unit of K modulo p by Theorem 4. Therefore, we see that the order of $c = [\mathfrak{P}]_p = [\alpha \mathcal{O}_K]_p$ divides $d(p-1)^2/2$. Hence, we obtain c = 1 as \mathcal{X} is a p-abelian group. \Box

As for the condition (B_p) , the following assertion holds.

THEOREM 6. Under the setting of Theorem 5, assume that the natural map $Cl_F(p) \rightarrow Cl_K(p)$ is trivial. Then, F satisfies the condition (B_p) .

Proof. A slightly weaker version of Theorem 6 is given in [9, Proposition 1]. Theorem 6 is proved exactly similarly. \Box

Proof of Theorem 2. Assume that $S_H = \mathbb{Z}[H]$ and that F satisfies (A_p) . Then, $Cl_K(p)^H$ is trivial by Theorem 5. Hence, F satisfies (B_p) by Theorem 6. \Box

REMARK 2. The converse of Theorem 5 holds in some cases. (1) When $\zeta_p \in F^{\times}$, it is shown in [7, V, Proposition 1, 2] that F satisfies (A_p) if and only if $Cl_K(p) = \{0\}$. (2) Let p = 3 and $\zeta_3 \notin F^{\times}$. In this case, we have $S_H = \mathbb{Z}[H]$ by Lemma 1. It is shown in [8, Theorem 3] that F satisfies (A_3) if and only if $Cl_K(\pi) = \{0\}$ and $Cl_K(3)^H = \{0\}$. Using this, all quadratic fields satisfying (A_3) were determined ([8, Proposition 1]). Such quadratic fields were determined also by Carter [1] with a different method.

REMARK 3. Gómez Ayala [4, Theorem 2.1] gave a very explicit criterion for a Kummer extension of prime degree to have a NIB in terms of a Kummer generator. It is possible to show Lemma 2 directly from this criterion without using McCulloh's theorem. Actually, in the first version of this paper, the author showed Lemma 2 in this way.

References

- [1] J.E. Carter, Normal integral bases in quadratic and cyclic cubic extensions over quadratic fields, Arch. Math., 81 (2003), 266-271; Erratum, *ibid.*, 83 (2004), vol.6, vi-vii.
- [2] A. Fröhlich, Locally free modules over arithmetic orders, J. Reine Angew. Math., 274/275 (1975), 112-138.
- [3] A. Fröhlich, Galois Module Structure of Algebraic Integers, Springer, Berlin-Heidelberg-New York, 1983.
- [4] E.J. Gómez Ayala, Bases normales d'entiers dans les extensions Kummer de degré premier, J. Théor. Nombres Bordeaux, 6 (1994), 95-116.
- [5] C. Greither, D. Replogle, K. Rubin and A. Srivastav, Swan modules and Hilbert-Speiser number fields, J. Number Theory, 79 (1999), 164-173.
- [6] D. Hilbert, The Theory of Algebraic Number Fields, Springer, Berlin-Heidelberg-New York, 1998.
- [7] H. Ichimura, Note on the ring of integers of a Kummer extension of prime degree, IV, Proc. Japan Acad., 77A (2001), 92-94; V, ibid., 78A (2002), 76-79.
- [8] H. Ichimura, Normal integral bases and ray class groups, Acta Arith., 114 (2004), 71-85.
- [9] H. Ichimura, On a theorem of Kawamoto on normal bases of rings of integers, Tokyo J. Math., 27 (2004), 527-540.
- [10] H. Ichimura, Stickelberger ideals and normal bases of rings of *p*-integers, Math. J. Okayama Univ., in press.
- [11] H. Ichimura and H. Sumida-Takahashi, Stickelberger ideals of conductor p and their application, J. Math. Soc. Japan, 58 (2006), 885-902.
- [12] F. Kawamoto, On normal integral bases, Tokyo J. Math., 7 (1984), 221-231.
- [13] F. Kawamoto, Remark on "On normal integral bases", Tokyo. J. Math., 8 (1985), 275.
- [14] L.R. McCulloh, A Stickelberger condition on Galois module structure for Kummer extensions of prime degree, Algebraic Number Fields (Durham Symposium, 1975, ed. A. Fröhlich), 561-588, Academic Press, London, 1977.
- [15] L.R. McCulloh, Galois module structure of elementary abelian extensions, J. Algebra, 82 (1983), 102-134.
- [16] L.C. Washington, Introduction to Cyclotomic Fields (2nd ed.), Springer, Berlin-Heidelberg-New York, 1996.

Faculty of Science, Ibaraki University Bunkyo 2-1-1, Mito, Ibaraki, 310-8512, Japan E-mail: hichimur@mx.ibaraki.ac.jp

81