SUBMULTIPLICATIVE MOMENTS OF
 THE SUPREMUM OF A MARKOV-MODULATED RANDOM WALK

By

Mikhail Sgibnev

(Received February 4, 2004; Revised June 21, 2006)

Abstract

Let M_{∞} be the supremum of a random walk $\left\{S_{n}\right\}$ defined on a finite Markov chain $\left\{\kappa_{n}\right\}$ and let $\varphi(x), x \geq 0$, be a submultiplicative function: $\varphi(x+y) \leq \varphi(x) \varphi(y)$. Conditions are given for $\mathrm{E} \varphi\left(M_{\infty} \mid \kappa_{0}=i\right)<\infty$.

Introduction

Let $\left\{\kappa_{n}\right\}$ be a finite Markov chain with state space $\{1, \ldots, N\}$ and transition matrix $\mathbf{P}=\left(p_{i j}\right)$, where $p_{i j}=\mathrm{P}\left(\kappa_{n}=j \mid \kappa_{n-1}=i\right), n=1,2, \ldots$. It will be assumed throughout that $\left\{\kappa_{n}\right\}$ is an ergodic (irreducible, aperiodic and positive recurrent) Markov chain with stationary distribution $\left\{\pi_{1}, \ldots, \pi_{N}\right\}$, where $\pi_{i}>$ $0, i=1, \ldots, N$.

A random walk $\left\{S_{n}\right\}$ governed by the Markov chain $\left\{\kappa_{n}\right\}$ is defined as follows. Let probability distributions $F_{i j}, i, j=1, \ldots, N$, be given. For each pair (i, j), let $\left\{X_{m}(i, j)\right\}_{m=1}^{\infty}$ be a sequence of independent identically distributed random variables with common distribution $F_{i j}$. Suppose the sequences $\left\{X_{m}(i, j)\right\}_{m=1}^{\infty}$, $i, j=1, \ldots, N$, and $\left\{\kappa_{n}\right\}$ are mutually independent. We set $S_{0}=0, S_{n}=$ $S_{n-1}+X_{n}\left(\kappa_{n-1}, \kappa_{n}\right)$ for $n \geq 1$, and $M_{\infty}=\sup _{n \geq 0} S_{n}$.

Let $\varphi(x), x \in \mathbb{R}$, be a submultiplicative function, i.e. $\varphi(x)$ is a finite, positive, Borel measurable function such that

$$
\begin{equation*}
\varphi(0)=1, \quad \varphi(x+y) \leq \varphi(x) \varphi(y), \quad x, y \in \mathbb{R} \tag{1}
\end{equation*}
$$

It is well known [5, Section 7.6] that

$$
\begin{align*}
-\infty<r_{-}(\varphi):=\lim _{x \rightarrow-\infty} & \frac{\log \varphi(x)}{x}=\sup _{x<0} \frac{\log \varphi(x)}{x} \\
& \leq \inf _{x>0} \frac{\log \varphi(x)}{x}=\lim _{x \rightarrow \infty} \frac{\log \varphi(x)}{x}:=r_{+}(\varphi)<\infty . \tag{2}
\end{align*}
$$

2000 Mathematics Subject Classification: 60J05, 60G50
Key words and phrases: random walk, Markov-modulation, supremum, first positive sum, submultiplicative moment, Banach algebra

Here are some examples of such functions on $[0, \infty): \varphi(x)=(1+x)^{r}, r>0$; $\varphi(x)=\exp \left(c x^{\beta}\right)$ with $c>0$ and $\beta \in(0,1) ; \varphi(x)=\exp (r x), r \in \mathbb{R}$. Moreover, if $R(x), x \in \mathbb{R}_{+}$, is a positive, ultimately nondecreasing regularly varying function at infinity with a nonnegative exponent β (i.e. $R(t x) / R(x) \rightarrow t^{\beta}$ for $t>0$ as $x \rightarrow \infty$ [4, Section VIII.8]), then there exist a nondecreasing submultiplicative function $\varphi(x)$ and a point $x_{0} \in(0, \infty)$ such that $c_{1} R(x) \leq \varphi(x) \leq c_{2} R(x)$ for all $x \geq x_{0}$, where c_{1} and c_{2} are some positive constants [12, Proposition]. The product of a finite number of submultiplicative functions is again a submultiplicative function.

