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Abstract. For the simply connected compact exceptional Lie groups G =
G2, F4, B¢ and E7, we determine the group structure of the subgroup G”' of G
by considering two consitutions.

Introduction

For the simply connected compact exceptional Lie groups G = Go, Fy, Eg
and E7, we consider two involutions 7,~’ and determine the group structure of
the subgroup G”"' of G, which is the intersection G N G" of the fixed points
subgroups G” and G"'. The motivation is as follows. In the preceding paper
, we determined the group structure of G°° = G° N G° , G = F4, Eg and
E7 for the involutions 0,0’ € Fy. We consider the case replacing v, +’ instead of
o,0’. We shall give two different proofs, needless to say, results are essentially
the same.

(G2)™ = (U(1) x U(1))/ 22 x {1,m}
> (U(1) x U(1)) - Z5
(Fa)™ = (U(1) x U(1) x SU(3))/(Z2 x Zs) x {1,m}
2 ((UQ) xUQ) x SU3))/2Zs) - 22
(Be)™™ = (U(1) x U(1) x SU(3) x SU(3))/(Z2 x Z3) x {1,m}
= ((U1) xU(1) x SU(3) x SU(3))/Z3) - 2>
(Br)"" = (U(1) x U(1) x-SU(6))/(Z2 x Zg) x {1,1,}
= ((UM) xU(1) x SU(6))/Z3) - Z2

As for the group (Eg)""’, we can not realize so far.
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NOTATION.
(1) For a group G and an element s of G, we denote {g € G | sg = gs} by G*.

(2) For a topological group G, we denote by G° the connected component
containing the identity of G and G = G° x {1, a} means that G has two connected
components such that G = G° U aGP.

(3) G - Z, denotes a semi-direct product of groups G and Z; = {1,m}.

(4) For an R-vector space V, its complexification {u+iv | u,v € V'} is denoted
by V. The complex conjugation in V¢ is denoted by 7: 7(u + iv) = u—4v. In
particular, the complexification of R is briefly denoted by C': RC =C.

(5) The Lie algebra of a Lie group G is denoted by the corresponding German
small letter g. For example, sp(n) denotes the Lie algebra of the group Sp(n).

Although we will give all definitions used in the following sections, if in case
of insufficiency, refer to [5],[6] or [7].
1. The first consideration

1.1 Group G,

Let € be the Cayley division algebra with the canonical R-basis {ep =
l,e1,--- , er} ([7]). € contains naturally the field C of complex numbers and the
field H of quaternions as

C = {xo + z161 |7k € R}, H = {z0 + z1€1 + z2€2 + Z3€3 |k € R},

respectively. Any element z of € is uniquely expressed as * = m+aeq, m,a € H:
C=H®® Hes. In € = H @ He,, the multiplication and the conjugation are
defined by

(m + aeq)(n + beg) = (mn — ba) + (a? + bm)ey,

™M+ aeq = M — aeq.
" The simply connected compact Lie group G is given by
G = {@ € Isor(€) | a(zy) = (az)(ay)}-
We define R-linear transformations =, v’ av,nd"yl of H® Hey = C by

~(m + aes) = m — aeqy,

7' (m + aeq) = Y'm+ (v'a)es,
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71(m + aes) = yim + (v1a)es, m+aes € H® Hey = C,
respectively, where v',~v; : H — H are defined by

¥'(z + yez) = z — yeg,
7(z+ye)=T+Tea, T+yes € CHCey=H.

" Then ¥,9'sm € Gg and 42 = 4'> = 4,2 = 1. 4,4 and 7, are conjugate with
each other in G, ([5]) and commutative. From vy’ = 4'v, we have

(G)"N(G2) = ((G2)") = ((G))",
so this group will be briefly denoted by (G2)™"'.

PROPOSITION 1.1.1. (G2)"” = (Sp(1) x Sp(1))/Z2, Z2 = {(1,1),(-1,-1)}.
Proof. Let Sp(1) = {p € H |pp = 1}. The mapping 5 : Sp(1) x Sp(1) = (Gs3)",
v2(p,q)(m + aes) = gmG + (pagles, Mm+aes € HD He4‘= ¢

induces the required isomorphism (see [5] or [7] for detail\s). a |
LEMMA 1.1.2. The mapping 2 : Sp(1) x Sp(1) = (G2)" satisfies
| Y022, @)Y = 02(YP,Y0), 7 =aler,e1), ™ = pa(es ).
Now, we will determine the group structure of (Ga)™'. .

THEOREM 1.1.3. (G3)" = (U(1) x U(1))/2Z2 x {1,m}, Z2 = {(1,1), (-1,
-1)}.

Proof. For a € (G3)" C (G3)", there exist p,q € Sp(1) such that a = ¢3(p, q)
(Proposition 1.1.1). From v'ay’ = «, we have p3(7'p,v'q) = w2(p,q) (Lemmal

1.1.2). Hence
J Yp=p ¥'p=—p
/ or /
Ya=¢q Y'q=—q.

In the former case, we have p,q € U(1) = {a € C|a@ = 1}. Hence the group of
the former case is (U(1) x U(1))/Z. In the latter case, p = g = e, satisfy the
conditions and pz(ez,e2) = 1 (Lemma 1.1.2). Thus we have the isomorphism
(Go)™ = (U(1) x U(1))/ 22 x {1,m}. O
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1.2 Group F,

Let 3 = J(3,€) = {X € M(3,&)|X* = X} be the exceptional Jordan
algebra with the Jordan multiplication X oY, the inner product (X, Y) and the
Freudenthal multiplication X x Y respectively defined by

XoY = %(XY +YX), (X,Y)=t(XoY),
XxY = %(2){ oY — tx(X)Y — tr(Y)X + (tr(X)tr(Y) — (X, Y))E),

where FE is the 3 x 3 unit matrix.

The simply connected compact Lie group F} is given by
Fy={a€lor)|a(X xY)=0aX xaY}.

We have naturally the inclusion G C Fy ([5],[7]).

(51 T3 52)
Anyelement X = |Z3 & ;) ofJis expressed as
' T2 Tr &3
&1 m3 Ty 0 asey —agey4
X = (ms &2 m1) + (—-a3e4 0 ai€4 ) )
mz m: &3, Q264 —aieéq 0

where zx = my + arey € H & Hey = €. We associate such X with the elemen;
& m3 Ty
ms & my | +(a1,az,a3)
me M &3
of 3(3, H) ® H®. In 3(3, H) ® H?, we define the multiplication x by
(M +a) x (N +b) = (M x N — —;—(a*b + b*a)) - -;—(aN +bM).

Then J(3, H) & H? is isomorphic to J as Freudenthal algebras.

Using the inclusion G; C Fy, the R-linear transformations ~,7’ vv1 of HOHey
= € are extended to R-linear transformations v,v',v; of 3(3, H) ® H 3 = J by

T M+a)=M-a, Y(M+a)=vM++'a, v(M+a)=vM+ma,

respectively.
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PROPOSITION 1.2.1. (Fy)" = (Sp(1) x Sp(3))/Z2, Z> ={(1,E), (-1,-E)}.

Proof. Let Sp(1) = {p € H|pp = 1} and Sp(3) = {A € M(3, H)|AA* = E}.
The mapping ¢4 : Sp(1) x Sp(3) — (Fy)”,

v4(p, A)(M + a) = AMA* + pad*, M+ac3BHoH*=]
induces the required isomorphism (see [5] or [7] for details). O
LEMMA 1.2.2. The mapping @4 : Sp(1) x Sp(3) — (F4)" satisfies

Y'ps(p, A)Y = pa(v'p, ¥ 4), + = <P4(61,€1E'),/ 7 = pa(ez,e2E).
V3

Hereafter, w; denotes w; = —% + Tel' Then w; € € and w3 =1.

Now, we will determine the group structure of (F3)"" = (Fa)")Y =((Fa)"' )
= (Fe)" N (Fa)"'.

THEOREM 1.2.3. (F,)"" & (U(1)xU(1)x SU(3))/(Z2x Z3)x {1,m1}, Z2 =
{(LLE),(-1,-1,E)}, Z5 = {(1,1, E), (1, w1,w12E), (1,12, w, E)}.

Proof. For a € (Fy)™' C (Fy)?, there exist p € Sp(1) and A € Sp(3) such
that o = p4(p, A) (Proposition 1.2.1). From v'ay’ = a, we have p4(v'p, v’ A)

#a(p, A) (Lemma 1.2.2)). Hence

Yp=p Yp=-p

YA=A vA=-A.
In the former case, we have p € U(1) and A € U(3) = {A € M(3,C)| AA* = E}.
Hence the group of the former case is (U(1)xU(3))/ 23, Z; = {(1, E), (-1,—-E)}.

In the latter case, p = ey, A = ey F satisfy the conditions and p4(e2,e2F) = 71,
m) Hence we have the isomorphism

(Fa)™ 2 (UQ1) x U(3))/Z2 x {Lm}, Z2={(1,B), (-1, -E)}.

Since the mapping  : U(1) x SU(3) — U(3), h(a, A) = aA gives the isomorphism
U@3) = (U®1) x SU(3))/Z3, Z3 = {(1,E), (w1,w12E), (w12,w1E)}, we have the
isomorphism (Fy)""' o (U1) xU(1) x SU(3))/(22 x Z3) x {1,m1}. O

1.3 Group Eg

Let J€ be the complex1ﬁcat10n of the Jordan algebra J. In J°, we define the
determinant detX by —(X X x X) and the Hermite inner product (X,Y) by
(7X,Y), respectively.
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'The simply connected compact Lie group FEj is given by
Es = {a € Isog(3°) | detaX = detX, (aX,aY) = (X,Y)}
= {a € Isoc(3°) |aX x oY = Tar(X x Y),(aX,aY) = (X,Y)}.
We have naturally the inclusion G C Fy C Es ([5],[7])-
Let k: H = C & Cez — M(2,C) be the R-linear mapping defined by

a b

k(a+be2)=<_5 E)’ a,be C.

This k is naturally extended to R-linear mappings
k:M(3,H) > M(6,C), k:H?>— M(2,6,C).
Furthermore, these are extended to C-C-linear isomorphisms
k:M(3,H) - M(6,C), k:(H*® - M(2,6,C),
defined by |
k(My + M) = k(My) + erk(Mz), My, M, € M(3, H),
k(a; +iap) = k(al) + e1k(az), a,a ey H3.

Finally, we define the C-vector space S(6,C) by {S € M(6,C)|*S = —S} and
the C-C-linear isomorphism k; : J(3, H )¢ = &(6,C) by

ks (My +iMy) = k(My)J + exk(Ms)J, My, M; € M(3, H),

where J = dié.g(.], S, J),J = (_01 (1)) .

Using the inclusion Fy C Eg, the R-linear transformations v,v’,71 of J are
extended to C-linear transformtions 7,7/, v: of 3€.
PROPOSITION 1.8.1. (Eg)” = (Sp(1)xSU(6))/2Z2, Z2 = {(1,E),(-1,—E)}.

Proof. Let Sp(1) = {p € H|pp = 1} and SU(6)={A € M(6,C)|AA* = E,
detA = 1}. The mapping we : Sp(1) x SU(6) — (Eg)",

v6(p, A)(M + a) = k; 1 (A(ks(M))'A) + pa(k~(A*)),
M+ae3B3 H)FC o HC =3¢

induces the required isomorphism (see [5] or [7] for details). O
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LEMMA 1.3.2. The mapping pe : Sp(1) x SU(6) — (Fes)” satisfies
V'ee(p, A)Y' = 06(VD, TAI), 7 =gs(er,erl), M = pelez, J),
where I = diag(1,~-1,1,-1,1,—1) € M(6, R).

Now, we will determine the group structure of (Eg)"" = ((Eg)?)" =((Ee)"')"
= (Es)7 N (Ee)" .

THEOREM 1.3.3. (Eg)"" = (U(1) x U(1) x SU(3) x SU(3))/(Z2 x Z3) x
{1771}7 ZZ={(1)1aEaE)a(_1a—I)EvE)},Z3={(la lan E))(lawlywle’le)y
(1’w12,w1an12E)}'

Proof. For a € (Eg)" C (Fg)?, there exist p € Sp(1) and A € SU(6) such
that a = pg(p, A) (Proposition 1.3.1). From 7'y’ = a, we have pg(y'p, [AI) =
ve(p, A) (Lemma 1.3.2). Hence

Yp=p Yp=-p
or
TIAI = A IAI = —-A.

In the former case, we have p € U(1). Since I = diag(1,-1,1, —1,1, —1) is conju-
gate to I3 = diag(1,1,1,—1, -1, —1) in SU(6), the group {A € SU(6) | IAI = A}
is isomorphic to the group {A € SU(6)| I3AI3 = A} = S(U(3) x U(3)). Hence
the group of the former case is (U(1) x S(U(3) x U(3)))/ 23, Z, = {(1, E), (-1,
—E)}. In the latter case, p = ez, A = J satisfy the conditions and g(ez,J) =7
(Lemma 1.3.2)). Hence we have the isomorphism -

(Ee)™ = (U(1) x S(U(3) x U(3)))/Z2x {1,m}, Z2={(1,E),(-1,-E)}.
Since the mapping h : U(1) x SU(3) x SU(3) — S(U(3) x U(3)),h(a,A,B) =
(a(.;l a“(i B) gives the isomorphism S(U(3) x U(3)) = (U(1) x SU (8) x SU(3))

/23, Z3 = {(1,E,E), (w1,w1%E, le),(wlz,le,wle)}, we have the isomor-
phism (Eg)"Y & (U(1) x U(1) x SU(3) x SU(3))/(Z2 x Z3) x {1,71}. O

1.4 Group E;

We define the C-vector space €, called the Freudenthal C-vector space, by
P°=3°03°0CoC
with the Hermite inner product

(P,Q) = (X, 2) + (Y, W) + (T€)¢ + (Tn)w,
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for P = (X,Y,£,1), Q = (Z,W,¢,w) € BC. For ¢ € ¢6, A,B € 3¢ and v € C,
we define the C-linear mapping &(¢, A, B,v) : B¢ - B€ by

(X 6X — ZvX +2B x Y +14
1.
Y —t =
&(¢, A, B,v) _|2axx -ty +20v +¢B ’
. € (A,Y)+V€
K (B,X) —vn

where '@ € ¢g is the transpose of ¢ with respect to the inner product (X,Y):
(*¢X,Y) = (X,9Y). Next, for P = (X,Y,£,n), Q = (Z,W,(,w) € B°, we
define the C-linear mapping P x Q : *;30 - EBC by

( ¢=——;-(XVW+ZVY)
A=—%(2Y>€W——§Z—CX) |

PxQ=2&(¢,AB,v), - 1
B= ;(2XxZ—-nW -uY)

v = -;-((X, W)+ (Z,Y) — 3(éw + (n)),

\
where X VW € ¢ is defined by (X VW)U = %(W’, U)X + %(X, WU — 2W x
(X x U) for U € 3°. |
The simply connected compact Lie group E7 is given by
E; ={a e Isoc(B°) |a(P x Q)a™! = aP x aQ, (aP,oQ) = (P,Q)}.

We have naturally the inclusion G2 C Fy C Eg C E7 ([6],[7]).

Using the inclusion Eg C E7, the C-linear transformations +, v, y; of 3€ are
extended to C-linear transformations +,’,v: of P€.

We define the C-linear transformation A :mc — € by
AX, Y 6m) = (Y, -X,n,-¢).
- Then A e E; and A2 = —1. Note that a € E; satisfies TAa = arT\.
LEMMA 1.4.1. The Lie algebra ey of the group Er is given by
er = {®(p,A,—TA,v)|p € e, A€ J° v eiR]}.
The Lie bracket in e7 is given as follows.

[¢(¢1’ Al’ _TA17 Vl)’ ¢(¢2’ A27 _TA2’ V2)] = ¢(¢a A’ _TA7 V)7
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¢ =[¢1,¢2] —24;V TA; +24, VTA;
2 2
A= (¢1 + §V1>A2 - (¢2 + §V2)A1
v = (A1, Az) — (A3, A;).

To know the group structure of (E7)?, we first investigate the group (E7)?
which is isomorphic to (E7)Y. Let 0,0 : 3% - 3€ be C-linear transformations
defined by

&1 x3 T &1 —z3 —T, & T3 —7T2
oX=0|T3 & o |=|-T3 & 1 |,0X=| 7z &L -z},
T2 Tp &3 —z2 Ty & -T2 —-Z1 &

and extend to C-linear transformations o, 0" : B > ‘I?O by
oP =a(X,Y,§,n) = (6X,0Y,€,m), o' (X,Y,&n) = (0'X,0'Y,¢,n),

respectively. Then 0,0’ € Fy; C Eg C Ey and 02 = 0'? = 1.
We define C-linear mappings x, u : ¢ — € by

"_fl 0 o m 0 0
N(X’Y’G’n)::(( 0 &2 1'1),(0 -2 —Whn .,—5,77),

0 71 & 0 -5 -ms
“fm 0 0 € 0 0
/“(X’Kgi 7’) = ( (0 U] _yl) ’ (O 63 —.’121) 7nl,€l)a
0 -7 n 0 -7 &

respectively. We define the subgroup (E7)** of E7 by
(BE7)* ={a€ E7‘| KQ = aK, uo = au}.
Then we have the following lemma.
LEMMA 1.4.2. (E7)™* & Spin(12).
Proof. We define a 12-dimensional R-vector space V12 by
V12 = {P € | kP = P, urAP = P}

0 /n 0 0 ‘
z |,{o 0 o ,o,rn)jxee:,g,nec}

—71€ 0 0O

Il
—N—
—~~
o O O
8 ™ O
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with the norm
1
(P,P), = E(uP, AP) =Tz + (T€)€ + (Tn)7.

Let SO(1\2) = SO(V12). Then (E7)** is connected and we have (E7)"*/Z; =
SO(12), Z; = {1,0}. Therefore (E7)** is isomorphic to Spin(12) as a double
covering group of SO(12) (see [6] or [7] for details). O

LEMMA 1.4.3. The Lie algebra spin(12) = (e7)™* of the group Spin(12) =
(Er)*™* is given by

(e7)"* = {D € e7 | kP = Pk, ud = du}
¢ € 36,0'¢ = ¢0’A € JC»UA = A’}

= {¢(¢,A, —TA,v) € e7 (Ey,A) =0,v = —-2-(¢E1,E1)

In more detail, ¢ and A are of the forms:

-~ ~ ‘ Q1 0 0
¢=d+A1(a)+’iT, A=10 a a1},
0 @ a3

/0 0 O m 0 0
where d € s0(8) = s0(€),A1(a) =0 0 a]|,T=|0 7 t},a,t1€
0 —-a 0 0 &4 73

¢, € R,1+12+T3=0,ar €C,a; € ¢ and the notation S (S = Ai(a) or T)
is the R-linear mapping of J defined by

§x = %(sx+xs*), X e3°.

Let SU(2) = {A € M(2,C)|A*(tA) = E,detA = 1} and we define the
mapping ¢ : SU(2) — (E7)? by '

e(4)(X, Y, &n) = (X", Y, &,7),

)-4(9). ()4(9) (2)-4(2). (2)-+(2).
G)=ca (). Go) =G Go)=(a)

Then ¢ is an injective homomorphism: ¢(SU(2)) C (E7)°.
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PROPOSITION 1.4.4. (E;)° & (SU(2) x Spin(12))/ 22, Z; = {(E,1),(-E,
—0)}.

Proof. Let Spin(12) = (E'7)"°"u (Lemma 1.4.2). We define a mapping 7 :
SU(2) x Spin(12) — (E7)° by :

v1(4A, B) = p(A)B.

Since ¢(A) and B are commutative, @7 is a homomorphism. Furthermore, @7
is onto and Keryp; = {(E,1),(—E,—0)} = Z,. Hence we have the required
isomorphism (see [6] or [7] for details). O

Let SU(8) = {A € M(8,C) | AA* =E, detA =1}, J(4,H)® = {X €
M(4,HC) | X* = X} and &(8,C)C = {S € M(8,C°) | 'S = —-S}. To de-
fine the following mapping ¢, : SU(8) — E, we use the C-linear mapping
9:3° - 34, H)C,

1 .
Etr(M) ia

1 , M+ae)@3H) e H) =3°.
ia* M — Etr(M)E

9(M+a)=

Now, we define the C-linear isomorphism x : € — S(8,C)C by

X(X,Y,61) = k(sX = £ )T + erk (s2Y) - 1E).

where the mapping k : M(4, H) - M (8,C) is the naturally extended mapping
of k defined in the section Eg and J = diag(J, J, J,J),J = (_?1 (1)) .
LEMMA 1.4.5. (E7)T7 & SU(S)/Zz, Z, = {E, —E}.
Proof. We define a mapping ¢, : SU(8) — (E;)™ by
¢1(A)P = x"1(A(x(P))'A), P epC.

¢1 is well-defined, a surjective homomorphism and Kerp; = {E,—E}. Hence
we have the required isomorphism (see [6] or [7] for details). O

We shall show that v is conjugate to —o in E7. For this end, we first define
an R-linear transformation 4, : € — € satisfying

1-1,e > ey €06, €3 €6, €4 — €1, €5 — —es, eg — €3, ey — —ery,
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then 8, € G C Fy C Eg C E7, §:% =1 and satisfies
01761 = M.

Next, we define a C-linear transformation d; : ¢ — € by v1(D), where

(1 0 0 0 10 0 0

—e2 0 0 0 e 0 0 O

0O 1 0 0 0 1 0 0

1 0 —-e O 0 0 eo2 0 O

b=Zlo o 1 0o 0 0 1 ol 5U®

0 0 —e 0O 0 0 e O

60 0 0 1 0 0 0 1

\0 0 0 —es 0 0 0 e/

then &, € E; and 8,7 1v,0, = —o. Indeed, since ¢;(J) = v; and ¢y (e1l4) = —o
(I4 = diag(-1,-1,-1,-1,1,1,1,1) € M(8, R)), we have

82711182 = p1(D*)p1(J)p1(D) = 1 (D*ID) = p1(e1ly) = —o.
Now, let § = §;02. Then we have
0~ 1v6 = —0.
As a consequence, we obtain the following isomorphism
(E7)" = (Er)~° = (Er)° = (SU(2) x Spin(12))/ 22,
under the correspondence

SU(2) x Spin(12) — (E7)° — (Er)
(4,8) - p(A)B — (p(A)B)sL

Instead of investigating the group (E;)""', we shall study the group (E7)o°”,
where ¢/ € Ey is the involutive element defined by

0" = 5716

Since 6176, =" and ' =i (e11)(I = diag(1,-1,1,-1,1,-1,1,-1)e M(8, R)),
we have '

0" =871y = 67196 = p1(D*)pa(erl)p1(D) = p1(D*e1ID) = 1 (J"),
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where J” = D*e,ID = (eoE eloE) € SU(8) (E is the 4 x 4 unit matrix).
1
Since J"? = —E (E is the 8 x 8 unit matrix), we have ¢”’2 = 1. The action of
o on P is given by
o"(X,Y,&,n) ,
§1 deaws  * m o —iesys  * )
= ( * —&2  irie4 |, * —n2  —ithey |, —E, —71)- (1)
e4T2es  x €s e4y2€4 * n3

If we use elements o’ € Eg (indicated before) and p € Eg:
. -&1 —1€423 * ey
pX =PXP=| f2  izies|, Xe3°,P= 1 :
€4T2€4 * —¢s ieq
then ¢” is also written as
o"(X,Y,&,n) = —(0'pX, 70" p7Y, £, 7).
From the form of (i), we see
| ko" =o'k, po’ =-o"u. (ii)

Furthermore, we see that 0" leaves invariant the group ¢ (SU(2)). We shall deter-
mine elements ¢(A), A € SU(2) such that 0”p(A)o” = ¢(A). In the following,
©(SU(2)) is often denoted by SU(2).

PROPOSITION 1.4.8. (SU(2))°" =~ U(1).

Proof. If A € SU(2) satisfies 0”p(A)oc” = p(A), then we can easily see that
¢(A) is of the form <p(<g agl)),a € U(1) = {a € C|a(ra) = 1}. Hence we

have
(SU2))"" = {p(4)| A € SU(2),0"p(A)0” = p(A)}
= {(p((g a?_l))l ac U(1)}g UQ).
D.

From (ii), we see that o” leaves invariant the group Spin(12): o”B¢” €
Spin(12) for B € Spin(12). Now, we consider elements 3 € Spin(12) such that
O.II'@O.II — ﬁ.
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LEMMA 1.4.7. (Spin(12))°" /2, = U(6), Z2 = {1,0}.
Proof. We define a C-vector space (V)¢ by

(V)8 = (BC)on = {P € B° |kP = P,¢"P = P}

0 0 0\ /m 00O |
={( 0 zi|,[0 0 0 ,o,n)jzleec,ek,m,nec,a"P=P}

&
07 &/ \0 00
‘ 000\ /700
={( 00 z|,[o 00 ,0,0).3:&(@‘7),-“,{,1760},
0oz ¢/ \o 0o

where (€ );e, is
(€9)ie, = {x € €° | izey = z}

= {(a,‘o + z1€e1 + T2€2 + .’1:363) + i(.’l:o + Ti€1 + xz2e2 + $363)e4 I Ty € C}.

(VC)® has the norm (P, P) = (TP, P), that is, the norm of P € (V°)° is given
by

(P, P) = 2(tz)x + (t€)€ + (T0)n :
= 4((tzo)0 + (TZ1)1 + (TT2)x2 + (TT3)23) + (TE)E + (TN)7).
We define a unitary group U(6) by
U(6) = {a € Isoc((V°)®) | (aP,aP) = (P, P)}.

Since a € (Spin(12))°" satisfies ka = ax and 6”a = ao”, a leaves invariant the
space (VC)® and preserves the norm (P, P), so a induces an element of U(6),
hence we can define the mapping f : (Spin(12))°" — U(6) by

fl@) = al(VO)°.
To show that f is onto, we use the following lemma.

LEMMA 1.4.8. The Lie algebra (spin(12))°" of the group (Spin(12))°" is given
by

(spin(12))°”

| 0 0 0 \" n 0 0
= Dy D, _ .
- {QS( (—KaDsz K3D1K3) + (0 0 t1€4) +1 (0 T2 t1> ,

0 —6421 0
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0 0 0 0 0 o0\ .,
0 as a1 |,—710 a3 ay ,—Eifl)‘Dl,DzeM(4,R),tD1=—D1,

0 a o0 0 a; O
tDz =K3D;K3,t, €C, wER,+T+1m3=0,a €C,a;€ QC, —iajeq = al},

where K3 = diag(1,1,~1,1) € M(4,R). In partz’culdr, the dimension of
(spin(12))°" is 36. '

Proof. The definition of the Lie algebra (spin(12))°” is
(spin(12))7" = {® € (e7)"* | 0" Bo” = &}.
For &(¢, A, 5TA, V) € ey, sincé

a~(¢(¢g A’ _TA: V))O'” = ¢(0”p¢p0",v O'IPA, —T(O"pA), V)a

0 0 O
if #(¢, A, —7A,v) € spin(12) =(e7)**, then A is of the form (0 as a1) ,
_ 0 @ a3
ar€ C,a; € €°. Together with the condition ¢/pA = A, we see that A =

0 0 O
(0 a2 al) , ag € C,a; €€%, ~iajes = a;. Next, let ¢=d + Zl(_a) +iT,d e
0 a O ,

0 0 O m 0 O
50(8),A1(a)=|0 0 al,a€€cT={0 = RERTI+T+Ts =

0 -a 0 0 &4 73
0,¢1 € €. We see that o’pdpo’ belongs to s0(8) and o'(A;(a) + iT)po’ has
no part of 50(8) Hence the condition o’pppo’ = ¢ implies o pdpa = d and
o p(A1 (a)+zT)pa = A;(a)+iT. From the second condition o (A1 (a)+iT)po’ =
Al(a) + zT we see that a and t; have the relation a = —t;e4. Finally, we
shall determine the form of d € so0(8) such that o/pdpo’ = d. Denote d =

D, D, ‘ " D, D, z \_
<D3 D4) € s0(8),Dx € M(4, R). From the condition (D3 D.) \ikaz )™

(zKyay> ,Z,y € R*, we have the relation Dix+iDyKzx = iKsD3x— K3z Dy Ksx.
Hence Dy = K3D1K3,D3 = —K3D;K3. Since d € so(8), that is, 'd = —d,
Dy, Dy have the relations *D; = —D;,!D, = K3D;K3. Thus the Lie algebra

(spin(12))°" is determined. The dimension of (spin(12))°” is 16+2+8+10 = 36.
a
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We shall return to prove It is easy to see that Ker f = {1,0}.
Since U(6) is connected and dim((spin(12))°") = 36 = dim(u(6)), f is onto.
Hence we have the isomorphism (Spin(12))°" /Z4 = U(6). Thus is
proved. OJ '

Before we prove the following Proposition 1.4.9, we define an element w of
Spin(12) by

w(X,Y,§,n) |
w2 WPwlrs * wn wwilys  *
= ( * w2 Tws? |, * wip  Yy1we? ,wﬁ,wzn)-
WeTowy * wés w4aY2wy * w?ns . ’
1 3 "
where w = —-;— +i? €C,wy= ~3 —\2:64 € €. Then w € (Spin(12))° and
w =1. «

PROPOSITION 1.4.9. (Spin(ﬂ))“" =~ (U(1) x SU(6))/Ze, Zs = {(1; 1),
(__a-w2, —U‘lD), (w7 w2), (—'0, —d)’ (w2’ w)a (—aw, _o.w2)}.

Proof. The unitary group U (6) is decomposable as
U(6) = U1 (1)SUL(6), Ui(1)NSUL(6) = {zE|z € C,2% =1},

where Uy (1) = {¢®*E |t € R} which is the connected component of the center of
U(6) and SU1(6) = {A € U(6)|det A = 1}. On the other hand, the center of
(spin(12))°” is | '

-1 0 0\"
{((t):di(t( 2{' "33)4-%#(0 -1 0) ,0,0,it)‘teR},
B _Ks |

0 0 2 |

hence the connected component U(1) of the center of (Spin(12))?” is given by

U(1) = {2(t) = exp({(t)) |t € R}.
The action of z(t) € U(1) on B is given by

( e"“& e-—ite--e,;t.,z:3 * ) \
( * e tE, a:le"“‘)
X ee4t$26e4t * eités
Y eitn eite—eatys "
Z(t) { = ( * 6“1’]2 m e.—-e4t)
eegty2ee4t % 6'—"'773
n eitﬁ

e—ztn
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Since the restriction of the function e=*4* on (€°);., is
etz = ez, z € (%),

the restriction of z(t) on (V6)C is given by

000\ /900
z(t)((o 0 ) (0 0 0) oo)
0z ¢/ \0o 0o
0 o 0 eftn 0 0
=((o 0 eitm),(o 0 o),o,o).
0 etz eite 0 0 0

Hence f(z(t)) is contained in U;(1) and f induces an 1somorph1sm f:UQ1) -
Ui (1). Next, we will find a subgroup SU(6) of (Spin( 12))" which is isomorphic
to the group SU1(6) under f. Consider the subgroup SU = - 1(‘S’U1(6)) of
(Spin(12))°”. Then SU/Zz & SU;(6). Since SU;(6) is simply connected, SU
is never connected. Let SU(6) be the connected component subgroup of SU
containing the identity 1, then SU(6) is the required one. Thus we have the
following commutative diagram :

U(1) x SU(6) > (Spin(12))""
flrf i1f

Ui(1) x SU(6) 2% U(6),

where h, h; are multiplication mappings in the groups, respectively. Evidently h
is a surjective homomorphism. We shall find the kernel of h. Let (2,a) € Kerh.
From the diagram above, we have f(2)f(a) = f(h(z,a)) = f(1) = 1. Hence we
obtain Kerh={(1,1), (—ow?, —ow), (w, w?), (-0, —0), (w? w) (—ow, —ow?)}
= Z¢g. Thus we have the required 1somorph1sm (Spin(12))°" = (U(1) x SU(6))
/Ze. O

Now, we will determine the group structure of (E;)"" =((E7)")" = ((E?)' )
= (E7)" N (Ev)’

THEOREM 1.4.10. (Ex)™ = (UQ) x UQ1) x SU(6))/(Z2 x Zs) x {1,L1},
Z; ={(1,1,1),(-1,-0,1)}, Ze={(1,1,1), (1,—ow?,—ow), (1,w,w?), (1,—-0,—0),
(1,w?, w), (1, —ow, —ow?)}.

Proof. Since (E;)""" is isomorphic to (E7)?° , we shall determine the group
structure of (E7)®°". For a € (E-,)""’" C (E7)?, there exist A € SU(2) and
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B € Spin(12) such that a = ¢(A)B (Proposition 1.4.4). From ¢”aoc” = a, we
have " ¢p(A)o"c" Bo"” = p(A)B. Hence

p(A)e" =p(a) [ o"p(A)o" = —p(4)
| o"Bo" = o"Bo" = —0af.

In the former case, we have A € U(1) (Proposition 1.4.6) and 3 € (Spin(12))°".
Hence the group of the former case is

(U(1) x (Spin(12))°")/ 22 = (U(1) x U(1) x SU(6))/(Z2 x Zs)

(Proposition 1.4.9). We consider the latter case. For J = (_01 (1)), w(J) is of

the form

/ n x3 T E vz 7 - '
()O(J)(X’ K&a 7’) = ( T3 =3 ”n ) -y-3 §3 —T1),—M, _51) ’
T2 Y1 - y2 —T &

and satisfies

" o(J)o" = —p(J).
To find an elemnt [ € Spin(12) such that 0”lo” = —ol, first consider a; =
exp (45 (0, -725, —er-, 0)) € E7. The explicit form o; is given by

n x3 T -€ Y3 T,
011(XaY,§aﬂ) = ( T3 _n3 N ’ y3 : €3‘ —I 1771161)’
T2 Y M y2 —T1 &
and satisfies
Ka) = —onKk, Moy = —alp, o"ay0" = —0a;.

Next, for A € E;, we have

KA = =)k, pi=-Au, o"Xo" = Ao,

& —z3 T\
where 013 € Fy C Eg C F7 is defined by 0i3X = | -3 & —z1 | . Finally,

z2 -IT1 &
v € G2 C E7 satisfies

KY =K, py=94, 0'vo" =o0130".
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Therefore for | = yAa;, we have
kl=1Ik, wpl=I1p, o"lo"=-0l,

that is, ! is the required one. Let l; = (J )l e(J)yAay. Thus we have
the required isomorphism (U(1) x (Spin(12))°")/Z3 x {1 lo} & (E )", The
explicit form of I, is given by

_ -m Yy * f & —yms  x
lz(X’ Y,ﬁ,ﬂ) = ( * -2 -7y, * &2 YT | 6)
Yy2  * —T3 —YZTy ok '3
Putting I, = 6126~1, we have
(Br)™" = (U(1) x U(1) x SU(6))/(Z2 % Ze) x {1,11}-
()

Remark. We used the group (E;)? instead of the group (E7)” , and we deter-
mined the group structure of (E7)°°" instead of the group (E7)"™ . So the
group (Eg)?" = (U(1) x U(1) x SU(3) x SU(3))/(Z2 x Z3) x {1,711} is not
subgroup of our group (E;)™" = (U(1) x U(1) x SU(6))/(Z2 x Zs) x {1,11}.

