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Abstract. When n > 2m, the orbit decomposition of C™* ® C™ by the natural
action of SO, C X GLyC was studied more than twenty years ago. In this article,
the orbit decomposition is given for any n,m > 1. Then it turns out that there
is an orbit which is not appeared in the literature when n = 2m.

0. Introdﬁction

In an example [12, Example 9.2], the orbit decomposition of C" ® C™ by the
tensor product representation of the identity representations (0’s of SO,,C and
GL,,C was studied for n > 2m with m > 1: :

(804G Lm, My ;nC) := (SO,C x GL,C,0®0,C" @ C™).

However, by the orbit decomposition of the secant varieties of the adjoint
varieties or the study of hyperdeterminants [6, 7], it turns out that the
classification of orbits given in an example [12, Example 9.2] should be modified
if (n,m) = (4,2), where the orbit corresponding to a nilpotent orbit of s0sC
attached to a very even partition of the integer 8 is not appeared in [12, Example
9.2] (see Example 4.3).

This paper gives the orbit decomposition of (SO,GLy,, M;, ,nC) foranyn > 1
and m > 1, concretely (see Theorems I.4, 2.3, 3.1, Corollary 2.4). Then it turns
out that there is a unique orbit S,, /3 ¢ of O,C x GL,C that splits into two orbits
S7/2,00 St72,0 Of SORC X GLmC for even n < 2m (see |Propos1t10n 2.1, [Corollary]

3.2 with Figures 1, 2, 3, 4, Remark 3.3). And the orbit S n/2,0 iS DOt appeared

*Partially supported by the Grand-in-Aid for Scientific Reseach on Priority Areas (C)/(2),
No.10640046, Japan Society of the Promotion of Science.
1Pa,rtxa,lly supported by the Grand-in-Aid for Scientific Research on Prxorlty Areas (C) / (2),

Nos.10640046 and 15540066, Japan Society of the Promotion of Science.
2000 Mathematics Sub_]ect Classification: Primary 15A21, 20G20; Secondary 17B20
Key words and phrases: orbit decomposition, reductive linear groups, nilpotent orbits




40 : H. KAJI AND O. YASUKURA

in [12, Example 9.2] when n = 2m. Moreover, 57{52’0 exists apart from SI /2,0
also when n is even and n < 2m. It seems that the discussion in [12, Example
9.2] should be considered as the orbit decomposition by the natural action of
0,.C x GL,,C, but not the one by the natural action of SO,,C x GL,,C. And
the difference between them shows up when n is even (see (ii),
[Proposition 1.5).

The method of this paper except §4 is as same as the literature [12, Example
9.2]. The contents are organized as follows: In §1, a rough classification of orbits
is given for all n > 1 and m > 1 after [12, Example 9.2], which gives a complete
classification when n is odd. In §2, a complete classification is given when 7 is
even (Theorem 2.3). In §3, the closure relation in the set of all orbits is studied
(Theorem 3.1). When n > 2m or m = 1,2, the Hasse diagrams are also given
(Corollary 3.2 with Figures 1, 2, 3, 4). In §4 (Appendix), when m = 2, the
present orbit decomposition is compared with other classifications of orbits. In
particular, it turns out that the present orbit decomposition is finer than the
classification of nilpotent orbits (Examples 4.5, 4.6).

1. Basic results on the orbit decomposition

Let n and m be positive integers, and M, ,,C the set of all n x m complex
matrices. Put M,C := M, ,C with the identity matrix I,, of degree n, and
C" := M, :C. For z,y € C*, put (z|y) := ‘zy. And put g[,C := M,C with
the commutator as a Lie algebra, sl,C := {X € g[,C| trace X = 0}, s0,C :=
{X € gI,C| *X = —X}; GL,C := {g € M,C| det(g) # 0}, SL,C := {g €
M,C| det(g) = 1}, O,C := {g € MC]| ‘99 =In};

SO,C :=0,CNSL,C.

Denote by G, the subgroup O,,C or SO,C of GL,C with the identity represen-
tations: O : G, - GL,C;91 — ¢1 and O : GL,,C —» GL,,C;g2 — g2. Then
the tensor product representation p := [0 ® [J can be identified with the natural
action of the product group G, x GL,,C on M, ,C as follows:

p(gl9g2)X =91X tg2, (gl (S Gn, 92 € GLmCa X e Mn,mc)-
In general, put G,GL,, := p(Gn x GL,,C), that is,
O.GL,, = p(0O,C x GL,,C), SOn,GLn = p(SO,C x GL,C).

For X € M, ,C, clearly rank(X) and rank(*XX) are absolute invariants of
GnGLm. Let O(GnGLp, M, mC) be the set of all G,GLny-orbits in M, C.
For any integers v, u such that n,m > v > p > 0, put

Sy = {X € MpnC| rank(X) = v, rank(*XX) = p}.
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Then My mC = |, m>u>u>0 Sv.us Where each S, is an empty set or consists
of some orbits of G,GL,,. Put

T,, = {X-€ S,,| X = [X'|0] for some X' € My,C},

where O := O, m—, is an n x (m — v) zero matrix (or a blank when m —v = 0).
When v = 0, X’ denotes a blank and put M, oC := 0, so that To,0 := {On,m}-

PROPOSITION 1.1. Letn,m be positive integers, and v, u be integers such that
n,m>v>upu>0. Then:

(1) If X € S, ., then there ezists g2 € GLmC such that p(In,g2)X € Ty -
In particular, each orbit of Go,GLy, on Sy, contains an element of Ty, .

(2) For 11,Y2 € T,, with v < m, assume that g1Y1'g2 = Yz for some
(91,92) € Gn X GL,,C. Then there ezists g5 € GL,C such that

gg := diag(g3, Im—v) € GLnC

satisfies that g1 Y1'g5 =Ys.