Consider the collection $S(\varphi)$ of all complex-valued measures θ defined on the σ-algebra \mathcal{B} of Borel subsets of \mathbb{R} and such that

$$
\|\theta\|_{\varphi}:=\int_{\mathbb{R}} \varphi(x)|\theta|(\mathrm{d} x)<\infty ;
$$

here $|\theta|$ stands for the total variation of θ. The collection $S(\varphi)$ is a Banach algebra with norm $\|\cdot\|_{\varphi}$ by the usual operations of addition and scalar multiplication of measures, the product of two elements ν and θ of $S(\varphi)$ is defined as their convolution $\nu * \theta$ [5, Section 4.16]. The unit element of $S(\varphi)$ is the Dirac measure δ_{0}, i.e. the atomic measure of unit mass at the origin. The Laplace transform of an element $\theta \in S(\varphi)$ is defined by $\hat{\theta}(s):=\int_{\mathbb{R}} \exp (s x) \theta(\mathrm{d} x)$. By (2), this integral converges absolutely with respect to $|\theta|$ for all s in the strip $\left\{s \in \mathbb{C}: r_{-}(\varphi) \leq\right.$ $\left.\Re s \leq r_{+}(\varphi)\right\}$. Obviously, $\hat{\delta}_{0}(s) \equiv 1$.

In what follows, we shall assume that $\varphi(x) \equiv 1$ on $(-\infty, 0)$. Then, by (1), $\varphi(x)$ is nondecreasing and, by (2), $r_{+}(\varphi) \geq 0$. Conversely, if a nondecreasing function $\varphi(x), x \geq 0$, satisfies (1) for all $x, y \geq 0$ and $r_{+}(\varphi) \geq 0$, then putting $\varphi(x) \equiv 1$ on $(-\infty, 0)$ we obtain a submultiplicative function on the whole real line \mathbb{R}.

We shall assume throughout that $M_{\infty}<\infty$ almost surely. In particular, this is the case if the "stationary" expectation of S_{1} is negative, i.e. $\mathrm{E}_{\pi} S_{1}:=$ $\sum_{i, j=1}^{N} \pi_{i} p_{i j} E X_{1}(i, j)<0$. Denote $\mathrm{P}_{i}(\cdot)=\mathrm{P}\left(\cdot \mid \kappa_{0}=i\right)$ and let $\mathrm{E}_{i}, i=1, \ldots$, N, stand for the corresponding expectations.

The aim of the present note is to derive conditions for $\mathrm{E}_{i} \varphi\left(M_{\infty}\right)<\infty$ and related results, where $\varphi(x), x \geq 0$, is a nondecreasing submultiplicative function. In the case of usual random walks, ordinary moments of the supremum, i.e. $E M_{\infty}^{k}$, were studied in [8] and the submultiplicative moments $\mathrm{E} \varphi\left(M_{\infty}\right)$ in [12] (see also the references therein).

1. Preliminaries

Denote by $S\left(\gamma^{\prime}, \gamma\right)$ the Banach algebra $S(\varphi)$ for the following choice of the submultiplicative function $\varphi(x): \varphi(x):=\exp \left(\gamma^{\prime} x\right)$ for $x<0$ and $\varphi(x):=\exp (\gamma x)$
for $x \geq 0$; here $0 \leq \gamma^{\prime} \leq \gamma$.
Suppose a matrix $\mathbf{B}=\left(B_{i j}\right)$ is made up of elements of $S(\varphi)$. Then $\hat{\mathbf{B}}(s)$ will denote the matrix ($\left.\hat{B}_{i j}(s)\right)$ of the corresponding Laplace transforms, and we shall write $\hat{\mathbf{B}}(s) \in \hat{S}(\varphi)$.