2. The second consideration

2.1 Group G2

Any Cayley number z € € can be expressed as

T = xo + T1€1 + To€2 + Tzez + Tqe4 + Tses + Teeg + T7e7 (i € R)
= (xo + 27161) + (272 + m361)62 + (24 -+ .’17561)64 + (:L‘s + €L‘7e1)es
=a+mie; + maes +maeg  (a = To + T1€1,™M; = Ti + Tzit1€1)-

We associate such z € € with the element

ma
a+ | mg

of C & C3. In C @ C3, we define the multiplication by

(a +m)(b+n) = (ab— (m,n)) + (an + bm — m X n),
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where (m,n) = *mm is the usual Hermite inner product and m x m is the
exterior product of m and n. Then C & C? is isomorphic to € as algebras. The
involutive R-transformations 7,7’ and v, of C ® C® = € are given as

my m m, —my
'y(a+ mo )=a+ -ma |, 'y’(a+ mo )=a+ my |,
m3 —mg/ m3 —mg3

Furthermore, we define an R-transformation w of € = C & C? by
wla+m)=a+wm, a+mecCoC®=c,

V3

) ,
where w; = -3 + <€ € €. Then w € G2 and w? = 1.

We consider the group G2 ¢ replaced with C in the place € in the definition
of the group G2. Then we have

Gz,c = {a € Isor(C)la(zy) = (az)(ay)} = {1,¢} = Z,,
where ¢ is the complex conjugation of C :ex =%, z € C.
Before we consider the group (G3)"", we study the subgroup (G2)e, of Gy
(G2)e, = {a € G2|ae1 = e1}.
PROPOSITION 2.1.1. (G2)¥ = (G2)e, = SU(3).

Proof. Let SU(3)\ = {D € M(3,C)|DD* = E,detD = 1}. The mapping
Yo, : SU(3) = (G2)e, defined by |
Yow(D)a+m)=a+Dm, a+meCa®C*=c¢

I

gives the required isomorphim SU(3) = (Ga)e, (see for details. As for
(G2)¥ = (G2)e,, see [T], too). O

The group Z; = {1,7,} acts on the group U(1) x U(1) by
71(,9) = (7,2),

and let (U(1) x U(1)) - Z3 be the semi-direct product of these groups under this
action.

THEOREM 2.1.2. (G2)"" = (U(1) x U(1)) - Z,.
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Proof. We define a mapping ¢ : (U(1) x U(1)) - Z3 — (Gg)’Y”Y' by

Y2((p; 9),1)(a + m) = a + D(p,q)m,
Y2((,9),m)(a+m) =a+ D(p,q)M, a+meCdC?=c,

where D(p,q) = diag(p,q,59) € M(3,C). We shall prove that 1), is well-

defined. Since D(p,q) € SU(3), we have 12((p, q), 1) € G2 (Proposition 2.1.1)),
and ¥2((p, ), 71) =v%2((p, q),1)71 is also in G2. Furthermore, since

Y= "/’2((19 _l)a l)a ')/ = ¢2((—.1’ 1)’ 1)’

¥2((p, @), 1) commutes with v and 4/. Moreover v; commutes with v and v'.
Hence v, is well-defined. It is easy to see that 1), is a homomorphism. We shall
show that 1), is onto. Let o € (G2)""'. Since (€),, = {z € €|yz = z,7'z =
z} = C, the restriction of o to C belongs to G,c. Hence we have

ar=zx or ax=7Z, xz€C.

In the former case, there exists D € SU(3) such that a = 13 (D)

'2.1.1). From the condition that o commutes with v and 4’, D is of a diago-
nal form D(p,q). Hence a = t24,(D(p,q)) = ¥2((p,q),1). In the latter case,
since v1e; = —ej, we have ay; € (G2)e,. So a7 is in the same situation as
above. Thus that 1), is onto is shown. Ker), is trivial. Therefore we have the
isomorphism (Gz)""' = (U(1) x U(1)) - Z5. O

2.2 Group F,

1 T3 T2
We associate an element | T3 & z; | of J with the element
T2 T1 &3 ‘

&1 oas @

a3 & ay | +(my, my,m3)
a; @ &3

(where z; = a; + m; € C ® C? = €) of J(3,C) ® M(3,C). Hereafter, 3(3,C)

will be briefly denoted by Jc. In J¢ & M(3,C), we define the multiplication x

by

(X+M)x (Y +N) = (X xY = 2 (M*N + N*M)) - %(MY+NX+_—)M <),
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where M x N (for M = (m1,m3, m3), N = (n1,n2,n3) € M(3,C)) is defined
by

M2 XNz M3 XN1 M1 X Ny
MxN = + + + € M(3,C).
Mg XMg N3z XM N1 X M2

Then Jo ® M(3,C) is isomorphic to J as Freudenthal algebras.

Using the inclusion G2 C Fy, the R-linear transformations 7,4,y and w of
C & C? = ¢ are naturally extended to R-linear transformations v,v’,y; and w
of Jc ® M(3,C) =J as

VX + M) = X + 7 (mq, ma,m3) = X + (ymy,yma,yma),
V(X + M) = X + 9/ (my,mz,m3) = X + (Y'my,v'm3,v'mg3),
MnX+M)=X+M,
wX+M)=X+wiM = X + (wim;,w1mz,w1ms).

Before we consider the group (Fy)"', we study the group Fy ¢ replaced with
C in the place € in the definition of the group Fy:

. Fio={aclor(¥c)|a(X xY) =aX x a¥}.
The group Z, = {1,7:} acts on the group SU(3) by
D =D, DeSU3),
and let SU(3)- Z; be the semi-direct product of these groups under this action.
LEMMA 2.2.1. Fyc = (SU3)/23)- Z2, Z3 = {E,w1 E,u,%E}.
Proof. We deﬁne a mapping ¥4,c : SU(3) - Z2 = F4c by
Ya,c(4,1)X =»AXA", Ya,c(A,m)X = AXA*, X €3Jc.

Then 94 ¢ is well-defined, a surjective homomorphism and Kervyy c = (Z3,1).
Thus we have the required isomorphism (see [4] for details). O

PROPOSITION 2.2.2. (Fy)¥ = (SU(3) x SU(3))/Z3, Z3 = {(E, E),
(le, le), (w12E, wle)}.

Prbof. We define a mapping ¥4, : SU(3) x SU(3) — (Fy)¥ by
Yaw(D,A) (X + M) =AXA"+ DMA*, X+MeJcdM(3,C)=3.

Then 94, is well-defined, a surjective homomorphism and Kery ., = Z3. Thus
we have the required isomorphism (see [4] for details). O
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The group Z3 = {1,71} acts on the group U(1) x U(1) x SU(3) by
7l(p,Q7 A) = (—p’-q’az)’

and let (U(1) x U(1) x-SU(3)) - Zz be the semi-direct product of these groups
under this action.

THEOREM 2.2.3. (Fy)""' & (U(1)xU(1)xSU(3))/2Z3)-Z2, Z3 = {(1, 1, E),
(w1,w1,w1 E), (w12, w1?,w12E)}.

Proof. We define a mapping Ye: (UQ)xUQ1) x SUB3)) - Z3 — (F4)‘71’Y' by
va((p, g, 4),1)(X + M) = AX A"+ D(p,q) M A*,
Ya((p, 9, A), )(X + M) = AXA*+ D(p,q)MA*, X + M € 3o ® M(3,C) =3,

where D(p, q) =diag(p, ¢, pg) € M (3, C). We have to prove that 1), is well-defined.
It is clear that 1/14((]?, q, A), 1) € Fy ([Proposition 222') and ¢4((p7 aq, A)?'Yl) =
Y4((p, ¢, A),1)y1 € Fy. Furthermore, since

v =%4((1,-1,E),1), ~' =¢4((-1,1,E),1),

¥4((p, ¢, 4), 1) commutes with v and 4’. Moreover v; commutes with v and 7/ in
G2 C Fy. Hence 1), is well-defined. It is easy to see that 1 is a homomorphism.
We shall show that 9, is onto. Let a € (Fy)""'. Since Qv ={X eJ|V X =
X,¥X = X} = Jc, the restriction of a to Jo belongs to Fy,c. Hence there
exists A € SU(3) such that

aX =AXA* or aX =AXA*, X €jJc

(Lemma 2.2.1)). In the former case, let 8 = Ya,w(E,A) e, then B|3c =1, and
so B € G2. Moreover 8 € (G2)¥ = (G2),. Hence there exists D € SU(3) such
that

B(X +M) =X+ DM =1, ,(D,E)(X+M), X+Mec3IcdMB,C)=3]

(Propositions 2.1.1, 2.2.2), that is, 8 = 14, (D, E). Therefore we have a =
Ya,w(E, A) Y4w(D, E) = 1p4,,(D, A). From the condition that a commutes with
v and ', D is of the form D(p, q). Hence o = Ya,0(D(p,q), A) = Y4((p, g, A), 1).
In the latter case, consider ay;, then it is in the same situation as above. Thus
that 14 is onto is shown. Kery, = (Z3, 1) is easily obtained. Therefore we have
the isomorphism (F,)"" = ((U(1) x U(1) x SU(3))/23) - Z,. O
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2.3 Group Eg |

Note that in 3¢ = (J¢)C ® M(3, C)°, the multiplication x is defined as that
inJ = Jc ® M(3,C). Using the inclusion Fy C Eg, the R-linear transforma-
tions ~,7’,v1 and w of Jc & M(3,C) = J are naturally extended to C-linear
transformations v, ',y and w of (Jo)€ & M(3,C)° = 3°, respectively.

Before we consider the group (Es)%"', we study the group Fg c replaced
with C in the place € in the definition of the group Eg:

Esc = {a € Isoc((3¢c)€) | detaX = detX, (aX,aY) = (X,Y)}
= {a € Isoc((3c)€) |aX x aY = rar(X xY),{(aX,aY) = (X,Y)}.
The group Z3 = {1,7} acts on the group SU(3) x SU(3) by
v1(4, B) = (B, A).

and let the group (SU(3) x SU(3))-Z2 be the semi-direct product of these gfoubs
under this action. ‘

LEMMA 2.3.1. Es’c & ((SU(3)><SU(3))/Z3)22, Z3 = {(E,E), (le,le),

(w12E,w12E)}.

Proof. We define the mapping h : M(3,C) x M(3,C) — M(3,C)€ by

A+B A-B
2 T3

Now, we define a mapping vs,c : (SU(3) x SU(3)) - Z; — Es,c by

h(A,B) = e.

¥s,0((4, B),1)X = h(A4, B)Xh(A, B)",
¥s,c((4, B),m)X = h(A,B)Xh(A,B)*, X € (Jo)°.

Then vg,c is well-defined, a surjective homomorphism and Kerys,c = (Z3,1).
Thus we have the required isomorphism (see [4] for details). O

PROPOSITION 2.3.2. (Be)¥ = (SU(3) x SU(3) x SU(3))/Z3, Z3
= {(E, E, E), (le,le,le), (w12E,w12E, wle)}. '

Proof. We define a mapping 16, : SU(3) x SU(3) x SU(3) — (Es)* by
Ye,w(D, A, B)(X + M) = h(A, B)Xh(A, B)* + DMTh(A, B)*,
X +Me (Ic)°oM(3,C)° =3°.

Then g, is well-defined, a surjective homomorphisxh and Ker g , = Z3. Thus
we have the required isomorphism (see [4] for details). O
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The group Z3 = {1,71} acts on the group U(1) x U(1) x SU(3) x SU(3) by

’71(pa q, A, B) = (ﬁa g, _E’ Z))

and let (U(1) x U(1) x SU(3) x SU(3)) - Z be the semi-direct product of these
groups under this action.

THEOREM 2.3.3. (Eg)"" = ((U(1) x U(1) x SU(3) x SU3))/Z3)-Z3, Z3 =
{(1, ls E, E), (wlywh le) le)’ (wlz, w12,W12E,W12E)}.

Proof. We define a mapping v : (U(1) x U(1) x SU(3) x SU(3))- Z2 — (Eg)"
by

6((p,a, A, B),1)(X + M) = h(A, B)Xh(A, B)* + D(p,q)Mrh(A, B)",
¢6((p, q, A') B)a 71)(X + M) = h(A, B)—-X;h(A, B),‘= + D(P, Q)HTh(A, B)*’
X +M e (3c)° ® M(3,C)° = 3°,

where D(p, q) =diag(p, q,Pq) € M(3,C). We have to prove that 1g is well-defined.
It is clear that ¢((p, ¢, 4, B),1) € Eg (Proposition 2.3.2) and ve((p,q, A, B), 1)
= v6((p,q, A, B),1)y; € Es. Furthermore, since »

Y= wG((ls _11 E’ E): 1); 7, = 1/)6((—1, 1’ E’ E)a 1)’

Ye((p, g, A, B),1) commutes with v and 7’. Moreover 4; commutes with ~ and
7 in G3 C Fy C Es. Hence v is well-defined. It is easy to see that Ye is
a homomorphism. We shall show that g is onto. Let a € (Es)'f”Y'. Since
(3w = {X € 39X = X,v'X = X} = (3c)°, the restriction of o to
(3c)© belongs to Eg c. Hence there exist A, B € SU(3) such that ‘

aX = h(A,B)Xh(A,B)* or aX =h(A,B)Xh(A,B)*, X € (3c)°

(Lemma 2.3.1). In the former case, let 8 = v ., (E, A, B)~lq, then Bl(3c)€ =1,
and so B € G3. Moreover 3 € (Gg)¥ = (G2)e,. Hence there exists D € SU(3)
such that

B(X + M) = X + DM = 45,(D, E, E)(X + M),
X+Me@c)°oM3,C)F° =3°

(Propositions 2.1.1), 2.3.2), that is, 3 = 16 ., (D, E, E). Therefore we have a =
Ye6,w(E, A, B) V6,u,(D, E, E) = 1g.,(D, A, B). From the condition that o com-
mutes with 4 and +/, D is of the form D(p,q). Hence a = s .,(D(p,q), A, B) =
Ys((p,q, A, B),1). In the latter case, consider avy;, then it is in the same situ-
ation as above. Thus that 1 is onto is shown. Kervyg = (Z3,1) is easily ob-
tained. Therefore we have the isomorphism (Eg)™"" = ((U(1) x U(1) x SU(3) x
SU3))/Z3)-2Z,. O
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2.4 Group Er

We identify (Bo)C @ (M(3,C)° & M(3,C)°) with B (using the identifi-
cation (Jo)€ & M(3,C)C with J€) by

We often denote any element of (P )€ by Pc.

Using the inclusion Eg C E7, the C-linear transformations v,v’,; and w
of (3¢)C ® M(3,C)C = J© are naturally extended to C-linear transformations
7,711 and w of (Po)C & (M(3,C)° & M(3,C)°) = PC as

Y(X,Y,€,n) + (M, N)) = (X,Y,§,n) + (YM,YN),
Y ((X,Y,&n) + (M,N)) = (X,Y,&,n) + (v'M,~'N),
n(X,Y,¢,1) + (M,N)) = (X,Y,&n) + (M,N),
w((X,Y,€,n) + (M,N)) = (X,Y,§,n) + (w1 M, w1 N).

Before we consider the group (E7)""', we study the group E ¢ replaced
with C in the place € in the definition of the group E7:

Erc = {a € Isoc((Bc)°) |a(P x Q)a™! = aP x aQ, (aP,oQ) = (P,Q)}.
We define the mapping W:CcC s C by
h'(a+b)=a+be;, a,beC. oy

Now, let A3(C®) be the third exterior product of C-vector space C® and we
define the C-C-linear isomorphism fo : (Bc)C — A3(C?®) by

&1 23 T2 m ys T2\
fc( Tz & z1),|Tz m W0 ,5»77)= Zmijkei/\ej/\ek

z2 T1 &3 Y2 Y1 M3 i<j<k

({el, ey, - ,eg} is the canonical basis of C® and zijx € C are skew-symmetric

i J k
tensors: Ty g = sgn (i’ ;, k') :z:,-_.,-k), where

z156 = h'(€1), Tiea = h'(x3), =145 = h'(Z2),
T256 = h'(T3), T264 = h'(€2), w245 = h'(21),
z3s6 = h'(x2), x364 = h'(T1), z345 = h'(€3),
T2z =h'(m), Tas1=h(y3), zTa12=h(7,),
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Ts23 = h'(F3), Ts31=h'(m2), 512 =h'(11),
Te2s = h'(y2), zes1 = h' (1), ze12 = h'(m3),
z123 = h'(§),
T456 = h'(n).
Furthermore, we define the C-C-linear mapping k : M(3,C)¢ @ M(3,C)¢ —
M(6,C) by

—N2 - N1€1' M2 + M]_el)

k(M,N) = k(M + iMp, Ny +iN3) = ( Mj; — Niey Ny + Nie;

where M;, N; € M (3, C), then the inverse mapping k~1: M(6,C) - M(3,C)°®
M(3,C)€ of k is given by

g1 (Mu Ml2)

Mz M,
_ [ (M1 — Mig)es | Mg+ Myy (Maa + My)ey | Moy — My,
= 2 + ) ) 2 +1 ) y

where Mij € M(3 C).

The group SU(6) acts on A3(CP®), that is, the action of A € SU(6) on
. aAbAce A3(CP) is defined by

A(anbAc)=Aa N AbA Ac.

The group Z; = {1,7,} acts on the group SU(6) by

—_— 0 FE

and let SU(6) - Z2 be the semi-direct product of these groups under this action.
LEMMA 2.4.1. E;¢c = (SU(6) /23) + 22, Z3 = {E,w»,E,w,’E}.
Proof. We define a mapping 7 ¢ : SU (6)- Z2 — E7c by
¥7.c(4,1)Po = fce ' (A(fcPc)),
¥1.c(4,m)Pc = fc™ (A(fcPc)), Pe € (Bo)C.

Then t7,c is well-defined, a surjective homomorphism and Ker7,c = (Z3,1).
- Thus we have the required isomorphism (see [4] for details). O
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We define the C-C-linear isomorphism f : 8¢ — A3(C®) @ M (6, C) by
f(Pc +(M,N)) = fePc + k(M, N),
Pc + (M, N) € ($c)° @ (M(3,C)° & M(3,C)°) = €.
The group SU(3) x SU(6) acts on A3(C®) ® M(6,C) by

(D,A)(Z(a/\b/\c) +J\7f) = (Aa A AbA Ac) + DMA,
~ D 0\/Mi1 M _ DM;; DM, N
where DM means (0 D)(le M22) = (DM21 DM22) yM;; € M(3,C).

PROPOSITION 2.4.2. (E7)¥=(SU(3)xSU(6))/Z3, Z3={(E,E), (w1 E,urE),
(w12E,w12E)}.

Proof. We define a mapping 97 ., : SU(3) x SU(6) — (E+)* by
¢7,w(DsA)P = f—l((D7A)(fP'))’ Pe ;‘pC_

Then 1 ,, is well-defined, a surjective homomorphism and Ker7 ., = Z3. Thus

we have the required isomorphism (see [4] for details). O
‘ The group Z2 = {1,4;} acts on the group U(1) x U(1) x SU(6) by
‘ ’71(17, q, A) = (ﬁa g, (AdJ3)A)7

and let (U(1) x U(1) x SU(6)) - Z2 be the semi-direct product of these groups
under this action. |

THEOREM 2.4.3. (E;)"" & (U(1)xU(1)xSU(6))/2Z3)-2Z2, Z5 = {(1,1,E),
’ (wlawhle)’ (0)12,0212, U)12E)}-

Proof. We define a mapping ¥ :b (UQ)xU(1) x SU(6)) - Z; — (E7)'m' by

| $r((p, 0, A), )P = £~1((D(p, 0), A)(FP)),
¢'7((p’ q, A)a'Yl)P = f—l((D(p, Q)’A)(f71P))1 P € mc’

- where D(p,q) = diag(p, q,PG). We have to prove that iy is well-defined. It

is clear that ¥;((p,q,A),1) € E; (Proposition 2.4.2) and v¥-((p,q,A),71) =
¥7((p, g, A), 1)1 € E;. Furthermore, since

vy = ¢7((1, ""1, E),l), ’7, = ¢7(('—19.11 E)a l)s
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Y¥7((p,q, A),1) commutes with v and 4’. Moreover 4; commutes with v and
v in G2 C Fy C Eg C E;. Hence 7 is well-defined. We see that v is a
homomorphism (see (@) We shall show 17 is onto. Let a € (E7)"". Since
(B, = {P € BC|yP = P,4'P = P} = (PBc)C, the restriction of a to
(Bc)C belongs to E7 c. Hence there exists A € SU(6) such that

aPc = fe ' (A(fcPc)) or aPe = fe }(A(fePe)), Pe € (Bo)C

(Lemma 2.4.1). In the former case, let 8 = 7., (E, A)la, then B|(BPc)C =1,
and so B € G2. Moreover, 8 € (G2)¥ = (G2)e,. Hence there exists D € SU(3)
such that

B(Pc + (M,N)) = Pc + D(M,N) = Pc + (DM, DN)
= Yr,u(D, E)(Pc + (M,N)), Pc+(M,N)eg°

(Propositions 2.1.1,, 2.4.2)), that is, 8 = v7,.,(D, E). Hence we have
a= ¢7,W(E’ A)/B = w7,w(E) A)w7,w(D’ E) = ¢7,w(D, A)

From the condition that o commutes with v, ', D is of the form D(p, q). Hence
- a=Yq7.4(D(p,q), A) = ¥7((p, g, A), 1). In the latter case, consider ay;, then it is
in the same situation as above. Thus that 17 is onto is shown. Kery; = (Z3,1)
is easily obtained. Therefore we have the isomorphism (E)""" & ((U(1)xU(1) x
SU(6))/Zs3)-Z,. O

Remark. Instead of D(p,q) = diag(p, ¢, pq), if we use diag(q?, pg, pg), then the
kernel of each v; is Z; x Z3. Consequently we have the results of the first
consideration.
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