(8) If n < m, then the following orbit correspondence is bijective:

O(GnGL,, M,C) = O(GpnGLp, My, 1, C);
(GaGLy) - X  (GnGLy) - [ X|On,m—n]-

Proof. (1) If v = 0, then X = Opnm, so that g := I, € GL,C satisfies
the assertion. Assume that v # 0, and put X = [z1,...,Zm] € Syu- Then
there exist i;,...,%, € {1,...,m} such that each z; is a linear combination of
Ti,,- .-, Ti,, where the coefficients of the linear combinations are given by a series
of elementary column operations. Since the elementary operations are realized
as the right matrix multiplication of the corresponding invertible matrixes, there
exists go € GL,,C such that

X, = p(In)g2)X = th2 = [xiﬂ ""z‘iulo]’

which is contained in T}, ,, as required.

(2) For i = 1,2, take Y{,Yy € M, ,C such that Y; = [Y/|O]. For (g1,92) €
G, X GL,,C such as g1Y1%g2 = Y2, take g11 € M,C,g12 € Myn—,C,g21 €
M, _,.C,g22 € Mp_, n—,C such that

_ [ 911 9G12 ]
g2 = .
g21 922
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Then ¢,Y{tg1; = Y, where rank(Y{) = rank(Y;) = v, so that g1 € GL,C.
Hence, the assertion holds for g5 := g11.

(3) The correspondence is surjective by (1), and injective by (2). O

For all integers v, such as m > v > p > 0 and n > 2v — u, one has that
2—p>0andn>vbyr>u>0(and n—v >n—2v+pu > 0), and put

I, Oy, v—p
(0 I, ‘
XI = Vv—p, B v—p M. ,
v,p Ov—p, " \/—'—IIV_“ € n,uC
(0] o
Ou, v—p o
‘ 1, o)
Xx,/’,p, = — 2; I:_# 0 ean,n—uC,
O In—2u+p,

Xy, =X}, ,|0On, m-v] € MpmC, Xy =X} ,|1X0,] € M,C and

Il“’ Ol“! v—u Ol‘w V—p o
5 Ov—p, | Ov—p, v—p Iy Y
= : : € M,C,
o Oy—p, p Iy Ov—p, v—u o
(@) 0 (0] In_2vip

where O; ; (or O) is the i X j zero matrix (or a blank when i = 0 or j = 0), and
I is the k x k identity matrix (or a blank when k = 0). ‘ ‘

Then X, , € Mn,C, X!, € MpnC, X, € T, 80d Xy, Zy € GLnC
such that ‘Xu,“)?u,“ = Z,,,,,. If v =0, then X, , = Xo,0 = On,m € M, nC, since
X!, = X} ¢ is a blank. Note that Zo,0 = I,. And that X, , € T,

PROPOSITION 1.2. Let n,m be positive integers, and v, u be integers such that
m>v2>u>0. Then:

(1) Ifn>2v—p, thenT, , #0.
(2) T, #0, thenn>2v —p.

(3) Ifn>2v—p and l/~7é 0, forY = [Y1|09,m_,,] e, wz'tli l:’l € J}Jn,,,C,
there exist g € GL,C and Y € GL,C such as Y = [Yig|*] and *YY =2, ,. If
moreover u =0, then g € GL,C can be taken as g = 1I,.

(4) Ifv =0, then T, , = {O} and *YY = Z, , for Y = I, € GL,C.

Proof. 1) Ifm >v >pu>0andn 2’211 — u, then there exists X, , € T, ,,
which is well-defined in the above construction.
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(2, 3, 4) If v = 0, then p =0, sothatT,,‘—Too—{O};é(bandn>0—
2v — u. In this case, Y; is a blank, Y =1, and 'YY = Zo 0, as required.

Assume that v # 0 and Ty, , # 0. Then there exists Y = [Y1| O] € T,,,, with
Y; € M, ,C # 0. Because of rank(*Y1Y1) = p and the Sylvester’s law, there
exists g € GL, C such that Y := Y7 g satisfies

'Y,Y, = diag(l,,0) € M, C # 0.
Take y1,...,y» € C" such that [y1,...,y,] = Y2. Then
(y‘IyJ)=61.1’ (yzlyk)=0(?v=1,,l/, .7=17"7”'7 k=[£+1,,l/)

Let V, be the linear subspace of C™ generated by 1, ..., Yy when p # 0 (When
p=0,put V, :={0}). Put V' := {z € C*| (z|]y) =0 (y € V, )} Since (x|*) is
non-degenerate on.V,, one has that C* =V, & V’, so that

n— p =dimcV’' >0,

and that (*|x) is non-degenerate on V.

If v = p, then n > p = 2v — u. In this case, by Sylvester’s law, there exist
w, € V' (1 < i < n— p)such that (w;|w;) = d;;. For Y™ := [wy,+, Wn—p] €
My n_,C, put Y := [Y3|Y*] € M,C. Then tYY = Z.,,,, = Z,,, as required.

Assume that v > pu. According to rank([y1, - - -, %»]) = rank(Y2) = v, one has
that rank(*[yu+1,...,%]) = v — u, so that

F:C(=V, V)2 C"#y - YYur1s o Wl

is a surjective linear mapping. And ker(f) 2 V. by {yu+1,-- %} € V'. Let
€1, -, €y—y be the standard basis of C*~#. For j € {u+1,...,v}, there exists
y; € V' such that *[yu+1,.. ,y,,]yJ = €j_p, %0 that (y;|yk) = 0, for all j, k €
{p+1,...,v}. For g} 1= ¢+ di_,4105k¥% € V' with a;x € C, one has
(v5lvk) = (y;-lyk) + a;k + ak,;. Take ajk = ak,j := —5(¥;lyk). Then

Wi lyk) =0 = (y;lyx) and (y;lyk) = ik

for all j,k € {u+1,...,v}. Hence, (*|*) is nbn—degenerate on a 2(v — p)-
dimensional subspace W := Cyn4+1 ® ... ®Cy, ®Cy}1 © ... ® Cy;, of V', so that
V' =W e W' for W := {z € V'| (z]y) =0 (y € W)}. In particular,

n—2v+p=(n-—p) -2 - p) =dincV’ — dimcW = dimcW’ > 0.

And (|*) is non-degenerate on W’. By Sylvester’s law, there exists an orthonor-
mal basis of W, that is, w; € W’ (1 < i < n — 2v + p) such that (w;w;) = 6 ;.
For Y™ := [y 415+ Yp» W1, - y Wn—2p4+u] € Mpn_,C, take Y :=[Y2]Y*] € M,.C.
Then *YY = Z, ,, as required. O
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PROPOSITION 1.3. Letn,m be positive integers, and v, u be integers such that
m2>v2>u>0. Then:

VDS, #0e T, ,#0n>2v—pu.

(2) Ifn>2v—p, then S, , = O,GL, - X

(3) Ifn>2v—p, then S, = SO,GLm - X, 0.

(4) If n>2v — p and p > 0, then S, , = SO,GL,y, - Xou-

Proof. (1) The first equivalence comes from Proposition 1.1 (1). And the second
equivalence comes from [Proposition 1.2

(2) Assume that n > 2v — p. It is claimed that for any Y € S, there exists
a € OnGLp, such that o- X, , =Y. Because of Proposition 1.1 (1), it can be
assumed that Y = [Y1|0] € T,,,. f v = 0, then Y = X, , = O, as required.
Assume that v # 0. By [Proposition 1.2, there exists Y such that

YY =X, ,X,,.,

and that there exists g € GL,C such that Y = [Y1g|#]. Put go := YX v, }, Then
go € O,C by the above equation. And goffu,u =Y. In particular,

gOX:/,y, = Ylg and gOXu,u = [nglon,m—u]-

Hence, goX,,.diag(97}, Im-y) = [Y1|Onm-v] =Y, as required.
(3) Assume that n > 2v — u. Then

*
Xlw Bl [ On—2u+u, m ] '

where the two sizes of Op_2,+,, m are positive, so that On—2v+4p, m do exist. If
n=1,then X, , = On_gp4y, m = SO,GLy, - X, ,,. Assume that n > 2. Then
In_1, := diag(ln-1,—1) € 0,C\SO,C satisfies I,_11X,,, = X, . For any
hg € OnGLm\SOnGLm, put hy = hoOp(I —1,1)Im)- Then h, € SO,,GL,, such
that h1 X, = hop(In-1,1, Im) Xy, = hoX, .. Hence, one has the result by (2).
~ (4) For 4 >0, put I} := diag(—1,I,—;). Note that I, is a blank when p =
1. Put g := diag(l}, In—u) € OnC\SO.C and g, := diag(I}, Im—n) € GLnC.
Then p(g1,92) Xy, = Xu . by virtue of

I, | O
XV’“=[5 *]’

where I, do exist. For hy € 0,GL,,\SO,,GL,,, put hy := ho o p(g1,92)- Then
hi1 € SOnGLy, such that h1 X, , = ho(p(g1,92)X,,.) = hoX,, .. Hence, one has
the result by (2). O
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THEOREM 1.4. Let n,m be positive integers. Then:
(1) O(OnGLpm, My mC) = {Syul m>v > p >0, n>2v—pu}.
(2) If n > 2m or n is odd, then

O(S0,GLp, My, ,C) = O(OnGLy,, My, 1, C).
(3) If n > 2m, then
(W m2r2p20, n>2w-p}={@Gw| m>v>up>0}

which consists of (m + 1)(m + 2)/2-elements.

Proof. (1) By virtue of [Proposition 1.3 (1), one has that

Mﬂ,m(C = I_J Su,p.a

m2v2u>0, n>2v—p

where each S, , is one orbit of O,GL,, by [Proposition 1.3 (2). And the distinct
(v, 1) gives a distinct orbit, because (v, ) is an invariant of the action.

(2) Assume that n is odd or n > 2m. For any (v, u) suchthat m > v > >0 .
and n > 2v — u, one has that 4 > O or n > 2v — yu. In fact, if p = 0 and
n = 2v — p, then n = 2v < 2m, which contradicts with the assumption that n
is odd or n > 2m. Hence, for m > v > p > 0 and n > 2v — u, each Sy, is
non-empty and one orbit of SO,,GL,, by [Proposition 1.3 (3) and (4), as required.

(3) Assume that n > 2m and m > v > p > 0. Then

n—2u+p22m—2u+p=2(m—u)+u'20,

so that {(v,u)l m>v>p>0, n> 20— u} = {(v,p)| m> uZuZO}; The
cardinality of this set is equal to: >ovo(Xh0l) = X 0Lo(v+1) = (m+1)(m+
2)/2, as required. O

Note that (2) with an odd n also follows from the following
proposition with an odd n > 1 (cf. [12, Example 9.2, £.14]).

PROPOSITION 1.5. For anyn > 1 and any m > 1, one has that:

2 (if n is even)

[OnGLm : S5OnGLm] = { 1 (otherwise)

Proof. Note that [0,C x GL,,C: SO,C x GL,,C] = 2. Hence,
[0O.GL,, : SO,GL,,] < 2.
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If n is odd, by virtue of O,C = SO,C U (-1,)S0O,C and p(—1I,,I,) =
p(In, —Ip,) with —I, € GL,,C, one has that O,GL,, = SO,GLy,.

If n is even, it is claimed that any (g1, 92) € (OnC\SO,C) x GL,,C satisfies
that p(g1,92) € SOrGL,,. In fact, assume that p(g1,92) € SO,GL,,. Then
there exist (g3,94) € SO,C x GL,,C such that p(g1,92) = p(g3,94). Hence,
p(91935 19297 !) = idm,, ,.c, so that AXB = X for all X € M, »,C with A :=
9195 B == "*(g297").

Take X = E; ;, the matrix whose (k,{)-component is equal to dx;d¢;. Put
A= Ek,l ak[Ek,g and B = Zk',t' bklelEk/,[l. Then

AE; ;B = axbje By,
k

which should be equal to E; ;. By B € GL,,C, ar; =0if k #i. By A € GL,C,
bje = 0 if £/ # j. Hence, A = diag(aii1,...,ann) and B = diag(b11,...,bmm).
Considering AE; ;B = E;; again, one has that (4, B) = (cl,,c"!I,;), where
c==x1by A€ O,C. If c =1, then (g1,92) = (93,94) € SO,C x GL,,C, that
contradicts with the choice of (g1, 92). If ¢ = —1, then (—g1,—g2) = (93, 94) and
—g1 = g3 € SO,C. Hence, 1 = det(g3) = det(—g1) = (—1)"det(g1) = (-1)"*1,
by virtue of g; € O,C\SO,C, so that n is odd, that contradicts with the choice
of n. O

By virtue of Proposition 1.5, it turns out that the sentence at the lines 12-14
in [12, Example 9.2], “and hence there exists g3 € O(n) satisfying ... By the
action of GL(m), we may assume that g1 € SO(n), ” should be modified when
n is even.

2. Main results on the orbit decomposition

Since SO,GL,, is a subgroup of O,GL,, with a finite index N; < 2, each
OnGL,-orbit is decomposed into a finite number N3 of SO,,GL,,-orbits satis-
fying that 1 < N < N; < 2.

To complete the classification, we now decompose an O, GLp,-orbit S, , into
S0, GL,,-orbits, in the case when

2m>n=2vr>2 and u=0.

This is the case not covered by Proposition 1.3 (3), (4) and (2),
where the case of v = 0 was already discussed in [Proposition 1.3 (3) since the -
condition n > 0 = 2v — u follows from 0 =v > u > 0.

PROPOSITION 2.1. Assume thatn =2v andm > v > 1. Then S, ¢ consists of
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two orbits SI o, SI% of SOnGLm, whose representatives are given by X, 0 € Sl
and Y, 0 :=I X, 0 € SI} for I} := diag(—1, In—1).

PT'OOf. (1) SU,O = SOnGLm ’ XV,O U SOnGLm : YV,O'
In fact, because of Proposition 1.3 (2), one has that
800 =OnGLy, - X, 0 = p((SO,C U (SO,C)I) x GLKC) - X, 0
= SO.GLy, - X,0USO,GLy, - I1 X, o
= SOnGLm * XU,O U SOnGLm * YV,O'

(2) For any [y1,..;Yv|Onm—v] € Tyo with2 < n = 2v < 2m, put V :=
Cy®..®Cy and V' :={z € C"| (z|y) =0 (y € V)}. Then
Vi=V.

In fact, note that (y;|y;) = O for all 4,5 € {1,...,v}, so that V C V.
Conversely, put Y7 := [y, -, yv]. By [Proposition 1.2 (3), there exist g € GL,C
and y7,...,y; € C" such that Y := [Y1g|y}, ..., y)] € M,C satisfies

S o 1
tYY = ZU,O = [ I, OV ] € GL,C.
Put [y},---,9.] := Y19. Then linear combinations of y! (i = 1,---v) are con-

tained in V. By Y € GL,C, for any = € C", there exist c;, cdeC(i=1,--,v)
such that z = Y0, (c;} + cy?). In particular, if z € V7, then ¢ = (z|y}) =0
foralli=1,-.-,v, so that £ € V. Hence, V/ C V, as required.

(3) SORGLy, - X, 0 # SORGLy, - Y, 0.

If not, there exist (g1,92) € SO, x GL,,C such that p(g91,92) - Xv,0 = Yo 0.
By Proposition 1.1 (2), it may be assumed that there exists gy € GL,C such
. that g, = diag(g}, Im—y) € GLnC. Put [Y,o|Y] := I3X,0 € GL,C. Then
91X, 0 *(93) =Y, o. Hence,

Y, o(91 X0 0(95) ™) = (95 ' XL 0 *91) (91 X 0(92) ")
=g tXL,oXL',O (95) Y=gl (g)" =1, = tYu’,o o

so that *Y} (91X] o(93) "1 —Y,)s) = O. By (2), there exists g’ € GL, C such that
N1 X70(92) = Yo =Y, od/, that is: g1.X[5(95)™" = Vo + ¥ 09" Then

91[X,, 0l X, oldiag(*g5, (92) 1) = [Yy0lYio + Yu 0d']-
Taking the determinant of the both sides, one has that
det(X,,0) = det([X},o| X7 o]) = det([¥,o|Y;/o]) = det(I3Xy0) = —det(Xy,0),

S0 .that det()-(,,,o) = 0, which contradicts with Xy,o €eGL,C. O
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NOTATION 2.2. Let n,m be positive integers. Put S;, , := SOnG Ly, - X, ,, for
any integers v, u such that m > v > u > 0 and n > 2v — u. If n is even, then

n n

THEOREM 2.3. (1) If n is an even number such that 2m > n, then

O(SOnGLm, Mn,mc) = {Szl/,pl

m>v>p>0, n>2w—ptu{S,.}.
(2) If n = 2m, then
O(SOnGLm, My mC) = {S, .| m>v > pu>0}U{S})5 0},

50 that #:0(SOnGLum, MnmC) = (m +1)(m +2)/2 + 1.

~ Proof. (1) By Proposition 1.3 (1), Mn,mC = |Un>u5u50, n>20—p Svm- BY
Propositions (3), (4) and 2.1, if n is even and 2m > n, then

S = S}'u,p (i.fn>2v‘—uoru>0)
s Spj20 (fn=2v and p=0),

so that ,

S, . = SL,“ (ifn>2v—porpu>0)
v,u :,/2,0 u'slfz,o (if n=2v and p= 0)_

n

(2) If n = 2m, by (3), the assertion follows from (1). O

A classification of orbits of (SO,GLm, M, ,»,C) withn > 1andm > 1is then
completed by Theorems 1.4 (2) (if n > 2m or n is odd) and 2.3 (1) (if n > 2m
and n is even).

In particular, for m = 1,2, one has the following result.

COROLLARY 2.4. (1) O(SO1GL,, M; 1C) = {So,0, S1,1}
(2) O(SOzGL1,M2,1C) = {So,o, S{,O’ S{,Io, v31,1}.
(3) If n > 3, then O(SO,GL1, M, 1C) = {So0, S1,0, S1,1}-
(4) O(SO1GL2, M1 2C) = {So,0, S1,1}-
(5) O(SO2G Ly, M3 5C) = {So,0, S10, Sih, S1,1, S22}
(6) O(SO3G L3, M32C) = {S0,0, S1,0, S1,1, S2,1, S2,2}-
(7) O(SO4GL2,M4,2C) = {So,o, Sl,o, 51,1, S%,O’ S%’Io, 52,1, 82,2}.
(8) If n > 5, then

O(SO,GL2, M,, 5C) = {S0,0, S1,0, S1,1, S2,0, S2,1, S22}
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Proof. By Theorems 2.3, .4 (2), Xo,0 = On,m and solving the condition:
m2v2>2pu>0andn>2v—py; or2m>n=2v and u =0,

one has the required result. In fact:

(1,2,3) Pt m=1. By 1 > v > u >0, one has that

| (v,u) = (1,1),(1,0), or (0,0).

Then 2v —p=1,2,0r 0. By 2 > n = 2v, (n,v) = (2,1).

(4,5,6,7,8) Putm=2. By 2> v > u >0, one has that

(v,u) =(2,2),(2,1),(2,0),(1,1),(1,0), or (0,0).

Then 2v — 4 =2,3,4,1,2,0r 0. By 4 > n=2v, (n,v) = (2,1) or (4,2). O

3. Hasse diagrams

For a subset V of M, C, let V be the Zariski closure of V in M, C. For
two orbits S, S’ € O(SO,GL,, M;, ,,C), S < S’ means that S C §’. Note that
S§=_58"ifS< 8 and 8 < S. Note that every orbit is Zariski open in its closure
(14, 2.3.3.Lemma), so that § = S’ in this case. Hence, < defines a partial order

on O(SO,GLy, M, ,C) (cf. [5, p.55]). If S < &’ and S # S’, then write S < 5.
On the other hand, a partial order < in Z2? is defined as follows:
For (v,p), (V',1') € Z, (v,u) < (V', ') if and only if v < v/ and p < p'. And

(v, 1) < (v, ') means that (v, ) < (v, 1) and (v, ) # (V', ')
 In general, a lattice representing a partial order on a set O is called the Hasse
diagram of the partially ordered set O.

THEOREM 3.1. Let n,m be ﬁzed positive integers. Then:
(1) If n > 2m or n is odd, then
O(80nG L, MpmC) ={S., | m>v > pu >0, n> 2w — p}
and that S;, , < S,, ., if and only if (v, p) < (V', 1').
(2) If n < 2m and n is even, then
O(SOnGLm MpmC) ={S, .| m>v>p>0, n>2v—p} L {s? /2 ot

and that S7 , < Sfj,,#, if and only if (v, u) < (V', '), where a and b take ' or II,
independently, that is: ~

Sx’/, < Sz,/’,p.’ Aad (V, ﬂ) < (V,a”’);
SI/20 < SLI’#I =4 ('n/2, 0) < (Vl,ﬂ:,);
Sl <Sn/20®('/’#) <(n/2 0)

‘and that there is no relatzon between S’ /2,0 and S n/2,0°
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Proof. The orbit decompositions in (1) and (2) follow from Theorems I.4 (1),
(2) and 2.3 (1). Hence, it is enough to determine the partial ordering among the
orbits.

(1a) Note that S, , = S,,,. In general, since the upper bound v (resp. u)
of the rank of a matrix X (resp. !XX) is defined as a zero set of all minor
determinants of size v (resp. p), one has that

S, € {X € M, mC| rank(X) < v, rank(*XX) < pu}.

v < Sy thenv < v and u < y', by the above equation and the fact that
rank(X,,,) = v, rank(*X, , X, ,) =pand X, , € S, .. ’

(1a") If S}, , # S} ., then (v, p) # (V/, 1').

By (1a) and (1a’), “only if”-part of (1) is proved. Conversely, assume that
v<v' and u <y in (1b, ¢, d, ) in the below:

(1b) If v — > 0 and S}, , # @, then there exist non-empty

IS, , <S5,

7] . ’
FPNETEEARTY I MR WRERRE S

such that S}, , < --- < S,_,,
k€ {1,---,v — u}, one has that

<8, < Spur1 < o0 < S, - In fact, for

. ! (ifo<e<l)
diag(loy—p—k, €lxy In—204+4) Xou € { SZ:I:-I-k (fem1),

and that

o S,, (f0<e<1)
Xy, diag(ly—r, elk, Im—v) € { ' (if € = 0).

v—k,p

Note that Zariski closed set is also closed by the Euclidean topology, so that
Zariski closure contains the Euclidean closure. :

(1c) If 4> 0 and S, , # O, then there exist non-empty

L1 o0
such that S}, > §)_; 41 > -+ > Sh_o- In fact, for k € {1,---,},
_ | s (if0<e<)
v, y
diag(elk, In-k) Xv,u € { Sl,/—k,y.—-k (if € = 0).

(1d) If v < 4/, then S, < Si,, < Sl . < SL ., by (1b), (1c) and (1b).
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(le)If o’ <v,thenv—pu>v—p' >0and v/ — u' > v —p' >0, so that

Syu <8 <8

by (1b). By virtue of (1d) a.nd (1a’), one obtains the “if”-part of (1).

(2a) 81750 £ S} 30 and S, £ SH, .
In fact, assume that S /2,0 < ST /2,00 BY s1 n/2,0 = ISt n/2,00 One has that

135} 150 € 5% j20-

Since any orbit is open in its closure [14, 2.3.3.Lemma), SI /2 o 18 open dense in

sI /2,0- Since X +— I'X is a linear bijection, it is homeomorphic with respect to

Zarlskl topology. Hence, I! S is also open dense in SI ,, ., so that nst, .n
n/2,0 n/2,0 /2 0
S, /2 o ¥ 9, whlch contradlcts with [Proposition 2.1. Hence, S, /2 0 XS /2 0
Similarly, S n /2 0 £ 820 ,
(2a) Assume that S, , < S}, ,, (resp. S5, < S ). Then v < v/ and’

p <y, as well as (1a). If (v, u) = (v, u'), then Sou= S', , (resp. a = b and
SS.u = S ., by (2a)). Hence, (v, u) ;é (v, ), 50 that the “only if”-part of (2)
follows. Conversely, assume that v < v/, p < o/ and (v, u) # (V, 4'):

(2b) For any n, (1b) holds also in the case of (2). If n is even, then Si/, , #
@ and there exist non-empty S’ n/2,10 , ST, /2,n/2) S, /2_1,0,--‘,56,0 such that

0,0 < < 8y 10<S /20<S /21 <* <S'/2n/2

In fact, the first claim follows as well as (1b). The second claim is also
proved as well as (1b) by replacmg X, to ILX, ,, because of I.S], , = S, , for
(v, ) # (n/2,0).

(2¢) For any n, (1d) and (1e) hold also in the case of (2), by the first claims
of (2b) and (2c), as well as (1d) and (le). By virtue of the second claim of (2b),

one has the “if”-part of (2). O

COROLLARY 3.2. If m = 1,2, or n > 2m > 2, then the Hasse diagram of

O(SOnGLm, My,mC) is given as the following Figures 1, 2, 3 or 4.

Proof. It follows from combined with Theorems 1.4 (2), (3), 2.3 (2)

and (Corollary 2.4, O




52 H. KAJI AND O. YASUKURA

Sm,m
/
Sm,m—1
/N
Sm,m—2 Sm—1,m—1
JoON s
/ Sm—1,m-2
Spm,2 / AN
/ AN / . Sm—2,m—2
Sm,1 Sm—1,2 /
/ AN / AN /
Sm.,0 Sm-1,1 Sm—2,2
AN / AN / AN
Sm—1,0 Sm—2,1
AN / AN AN
Sm—2,0 S2,2
AN AN /
S2,1
AN / AN
Ss0 Si1
AN /
S1,0
AN
So,0

Figure 1 Hasse diagram of O(SO,GLy,, M, nC) with n > 2m > 2.
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Sm,m
/
Sm,m-1
/ AN
Sm,m—2 Sm—1,m-1
/ AN /
/ i © Sm-1,m—2
Sm,2 / N\
/ AN / i , Sm-2,m—2
Sma1 . Sm—1,2 /
7 1\ / AN /
Smo  SHs  Sm-11 Sm—2,2
N |/ AN / N
Srm—1,0 Sm—2,1
AN / AN AN
Sm-2,0 S2,2
N\ AN /
S2,1
AN / AN
S2,0 S11
AN /
S1,0
N
So,0

Figure 2 Hasse diagram of O($0,GL,, M;, »C) with n = 2m > 4.

53
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S2,2
S2,2 |
| S2,1
S1,1 S11 |
| / AN S1,1
So,0 S{o Si% |
(n=1) N / S1,0
~ So0 I
(n=2) So,0
(n=3)
Sa2 S2,2
| | |
Sa21 S2,1
A BN / AN
S50 836 Sia S0 S1,1
N |/ AN /
S1,0 : 51,6
| | e
So,0 So,0
(n=4) (n>5)

Figure 3 Hasse diagrams of O(SO,GL2, My, 2C) with n > 1.
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- Sia 511
S1,1 / AN | |
| St Sih S1,0
So,0 N\ / |
(n=1) So,0 So,0

(n=2) (n>3)

Figure 4 Hasse diagrams of O(SO,GL1, M,,;C) with n > 1.

REMARK 3.3. The holonomy diagram of (SO,,GL,, M, ,,C) with n > 2m
given in [12, p.171, Fig.9.3] is isomorphic to the Hasse diagram in Figure 1 with
n > 2m, which is not isomorphic to the one in Figure 2 with n = 2m > 4, Figure
3 with n = 4, nor Figure 4 with n = 2.

COROLLARY 3.4. Ifm>v>pu>0 andn > 2v — pu, then

Suu={X € My, nC| rank(X) < v, rank(*XX) < u}.

Proof. fm>v> p>0and n > 2v — pu, then Spy , # 0, by X, , €S, .. By

the “if”-part of [Theorem 3.1|, one has that

gu,y. 2 U{Su’,p’| m2v > >0, n>2 -y v <y, l"l < p}
= {X € M, nC| rank(X) < v, rank(*XX) < u}.

By virtue of the reverse equation in (1a), one has the result. O

4. Appendix: Notes on the orbit decomposition for m = 2

In this section, when m = 2, the classification of orbits given in this paper is
compared with other classifications of orbits given in the study of the secant va-
riety of the adjoint variety, the hyperdeterminant, or a classification of nilpotent
orbits in a complex simple Lie algebra, respectively.

For a complex vector space V, P, (V') denotes the complex projective space of
V with the canonical projection 7y : V\{0} — P.(V). For a linear subspace W
of V, put P, (W) := my(W\{0}). For a projective variety X in P,(V), the secant
variety S(X) is defined as the Zariski closure of the union of complex projective
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lines z * y in P, (V') through two distinct points = # y in X:

SX)= |J =zxyCP.V).
z,y€X,z#y

Let g be a complex simple Lie algebra, B the Killing form, § a Cartan sub-
algebra, A the set of all non-zero roots w.r.t. h. For a € A, put

8o :={X €g|[H,X]=a(H)X,H €h}

and T, € b such that B(T,,H) = a(H) for all H € h. Let A% (resp. A\) be the
set of all positive roots (resp. the highest root) w.r.t. a lexicographic ordering
in the real form hr. After H. Asano [1, pp.22-23), [2, p.48], take X1 € g+ in
a Chevalley basis, that is, B(Xx, X_») = 2/B(T4,T,), and put Hy = [X, X_,]
and g; := {X € g| [Hx,X] = iX} (i € Z). Then g = ®?__,g; such that
8o = h & @aer(ga S Q—a)’ g1 = @aEA1gaa~9:i:2 = g+ with dlmC g+2 = 1’
where A1 = {a € AT| A —a € A} and &g = {a € A*| B(T\,T,) = 0} (see
J.A. Wolf (18, 4.2.Theorem]). For the inner automorphism group G := Int(g) of
g, put X(g) := G - P.(g2) € P.(g), which is called the adjoint variety of g (see

&)

PROPOSITION 4.1. (1) g; = {0} if and only if the type of g is A;.
(2) X(g) NP.(g1) = 0 if and only if the type of g is Ay or Cp with £ > 2.

Proof. (1) Put s := CH) & CX),, ® CX_,, which is a three dimensional simple
A;-type subalgebra of g. If the type of g is A;, then dim¢ g = 3, so that
dim¢ g1 < 3 — dimg sy = 0, that is, g; = {0}. If g; = {0}, then A; = 0 and
g—1 = {0}, so that s, is a non-trivial ideal of a simple g. In this case, g = s, as
required.
: (2) According to Asano [1, 2], for P,Q € g;, put PxQ € goand< P, Q@ > C
such that P x Q = —([Q, [P, X—x]] + [P,[@, X_,]})/2 and [P,Q] =2 < P, Q >
X). Put [PQR]) :=[P x Q,R] € g1 for PQ,R € g1. Put M := {P € gnl|lP #
0,P x P = 0}. By [9, Theorem B], one has that

X(g) NPy(g1) = mg(M).

Put £ := rank(g) and g(P) :=< [PPP],P > for P € g;. If £ = 1, then the type
of g is A1, so that M =@, by (1). In this case, X(g) NP.(g1) = 0.

Assume that £ > 2. By (1), g1 # {0}. And the following equations are
obtained for P,Q, R € g; [2, Theorem 5](cf. [11, Lemmas 1, 2, 3]):

(S0) < [PQR],S >+ < R,[PQS] >=0;
(S1) [PQR]=[QPR];
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(S2) [PQR]-[PRQ]=2<Q,R>P-<R,P>Q—-<P,Q>R;
(S3) [Px Q,R x S] =[PQR] x S+ R x [PQS].

Hence, (g1, [PQR], < P,Q >) is a symplectic triple system in the sense of K.
Yamaguti and H. Asano . Note that A — a € A for all a € A;. Hence,
[81,81] # {0}. Then < P,Q ># 0. By Asano [2, Theorems 1, 4, 5] (cf. [1,
Theorems 2.10, 2.11, Corollary]), < P,Q > is non-degenerate since g is simple.

If the type of g is Cy, by a direct calculation of the matrix Lie algebra of
type C¢ (e.g. [13, pp.14-16]), there is a complex linear isomorphism f : g; —
C2(¢=1) such that < P,Q >=< f(P), f(Q) >' and [PQR] = [f(P)f(Q)f(R)
for P,Q, R € g;, where

(Cl) <z,y>'= Zf;ll(xiyiwq - Tite—1¥i);
| (C2) [zyz] =<z, 2> y+<y,z2>'=z
for z,y,z € C2¢~1) (cf. [17, 2.9.Theorem]). In this case, [zx2) =< z,z >’ x, s0
that M = 0. Conversely, assume that M = (. By [11, Corollary Al], ¢(P) = 0.
In this case, [PQR] =< P,R > Q+ < Q,R > P for P,Q, R € g1, by Asano [17,

1.6.Theorem]. Then g is isomorphic to a complex simple Lie algebra of type C;
by [17, 2.9.Theorem]. O

Put Gy := Intg(go), as the connected Lie subgroup of G corresponding to go.
Let g,: be the set of all nilpotent elements in g, and put

S(X(8))nit := S(X(g))- N 7(gnit\{0})-

According to g1 C {X € g| (adX)® = 0}, one has that g, 2 g1, so that

S(X(g))nit 2 P.(g1). Hence, a natural map between the spaces of orbits is
well-defined [10, p.33]:

U : O(Go,Pu(g1)) = O(G, S(X(8))nit)-

PROPOSITION 4.2. The mapping V¥ is surjective if and only if the type of g is
not Ay nor Cy (£ > 2).

Proof. By [10, Proposition 1], O(G, S(X(g))ni) \ {X(g)} C Image(¥). By
IProposition 4.1 (2), one has then the required result. O '

EXAMPLE 4.3. Note that (SO,GLy, M, 2C) is equivalent([13, §2, Definition
4]) to (Go, g1) for g = 50,,4C of type B(n+3)/2> D(n+4)/2 With n > 3 or A3 with
n = 2. When n > 3, (that is, g = s07C, s0gC or s0;>9C), the Hasse diagram of
(G, S(X(8))na) given in [10, p.29] is isomorphic to the Hasse diagram without
So,0 in Figure 3 with n =3, 4, or n > 5, respectively. In this case, ¥ is
an isomorphism (cf. [10, Remark.(c)]). When n = 4, the overlooked orbit of
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(SO4GL3, M4 2C) in corresponds to a nilpotent orbit of sogC attached to
a very even partition of 8 = n+ 4 in T. Springer and R. Steinberg’s theory on
the nilpotent orbits in so,4C with an even n > 4 [15, 3, 4, 5]. Since a triplet
(S804C,0,C*) is equivalent to a triplet (SLoC x SL,C,0 ® O,C? ® C2), this
orbit decomposition is equivalent to the following Example 4.4:

EXAMPLE 4.4. ([6, Example 5.5], [7, Theorem]). Put V := C? ® C? ® C2,
Eijk :=e; ®e; ® ek (4,7, k € {1,2}) with e; =?[1,0],e5 = *[0,1]. Then a triplet
(GLoC x GL,C x GL,C,0® O ® [0, V) has seven orbits represented by

E111 + E222, E211 + Eh21 + E112, E111 + Er22, F111 + E212, E111 + Ea21, E111, O.

Let K be an algebraically closed field of characteristic p 2 2. In [7, Theorem],
it is proved that this orbit decomposition holds also when the basic field C is
replaced by K, and that the orbits are completely characterized by the values of
indices (ry,r2,73; D), as follows:

(2,2,2;#0),(2,2,2;0),(2,1,1;0),(1,2,1;0),(1,1,2;0),(1,1,1;0), (0,0, 0;0),

where D := (az — by — cz + dw)? — 4(ad — bc)(wz — xy) is the hyperdeterminant
of Y = aEy11 + bE121 + cEa11 + dE221 + wE112 + TE132 + yE212 + 2E252 € V,
and the r; (i = 1,2, 3) are the ranks of a hypermatrix Y defined as follows:

r1 = max{rkY (f,*,%)| f € (K?)*},
re := max{rkY (x, f, ¥)| f € (K?)*},
r3 := max{rkY (, x, f)| f € (K?)*}

for Y € V as an element of the dual space V** of the dual space V* of V.

EXAMPLE 4.5. When n = 2 in Example 4.3, g = s06C(= s14C) and the Hasse
diagram of (G, S(X(g))ni) given in [10, p.28] is looser than the Hasse diagram
without Sp o in Figure 3 with n = 2 (cf. (5)). In this case, ¥ is
not injective (cf. [10, Remark.(c)]), which implies that the orbit decomposition of
(802G Ly, M; 2C) is finer than the classification of nilpotent orbits of g = s0C
intersecting with g1 by the action of the inner automorphism group Int(g) of g.
More directly, this fact is also realized by the following Example 4.6.

EXAMPLE 4.8. For A4,B,C,D € MC, put X(4,B,C,D) := [ g g ]’

Y(A;B,C) = X(A,B,C,-—tA). Put Ty := %X(Ik,fk,\/—lfk,—\/—-lfk),
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Szk = thkTZk = Y(O;Ik,Ik) and ossz = {X € g[szI tXS2k =<—S2kX}
with a Cartan subalgebra b := {H (A1, -, )| M €C (i=1,---,k)};

H(Aq, - -+, M) := Y (diag(A1, - -, Ak); O, O) € 052kC,
and the Killing form B(X ,Y) = (2k — 2) trace(XY'). Note that
8 :=089;xC = {Y(4; B,C)| A € MyC; B, C € s0;C},

which is isomorphic to $09,C by X — T5xXTor.”!. When k = 3, the root
system of g w.r.t. b is given by A := {£(X\; £ X)| 1 < j < k < 3} with
root vectors xx;_x, = Y(Ejx; 0,0), zx, 42, := Y(0; Ejg — Exj,0), _5,-», =
Y(0;0,—Ej; + Ey;) for the standard matrix basis Ej;x of M3C. Put a; :=
A2+ A3, @z := A1 — Ag, ag := A2 — A3. Then Il := {a;, a2, 03} is a fundamental
root system with the following Dynkin diagram of type Az: ©—¢ —0 (cf.
(13, Example 27]). The highest root is given by A := A; + A2. Let ty € b be
such that B(tx,H') = A(H') for all H' € h. Put hy := 2t\/B(tx,tx). Then
hx = H(1,1,0) = [zx,z_,]. For i € Z, put

gi := {X € g| [hs, X] = iX}.

- Then go = {Y (diag(A1,a2);0,0)| A1 € M2C, az € C},

O A 0 B
o= {r (8 45 o oramsncic)

8-1 = {X € g/ *X € 1} and gis = Cazza, so that g = @i__,g; is a Z-
gradation of complex contact type. Note that gg is identified with sooC @ gI,C
by Y(diag(41,a2);0,0) — T; diag(az, —a2) T; ' & A, so that the action of
Intg(go) on g; is equivariant to (SO2G Ly, M, 2C) by o
—B12 ]

O A B

O 0 —*Biz 0 ]’O)HTz[

By (5), the representatives of O(SO2GL2, M, 2C) are given by O,
X1,0, Y1,0, X1,1, X2,2. Up to GLyC-action, their images by F~* equal O, X7 :=
Y(O; —Ei3 + E31,0), Y7k := Y(—Es13;0,0), X7, := Y(—E13; —E13 + E31,0),
X35 1= Y(—E13 — Eg3;—E13 + Ez3 + E3; — E32,0), respectively. For (j, k) =
(0,0),(1,0),(1,1),(2,2), put X = ""X;x and Hj := [X;:k’Xj—,k]' And put
Yio:= tYlTO? H{,{) = [ﬂfmﬁ?o]- Then {Hj,k,X;fk,X;,'k} and {H{,{),nfo’yfo}
are sl;C-triplets. And the weighted Dynkin diagram As of H} (= Hj,x or H{})
is translated by the Weyl group of g = 0s56C = s14C to the following canonical
forms (see [10, p.40, Recipe)):
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2 0 2

Hs5: o0—o0—o0

0 2 0

H 1.1+ O—0—0

1 1—10.:? 1 0 1

Hyp: o—o0—o0 0—0—o0
-1 1 1 -4 1 0 1

H 11 ,{) : 0—0—0 ¥ 0—0—0
0 0 O

O39: 0—o0—0

Hence, Xif o and Y{f’o stand on the same orbit of (Int(g), g). However, they does
not stand on the same orbit of (Intg(go), 81) = (SO2G Ly, M3 2C).
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