Let $\psi(x), x \in \mathbb{R}$, be a submultiplicative function such that $r_{-}(\psi)=\gamma^{\prime}$ and $r_{+}(\psi)=\gamma$. In view of (2), it is clear that $S(\psi) \subset S\left(\gamma^{\prime}, \gamma\right)$. Denote by \mathcal{H}_{1} and \mathcal{H} the collections of all homomorphisms of $S(\psi)$ and $S\left(\gamma^{\prime}, \gamma\right)$ into \mathbb{C} respectively. Looking at the structure of an arbitrary $h_{1} \in \mathcal{H}_{1}$ [11, Theorem 2], we see that $h_{1}=\left.h\right|_{S(\psi)}$ for a uniquely determined $h \in \mathcal{H}$. Conversely, for each $h \in \mathcal{H}$, $\left.h\right|_{S(\psi)} \in \mathcal{H}_{1}$. It follows from the general theory of Banach algebras that an element $\nu \in S(\psi)$ is invertible in $S(\psi)$ if and only if $h_{1}(\nu) \neq 0$ for all $h_{1} \in \mathcal{H}_{1}$. Also, for $\nu \in S\left(\gamma^{\prime}, \gamma\right)$, there exists an inverse $\nu^{-1} \in S\left(\gamma^{\prime}, \gamma\right)$ if and only if $h(\nu) \neq 0$ for all $h \in \mathcal{H}$. Suppose now that $\nu \in S(\psi)$ is invertible in $S\left(\gamma^{\prime}, \gamma\right)$. Then, in view of the above, $\nu^{-1} \in S(\psi)$. The following lemma says that this property remains valid in the matrix case.

Lemma 1. Let \mathbf{U} be an $N \times N$ matrix whose entries are elements of $S(\psi)$. Suppose that $\hat{\mathbf{U}}(s)$ is invertible in $\hat{S}\left(\gamma^{\prime}, \gamma\right)$, i.e. the entries of $[\hat{\mathbf{U}}(s)]^{-1}$ are elements of $\hat{S}\left(\gamma^{\prime}, \gamma\right)$. Then $[\hat{\mathbf{U}}(s)]^{-1} \in \hat{S}(\psi)$.

Proof. The function $\operatorname{det} \hat{\mathbf{U}}(s)$ is a linear combination of products of N factors. These factors are the Laplace transforms of elements of the matrix $\mathbf{U} \in S(\psi)$. Hence $\operatorname{det} \hat{\mathbf{U}}(s)$ is the Laplace transform $\hat{\alpha}(s)$ of some measure $\alpha \in S(\psi)$. Denote by $\hat{\mathbf{M}}(s)$ the adjugate matrix of $\hat{\mathbf{U}}(s)$. By the same reason, $\hat{\mathbf{M}}(s) \in \hat{S}(\psi)$. Since $[\hat{\mathbf{U}}(s)]^{-1} \in \hat{S}\left(\gamma^{\prime}, \gamma\right), \operatorname{det}\left\{[\hat{\mathbf{U}}(s)]^{-1}\right\}$ is the Laplace transform of some $\beta \in S\left(\gamma^{\prime}, \gamma\right)$. We have $\alpha * \beta=\delta_{0}$, i.e. α is invertible in $S\left(\gamma^{\prime}, \gamma\right)$. By the discussion preceding the lemma, α is invertible in $S(\psi): \beta=\alpha^{-1} \in S(\psi)$. We have $[\hat{U}(s)]^{-1}=$ $\hat{\mathbf{M}}(s) \hat{\beta}(s) \in \hat{S}(\psi)$.

Let \mathbf{A} denote the $N \times N$ matrix $\left(p_{i j} F_{i j}\right)$ and $\delta_{i j}$ the Kronecker delta. Put

$$
\mathbf{U}(s):=\left(\frac{s+1}{s} \delta_{1 i}+\delta_{i j}\left(1-\delta_{1 j}\right)\right)
$$

$\mathbf{J}:=\operatorname{diag}\left(\pi_{1}, \ldots, \pi_{N}\right)$ and $\mathbf{B}(s):=\mathbf{U}(s) \mathbf{J}$. Then

$$
\mathbf{B}(s)=\left(\begin{array}{cccc}
\frac{s+1}{s} \pi_{1} & \frac{s+1}{s} \pi_{2} & \ldots & \frac{s+1}{s} \pi_{N} \\
0 & \pi_{2} & \ldots & 0 \\
\cdots \ldots & \ldots & \ldots & \ldots
\end{array}\right)
$$

Let I be the $N \times N$ identity matrix. Set $\eta(x):=\inf \left\{n \geq 1: S_{n}>x\right\}$. Define $\chi(x):=S_{\eta(x)}-x$ and $\bar{s}_{n}:=\max _{1 \leq m \leq n} S_{m}$.

Denote by $\lambda(\gamma)$ the maximal positive eigenvalue of the matrix $\hat{\mathbf{A}}(\gamma)$.
We shall need the following result [1 , Theorem 2].
Theorem 2. Let $\mathbf{A} \in S(0, \gamma)$ for some $\gamma \geq 0$ and let $\lambda(\gamma)<1$ in case of $\gamma>0$. Suppose the expectations $\mathrm{E} X_{1}(i, j), i, j=1, \ldots, N$, are finite and $\mathrm{E}_{\pi} S_{1} \in(-\infty, 0)$. Assume the $F_{i j}$ are absolutely continuous for all $i, j=1, \ldots$, N. Then

$$
\mathbf{B}(s)[\mathbf{I}-\hat{\mathbf{A}}(s)]=\left[\mathbf{B}(s) \hat{\mathbf{A}}_{-}(s)\right] \hat{\mathbf{A}}_{+}(s), \quad 0 \leq \Re s \leq \gamma
$$

where

$$
\begin{gather*}
\hat{\mathbf{A}}_{-}(s)=\mathbf{I}-\left(\sum_{n=1}^{\infty} \int_{-\infty}^{0} \mathrm{e}^{s x} \mathrm{P}_{i}\left(\bar{s}_{n-1}<S_{n} \in \mathrm{~d} x, \kappa_{n}=j\right)\right) \\
\hat{\mathbf{A}}_{+}(s)=\mathbf{I}-\left(\int_{0}^{\infty} \mathrm{e}^{s x} \mathrm{P}_{i}\left(\chi(0) \in \mathrm{d} x, \kappa_{\eta(0)}=j\right)\right) \tag{3}
\end{gather*}
$$

moreover, the matrices $\mathbf{B}(s) \hat{\mathbf{A}}_{-}(s)$ and $\hat{\mathbf{A}}_{+}(s)$ have inverses in $\hat{S}(0, \gamma)$.
In general, the factorization $\mathbf{I}-\hat{\mathbf{A}}(s)=\hat{\mathbf{A}}_{-}(s) \hat{\mathbf{A}}_{+}(s)$ holds regardless of whether the $F_{i j}$ are absolutely continuous or not [3, Theorem 4.1] (in the latter case, the matrix $\mathbf{B}(s) \hat{\mathbf{A}}_{-}(s)$ may not have an inverse in $\left.\hat{S}(0, \gamma)\right)$. Notice also that the invertibility of \mathbf{A}_{+}in $S(0,0)$ is valid without the requirement that the $F_{i j}$ be absolutely continuous. Actually, $\mathbf{G}_{+}:=\delta_{0} \mathbf{I}-\mathbf{A}_{+}$is a matrix of nonnegative measures such that the spectral radius of $\mathbf{G}_{+}(\mathbb{R})$ is less than 1 , due to the fact that $\mathrm{E}_{\pi} S_{1}<0[3$, Proposition 4.2$]$. So we have $\sum_{m=0}^{\infty}\left[\mathbf{G}_{+}(\mathbb{R})\right]^{m}<\infty$ [6, Corollary 5.6.13], i.e. $\sum_{m=0}^{\infty} \mathbf{G}_{+}^{m *}$ is a finite matrix measure; here $\mathbf{G}_{+}^{m *}$ is the m-fold convolution of the matrix measure \mathbf{G}_{+}. It is easily checked that $\mathbf{A}_{+}^{-1}=\sum_{m=0}^{\infty} \mathbf{G}_{+}^{m *}$.

Further, suppose $\hat{\mathbf{A}}(\gamma)<\infty, \gamma>0$. Choose $\gamma^{\prime} \in(0, \gamma)$. The matrix I- $\hat{\mathbf{A}}(s)$ admits the right canonical factorization $\mathbf{I}-\hat{\mathbf{A}}(s)=\hat{\mathbf{A}}_{-}(s) \hat{\mathbf{A}}_{+}(s)$ for all $\gamma^{\prime} \leq$ $\Re s \leq \gamma$, where the matrices $\hat{\mathbf{A}}_{-}(s)$ and $\hat{\mathbf{A}}_{+}(s)$ have the same meaning as before and possess inverses in $\hat{S}\left(\gamma^{\prime}, \gamma\right)$ [2, Proposition 1] (see also [9]).

The following relation is a consequence of [10, Theorem 2.2] (see [2]):

$$
\begin{align*}
& \mathbf{I}-\left(\mathrm{P}_{i}\left(M_{\infty}>0, \kappa_{\eta(0)}=j\right)\right)-\left(\int_{0+}^{\infty} \mathrm{e}^{s x} \mathrm{dP}_{i}\left(M_{\infty}>x, \kappa_{\eta(x)}=j\right)\right) \\
&=\left[\hat{\mathbf{A}}_{+}(s)\right]^{-1} \hat{\mathbf{A}}_{+}(0), \quad \Re s=0 . \tag{4}
\end{align*}
$$

Let \mathbf{W} denote the $N \times N$ matrix ($W_{i j}$), where the measures $W_{i j}$ are defined by the relations $W_{i j}((-\infty, 0)):=0$,

$$
W_{i j}((x, \infty)):=\mathrm{P}_{i}\left(M_{\infty}>x, \kappa_{\eta(x)}=j\right), \quad x>0
$$

and $W_{i j}(\{0\}):=\delta_{i j}-\mathrm{P}_{i}\left(M_{\infty}>0, \kappa_{\eta(0)}=j\right), i, j=1, \ldots, N$. It follows that (4) may be rewritten as

$$
\begin{equation*}
\hat{\mathbf{W}}(s)=\left[\hat{\mathbf{A}}_{+}(s)\right]^{-1} \hat{\mathbf{A}}_{+}(0), \quad \Re s=0 \tag{5}
\end{equation*}
$$

2. Main results

Let ν be a finite complex-valued measure. Define

$$
T \nu(A):=\int_{A} n_{1}(x) \mathrm{d} x, \quad A \in \mathcal{B}
$$

where $n_{1}(x):=-\nu((-\infty, x])$ for $x<0$ and $n_{1}(x):=\nu((x, \infty))$ for $x \geq 0$. If $\int_{\mathbb{R}}|x||\nu|(\mathrm{d} x)<\infty$, then $T \nu$ is a finite complex-valued measure and its Laplace transform $(T \nu)^{\wedge}(s)$ is equal to $[\hat{\nu}(s)-\hat{\nu}(0)] / s, \Re s=0$. If $\mathbf{B}=\left(B_{i j}\right)$ is a matrix whose entries are finite complex-valued measures, then $T B$ will denote the matrix ($T B_{i j}$).

Theorem 3. Let $\varphi(x), x \geq 0$, be a nondecreasing submultiplicative function. