FIXED POINTS SUBGROUPS BY TWO INVOLUTIVE AUTOMORPHISMS γ, γ' OF COMPACT EXCEPTIONAL LIE GROUPS G_2, F_4, E_6 AND E_7

 $\mathbf{B}\mathbf{y}$

TOSHIKAZU MIYASHITA AND ICHIRO YOKOTA

(Received April 14, 2005; Revised August 15, 2005)

Abstract. For the simply connected compact exceptional Lie groups $G = G_2, F_4, E_6$ and E_7 , we determine the group structure of the subgroup $G^{\gamma,\gamma'}$ of G by considering two consistutions.

Introduction

For the simply connected compact exceptional Lie groups $G = G_2, F_4, E_6$ and E_7 , we consider two involutions γ, γ' and determine the group structure of the subgroup $G^{\gamma,\gamma'}$ of G, which is the intersection $G^{\gamma} \cap G^{\gamma'}$ of the fixed points subgroups G^{γ} and $G^{\gamma'}$. The motivation is as follows. In the preceding paper [3], we determined the group structure of $G^{\sigma,\sigma'} = G^{\sigma} \cap G^{\sigma'}$, $G = F_4, E_6$ and E_7 for the involutions $\sigma, \sigma' \in F_4$. We consider the case replacing γ, γ' instead of σ, σ' . We shall give two different proofs, needless to say, results are essentially the same.

$$(G_{2})^{\gamma,\gamma'} \cong (U(1) \times U(1))/\mathbb{Z}_{2} \times \{1,\gamma_{1}\}$$

$$\cong (U(1) \times U(1)) \cdot \mathbb{Z}_{2}$$

$$(F_{4})^{\gamma,\gamma'} \cong (U(1) \times U(1) \times SU(3))/(\mathbb{Z}_{2} \times \mathbb{Z}_{3}) \times \{1,\gamma_{1}\}$$

$$\cong ((U(1) \times U(1) \times SU(3))/\mathbb{Z}_{3}) \cdot \mathbb{Z}_{2}$$

$$(E_{6})^{\gamma,\gamma'} \cong (U(1) \times U(1) \times SU(3) \times SU(3))/(\mathbb{Z}_{2} \times \mathbb{Z}_{3}) \times \{1,\gamma_{1}\}$$

$$\cong ((U(1) \times U(1) \times SU(3) \times SU(3))/\mathbb{Z}_{3}) \cdot \mathbb{Z}_{2}$$

$$(E_{7})^{\gamma,\gamma'} \cong (U(1) \times U(1) \times SU(6))/(\mathbb{Z}_{2} \times \mathbb{Z}_{6}) \times \{1,l_{1}\}$$

$$\cong ((U(1) \times U(1) \times SU(6))/\mathbb{Z}_{3}) \cdot \mathbb{Z}_{2}$$

As for the group $(E_8)^{\gamma,\gamma'}$, we can not realize so far.

2000 Mathematics Subject Classification: 22E99 Key words and phrases: exceptional Lie group

NOTATION.

- (1) For a group G and an element s of G, we denote $\{g \in G \mid sg = gs\}$ by G^s .
- (2) For a topological group G, we denote by G^0 the connected component containing the identity of G and $G = G^0 \times \{1, a\}$ means that G has two connected components such that $G = G^0 \cup aG^0$.
 - (3) $G \cdot Z_2$ denotes a semi-direct product of groups G and $Z_2 = \{1, \gamma_1\}$.
- (4) For an R-vector space V, its complexification $\{u+iv \mid u,v \in V\}$ is denoted by V^C . The complex conjugation in V^C is denoted by τ : $\tau(u+iv)=u-iv$. In particular, the complexification of R is briefly denoted by $C: R^C = C$.
- (5) The Lie algebra of a Lie group G is denoted by the corresponding German small letter \mathfrak{g} . For example, $\mathfrak{sp}(n)$ denotes the Lie algebra of the group Sp(n).

Although we will give all definitions used in the following sections, if in case of insufficiency, refer to [5],[6] or [7].

1. The first consideration

1.1 Group G_2

Let \mathfrak{C} be the Cayley division algebra with the canonical R-basis $\{e_0 = 1, e_1, \dots, e_7\}$ ([7]). \mathfrak{C} contains naturally the field C of complex numbers and the field H of quaternions as

$$C = \{x_0 + x_1e_1 \mid x_k \in R\}, \quad H = \{x_0 + x_1e_1 + x_2e_2 + x_3e_3 \mid x_k \in R\},$$

respectively. Any element x of \mathfrak{C} is uniquely expressed as $x = m + ae_4, m, a \in \mathcal{H}$: $\mathfrak{C} = \mathcal{H} \oplus \mathcal{H}e_4$. In $\mathfrak{C} = \mathcal{H} \oplus \mathcal{H}e_4$, the multiplication and the conjugation are defined by

$$(m + ae_4)(n + be_4) = (mn - \overline{b}a) + (a\overline{n} + bm)e_4,$$

$$\overline{m + ae_4} = \overline{m} - ae_4.$$

The simply connected compact Lie group G_2 is given by

$$G_2 = \{ \alpha \in \operatorname{Iso}_{\mathbf{R}}(\mathfrak{C}) \mid \alpha(xy) = (\alpha x)(\alpha y) \}.$$

We define **R**-linear transformations γ, γ' and γ_1 of $\mathbf{H} \oplus \mathbf{H} e_4 = \mathfrak{C}$ by

$$\gamma(m + ae_4) = m - ae_4,$$

$$\gamma'(m + ae_4) = \gamma'm + (\gamma'a)e_4,$$

$$\gamma_1(m+ae_4)=\gamma_1m+(\gamma_1a)e_4,\quad m+ae_4\in oldsymbol{H}\oplus oldsymbol{H}e_4=\mathfrak{C},$$

respectively, where $\gamma', \gamma_1 : \mathbf{H} \to \mathbf{H}$ are defined by

$$\gamma'(x+ye_2) = x - ye_2,$$

 $\gamma_1(x+ye_2) = \overline{x} + \overline{y}e_2, \quad x+ye_2 \in C \oplus Ce_2 = H.$

Then $\gamma, \gamma', \gamma_1 \in G_2$ and $\gamma^2 = {\gamma'}^2 = {\gamma_1}^2 = 1$. γ, γ' and γ_1 are conjugate with each other in G_2 ([5]) and commutative. From $\gamma\gamma' = \gamma'\gamma$, we have

$$(G_2)^{\gamma}\cap (G_2)^{\gamma'}=((G_2)^{\gamma})^{\gamma'}=((G_2)^{\gamma'})^{\gamma},$$

so this group will be briefly denoted by $(G_2)^{\gamma,\gamma'}$.

PROPOSITION 1.1.1.
$$(G_2)^{\gamma} \cong (Sp(1) \times Sp(1))/\mathbb{Z}_2, \mathbb{Z}_2 = \{(1,1), (-1,-1)\}.$$

Proof. Let
$$Sp(1) = \{p \in H \mid p\overline{p} = 1\}$$
. The mapping $\varphi_2 : Sp(1) \times Sp(1) \to (G_2)^{\gamma}$,

$$\varphi_2(p,q)(m+ae_4)=qm\overline{q}+(pa\overline{q})e_4,\quad m+ae_4\in {m H}\oplus {m H}e_4={\mathfrak C}$$

induces the required isomorphism (see [5] or [7] for details). \square

LEMMA 1.1.2. The mapping $\varphi_2: Sp(1) \times Sp(1) \to (G_2)^{\gamma}$ satisfies

$$\gamma'\varphi_2(p,q)\gamma'=\varphi_2(\gamma'p,\gamma'q),\quad \gamma'=\varphi_2(e_1,e_1),\quad \gamma_1=\varphi_2(e_2,e_2).$$

Now, we will determine the group structure of $(G_2)^{\gamma,\gamma'}$.

THEOREM 1.1.3. $(G_2)^{\gamma,\gamma'} \cong (U(1) \times U(1))/\mathbb{Z}_2 \times \{1,\gamma_1\}, \mathbb{Z}_2 = \{(1,1),(-1,-1)\}.$

Proof. For $\alpha \in (G_2)^{\gamma,\gamma'} \subset (G_2)^{\gamma}$, there exist $p,q \in Sp(1)$ such that $\alpha = \varphi_2(p,q)$ (Proposition 1.1.1). From $\gamma'\alpha\gamma' = \alpha$, we have $\varphi_2(\gamma'p,\gamma'q) = \varphi_2(p,q)$ (Lemma 1.1.2). Hence

$$\left\{ \begin{array}{l} \gamma'p = p \\ \gamma'q = q \end{array} \right. \text{ or } \left\{ \begin{array}{l} \gamma'p = -p \\ \gamma'q = -q. \end{array} \right.$$

In the former case, we have $p,q\in U(1)=\{a\in C\,|\, a\overline{a}=1\}$. Hence the group of the former case is $(U(1)\times U(1))/\mathbf{Z}_2$. In the latter case, $p=q=e_2$ satisfy the conditions and $\varphi_2(e_2,e_2)=\gamma_1$ (Lemma 1.1.2). Thus we have the isomorphism $(G_2)^{\gamma,\gamma'}\cong (U(1)\times U(1))/\mathbf{Z}_2\times\{1,\gamma_1\}$. \square

1.2 Group F_4

Let $\mathfrak{J}=\mathfrak{J}(3,\mathfrak{C})=\{X\in M(3,\mathfrak{C})\,|\,X^*=X\}$ be the exceptional Jordan algebra with the Jordan multiplication $X\circ Y$, the inner product (X,Y) and the Freudenthal multiplication $X\times Y$ respectively defined by

$$\begin{split} X\circ Y &= \frac{1}{2}(XY+YX), \quad (X,Y) = \operatorname{tr}(X\circ Y), \\ X\times Y &= \frac{1}{2}(2X\circ Y - \operatorname{tr}(X)Y - \operatorname{tr}(Y)X + (\operatorname{tr}(X)\operatorname{tr}(Y) - (X,Y))E), \end{split}$$

where E is the 3×3 unit matrix.

The simply connected compact Lie group F_4 is given by

$$F_4 = \{ \alpha \in \mathrm{Iso}_{\mathbf{R}}(\mathfrak{J}) \mid \alpha(X \times Y) = \alpha X \times \alpha Y \}.$$

We have naturally the inclusion $G_2 \subset F_4$ ([5],[7]).

Any element
$$X = \begin{pmatrix} \xi_1 & x_3 & \overline{x}_2 \\ \overline{x}_3 & \xi_2 & x_1 \\ x_2 & \overline{x}_1 & \xi_3 \end{pmatrix}$$
 of $\mathfrak J$ is expressed as

$$X = egin{pmatrix} \xi_1 & m_3 & \overline{m}_2 \ \overline{m}_3 & \xi_2 & m_1 \ m_2 & \overline{m}_1 & \xi_3 \end{pmatrix} + egin{pmatrix} 0 & a_3e_4 & -a_2e_4 \ -a_3e_4 & 0 & a_1e_4 \ a_2e_4 & -a_1e_4 & 0 \end{pmatrix},$$

where $x_k = m_k + a_k e_4 \in \mathbf{H} \oplus \mathbf{H} e_4 = \mathfrak{C}$. We associate such X with the element

$$egin{pmatrix} \xi_1 & m_3 & \overline{m}_2 \ \overline{m}_3 & \xi_2 & m_1 \ m_2 & \overline{m}_1 & \xi_3 \end{pmatrix} + (a_1,a_2,a_3)$$

of $\mathfrak{J}(3, \mathbf{H}) \oplus \mathbf{H}^3$. In $\mathfrak{J}(3, \mathbf{H}) \oplus \mathbf{H}^3$, we define the multiplication \times by

$$(M+\boldsymbol{a})\times(N+\boldsymbol{b})=\left(M\times N-\frac{1}{2}(\boldsymbol{a}^*\boldsymbol{b}+\boldsymbol{b}^*\boldsymbol{a})\right)-\frac{1}{2}(\boldsymbol{a}N+\boldsymbol{b}M).$$

Then $\mathfrak{J}(3, \boldsymbol{H}) \oplus \boldsymbol{H^3}$ is isomorphic to \mathfrak{J} as Freudenthal algebras.

Using the inclusion $G_2 \subset F_4$, the **R**-linear transformations $\gamma, \gamma', \gamma_1$ of $H \oplus He_4$ = \mathfrak{C} are extended to **R**-linear transformations $\gamma, \gamma', \gamma_1$ of $\mathfrak{J}(3, \mathbf{H}) \oplus \mathbf{H}^3 = \mathfrak{J}$ by

$$\gamma(M+\boldsymbol{a})=M-\boldsymbol{a}, \quad \gamma'(M+\boldsymbol{a})=\gamma'M+\gamma'\boldsymbol{a}, \quad \gamma_1(M+\boldsymbol{a})=\gamma_1M+\gamma_1\boldsymbol{a},$$

respectively.

PROPOSITION 1.2.1. $(F_4)^{\gamma} \cong (Sp(1) \times Sp(3))/\mathbb{Z}_2, \mathbb{Z}_2 = \{(1, E), (-1, -E)\}.$

Proof. Let $Sp(1) = \{p \in \mathbf{H} \mid p\overline{p} = 1\}$ and $Sp(3) = \{A \in M(3, \mathbf{H}) \mid AA^* = E\}$. The mapping $\varphi_4 : Sp(1) \times Sp(3) \to (F_4)^{\gamma}$,

$$\varphi_4(p,A)(M+a) = AMA^* + paA^*, \quad M+a \in \mathfrak{J}(3,H) \oplus H^3 = \mathfrak{J}(3,H)$$

induces the required isomorphism (see [5] or [7] for details). \square

LEMMA 1.2.2. The mapping $\varphi_4: Sp(1) \times Sp(3) \to (F_4)^{\gamma}$ satisfies

$$\gamma'\varphi_4(p,A)\gamma'=\varphi_4(\gamma'p,\gamma'A),\quad \gamma'=\varphi_4(e_1,e_1E),\quad \gamma_1=\varphi_4(e_2,e_2E).$$

Hereafter, ω_1 denotes $\omega_1 = -\frac{1}{2} + \frac{\sqrt{3}}{2}e_1$. Then $\omega_1 \in \mathfrak{C}$ and $\omega_1^3 = 1$.

Now, we will determine the group structure of $(F_4)^{\gamma,\gamma'} = ((F_4)^{\gamma})^{\gamma'} = ((F_4)^{\gamma'})^{\gamma} = (F_4)^{\gamma} \cap (F_4)^{\gamma'}$.

THEOREM 1.2.3. $(F_4)^{\gamma,\gamma'} \cong (U(1) \times U(1) \times SU(3))/(\mathbf{Z}_2 \times \mathbf{Z}_3) \times \{1,\gamma_1\}, \ \mathbf{Z}_2 = \{(1,1,E),(-1,-1,E)\}, \ \mathbf{Z}_3 = \{(1,1,E),(1,\omega_1,\omega_1^2E),(1,\omega_1^2,\omega_1E)\}.$

Proof. For $\alpha \in (F_4)^{\gamma,\gamma'} \subset (F_4)^{\gamma}$, there exist $p \in Sp(1)$ and $A \in Sp(3)$ such that $\alpha = \varphi_4(p,A)$ (Proposition 1.2.1). From $\gamma'\alpha\gamma' = \alpha$, we have $\varphi_4(\gamma'p,\gamma'A) = \varphi_4(p,A)$ (Lemma 1.2.2). Hence

$$\left\{ \begin{array}{l} \gamma'p = p \\ \gamma'A = A \end{array} \right. \text{ or } \left\{ \begin{array}{l} \gamma'p = -p \\ \gamma'A = -A. \end{array} \right.$$

In the former case, we have $p \in U(1)$ and $A \in U(3) = \{A \in M(3, \mathbb{C}) \mid AA^* = E\}$. Hence the group of the former case is $(U(1) \times U(3))/\mathbb{Z}_2$, $\mathbb{Z}_2 = \{(1, E), (-1, -E)\}$. In the latter case, $p = e_2$, $A = e_2E$ satisfy the conditions and $\varphi_4(e_2, e_2E) = \gamma_1$ (Lemma 1.2.2). Hence we have the isomorphism

$$(F_4)^{\gamma,\gamma'}\cong (U(1) imes U(3))/{oldsymbol{Z}}_2 imes \{1,\gamma_1\}, \quad {oldsymbol{Z}}_2=\{(1,E),(-1,-E)\}.$$

Since the mapping $h: U(1)\times SU(3)\to U(3), h(a,A)=aA$ gives the isomorphism $U(3)\cong (U(1)\times SU(3))/\mathbf{Z}_3, \mathbf{Z}_3=\{(1,E),(\omega_1,\omega_1^2E),(\omega_1^2,\omega_1E)\},$ we have the isomorphism $(F_4)^{\gamma,\gamma'}\cong (U(1)\times U(1)\times SU(3))/(\mathbf{Z}_2\times \mathbf{Z}_3)\times \{1,\gamma_1\}.$

1.3 Group E_6

Let \mathfrak{J}^C be the complexification of the Jordan algebra \mathfrak{J} . In \mathfrak{J}^C , we define the determinant $\det X$ by $\frac{1}{3}(X,X\times X)$ and the Hermite inner product $\langle X,Y\rangle$ by $(\tau X,Y)$, respectively.

The simply connected compact Lie group E_6 is given by

$$E_6 = \{ \alpha \in \mathrm{Iso}_C(\mathfrak{J}^C) \mid \det \alpha X = \det X, \langle \alpha X, \alpha Y \rangle = \langle X, Y \rangle \}$$
$$= \{ \alpha \in \mathrm{Iso}_C(\mathfrak{J}^C) \mid \alpha X \times \alpha Y = \tau \alpha \tau(X \times Y), \langle \alpha X, \alpha Y \rangle = \langle X, Y \rangle \}.$$

We have naturally the inclusion $G_2 \subset F_4 \subset E_6$ ([5],[7]).

Let $k: \mathbf{H} = \mathbf{C} \oplus \mathbf{C} e_2 \to M(2, \mathbf{C})$ be the **R**-linear mapping defined by

$$k(a+be_2)=egin{pmatrix} a & b \ -\overline{b} & \overline{a} \end{pmatrix}, \quad a,b\in oldsymbol{C}.$$

This k is naturally extended to R-linear mappings

$$k: M(3, \mathbf{H}) \to M(6, \mathbf{C}), \quad k: \mathbf{H}^3 \to M(2, 6, \mathbf{C}).$$

Furthermore, these are extended to C-C-linear isomorphisms

$$k: M(3, \mathbf{H})^C \to M(6, \mathbf{C}), \quad k: (\mathbf{H}^3)^C \to M(2, 6, \mathbf{C}),$$

defined by

$$k(M_1 + iM_2) = k(M_1) + e_1k(M_2), \quad M_1, M_2 \in M(3, \mathbf{H}),$$

 $k(\mathbf{a}_1 + i\mathbf{a}_2) = k(\mathbf{a}_1) + e_1k(\mathbf{a}_2), \quad \mathbf{a}_1, \mathbf{a}_2 \in \mathbf{H}^3.$

Finally, we define the *C*-vector space $\mathfrak{S}(6, \mathbb{C})$ by $\{S \in M(6, \mathbb{C}) \mid {}^tS = -S\}$ and the *C*-*C*-linear isomorphism $k_J : \mathfrak{J}(3, \mathbb{H})^C \to \mathfrak{S}(6, \mathbb{C})$ by

$$k_J(M_1+iM_2)=k(M_1)J+e_1k(M_2)J, \quad M_1,M_2\in M(3,\boldsymbol{H}),$$

where
$$J = \operatorname{diag}(J, J, J), J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
.

Using the inclusion $F_4 \subset E_6$, the **R**-linear transformations $\gamma, \gamma', \gamma_1$ of \mathfrak{J} are extended to C-linear transformations $\gamma, \gamma', \gamma_1$ of \mathfrak{J}^C .

PROPOSITION 1.3.1.
$$(E_6)^{\gamma} \cong (Sp(1) \times SU(6))/\mathbb{Z}_2, \mathbb{Z}_2 = \{(1, E), (-1, -E)\}.$$

Proof. Let $Sp(1) = \{ p \in H \mid p\overline{p} = 1 \}$ and $SU(6) = \{ A \in M(6, \mathbb{C}) \mid AA^* = E, \det A = 1 \}$. The mapping $\varphi_6 : Sp(1) \times SU(6) \to (E_6)^{\gamma}$,

$$\varphi_6(p, A)(M + \mathbf{a}) = k_J^{-1}(A(k_J(M))^t A) + p\mathbf{a}(k^{-1}(A^*)),$$

$$M + \mathbf{a} \in \mathfrak{J}(3, \mathbf{H})^C \oplus (\mathbf{H}^3)^C = \mathfrak{J}^C$$

induces the required isomorphism (see [5] or [7] for details). □

LEMMA 1.3.2. The mapping $\varphi_6: Sp(1) \times SU(6) \to (E_6)^{\gamma}$ satisfies

$$\gamma' \varphi_6(p,A) \gamma' = \varphi_6(\gamma' p,IAI), \quad \gamma' = \varphi_6(e_1,e_1I), \quad \gamma_1 = \varphi_6(e_2,J),$$

where $I = diag(1, -1, 1, -1, 1, -1) \in M(6, \mathbf{R})$.

Now, we will determine the group structure of $(E_6)^{\gamma,\gamma'} = ((E_6)^{\gamma})^{\gamma'} = ((E_6)^{\gamma'})^{\gamma} = (E_6)^{\gamma} \cap (E_6)^{\gamma'}$.

THEOREM 1.3.3. $(E_6)^{\gamma,\gamma'} \cong (U(1) \times U(1) \times SU(3) \times SU(3))/(\mathbb{Z}_2 \times \mathbb{Z}_3) \times \{1, \gamma_1\}, \mathbb{Z}_2 = \{(1, 1, E, E), (-1, -1, E, E)\}, \mathbb{Z}_3 = \{(1, 1, E, E), (1, \omega_1, \omega_1^2 E, \omega_1 E), (1, \omega_1^2, \omega_1 E, \omega_1^2 E)\}.$

Proof. For $\alpha \in (E_6)^{\gamma,\gamma'} \subset (E_6)^{\gamma}$, there exist $p \in Sp(1)$ and $A \in SU(6)$ such that $\alpha = \varphi_6(p,A)$ (Proposition 1.3.1). From $\gamma'\alpha\gamma' = \alpha$, we have $\varphi_6(\gamma'p,IAI) = \varphi_6(p,A)$ (Lemma 1.3.2). Hence

$$\begin{cases} \gamma'p = p \\ IAI = A \end{cases} \text{ or } \begin{cases} \gamma'p = -p \\ IAI = -A. \end{cases}$$

In the former case, we have $p \in U(1)$. Since $I = \operatorname{diag}(1, -1, 1, -1, 1, -1)$ is conjugate to $I_3 = \operatorname{diag}(1, 1, 1, -1, -1, -1)$ in SU(6), the group $\{A \in SU(6) \mid IAI = A\}$ is isomorphic to the group $\{A \in SU(6) \mid I_3AI_3 = A\} = S(U(3) \times U(3))$. Hence the group of the former case is $(U(1) \times S(U(3) \times U(3))) / \mathbb{Z}_2$, $\mathbb{Z}_2 = \{(1, E), (-1, -E)\}$. In the latter case, $p = e_2$, A = J satisfy the conditions and $\varphi_6(e_2, J) = \gamma_1$ (Lemma 1.3.2). Hence we have the isomorphism

$$(E_6)^{\gamma,\gamma'}\cong (U(1)\times S(U(3)\times U(3)))/{m Z}_2 imes\{1,\gamma_1\},\ {m Z}_2=\{(1,E),(-1,-E)\}.$$

Since the mapping $h: U(1) \times SU(3) \times SU(3) \rightarrow S(U(3) \times U(3)), h(a, A, B) = \begin{pmatrix} aA & 0 \\ 0 & a^{-1}B \end{pmatrix}$ gives the isomorphism $S(U(3) \times U(3)) \cong (U(1) \times SU(3) \times SU(3))$ $/\mathbf{Z}_3, \ \mathbf{Z}_3 = \{(1, E, E), (\omega_1, \omega_1^2 E, \omega_1 E), (\omega_1^2, \omega_1 E, \omega_1^2 E)\},$ we have the isomorphism $(E_6)^{\gamma, \gamma'} \cong (U(1) \times U(1) \times SU(3) \times SU(3))/(\mathbf{Z}_2 \times \mathbf{Z}_3) \times \{1, \gamma_1\}.$

1.4 Group E_7

We define the C-vector space \mathfrak{P}^C , called the Freudenthal C-vector space, by

$$\mathfrak{P}^C=\mathfrak{J}^C\oplus\mathfrak{J}^C\oplus C\oplus C$$

with the Hermite inner product

$$\langle P, Q \rangle = \langle X, Z \rangle + \langle Y, W \rangle + (\tau \xi) \zeta + (\tau \eta) \omega,$$

for $P = (X, Y, \xi, \eta)$, $Q = (Z, W, \zeta, \omega) \in \mathfrak{P}^C$. For $\phi \in \mathfrak{e}_6$, $A, B \in \mathfrak{J}^C$ and $\nu \in C$, we define the C-linear mapping $\Phi(\phi, A, B, \nu) : \mathfrak{P}^C \to \mathfrak{P}^C$ by

$$\Phi(\phi,A,B,
u)egin{pmatrix} X\ Y\ \xi\ \eta \end{pmatrix} = egin{pmatrix} \phi X - rac{1}{3}
u X + 2B imes Y + \eta A\ 2A imes X - {}^t\phi Y + rac{1}{3}
u Y + \xi B\ (A,Y) +
u \xi\ (B,X) -
u \eta \end{pmatrix},$$

where ${}^t\phi \in \mathfrak{e}_6$ is the transpose of ϕ with respect to the inner product (X,Y): $({}^t\phi X,Y)=(X,\phi Y)$. Next, for $P=(X,Y,\xi,\eta),\ Q=(Z,W,\zeta,\omega)\in\mathfrak{P}^C$, we define the C-linear mapping $P\times Q:\mathfrak{P}^C\to\mathfrak{P}^C$ by

$$P \times Q = \varPhi(\phi, A, B, \nu), \quad \begin{cases} \phi = -\frac{1}{2}(X \vee W + Z \vee Y) \\ A = -\frac{1}{4}(2Y \times W - \xi Z - \zeta X) \\ B = \frac{1}{4}(2X \times Z - \eta W - \omega Y) \\ \nu = \frac{1}{8}((X, W) + (Z, Y) - 3(\xi \omega + \zeta \eta)), \end{cases}$$

where $X \vee W \in \mathfrak{e}_6$ is defined by $(X \vee W)U = \frac{1}{2}(W,U)X + \frac{1}{6}(X,W)U - 2W \times (X \times U)$ for $U \in \mathfrak{F}^C$.

The simply connected compact Lie group E_7 is given by

$$E_7 = \{ \alpha \in \operatorname{Iso}_C(\mathfrak{P}^C) \mid \alpha(P \times Q)\alpha^{-1} = \alpha P \times \alpha Q, \langle \alpha P, \alpha Q \rangle = \langle P, Q \rangle \}.$$

We have naturally the inclusion $G_2 \subset F_4 \subset E_6 \subset E_7$ ([6],[7]).

Using the inclusion $E_6 \subset E_7$, the C-linear transformations $\gamma, \gamma', \gamma_1$ of \mathfrak{F}^C are extended to C-linear transformations $\gamma, \gamma', \gamma_1$ of \mathfrak{F}^C .

We define the C-linear transformation $\lambda: \mathfrak{P}^C \to \mathfrak{P}^C$ by

$$\lambda(X,Y,\xi,\eta)=(Y,-X,\eta,-\xi).$$

Then $\lambda \in E_7$ and $\lambda^2 = -1$. Note that $\alpha \in E_7$ satisfies $\tau \lambda \alpha = \alpha \tau \lambda$.

LEMMA 1.4.1. The Lie algebra e_7 of the group E_7 is given by

$$e_7 = {\Phi(\phi, A, -\tau A, \nu) \mid \phi \in e_6, A \in \mathfrak{J}^C, \nu \in i\mathbf{R}}.$$

The Lie bracket in e7 is given as follows.

$$[\varPhi(\phi_1, A_1, -\tau A_1, \nu_1), \varPhi(\phi_2, A_2, -\tau A_2, \nu_2)] = \varPhi(\phi, A, -\tau A, \nu),$$

$$\left\{ \begin{array}{l} \phi = [\phi_1, \phi_2] - 2A_1 \vee \tau A_2 + 2A_2 \vee \tau A_1 \\ A = \left(\phi_1 + \frac{2}{3}\nu_1\right) A_2 - \left(\phi_2 + \frac{2}{3}\nu_2\right) A_1 \\ \nu = \langle A_1, A_2 \rangle - \langle A_2, A_1 \rangle. \end{array} \right.$$

To know the group structure of $(E_7)^{\gamma}$, we first investigate the group $(E_7)^{\sigma}$ which is isomorphic to $(E_7)^{\gamma}$. Let $\sigma, \sigma': \mathfrak{J}^C \to \mathfrak{J}^C$ be C-linear transformations defined by

$$\sigma X = \sigma \begin{pmatrix} \xi_1 & x_3 & \overline{x}_2 \\ \overline{x}_3 & \xi_2 & x_1 \\ x_2 & \overline{x}_1 & \xi_3 \end{pmatrix} = \begin{pmatrix} \xi_1 & -x_3 & -\overline{x}_2 \\ -\overline{x}_3 & \xi_2 & x_1 \\ -x_2 & \overline{x}_1 & \xi_3 \end{pmatrix}, \ \sigma' X = \begin{pmatrix} \xi_1 & x_3 & -\overline{x}_2 \\ \overline{x}_3 & \xi_2 & -x_1 \\ -x_2 & -\overline{x}_1 & \xi_3 \end{pmatrix},$$

and extend to C-linear transformations $\sigma, \sigma': \mathfrak{P}^C \to \mathfrak{P}^C$ by

$$\sigma P = \sigma(X, Y, \xi, \eta) = (\sigma X, \sigma Y, \xi, \eta), \quad \sigma'(X, Y, \xi, \eta) = (\sigma' X, \sigma' Y, \xi, \eta),$$

respectively. Then $\sigma, \sigma' \in F_4 \subset E_6 \subset E_7$ and $\sigma^2 = {\sigma'}^2 = 1$.

We define C-linear mappings $\kappa, \mu: \mathfrak{P}^C \to \mathfrak{P}^C$ by

$$\begin{split} \kappa(X,Y,\xi,\eta) &= \Big(\begin{pmatrix} -\xi_1 & 0 & 0 \\ 0 & \xi_2 & x_1 \\ 0 & \overline{x}_1 & \xi_3 \end{pmatrix}, \begin{pmatrix} \eta_1 & 0 & 0 \\ 0 & -\eta_2 & -y_1 \\ 0 & -\overline{y}_1 & -\eta_3 \end{pmatrix}, -\xi,\eta \Big), \\ \mu(X,Y,\xi,\eta) &= \Big(\begin{pmatrix} \eta & 0 & 0 \\ 0 & \eta_3 & -y_1 \\ 0 & -\overline{y}_1 & \eta_2 \end{pmatrix}, \begin{pmatrix} \xi & 0 & 0 \\ 0 & \xi_3 & -x_1 \\ 0 & -\overline{x}_1 & \xi_2 \end{pmatrix}, \eta_1,\xi_1 \Big), \end{split}$$

respectively. We define the subgroup $(E_7)^{\kappa,\mu}$ of E_7 by

$$(E_7)^{\kappa,\mu} = \{\alpha \in E_7 \mid \kappa\alpha = \alpha\kappa, \mu\alpha = \alpha\mu\}.$$

Then we have the following lemma.

LEMMA 1.4.2. $(E_7)^{\kappa,\mu} \cong Spin(12)$.

Proof. We define a 12-dimensional R-vector space V^{12} by

$$\begin{split} V^{12} &= \{ P \in \mathfrak{P}^C \, | \, \kappa P = P, \mu \tau \lambda P = P \} \\ &= \left\{ \left(\, \begin{pmatrix} 0 & 0 & 0 \\ 0 & \xi & x \\ 0 & \overline{x} & -\tau \xi \end{pmatrix}, \begin{pmatrix} \eta & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, 0, \tau \eta \right) \, \Big| \, x \in \mathfrak{C}, \xi, \eta \in C \right\} \end{split}$$

with the norm

$$(P,P)_{\mu}=rac{1}{2}(\mu P,\lambda P)=\overline{x}x+(au\xi)\xi+(au\eta)\eta.$$

Let $SO(12) = SO(V^{12})$. Then $(E_7)^{\kappa,\mu}$ is connected and we have $(E_7)^{\kappa,\mu}/\mathbb{Z}_2 \cong SO(12)$, $\mathbb{Z}_2 = \{1,\sigma\}$. Therefore $(E_7)^{\kappa,\mu}$ is isomorphic to Spin(12) as a double covering group of SO(12) (see [6] or [7] for details). \square

LEMMA 1.4.3. The Lie algebra $\mathfrak{spin}(12) = (\mathfrak{e}_7)^{\kappa,\mu}$ of the group $Spin(12) = (E_7)^{\kappa,\mu}$ is given by

$$egin{aligned} \left(oldsymbol{arepsilon}_{7}
ight)^{\kappa,\mu} &= \left\{ar{\Phi} \in oldsymbol{arepsilon}_{7} \, | \, \kappaar{\Phi} &= ar{\Phi}\kappa, \muar{\Phi} &= ar{\Phi}\mu
ight\} \ &= \left\{ar{\Phi}(\phi,A,- au A,
u) \in oldsymbol{arepsilon}_{7} \, | \, egin{aligned} \phi \in oldsymbol{arepsilon}_{6}, \sigma\phi &= \phi\sigma, A \in \mathfrak{J}^{C}, \sigma A &= A, \ (E_{1},A) &= 0,
u &= -rac{3}{2}(\phi E_{1},E_{1}) \end{aligned}
ight\}. \end{aligned}$$

In more detail, ϕ and A are of the forms:

$$\phi=d+\widetilde{A}_1(a)+i\widetilde{T},\quad A=egin{pmatrix}lpha_1&0&0\0&lpha_2&a_1\0&\overline{a}_1&lpha_3\end{pmatrix},$$

$$\textit{where } d \in \mathfrak{so}(8) \, = \, \mathfrak{so}(\mathfrak{C}), A_1(a) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & a \\ 0 & -\overline{a} & 0 \end{pmatrix}, T = \begin{pmatrix} \tau_1 & 0 & 0 \\ 0 & \tau_2 & t_1 \\ 0 & \overline{t}_1 & \tau_3 \end{pmatrix}, a, t_1 \in \mathbb{C}$$

 $\mathfrak{C}, \tau_k \in \mathbf{R}, \tau_1 + \tau_2 + \tau_3 = 0, \alpha_k \in C, a_1 \in \mathfrak{C}^C$ and the notation \widetilde{S} $(S = A_1(a) \text{ or } T)$ is the \mathbf{R} -linear mapping of \mathfrak{J} defined by

$$\widetilde{S}X = \frac{1}{2}(SX + XS^*), \quad X \in \mathfrak{J}^C.$$

Let $SU(2)=\{A\in M(2,C)\,|\, A^t(\tau A)=E, \det A=1\}$ and we define the mapping $\varphi:SU(2)\to (E_7)^\sigma$ by

$$\varphi(A)(X,Y,\xi,\eta) = (X',Y',\xi',\eta'),$$

$$\begin{pmatrix} {\xi_1}' \\ {\eta'} \end{pmatrix} = A \begin{pmatrix} {\xi_1} \\ {\eta} \end{pmatrix}, \quad \begin{pmatrix} {\xi'} \\ {\eta_1}' \end{pmatrix} = A \begin{pmatrix} {\xi} \\ {\eta_1} \end{pmatrix}, \quad \begin{pmatrix} {\eta_2}' \\ {\xi_3}' \end{pmatrix} = A \begin{pmatrix} {\eta_2} \\ {\xi_3} \end{pmatrix}, \quad \begin{pmatrix} {\eta_3}' \\ {\xi_2}' \end{pmatrix} = A \begin{pmatrix} {\eta_3} \\ {\xi_2} \end{pmatrix},$$

$$\begin{pmatrix} {x_1}' \\ {y_1}' \end{pmatrix} = (\tau A) \begin{pmatrix} {x_1} \\ {y_1} \end{pmatrix}, \quad \begin{pmatrix} {x_2}' \\ {y_2}' \end{pmatrix} = \begin{pmatrix} {x_2} \\ {y_2} \end{pmatrix}, \quad \begin{pmatrix} {x_3}' \\ {y_3}' \end{pmatrix} = \begin{pmatrix} {x_3} \\ {y_3} \end{pmatrix}.$$

Then φ is an injective homomorphism: $\varphi(SU(2)) \subset (E_7)^{\sigma}$.

PROPOSITION 1.4.4. $(E_7)^{\sigma} \cong (SU(2) \times Spin(12))/\mathbb{Z}_2, \mathbb{Z}_2 = \{(E,1), (-E, -\sigma)\}.$

Proof. Let $Spin(12)=(E_7)^{\kappa,\mu}$ (Lemma 1.4.2). We define a mapping $\varphi_7:SU(2)\times Spin(12)\to (E_7)^\sigma$ by

$$\varphi_7(A,\beta) = \varphi(A)\beta.$$

Since $\varphi(A)$ and β are commutative, φ_7 is a homomorphism. Furthermore, φ_7 is onto and $\operatorname{Ker} \varphi_7 = \{(E,1), (-E,-\sigma)\} = \mathbb{Z}_2$. Hence we have the required isomorphism (see [6] or [7] for details). \square

Let $SU(8) = \{A \in M(8, \mathbb{C}) \mid AA^* = E, \det A = 1\}, \ \mathfrak{J}(4, \mathbb{H})^C = \{X \in M(4, \mathbb{H}^C) \mid X^* = X\} \text{ and } \mathfrak{S}(8, \mathbb{C})^C = \{S \in M(8, \mathbb{C}^C) \mid {}^tS = -S\}.$ To define the following mapping $\varphi_1 : SU(8) \to E_7$, we use the C-linear mapping $g : \mathfrak{J}^C \to \mathfrak{J}(4, \mathbb{H})^C$,

$$g(M+oldsymbol{a}) = egin{pmatrix} rac{1}{2}\mathrm{tr}(M) & ioldsymbol{a} \ ioldsymbol{a}^* & M - rac{1}{2}\mathrm{tr}(M)E \end{pmatrix}, \quad M+oldsymbol{a} \in \mathfrak{J}(3,oldsymbol{H})^C \oplus (oldsymbol{H}^3)^C = \mathfrak{J}^C.$$

Now, we define the C-linear isomorphism $\chi: \mathfrak{P}^C \to \mathfrak{S}(8, \mathbb{C})^C$ by

$$\chi(X,Y,\xi,\eta) = k\Big(gX - \frac{\xi}{2}E\Big)J + e_1k\Big(g(\gamma Y) - \frac{\eta}{2}E\Big)J,$$

where the mapping $k: M(4, \mathbf{H}) \to M(8, \mathbf{C})$ is the naturally extended mapping of k defined in the section E_6 and $J = \operatorname{diag}(J, J, J, J), J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$.

LEMMA 1.4.5. $(E_7)^{\tau\gamma} \cong SU(8)/\mathbb{Z}_2, \ \mathbb{Z}_2 = \{E, -E\}.$

Proof. We define a mapping $\varphi_1: SU(8) \to (E_7)^{\tau\gamma}$ by

$$\varphi_1(A)P = \chi^{-1}(A(\chi(P))^t A), \quad P \in \mathfrak{P}^C.$$

 φ_1 is well-defined, a surjective homomorphism and $\operatorname{Ker} \varphi_1 = \{E, -E\}$. Hence we have the required isomorphism (see [6] or [7] for details). \square

We shall show that γ is conjugate to $-\sigma$ in E_7 . For this end, we first define an R-linear transformation $\delta_1: \mathfrak{C} \to \mathfrak{C}$ satisfying

$$1 \to 1, \ e_1 \to e_4, \ e_2 \to e_2, \ e_3 \to e_6, \ e_4 \to e_1, \ e_5 \to -e_5, \ e_6 \to e_3, \ e_7 \to -e_7, \ e_8 \to e_8, \ e_8 \to$$

then $\delta_1 \in G_2 \subset F_4 \subset E_6 \subset E_7$, ${\delta_1}^2 = 1$ and satisfies

$$\delta_1 \gamma \delta_1 = \gamma_1$$
.

Next, we define a C-linear transformation $\delta_2: \mathfrak{P}^C \to \mathfrak{P}^C$ by $\varphi_1(D)$, where

$$D=rac{1}{\sqrt{2}}egin{pmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \ -e_1 & 0 & 0 & 0 & e_1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \ 0 & -e_1 & 0 & 0 & 0 & e_1 & 0 & 0 \ 0 & 0 & 1 & 0 & 0 & 0 & e_1 & 0 \ 0 & 0 & -e_1 & 0 & 0 & 0 & e_1 & 0 \ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \ 0 & 0 & 0 & -e_1 & 0 & 0 & 0 & e_1 \ \end{pmatrix} \in SU(8),$$

then $\delta_2 \in E_7$ and $\delta_2^{-1} \gamma_1 \delta_2 = -\sigma$. Indeed, since $\varphi_1(J) = \gamma_1$ and $\varphi_1(e_1 I_4) = -\sigma$ $(I_4 = \text{diag}(-1, -1, -1, 1, 1, 1, 1, 1) \in M(8, \mathbf{R}))$, we have

$$\delta_2^{-1} \gamma_1 \delta_2 = \varphi_1(D^*) \varphi_1(J) \varphi_1(D) = \varphi_1(D^*JD) = \varphi_1(e_1 I_4) = -\sigma.$$

Now, let $\delta = \delta_1 \delta_2$. Then we have

$$\delta^{-1}\gamma\delta=-\sigma.$$

As a consequence, we obtain the following isomorphism

$$(E_7)^{\gamma} \cong (E_7)^{-\sigma} = (E_7)^{\sigma} \cong (SU(2) \times Spin(12))/\mathbb{Z}_2,$$

under the correspondence

$$SU(2) imes Spin(12)
ightarrow (E_7)^{\sigma}
ightarrow (E_7)^{\gamma} \ (A,eta)
ightarrow arphi(A)eta
ightarrow arphi(A)eta
ightarrow arphi(A)eta
ightarrow \delta(arphi(A)eta)\delta^{-1}.$$

Instead of investigating the group $(E_7)^{\gamma,\gamma'}$, we shall study the group $(E_7)^{\sigma,\sigma''}$, where $\sigma'' \in E_7$ is the involutive element defined by

$$\sigma'' = \delta^{-1} \gamma' \delta.$$

Since $\delta_1 \gamma' \delta_1 = \gamma'$ and $\gamma' = \varphi_1(e_1 I)(I = \text{diag}(1, -1, 1, -1, 1, -1, 1, -1) \in M(8, \mathbb{R}))$, we have

$$\sigma'' = \delta^{-1}\gamma'\delta = \delta_2^{-1}\gamma'\delta_2 = \varphi_1(D^*)\varphi_1(e_1I)\varphi_1(D) = \varphi_1(D^*e_1ID) = \varphi_1(J''),$$

where $J'' = D^*e_1ID = \begin{pmatrix} 0 & e_1E \\ e_1E & 0 \end{pmatrix} \in SU(8)$ (E is the 4 × 4 unit matrix). Since $J''^2 = -E$ (E is the 8 × 8 unit matrix), we have $\sigma''^2 = 1$. The action of σ'' on \mathfrak{P}^C is given by

$$\sigma''(X,Y,\xi,\eta) = \begin{pmatrix} \xi_1 & ie_4x_3 & * \\ * & -\xi_2 & ix_1e_4 \\ e_4x_2e_4 & * & \xi_3 \end{pmatrix}, \begin{pmatrix} \eta_1 & -ie_4y_3 & * \\ * & -\eta_2 & -iy_1e_4 \\ e_4y_2e_4 & * & \eta_3 \end{pmatrix}, -\xi, -\eta \end{pmatrix}.$$
 (i)

If we use elements $\sigma' \in E_6$ (indicated before) and $\rho \in E_6$:

$$\rho X = \overline{P} X P = \begin{pmatrix} -\xi_1 & -ie_4 x_3 & * \\ * & \xi_2 & ix_1 e_4 \\ e_4 x_2 e_4 & * & -\xi_3 \end{pmatrix}, \quad X \in \mathfrak{J}^C, P = \begin{pmatrix} ie_4 & \\ & 1 \\ & & ie_4 \end{pmatrix},$$

then σ'' is also written as

$$\sigma''(X, Y, \xi, \eta) = -(\sigma' \rho X, \tau \sigma' \rho \tau Y, \xi, \eta).$$

From the form of (i), we see

$$\kappa \sigma'' = \sigma'' \kappa, \quad \mu \sigma'' = -\sigma'' \mu.$$
 (ii)

Furthermore, we see that σ'' leaves invariant the group $\varphi(SU(2))$. We shall determine elements $\varphi(A)$, $A \in SU(2)$ such that $\sigma''\varphi(A)\sigma'' = \varphi(A)$. In the following, $\varphi(SU(2))$ is often denoted by SU(2).

PROPOSITION 1.4.6. $(SU(2))^{\sigma''} \cong U(1)$.

Proof. If $A \in SU(2)$ satisfies $\sigma''\varphi(A)\sigma'' = \varphi(A)$, then we can easily see that $\varphi(A)$ is of the form $\varphi(\begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix}), a \in U(1) = \{a \in C \mid a(\tau a) = 1\}$. Hence we have

$$(SU(2))^{\sigma''} = \{ \varphi(A) \mid A \in SU(2), \sigma''\varphi(A)\sigma'' = \varphi(A) \}$$
$$= \left\{ \varphi(\begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix}) \middle| a \in U(1) \right\} \cong U(1).$$

From (ii), we see that σ'' leaves invariant the group Spin(12): $\sigma''\beta\sigma'' \in Spin(12)$ for $\beta \in Spin(12)$. Now, we consider elements $\beta \in Spin(12)$ such that $\sigma''\beta\sigma'' = \beta$.

LEMMA 1.4.7. $(Spin(12))^{\sigma''}/\mathbb{Z}_2 \cong U(6), \ \mathbb{Z}_2 = \{1, \sigma\}.$

Proof. We define a C-vector space $(V^C)^6$ by

$$\begin{split} &(V^C)^6 = (\mathfrak{P}^C)_{\kappa,\sigma''} = \{P \in \mathfrak{P}^C \, | \, \kappa P = P, \sigma'' P = P\} \\ &= \left\{ \left(\begin{pmatrix} 0 & 0 & 0 \\ 0 & \xi_2 & x_1 \\ 0 & \overline{x}_1 & \xi_3 \end{pmatrix}, \begin{pmatrix} \eta_1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, 0, \eta \right) \, \middle| \, x_1 \in \mathfrak{C}^C, \xi_k, \eta_1, \eta \in C, \sigma'' P = P \right\} \\ &= \left\{ \left(\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & x \\ 0 & \overline{x} & \xi \end{pmatrix}, \begin{pmatrix} \eta & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, 0, 0 \right) \, \middle| \, x \in (\mathfrak{C}^C)_{ie_4}, \xi, \eta \in C \right\}, \end{split}$$

where $(\mathfrak{C}^C)_{ie_4}$ is

$$\begin{split} (\mathfrak{C}^C)_{ie_4} &= \{x \in \mathfrak{C}^C \mid ixe_4 = x\} \\ &= \{(x_0 + x_1e_1 + x_2e_2 + x_3e_3) + i(x_0 + x_1e_1 + x_2e_2 + x_3e_3)e_4 \mid x_k \in C\}. \end{split}$$

 $(V^C)^6$ has the norm $\langle P, P \rangle = (\tau P, P)$, that is, the norm of $P \in (V^C)^6$ is given by

$$\begin{split} \langle P, P \rangle &= 2(\tau x)x + (\tau \xi)\xi + (\tau \eta)\eta \\ &= 4((\tau x_0)x_0 + (\tau x_1)x_1 + (\tau x_2)x_2 + (\tau x_3)x_3) + (\tau \xi)\xi + (\tau \eta)\eta. \end{split}$$

We define a unitary group U(6) by

$$U(6) = \{\alpha \in \operatorname{Iso}_C((V^C)^6) \mid \langle \alpha P, \alpha P \rangle = \langle P, P \rangle \}.$$

Since $\alpha \in (Spin(12))^{\sigma''}$ satisfies $\kappa \alpha = \alpha \kappa$ and $\sigma'' \alpha = \alpha \sigma''$, α leaves invariant the space $(V^C)^6$ and preserves the norm $\langle P, P \rangle$, so α induces an element of U(6), hence we can define the mapping $f: (Spin(12))^{\sigma''} \to U(6)$ by

$$f(\alpha) = \alpha | (V^C)^6.$$

To show that f is onto, we use the following lemma.

LEMMA 1.4.8. The Lie algebra $(spin(12))^{\sigma''}$ of the group $(Spin(12))^{\sigma''}$ is given by

 $(\mathfrak{spin}(12))^{\sigma''}$

$$= \left\{ \Phi \left(\begin{pmatrix} D_1 & D_2 \\ -K_3 D_2 K_3 & K_3 D_1 K_3 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -t_1 e_4 \\ 0 & -e_4 \overline{t}_1 & 0 \end{pmatrix}^{\sim} + i \begin{pmatrix} \tau_1 & 0 & 0 \\ 0 & \tau_2 & t_1 \\ 0 & \overline{t}_1 & \tau_3 \end{pmatrix}^{\sim}, \right.$$

$$egin{pmatrix} 0 & 0 & 0 \ 0 & lpha_2 & a_1 \ 0 & \overline{a}_1 & 0 \end{pmatrix}, - au egin{pmatrix} 0 & 0 & 0 \ 0 & lpha_2 & a_1 \ 0 & \overline{a}_1 & 0 \end{pmatrix}, -rac{3}{2}i au_1 \end{pmatrix} \ igg| \ D_1, D_2 \in M(4, m{R}), ^tD_1 = -D_1,$$

$$^{t}D_{2} = K_{3}D_{2}K_{3}, t_{1} \in \mathfrak{C}, \tau_{k} \in \mathbf{R}, \tau_{1} + \tau_{2} + \tau_{3} = 0, \alpha_{2} \in C, a_{1} \in \mathfrak{C}^{C}, -ia_{1}e_{4} = a_{1}$$

where $K_3 = \operatorname{diag}(1, 1, -1, 1) \in M(4, \mathbb{R})$. In particular, the dimension of $(\operatorname{\mathfrak{spin}}(12))^{\sigma''}$ is 36.

Proof. The definition of the Lie algebra $(\mathfrak{spin}(12))^{\sigma''}$ is

$$(\mathfrak{spin}(12))^{\sigma''} = \{ \Phi \in (\mathfrak{e}_7)^{\kappa,\mu} \, | \, \sigma'' \Phi \sigma'' = \Phi \}.$$

For $\Phi(\phi, A, -\tau A, \nu) \in \mathfrak{e}_7$, since

$$\sigma''(\Phi(\phi, A, -\tau A, \nu))\sigma'' = \Phi(\sigma'\rho\phi\rho\sigma', \sigma'\rho A, -\tau(\sigma'\rho A), \nu),$$

$$\text{if } \varPhi(\phi,A,-\tau A,\nu) \in \mathfrak{spin}(12) = (\mathfrak{e}_7)^{\kappa,\mu}, \text{ then } A \text{ is of the form } \begin{pmatrix} 0 & 0 & 0 \\ 0 & \alpha_2 & a_1 \\ 0 & \overline{a}_1 & \alpha_3 \end{pmatrix},$$

 $lpha_k \in C, a_1 \in \mathfrak{C}^C$. Together with the condition $\sigma' \rho A = A$, we see that $A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & \alpha_2 & a_1 \\ 0 & \overline{a}_1 & 0 \end{pmatrix}, \ \alpha_2 \in C, a_1 \in \mathfrak{C}^C, -ia_1e_4 = a_1$. Next, let $\phi = d + \widetilde{A}_1(a) + i\widetilde{T}, d \in \mathfrak{C}^C$

$$\mathfrak{so}(8), A_1(a) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & a \\ 0 & -\overline{a} & 0 \end{pmatrix}, \ a \in \mathfrak{C}, T = \begin{pmatrix} \tau_1 & 0 & 0 \\ 0 & \tau_2 & t_1 \\ 0 & \overline{t}_1 & \tau_3 \end{pmatrix} \tau_k \in \mathbf{R}, \tau_1 + \tau_2 + \tau_3 = 0$$

 $0, t_1 \in \mathfrak{C}$. We see that $\sigma' \rho d\rho \sigma'$ belongs to $\mathfrak{so}(8)$ and $\sigma'(\widetilde{A}_1(a) + i\widetilde{T})\rho \sigma'$ has no part of $\mathfrak{so}(8)$. Hence the condition $\sigma' \rho \phi \rho \sigma' = \phi$ implies $\sigma' \rho d\rho \sigma' = d$ and $\sigma' \rho (\widetilde{A}_1(a) + i\widetilde{T})\rho \sigma' = \widetilde{A}_1(a) + i\widetilde{T}$. From the second condition $\sigma' \rho (\widetilde{A}_1(a) + i\widetilde{T})\rho \sigma' = \widetilde{A}_1(a) + i\widetilde{T}$, we see that a and t_1 have the relation $a = -t_1e_4$. Finally, we shall determine the form of $d \in \mathfrak{so}(8)$ such that $\sigma' \rho d\rho \sigma' = d$. Denote d = 0

$$\begin{pmatrix} D_1 & D_2 \\ D_3 & D_4 \end{pmatrix} \in \mathfrak{so}(8), D_k \in M(4, \mathbf{R}). \text{ From the condition } \begin{pmatrix} D_1 & D_2 \\ D_3 & D_4 \end{pmatrix} \begin{pmatrix} \mathbf{x} \\ iK_3\mathbf{x} \end{pmatrix} =$$

$$egin{pmatrix} m{y} \ iK_3m{y} \end{pmatrix}, m{x}, m{y} \in m{R^4}, ext{ we have the relation } D_3m{x} + iD_4K_3m{x} = iK_3D_3m{x} - K_3D_2K_3m{x}.$$

Hence $D_4 = K_3 D_1 K_3$, $D_3 = -K_3 D_2 K_3$. Since $d \in \mathfrak{so}(8)$, that is, ${}^t d = -d$, D_1, D_2 have the relations ${}^t D_1 = -D_1, {}^t D_2 = K_3 D_2 K_3$. Thus the Lie algebra $(\mathfrak{spin}(12))^{\sigma''}$ is determined. The dimension of $(\mathfrak{spin}(12))^{\sigma''}$ is 16+2+8+10=36.

Ш

We shall return to prove Lemma 1.4.7. It is easy to see that $\operatorname{Ker} f = \{1, \sigma\}$. Since U(6) is connected and $\dim((\mathfrak{spin}(12))^{\sigma''}) = 36 = \dim(\mathfrak{u}(6))$, f is onto. Hence we have the isomorphism $(Spin(12))^{\sigma''}/\mathbb{Z}_2 \cong U(6)$. Thus Lemma 1.4.7 is proved. \square

Before we prove the following Proposition 1.4.9, we define an element w of Spin(12) by

$$w(X,Y,\xi,\eta) = \begin{pmatrix} \omega^{2}\xi_{1} & \omega^{2}\omega_{4}^{2}x_{3} & * \\ * & \omega^{2}\xi_{2} & x_{1}\omega_{4}^{2} \end{pmatrix}, \begin{pmatrix} \omega\eta_{1} & \omega\omega_{4}^{2}y_{3} & * \\ * & \omega\eta_{2} & y_{1}\omega_{4}^{2} \end{pmatrix}, \omega\xi,\omega^{2}\eta \end{pmatrix}.$$

where $\omega = -\frac{1}{2} + i\frac{\sqrt{3}}{2} \in C$, $\omega_4 = -\frac{1}{2} + \frac{\sqrt{3}}{2}e_4 \in \mathfrak{C}$. Then $\boldsymbol{w} \in (Spin(12))^{\sigma''}$ and $\boldsymbol{w}^3 = 1$.

PROPOSITION 1.4.9.
$$(Spin(12))^{\sigma''} \cong (U(1) \times SU(6))/\mathbf{Z}_6, \mathbf{Z}_6 = \{(1,1), (-\sigma \mathbf{w}^2, -\sigma \mathbf{w}), (\mathbf{w}, \mathbf{w}^2), (-\sigma, -\sigma), (\mathbf{w}^2, \mathbf{w}), (-\sigma \mathbf{w}, -\sigma \mathbf{w}^2)\}.$$

Proof. The unitary group U(6) is decomposable as

$$U(6) = U_1(1)SU_1(6), \quad U_1(1) \cap SU_1(6) = \{zE \mid z \in C, z^6 = 1\},$$

where $U_1(1) = \{e^{it}E \mid t \in R\}$ which is the connected component of the center of U(6) and $SU_1(6) = \{A \in U(6) \mid \det A = 1\}$. On the other hand, the center of $(\mathfrak{spin}(12))^{\sigma''}$ is

$$\bigg\{\zeta(t)=\varPhi\Big(t\begin{pmatrix}0&K_3\\-K_3&0\end{pmatrix}+\frac{2}{3}it\begin{pmatrix}-1&0&0\\0&-1&0\\0&0&2\end{pmatrix}^{\sim},0,0,it\Big)\,\Big|\,t\in \pmb{R}\bigg\},$$

hence the connected component U(1) of the center of $(Spin(12))^{\sigma''}$ is given by

$$U(1) = \{z(t) = \exp(\zeta(t)) \mid t \in \mathbf{R}\}.$$

The action of $z(t) \in U(1)$ on \mathfrak{P}^C is given by

Since the restriction of the function e^{-e_4t} on $(\mathfrak{C}^C)_{ie_4}$ is

$$e^{-e_4t}x = e^{it}x, \quad x \in (\mathfrak{C}^C)_{ie_4},$$

the restriction of z(t) on $(V^6)^C$ is given by

$$z(t) \left(\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & x \\ 0 & \overline{x} & \xi \end{pmatrix}, \begin{pmatrix} \eta & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, 0, 0 \right)$$

$$= \left(\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & e^{it}x \\ 0 & e^{it}\overline{x} & e^{it}\xi \end{pmatrix}, \begin{pmatrix} e^{it}\eta & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, 0, 0 \right).$$

Hence f(z(t)) is contained in $U_1(1)$ and f induces an isomorphism $f:U(1)\to U_1(1)$. Next, we will find a subgroup SU(6) of $(Spin(12))^{\sigma''}$ which is isomorphic to the group $SU_1(6)$ under f. Consider the subgroup $\widetilde{SU}=f^{-1}(SU_1(6))$ of $(Spin(12))^{\sigma''}$. Then $\widetilde{SU}/\mathbf{Z}_2\cong SU_1(6)$. Since $SU_1(6)$ is simply connected, \widetilde{SU} is never connected. Let SU(6) be the connected component subgroup of \widetilde{SU} containing the identity 1, then SU(6) is the required one. Thus we have the following commutative diagram:

$$U(1) \times SU(6) \xrightarrow{h} (Spin(12))^{\sigma''}$$
 $f \downarrow f \qquad \downarrow f$
 $U_1(1) \times SU_1(6) \xrightarrow{h_1} U(6),$

where h, h_1 are multiplication mappings in the groups, respectively. Evidently h is a surjective homomorphism. We shall find the kernel of h. Let $(z, \alpha) \in \text{Ker } h$. From the diagram above, we have $f(z)f(\alpha) = f(h(z, \alpha)) = f(1) = 1$. Hence we obtain $\text{Ker} h = \{(1, 1), (-\sigma w^2, -\sigma w), (w, w^2), (-\sigma, -\sigma), (w^2, w), (-\sigma w, -\sigma w^2)\}$ $= \mathbb{Z}_6$. Thus we have the required isomorphism $(Spin(12))^{\sigma''} \cong (U(1) \times SU(6))$ $/\mathbb{Z}_6$. \square

Now, we will determine the group structure of $(E_7)^{\gamma,\gamma'} = ((E_7)^{\gamma})^{\gamma'} = ((E_7)^{\gamma'})^{\gamma} = (E_7)^{\gamma} \cap (E_7)^{\gamma'}$.

THEOREM 1.4.10. $(E_7)^{\gamma,\gamma'} \cong (U(1) \times U(1) \times SU(6))/(\mathbf{Z}_2 \times \mathbf{Z}_6) \times \{1, l_1\}, \mathbf{Z}_2 = \{(1, 1, 1), (-1, -\sigma, 1)\}, \mathbf{Z}_6 = \{(1, 1, 1), (1, -\sigma \mathbf{w}^2, -\sigma \mathbf{w}), (1, \mathbf{w}, \mathbf{w}^2), (1, -\sigma, -\sigma), (1, \mathbf{w}^2, \mathbf{w}), (1, -\sigma \mathbf{w}, -\sigma \mathbf{w}^2)\}.$

Proof. Since $(E_7)^{\gamma,\gamma'}$ is isomorphic to $(E_7)^{\sigma,\sigma''}$, we shall determine the group structure of $(E_7)^{\sigma,\sigma''}$. For $\alpha \in (E_7)^{\sigma,\sigma''} \subset (E_7)^{\sigma}$, there exist $A \in SU(2)$ and

 $\beta \in Spin(12)$ such that $\alpha = \varphi(A)\beta$ (Proposition 1.4.4). From $\sigma''\alpha\sigma'' = \alpha$, we have $\sigma''\varphi(A)\sigma''\sigma''\beta\sigma'' = \varphi(A)\beta$. Hence

$$\left\{ \begin{array}{ll} \sigma''\varphi(A)\sigma'' \ = \varphi(A) \\ \sigma''\beta\sigma'' \ = \beta \end{array} \right. \quad \text{or} \quad \left\{ \begin{array}{ll} \sigma''\varphi(A)\sigma'' \ = -\varphi(A) \\ \sigma''\beta\sigma'' \ = -\sigma\beta. \end{array} \right.$$

In the former case, we have $A \in U(1)$ (Proposition 1.4.6) and $\beta \in (Spin(12))^{\sigma''}$. Hence the group of the former case is

$$(U(1) \times (Spin(12))^{\sigma''})/\mathbf{Z_2} \cong (U(1) \times U(1) \times SU(6))/(\mathbf{Z_2} \times \mathbf{Z_6})$$

(Proposition 1.4.9). We consider the latter case. For $J=\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, $\varphi(J)$ is of the form

$$\varphi(J)(X,Y,\xi,\eta) = \left(\begin{pmatrix} \eta & x_3 & \overline{x}_2 \\ \overline{x}_3 & -\eta_3 & y_1 \\ x_2 & \overline{y}_1 & -\eta_2 \end{pmatrix}, \begin{pmatrix} \xi & y_3 & \overline{y}_2 \\ \overline{y}_3 & \xi_3 & -x_1 \\ y_2 & -\overline{x}_1 & \xi_2 \end{pmatrix}, -\eta_1, -\xi_1 \right),$$

and satisfies

$$\sigma''\varphi(J)\sigma''=-\varphi(J).$$

To find an elemnt $l \in Spin(12)$ such that $\sigma''l\sigma'' = -\sigma l$, first consider $\alpha_1 = \exp\left(\Phi\left(0, \frac{\pi}{2}, -\frac{\pi}{2}, 0\right)\right) \in E_7$. The explicit form α_1 is given by

$$lpha_1(X,Y,\xi,\eta) = \left(egin{pmatrix} \eta & x_3 & \overline{x}_2 \ \overline{x}_3 & -\eta_3 & y_1 \ x_2 & \overline{y}_1 & -\eta_2 \end{pmatrix}, egin{pmatrix} -\xi & y_3 & \overline{y}_2 \ \overline{y}_3 & \xi_3 & -x_1 \ y_2 & -\overline{x}_1 & \xi_2 \end{pmatrix}, \eta_1, \xi_1
ight),$$

and satisfies

$$\kappa \alpha_1 = -\alpha_1 \kappa, \quad \mu \alpha_1 = -\alpha_1 \mu, \quad \sigma'' \alpha_1 \sigma'' = -\sigma \alpha_1.$$

Next, for $\lambda \in E_7$, we have

$$\kappa\lambda = -\lambda\kappa$$
, $\mu\lambda = -\lambda\mu$, $\sigma''\lambda\sigma'' = \lambda\sigma_{13}$,

where $\sigma_{13} \in F_4 \subset E_6 \subset F_7$ is defined by $\sigma_{13}X = \begin{pmatrix} \xi_1 & -x_3 & \overline{x}_2 \\ -\overline{x}_3 & \xi_2 & -x_1 \\ x_2 & -\overline{x}_1 & \xi_3 \end{pmatrix}$. Finally, $\gamma \in G_2 \subset E_7$ satisfies

$$\kappa \gamma = \gamma \kappa, \quad \mu \gamma = \gamma \mu, \quad \sigma'' \gamma \sigma'' = \sigma_{13} \sigma''.$$

Therefore for $l = \gamma \lambda \alpha_1$, we have

$$\kappa l = l\kappa, \quad \mu l = l\mu, \quad \sigma'' l\sigma'' = -\sigma l,$$

that is, l is the required one. Let $l_2 = \varphi(J)l = \varphi(J)\gamma\lambda\alpha_1$. Thus we have the required isomorphism $(U(1)\times(Spin(12))^{\sigma''})/\mathbb{Z}_2\times\{1,l_2\}\cong(E_7)^{\sigma,\sigma''}$. The explicit form of l_2 is given by

$$l_2(X,Y,\xi,\eta)=\left(egin{array}{cccc} -\eta_1 & \gamma y_3 & * \ * & -\eta_2 & -\gamma y_1 \ \gamma y_2 & * & -\eta_3 \end{array}
ight), \left(egin{array}{cccc} \xi_1 & -\gamma x_3 & * \ * & \xi_2 & \gamma x_1 \ -\gamma x_2 & * & \xi_3 \end{array}
ight), \eta, \xi
ight).$$

Putting $l_1 = \delta l_2 \delta^{-1}$, we have

$$(E_7)^{\gamma,\gamma'}\cong (U(1)\times U(1)\times SU(6))/(\boldsymbol{Z_2}\times \boldsymbol{Z_6})\times \{1,l_1\}.$$

Remark. We used the group $(E_7)^{\sigma}$ instead of the group $(E_7)^{\gamma}$, and we determined the group structure of $(E_7)^{\sigma,\sigma''}$ instead of the group $(E_7)^{\gamma,\gamma'}$. So the group $(E_6)^{\gamma,\gamma'}\cong (U(1)\times U(1)\times SU(3)\times SU(3))/(\mathbf{Z}_2\times \mathbf{Z}_3)\times \{1,\gamma_1\}$ is not subgroup of our group $(E_7)^{\gamma,\gamma'}\cong (U(1)\times U(1)\times SU(6))/(\mathbf{Z}_2\times \mathbf{Z}_6)\times \{1,l_1\}$.

2. The second consideration

2.1 Group G_2

Any Cayley number $x \in \mathfrak{C}$ can be expressed as

$$x = x_0 + x_1e_1 + x_2e_2 + x_3e_3 + x_4e_4 + x_5e_5 + x_6e_6 + x_7e_7 \quad (x_i \in \mathbf{R})$$

$$= (x_0 + x_1e_1) + (x_2 + x_3e_1)e_2 + (x_4 + x_5e_1)e_4 + (x_6 + x_7e_1)e_6$$

$$= a + m_1e_2 + m_2e_4 + m_3e_6 \quad (a = x_0 + x_1e_1, m_i = x_{2i} + x_{2i+1}e_1).$$

We associate such $x \in \mathfrak{C}$ with the element

$$a+egin{pmatrix} m_1\ m_2\ m_3 \end{pmatrix}$$

of $C \oplus C^3$. In $C \oplus C^3$, we define the multiplication by

$$(a + m)(b + n) = (ab - \langle m, n \rangle) + (an + \overline{b}m - \overline{m \times n}),$$

where $\langle \boldsymbol{m}, \boldsymbol{n} \rangle = {}^t \boldsymbol{m} \overline{\boldsymbol{n}}$ is the usual Hermite inner product and $\boldsymbol{m} \times \boldsymbol{n}$ is the exterior product of \boldsymbol{m} and \boldsymbol{n} . Then $\boldsymbol{C} \oplus \boldsymbol{C}^3$ is isomorphic to \mathfrak{C} as algebras. The involutive \boldsymbol{R} -transformations γ, γ' and γ_1 of $\boldsymbol{C} \oplus \boldsymbol{C}^3 = \mathfrak{C}$ are given as

$$egin{aligned} \gamma\Big(a+egin{pmatrix} m_1 \ m_2 \ m_3 \end{pmatrix}\Big) &= a+egin{pmatrix} m_1 \ -m_2 \ -m_3 \end{pmatrix}, \quad \gamma'\Big(a+egin{pmatrix} m_1 \ m_2 \ m_3 \end{pmatrix}\Big) &= a+egin{pmatrix} -m_1 \ m_2 \ -m_3 \end{pmatrix}, \ \gamma_1(a+oldsymbol{m}) &= \overline{a}+\overline{oldsymbol{m}}. \end{aligned}$$

Furthermore, we define an **R**-transformation w of $\mathfrak{C} = C \oplus C^3$ by

$$w(a+m) = a + \omega_1 m, \quad a+m \in C \oplus C^3 = \mathfrak{C},$$

where $\omega_1 = -\frac{1}{2} + \frac{\sqrt{3}}{2}e_1 \in \mathfrak{C}$. Then $w \in G_2$ and $w^3 = 1$.

We consider the group $G_{2,C}$ replaced with C in the place \mathfrak{C} in the definition of the group G_2 . Then we have

$$G_{2,C} = \{ \alpha \in \operatorname{Iso}_{\mathbf{R}}(C) | \alpha(xy) = (\alpha x)(\alpha y) \} = \{ 1, \varepsilon \} = \mathbf{Z}_2,$$

where ε is the complex conjugation of $C : \varepsilon x = \overline{x}, x \in C$.

Before we consider the group $(G_2)^{\gamma,\gamma'}$, we study the subgroup $(G_2)_{e_1}$ of G_2 :

$$(G_2)_{e_1} = \{ \alpha \in G_2 \mid \alpha e_1 = e_1 \}.$$

PROPOSITION 2.1.1. $(G_2)^w = (G_2)_{e_1} \cong SU(3)$.

Proof. Let $SU(3) = \{D \in M(3, \mathbb{C}) \mid DD^* = E, \det D = 1\}$. The mapping $\psi_{2,w}: SU(3) \to (G_2)_{e_1}$ defined by

$$\psi_{2,w}(D)(a+m) = a + Dm, \quad a+m \in C \oplus C^3 = \mathfrak{C}$$

gives the required isomorphim $SU(3)\cong (G_2)_{e_1}$ (see [7] for details. As for $(G_2)^w=(G_2)_{e_1}$, see [7], too). \square

The group $Z_2 = \{1, \gamma_1\}$ acts on the group $U(1) \times U(1)$ by

$$\gamma_1(p,q)=(\overline{p},\overline{q}),$$

and let $(U(1) \times U(1)) \cdot \mathbf{Z_2}$ be the semi-direct product of these groups under this action.

THEOREM 2.1.2. $(G_2)^{\gamma,\gamma'} \cong (U(1) \times U(1)) \cdot Z_2$.

Proof. We define a mapping $\psi_2: (U(1) \times U(1)) \cdot \mathbf{Z}_2 \to (G_2)^{\gamma,\gamma'}$ by

$$\psi_2((p,q),1)(a+m{m})=a+D(p,q)m{m}, \ \psi_2((p,q),\gamma_1)(a+m{m})=\overline{a}+D(p,q)\overline{m{m}}, \quad a+m{m}\in m{C}\oplus m{C}^3=m{\mathfrak{C}},$$

where $D(p,q) = \operatorname{diag}(p,q,\overline{pq}) \in M(3,C)$. We shall prove that ψ_2 is well-defined. Since $D(p,q) \in SU(3)$, we have $\psi_2((p,q),1) \in G_2$ (Proposition 2.1.1), and $\psi_2((p,q),\gamma_1) = \psi_2((p,q),1)\gamma_1$ is also in G_2 . Furthermore, since

$$\gamma = \psi_2((1,-1),1), \quad \gamma' = \psi_2((-1,1),1),$$

 $\psi_2((p,q),1)$ commutes with γ and γ' . Moreover γ_1 commutes with γ and γ' . Hence ψ_2 is well-defined. It is easy to see that ψ_2 is a homomorphism. We shall show that ψ_2 is onto. Let $\alpha \in (G_2)^{\gamma,\gamma'}$. Since $(\mathfrak{C})_{\gamma,\gamma'} = \{x \in \mathfrak{C} \mid \gamma x = x, \gamma' x = x\} = C$, the restriction of α to C belongs to $G_{2,C}$. Hence we have

$$\alpha x = x$$
 or $\alpha x = \overline{x}, x \in C$.

In the former case, there exists $D \in SU(3)$ such that $\alpha = \psi_{2,w}(D)$ (Proposition 2.1.1). From the condition that α commutes with γ and γ' , D is of a diagonal form D(p,q). Hence $\alpha = \psi_{2,w}(D(p,q)) = \psi_2((p,q),1)$. In the latter case, since $\gamma_1 e_1 = -e_1$, we have $\alpha \gamma_1 \in (G_2)_{e_1}$. So $\alpha \gamma_1$ is in the same situation as above. Thus that ψ_2 is onto is shown. Ker ψ_2 is trivial. Therefore we have the isomorphism $(G_2)^{\gamma,\gamma'} \cong (U(1) \times U(1)) \cdot \mathbb{Z}_2$. \square

2.2 Group F_4

We associate an element $\begin{pmatrix} \xi_1 & x_3 & \overline{x}_2 \\ \overline{x}_3 & \xi_2 & x_1 \\ x_2 & \overline{x}_1 & \xi_3 \end{pmatrix}$ of \Im with the element

$$egin{pmatrix} \xi_1 & a_3 & \overline{a}_2 \ \overline{a}_3 & \xi_2 & a_1 \ a_2 & \overline{a}_1 & \xi_3 \end{pmatrix} + (m{m}_1, m{m}_2, m{m}_3)$$

(where $x_i = a_i + m_i \in C \oplus C^3 = \mathfrak{C}$) of $\mathfrak{J}(3, C) \oplus M(3, C)$. Hereafter, $\mathfrak{J}(3, C)$ will be briefly denoted by \mathfrak{J}_C . In $\mathfrak{J}_C \oplus M(3, C)$, we define the multiplication \times by

$$(X+M)\times (Y+N) = \left(X\times Y - \frac{1}{2}(M^*N+N^*M)\right) - \frac{1}{2}(MY+NX+\overline{M\times N}),$$

where $M \times N$ (for $M = (m_1, m_2, m_3), N = (n_1, n_2, n_3) \in M(3, C)$) is defined by

$$M \times N = egin{pmatrix} m{m_2} imes m{n_3} & m{m_3} imes m{n_1} & m{m_1} imes m{n_2} \\ + & + & + \\ m{n_2} imes m{m_3} & m{n_3} imes m{m_1} & m{n_1} imes m{m_2} \end{pmatrix} \in M(3, m{C}).$$

Then $\mathfrak{J}_{\mathbf{C}} \oplus M(3,\mathbf{C})$ is isomorphic to \mathfrak{J} as Freudenthal algebras.

Using the inclusion $G_2 \subset F_4$, the R-linear transformations $\gamma, \gamma', \gamma_1$ and w of $C \oplus C^3 = \mathfrak{C}$ are naturally extended to R-linear transformations $\gamma, \gamma', \gamma_1$ and w of $\mathfrak{J}_C \oplus M(3, C) = \mathfrak{J}$ as

$$\gamma(X + M) = X + \gamma (m_1, m_2, m_3) = X + (\gamma m_1, \gamma m_2, \gamma m_3),$$
 $\gamma'(X + M) = X + \gamma'(m_1, m_2, m_3) = X + (\gamma' m_1, \gamma' m_2, \gamma' m_3),$
 $\gamma_1(X + M) = \overline{X} + \overline{M},$
 $w(X + M) = X + \omega_1 M = X + (\omega_1 m_1, \omega_1 m_2, \omega_1 m_3).$

Before we consider the group $(F_4)^{\gamma,\gamma'}$, we study the group $F_{4,\mathbf{C}}$ replaced with \mathbf{C} in the place \mathfrak{C} in the definition of the group F_4 :

$$F_{4,C} = \{ \alpha \in \text{Iso}_{\mathbb{R}}(\mathfrak{J}_C) \mid \alpha(X \times Y) = \alpha X \times \alpha Y \}.$$

The group $\boldsymbol{Z_2} = \{1, \gamma_1\}$ acts on the group SU(3) by

$$\gamma_1 D = \overline{D}, \quad D \in SU(3),$$

and let $SU(3) \cdot \mathbf{Z}_2$ be the semi-direct product of these groups under this action.

LEMMA 2.2.1.
$$F_{4,C} \cong (SU(3)/\mathbb{Z}_3) \cdot \mathbb{Z}_2, \ \mathbb{Z}_3 = \{E, \omega_1 E, \omega_1^2 E\}.$$

Proof. We define a mapping $\psi_{4,C}: SU(3) \cdot \mathbb{Z}_2 \to F_{4,C}$ by

$$\psi_{4,\boldsymbol{C}}(A,1)X=AXA^*,\quad \psi_{4,\boldsymbol{C}}(A,\gamma_1)X=A\overline{X}A^*,\quad X\in\mathfrak{J}_{\boldsymbol{C}}.$$

Then $\psi_{4,C}$ is well-defined, a surjective homomorphism and $\operatorname{Ker} \psi_{4,C} = (Z_3,1)$. Thus we have the required isomorphism (see [4] for details). \square

PROPOSITION 2.2.2.
$$(F_4)^w \cong (SU(3) \times SU(3))/\mathbb{Z}_3$$
, $\mathbb{Z}_3 = \{(E, E), (\omega_1 E, \omega_1 E), (\omega_1^2 E, \omega_1^2 E)\}.$

Proof. We define a mapping $\psi_{4,w}: SU(3) \times SU(3) \to (F_4)^w$ by

$$\psi_{4,w}(D,A)(X+M) = AXA^* + DMA^*, \quad X+M \in \mathfrak{J}_{\boldsymbol{C}} \oplus M(3,\boldsymbol{C}) = \mathfrak{J}.$$

Then $\psi_{4,w}$ is well-defined, a surjective homomorphism and $\operatorname{Ker} \psi_{4,w} = \mathbb{Z}_3$. Thus we have the required isomorphism (see [4] for details). \square

The group $\mathbf{Z}_2 = \{1, \gamma_1\}$ acts on the group $U(1) \times U(1) \times SU(3)$ by

$$\gamma_1(p,q,A)=(\overline{p},\overline{q},\overline{A}),$$

and let $(U(1) \times U(1) \times SU(3)) \cdot \mathbf{Z_2}$ be the semi-direct product of these groups under this action.

THEOREM 2.2.3. $(F_4)^{\gamma,\gamma'} \cong ((U(1)\times U(1)\times SU(3))/\mathbb{Z}_3)\cdot \mathbb{Z}_2, \ \mathbb{Z}_3 = \{(1,1,E), (\omega_1,\omega_1,\omega_1E), (\omega_1^2,\omega_1^2,\omega_1^2E)\}.$

Proof. We define a mapping $\psi_4: (U(1)\times U(1)\times SU(3))\cdot \mathbf{Z}_2\to (F_4)^{\gamma,\gamma'}$ by

$$\psi_4((p,q,A),1)(X+M) = AXA^* + D(p,q)MA^*,$$

$$\psi_4((p,q,A),\gamma_1)(X+M)=A\overline{X}A^*+D(p,q)\overline{M}A^*,\ X+M\in\mathfrak{J}_{\boldsymbol{C}}\oplus M(3,\boldsymbol{C})=\mathfrak{J},$$

where $D(p,q) = \operatorname{diag}(p,q,\overline{pq}) \in M(3, \mathbb{C})$. We have to prove that ψ_4 is well-defined. It is clear that $\psi_4((p,q,A),1) \in F_4$ (Proposition 2.2.2) and $\psi_4((p,q,A),\gamma_1) = \psi_4((p,q,A),1)\gamma_1 \in F_4$. Furthermore, since

$$\gamma = \psi_4((1,-1,E),1), \quad \gamma' = \psi_4((-1,1,E),1),$$

 $\psi_4((p,q,A),1)$ commutes with γ and γ' . Moreover γ_1 commutes with γ and γ' in $G_2 \subset F_4$. Hence ψ_4 is well-defined. It is easy to see that ψ_4 is a homomorphism. We shall show that ψ_4 is onto. Let $\alpha \in (F_4)^{\gamma,\gamma'}$. Since $(\mathfrak{J})_{\gamma,\gamma'} = \{X \in \mathfrak{J} \mid \gamma X = X, \gamma' X = X\} = \mathfrak{J}_{\mathbf{C}}$, the restriction of α to $\mathfrak{J}_{\mathbf{C}}$ belongs to $F_{4,\mathbf{C}}$. Hence there exists $A \in SU(3)$ such that

$$\alpha X = AXA^*$$
 or $\alpha X = A\overline{X}A^*$, $X \in \mathfrak{J}_{\boldsymbol{C}}$

(Lemma 2.2.1). In the former case, let $\beta = \psi_{4,w}(E,A)^{-1}\alpha$, then $\beta|\mathfrak{J}_{\mathbb{C}} = 1$, and so $\beta \in G_2$. Moreover $\beta \in (G_2)^w = (G_2)_{e_1}$. Hence there exists $D \in SU(3)$ such that

$$\beta(X+M)=X+DM=\psi_{4,w}(D,E)(X+M), \quad X+M\in\mathfrak{J}_{\boldsymbol{C}}\oplus M(3,\boldsymbol{C})=\mathfrak{J}$$

(Propositions 2.1.1, 2.2.2), that is, $\beta = \psi_{4,w}(D,E)$. Therefore we have $\alpha = \psi_{4,w}(E,A) \ \psi_{4,w}(D,E) = \psi_{4,w}(D,A)$. From the condition that α commutes with γ and γ' , D is of the form D(p,q). Hence $\alpha = \psi_{4,w}(D(p,q),A) = \psi_4((p,q,A),1)$. In the latter case, consider $\alpha\gamma_1$, then it is in the same situation as above. Thus that ψ_4 is onto is shown. Ker $\psi_4 = (Z_3,1)$ is easily obtained. Therefore we have the isomorphism $(F_4)^{\gamma,\gamma_1} \cong ((U(1) \times U(1) \times SU(3))/Z_3) \cdot Z_2$. \square

2.3 Group E_6

Note that in $\mathfrak{J}^C = (\mathfrak{J}_C)^C \oplus M(3, \mathbb{C})^C$, the multiplication \times is defined as that in $\mathfrak{J} = \mathfrak{J}_C \oplus M(3, \mathbb{C})$. Using the inclusion $F_4 \subset E_6$, the \mathbb{R} -linear transformations $\gamma, \gamma', \gamma_1$ and w of $\mathfrak{J}_C \oplus M(3, \mathbb{C}) = \mathfrak{J}$ are naturally extended to \mathbb{C} -linear transformations $\gamma, \gamma', \gamma_1$ and w of $(\mathfrak{J}_C)^C \oplus M(3, \mathbb{C})^C = \mathfrak{J}^C$, respectively.

Before we consider the group $(E_6)^{\gamma,\gamma'}$, we study the group $E_{6,C}$ replaced with C in the place $\mathfrak C$ in the definition of the group E_6 :

$$E_{6,C} = \{ \alpha \in \operatorname{Iso}_{C}((\mathfrak{J}_{C})^{C}) \mid \operatorname{det} \alpha X = \operatorname{det} X, \langle \alpha X, \alpha Y \rangle = \langle X, Y \rangle \}$$
$$= \{ \alpha \in \operatorname{Iso}_{C}((\mathfrak{J}_{C})^{C}) \mid \alpha X \times \alpha Y = \tau \alpha \tau(X \times Y), \langle \alpha X, \alpha Y \rangle = \langle X, Y \rangle \}.$$

The group $Z_2 = \{1, \gamma_1\}$ acts on the group $SU(3) \times SU(3)$ by

$$\gamma_1(A,B)=(\overline{B},\overline{A}).$$

and let the group $(SU(3) \times SU(3)) \cdot \mathbb{Z}_2$ be the semi-direct product of these groups under this action.

LEMMA 2.3.1. $E_{6,C} \cong ((SU(3) \times SU(3))/\mathbb{Z}_3) \cdot \mathbb{Z}_2, \ \mathbb{Z}_3 = \{(E,E), (\omega_1 E, \omega_1 E), (\omega_1^2 E, \omega_1^2 E)\}.$

Proof. We define the mapping $h: M(3, \mathbb{C}) \times M(3, \mathbb{C}) \to M(3, \mathbb{C})^{\mathbb{C}}$ by

$$h(A,B) = \frac{A+B}{2} + i\frac{A-B}{2}e_1.$$

Now, we define a mapping $\psi_{6,\mathbf{C}}: (SU(3)\times SU(3))\cdot \mathbf{Z}_2 \to E_{6,\mathbf{C}}$ by

$$\psi_{6,\mathbf{C}}((A,B),1)X = h(A,B)Xh(A,B)^*,$$

$$\psi_{6,\mathbf{C}}((A,B),\gamma_1)X = h(A,B)\overline{X}h(A,B)^*, X \in (\mathfrak{J}_{\mathbf{C}})^C.$$

Then $\psi_{6,\mathbf{C}}$ is well-defined, a surjective homomorphism and $\operatorname{Ker} \psi_{6,\mathbf{C}} = (\mathbf{Z}_3,1)$. Thus we have the required isomorphism (see [4] for details). \square

PROPOSITION 2.3.2.
$$(E_6)^w \cong (SU(3) \times SU(3) \times SU(3))/\mathbb{Z}_3$$
, $\mathbb{Z}_3 = \{(E, E, E), (\omega_1 E, \omega_1 E, \omega_1 E), (\omega_1^2 E, \omega_1^2 E, \omega_1^2 E)\}.$

Proof. We define a mapping $\psi_{6,w}: SU(3) \times SU(3) \times SU(3) \to (E_6)^w$ by

$$\psi_{6,\boldsymbol{w}}(D,A,B)(X+M) = h(A,B)Xh(A,B)^* + DM\tau h(A,B)^*, \ X+M \in (\mathfrak{J}_{\boldsymbol{C}})^C \oplus M(3,\boldsymbol{C})^C = \mathfrak{J}^C.$$

Then $\psi_{6,w}$ is well-defined, a surjective homomorphism and $\operatorname{Ker} \psi_{6,w} = \mathbb{Z}_3$. Thus we have the required isomorphism (see [4] for details). \square

The group $Z_2 = \{1, \gamma_1\}$ acts on the group $U(1) \times U(1) \times SU(3) \times SU(3)$ by $\gamma_1(p, q, A, B) = (\overline{p}, \overline{q}, \overline{B}, \overline{A}),$

and let $(U(1) \times U(1) \times SU(3) \times SU(3)) \cdot \mathbf{Z}_2$ be the semi-direct product of these groups under this action.

THEOREM 2.3.3. $(E_6)^{\gamma,\gamma'} \cong ((U(1) \times U(1) \times SU(3) \times SU(3))/\mathbb{Z}_3) \cdot \mathbb{Z}_2, \mathbb{Z}_3 = \{(1,1,E,E), (\omega_1,\omega_1,\omega_1E,\omega_1E), (\omega_1^2,\omega_1^2E,\omega_1^2E)\}.$

Proof. We define a mapping $\psi_6: (U(1) \times U(1) \times SU(3) \times SU(3)) \cdot \mathbb{Z}_2 \to (E_6)^{\gamma,\gamma'}$ by

$$\psi_{6}((p,q,A,B),1)(X+M) = h(A,B)Xh(A,B)^{*} + D(p,q)M\tau h(A,B)^{*},$$

$$\psi_{6}((p,q,A,B),\gamma_{1})(X+M) = h(A,B)\overline{X}h(A,B)^{*} + D(p,q)\overline{M}\tau h(A,B)^{*},$$

$$X+M \in (\mathfrak{J}_{C})^{C} \oplus M(3,C)^{C} = \mathfrak{J}^{C},$$

where $D(p,q) = \operatorname{diag}(p,q,\overline{pq}) \in M(3, \mathbb{C})$. We have to prove that ψ_6 is well-defined. It is clear that $\psi_6((p,q,A,B),1) \in E_6$ (Proposition 2.3.2) and $\psi_6((p,q,A,B),\gamma_1) = \psi_6((p,q,A,B),1)\gamma_1 \in E_6$. Furthermore, since

$$\gamma = \psi_6((1, -1, E, E), 1), \ \gamma' = \psi_6((-1, 1, E, E), 1),$$

 $\psi_6((p,q,A,B),1)$ commutes with γ and γ' . Moreover γ_1 commutes with γ and γ' in $G_2 \subset F_4 \subset E_6$. Hence ψ_6 is well-defined. It is easy to see that ψ_6 is a homomorphism. We shall show that ψ_6 is onto. Let $\alpha \in (E_6)^{\gamma,\gamma'}$. Since $(\mathfrak{J}^C)_{\gamma,\gamma'} = \{X \in \mathfrak{J}^C \mid \gamma X = X, \gamma' X = X\} = (\mathfrak{J}_C)^C$, the restriction of α to $(\mathfrak{J}_C)^C$ belongs to $E_{6,C}$. Hence there exist $A,B \in SU(3)$ such that

$$\alpha X = h(A, B)Xh(A, B)^*$$
 or $\alpha X = h(A, B)\overline{X}h(A, B)^*$, $X \in (\mathfrak{J}_{\mathbf{C}})^C$

(Lemma 2.3.1). In the former case, let $\beta = \psi_{6,w}(E,A,B)^{-1}\alpha$, then $\beta|(\mathfrak{J}_{\mathbb{C}})^C = 1$, and so $\beta \in G_2$. Moreover $\beta \in (G_2)^w = (G_2)_{e_1}$. Hence there exists $D \in SU(3)$ such that

$$\beta(X+M) = X + DM = \psi_{6,w}(D, E, E)(X+M),$$
$$X + M \in (\mathfrak{J}_{\mathbf{C}})^C \oplus M(3, \mathbf{C})^C = \mathfrak{J}^C$$

(Propositions 2.1.1, 2.3.2), that is, $\beta = \psi_{6,w}(D, E, E)$. Therefore we have $\alpha = \psi_{6,w}(E,A,B)$ $\psi_{6,w}(D,E,E) = \psi_{6,w}(D,A,B)$. From the condition that α commutes with γ and γ' , D is of the form D(p,q). Hence $\alpha = \psi_{6,w}(D(p,q),A,B) = \psi_{6}((p,q,A,B),1)$. In the latter case, consider $\alpha\gamma_{1}$, then it is in the same situation as above. Thus that ψ_{6} is onto is shown. Ker $\psi_{6} = (Z_{3},1)$ is easily obtained. Therefore we have the isomorphism $(E_{6})^{\gamma,\gamma'} \cong ((U(1) \times U(1) \times SU(3) \times SU(3))/Z_{3}) \cdot Z_{2}$. \square

2.4 Group E_7

We identify $(\mathfrak{P}_{\mathbf{C}})^C \oplus (M(3,\mathbf{C})^C \oplus M(3,\mathbf{C})^C)$ with \mathfrak{P}^C (using the identification $(\mathfrak{F}_{\mathbf{C}})^C \oplus M(3,\mathbf{C})^C$ with \mathfrak{F}^C) by

$$(X, Y, \xi, \eta) + (M, N) = (X + M, Y + N, \xi, \eta).$$

We often denote any element of $(\mathfrak{P}_{C})^{C}$ by P_{C} .

Using the inclusion $E_6 \subset E_7$, the C-linear transformations $\gamma, \gamma', \gamma_1$ and w of $(\mathfrak{J}_C)^C \oplus M(3, \mathbb{C})^C = \mathfrak{J}^C$ are naturally extended to C-linear transformations $\gamma, \gamma', \gamma_1$ and w of $(\mathfrak{P}_C)^C \oplus (M(3, \mathbb{C})^C \oplus M(3, \mathbb{C})^C) = \mathfrak{P}^C$ as

$$\begin{split} \gamma((X,Y,\xi,\eta)+(M,N))&=(X,Y,\xi,\eta)+(\gamma M,\gamma N),\\ \gamma'((X,Y,\xi,\eta)+(M,N))&=(X,Y,\xi,\eta)+(\gamma' M,\gamma' N),\\ \gamma_1((X,Y,\xi,\eta)+(M,N))&=(\overline{X},\overline{Y},\xi,\eta)+(\overline{M},\overline{N}),\\ w((X,Y,\xi,\eta)+(M,N))&=(X,Y,\xi,\eta)+(\omega_1 M,\omega_1 N). \end{split}$$

Before we consider the group $(E_7)^{\gamma,\gamma'}$, we study the group $E_{7,C}$ replaced with C in the place $\mathfrak C$ in the definition of the group E_7 :

$$E_{7,\boldsymbol{C}} = \{\alpha \in \operatorname{Iso}_{\boldsymbol{C}}((\mathfrak{P}_{\boldsymbol{C}})^{\boldsymbol{C}}) \mid \alpha(P \times Q)\alpha^{-1} = \alpha P \times \alpha Q, \langle \alpha P, \alpha Q \rangle = \langle P, Q \rangle \}.$$

We define the mapping $h': \mathbb{C}^{\mathbb{C}} \to \mathbb{C}$ by

$$h'(a+bi)=a+be_1, \quad a,b\in C.$$

Now, let $\Lambda^3(C^6)$ be the third exterior product of C-vector space C^6 and we define the C-C-linear isomorphism $f_C: (\mathfrak{P}_C)^C \to \Lambda^3(C^6)$ by

$$f_{m{C}}\Big(egin{pmatrix} \xi_1 & x_3 & \overline{x}_2 \ \overline{x}_3 & \xi_2 & x_1 \ x_2 & \overline{x}_1 & \xi_3 \end{pmatrix}, egin{pmatrix} \eta_1 & y_3 & \overline{y}_2 \ \overline{y}_3 & \eta_2 & y_1 \ y_2 & \overline{y}_1 & \eta_3 \end{pmatrix}, \xi, \eta\Big) = \sum_{i < j < k} x_{ijk} m{e}_i \wedge m{e}_j \wedge m{e}_k$$

 $\{e_1, e_2, \cdots, e_6\}$ is the canonical basis of C^6 and $x_{ijk} \in C$ are skew-symmetric

tensors:
$$x_{i'j'k'} = \operatorname{sgn}\begin{pmatrix} i & j & k \\ i' & j' & k' \end{pmatrix} x_{ijk}$$
, where $x_{156} = h'(\xi_1), \quad x_{164} = h'(x_3), \quad x_{145} = h'(\overline{x}_2),$ $x_{256} = h'(\overline{x}_3), \quad x_{264} = h'(\xi_2), \quad x_{245} = h'(x_1),$ $x_{356} = h'(x_2), \quad x_{364} = h'(\overline{x}_1), \quad x_{345} = h'(\xi_3),$ $x_{423} = h'(\eta_1), \quad x_{431} = h'(y_3), \quad x_{412} = h'(\overline{y}_2),$

$$x_{523} = h'(\overline{y}_3), \quad x_{531} = h'(\eta_2), \quad x_{512} = h'(y_1), \ x_{623} = h'(y_2), \quad x_{631} = h'(\overline{y}_1), \quad x_{612} = h'(\eta_3), \ x_{123} = h'(\xi), \ x_{456} = h'(\eta).$$

Furthermore, we define the C-C-linear mapping $k: M(3, \mathbb{C})^C \oplus M(3, \mathbb{C})^C \to M(6, \mathbb{C})$ by

$$k(M,N) = k(M_1 + iM_2, N_1 + iN_2) = egin{pmatrix} -N_2 - N_1e_1 & M_2 + M_1e_1 \ M_2 - N_1e_1 & N_2 + N_1e_1 \end{pmatrix},$$

where $M_i, N_i \in M(3, \mathbb{C})$, then the inverse mapping $k^{-1}: M(6, \mathbb{C}) \to M(3, \mathbb{C})^{\mathbb{C}} \oplus M(3, \mathbb{C})^{\mathbb{C}}$ of k is given by

$$\begin{split} k^{-1} \begin{pmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{pmatrix} \\ &= \left(\frac{(M_{21} - M_{12})e_1}{2} + i \frac{M_{21} + M_{12}}{2}, \frac{(M_{22} + M_{11})e_1}{2} + i \frac{M_{22} - M_{11}}{2} \right), \end{split}$$

where $M_{ij} \in M(3, \mathbb{C})$.

The group SU(6) acts on $\Lambda^3(\mathbb{C}^6)$, that is, the action of $A \in SU(6)$ on $a \wedge b \wedge c \in \Lambda^3(\mathbb{C}^6)$ is defined by

$$A(\boldsymbol{a}\wedge\boldsymbol{b}\wedge\boldsymbol{c})=A\boldsymbol{a}\wedge A\boldsymbol{b}\wedge A\boldsymbol{c}.$$

The group $oldsymbol{Z_2} = \{1, \gamma_1\}$ acts on the group SU(6) by

$$\gamma_1 A = \overline{(\mathrm{Ad}J_3)A}, \quad J_3 = \begin{pmatrix} 0 & E \ -E & 0 \end{pmatrix},$$

and let $SU(6) \cdot \mathbf{Z}_2$ be the semi-direct product of these groups under this action.

LEMMA 2.4.1.
$$E_{7,C} \cong (SU(6)/\mathbb{Z}_3) \cdot \mathbb{Z}_2, \ \mathbb{Z}_3 = \{E, \omega_1 E, \omega_1^2 E\}.$$

Proof. We define a mapping $\psi_{7,\mathbf{C}}: SU(6) \cdot \mathbf{Z}_2 \to E_{7,\mathbf{C}}$ by

$$\psi_{7,\mathbf{C}}(A,1)P_{\mathbf{C}} = f_{\mathbf{C}}^{-1}(A(f_{\mathbf{C}}P_{\mathbf{C}})),$$

$$\psi_{7,\mathbf{C}}(A,\gamma_1)P_{\mathbf{C}} = f_{\mathbf{C}}^{-1}(A(f_{\mathbf{C}}\overline{P}_{\mathbf{C}})), \quad P_{\mathbf{C}} \in (\mathfrak{P}_{\mathbf{C}})^{C}.$$

Then $\psi_{7,\mathbf{C}}$ is well-defined, a surjective homomorphism and $\operatorname{Ker} \psi_{7,\mathbf{C}} = (\mathbf{Z}_3,1)$. Thus we have the required isomorphism (see [4] for details). \square

We define the C-C-linear isomorphism $f:\mathfrak{P}^C \to \Lambda^3(C^6) \oplus M(6,C)$ by

$$f(P_{\boldsymbol{C}} + (M, N)) = f_{\boldsymbol{C}} P_{\boldsymbol{C}} + k(M, N),$$

$$P_{\boldsymbol{C}} + (M, N) \in (\mathfrak{P}_{\boldsymbol{C}})^C \oplus (M(3, \boldsymbol{C})^C \oplus M(3, \boldsymbol{C})^C) = \mathfrak{P}^C.$$

The group $SU(3) \times SU(6)$ acts on $\Lambda^3({\boldsymbol C}^6) \oplus M(6,{\boldsymbol C})$ by

$$(D,A)\Big(\sum(oldsymbol{a}\wedgeoldsymbol{b}\wedgeoldsymbol{c})+\widetilde{M}\Big)=\sum(Aoldsymbol{a}\wedge Aoldsymbol{b}\wedge Aoldsymbol{c})+D\widetilde{M}A^*,$$

where
$$D\widetilde{M}$$
 means $\begin{pmatrix} D & 0 \\ 0 & D \end{pmatrix} \begin{pmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{pmatrix} = \begin{pmatrix} DM_{11} & DM_{12} \\ DM_{21} & DM_{22} \end{pmatrix}, M_{ij} \in M(3, \boldsymbol{C}).$

PROPOSITION 2.4.2. $(E_7)^w \cong (SU(3) \times SU(6))/\mathbb{Z}_3$, $\mathbb{Z}_3 = \{(E, E), (\omega_1 E, \omega_1 E), (\omega_1^2 E, \omega_1^2 E)\}$.

Proof. We define a mapping $\psi_{7,w}: SU(3) \times SU(6) \to (E_7)^w$ by

$$\psi_{7,w}(D,A)P = f^{-1}((D,A)(fP)), \quad P \in \mathfrak{P}^{C}.$$

Then $\psi_{7,w}$ is well-defined, a surjective homomorphism and $\operatorname{Ker} \psi_{7,w} = \mathbb{Z}_3$. Thus we have the required isomorphism (see [4] for details). \square

The group $\mathbf{Z}_2 = \{1, \gamma_1\}$ acts on the group $U(1) \times U(1) \times SU(6)$ by

$$\gamma_1(p,q,A) = (\overline{p},\overline{q},\overline{(\mathrm{Ad}J_3)A}),$$

and let $(U(1) \times U(1) \times SU(6)) \cdot \mathbf{Z}_2$ be the semi-direct product of these groups under this action.

THEOREM 2.4.3. $(E_7)^{\gamma,\gamma'} \cong ((U(1)\times U(1)\times SU(6))/\mathbb{Z}_3)\cdot \mathbb{Z}_2, \ \mathbb{Z}_3 = \{(1,1,E), (\omega_1, \omega_1, \omega_1 E), (\omega_1^2, \omega_1^2, \omega_1^2 E)\}.$

Proof. We define a mapping $\psi_7: (U(1) \times U(1) \times SU(6)) \cdot \boldsymbol{Z_2} \to (E_7)^{\gamma,\gamma'}$ by

$$\psi_7((p,q,A),1)P = f^{-1}((D(p,q),A)(fP)),$$

$$\psi_7((p,q,A),\gamma_1)P = f^{-1}((D(p,q),A)(f\gamma_1P)), P \in \mathfrak{P}^C,$$

where $D(p,q)=\operatorname{diag}(p,q,\overline{pq})$. We have to prove that ψ_7 is well-defined. It is clear that $\psi_7((p,q,A),1)\in E_7$ (Proposition 2.4.2) and $\psi_7((p,q,A),\gamma_1)=\psi_7((p,q,A),1)\gamma_1\in E_7$. Furthermore, since

$$\gamma = \psi_7((1,-1,E),1), \ \gamma' = \psi_7((-1,1,E),1),$$

 $\psi_7((p,q,A),1)$ commutes with γ and γ' . Moreover γ_1 commutes with γ and γ' in $G_2 \subset F_4 \subset E_6 \subset E_7$. Hence ψ_7 is well-defined. We see that ψ_7 is a homomorphism (see [4]). We shall show ψ_7 is onto. Let $\alpha \in (E_7)^{\gamma,\gamma'}$. Since $(\mathfrak{P}^C)_{\gamma,\gamma'} = \{P \in \mathfrak{P}^C \mid \gamma P = P, \gamma' P = P\} = (\mathfrak{P}_C)^C$, the restriction of α to $(\mathfrak{P}_C)^C$ belongs to $E_{7,C}$. Hence there exists $A \in SU(6)$ such that

$$\alpha P_{\mathbf{C}} = f_{\mathbf{C}}^{-1}(A(f_{\mathbf{C}}P_{\mathbf{C}})) \quad \text{or} \quad \alpha P_{\mathbf{C}} = f_{\mathbf{C}}^{-1}(A(f_{\mathbf{C}}\overline{P_{\mathbf{C}}})), \quad P_{\mathbf{C}} \in (\mathfrak{P}_{\mathbf{C}})^{C}$$

(Lemma 2.4.1). In the former case, let $\beta = \psi_{7,w}(E,A)^{-1}\alpha$, then $\beta | (\mathfrak{P}_{\mathbb{C}})^C = 1$, and so $\beta \in G_2$. Moreover, $\beta \in (G_2)^w = (G_2)_{e_1}$. Hence there exists $D \in SU(3)$ such that

$$\beta(P_{C} + (M, N)) = P_{C} + D(M, N) = P_{C} + (DM, DN)$$
$$= \psi_{7,w}(D, E)(P_{C} + (M, N)), \quad P_{C} + (M, N) \in \mathfrak{P}^{C}$$

(Propositions 2.1.1, 2.4.2), that is, $\beta = \psi_{7,w}(D, E)$. Hence we have

$$\alpha = \psi_{7,w}(E,A)\beta = \psi_{7,w}(E,A)\psi_{7,w}(D,E) = \psi_{7,w}(D,A).$$

From the condition that α commutes with γ, γ', D is of the form D(p,q). Hence $\alpha = \psi_{7,w}(D(p,q),A) = \psi_7((p,q,A),1)$. In the latter case, consider $\alpha\gamma_1$, then it is in the same situation as above. Thus that ψ_7 is onto is shown. Ker $\psi_7 = (Z_3,1)$ is easily obtained. Therefore we have the isomorphism $(E_7)^{\gamma,\gamma'} \cong ((U(1)\times U(1)\times SU(6))/Z_3)\cdot Z_2$. \square

Remark. Instead of $D(p,q) = \operatorname{diag}(p,q,\overline{pq})$, if we use $\operatorname{diag}(q^2,p\overline{q},\overline{pq})$, then the kernel of each ψ_i is $\mathbb{Z}_2 \times \mathbb{Z}_3$. Consequently we have the results of the first consideration.

References

- [1] T. Miyashita, Decomposition of spinor groups by the involution σ' in exceptional Lie groups, Math. J. Okayama Univ. 44(2002), 1-27.
- [2] T. Miyashita, Fixed points subgroups $G^{\sigma,\gamma}$ by two involutive automorphisms σ,γ of compact exceptional Lie groups $G=F_4,E_6$ and E_7 , Tsukuba J. Math. 27(2003), 199-215.
- [3] T. Miyashita and I. Yokota, Fixed points subgroups $G^{\sigma,\sigma'}$ by two involutive automorphisms σ,σ' of compact exceptional Lie groups $G=F_4,E_6$ and E_7 , Math. J. Toyama Univ. 24(2001), 135-149.
- [4] I. Yokota, T. Ishihara and O. Yasukura, Subgroup $((SU(3) \times SU(6))/\mathbb{Z}_3) \cdot \mathbb{Z}_2$ of the simply connected compact simple Lie group E_7 , J. Math. Kyoto Univ., 23(1983), 715-737.
- [5] I. Yokota, Realization of involutive automorphisms σ and G^{σ} of exceptional linear Lie groups G, Part I, $G = G_2, F_4$, and E_6 , Tsukuba J. Math., 4(1990), 185-223.
- [6] I. Yokota, Realization of involutive automorphisms σ and G^{σ} of exceptional linear Lie groups G, Part II, $G = E_7$, Tsukuba J. Math., 4(1990), 378-404.

[7] I. Yokota, Simple Lie groups of exceptional type (in Japanese), Gendai-Sugakusya, Kyoto, 1992.

> Toshikazu Miyashita Komoro High School Komoro, 384-0801, Japan E-mail: spin15ss16@ybb.ne.jp

Ichiro Yokota 339-5, Okada-Matsuoka Matsumoto, 390-0312, Japan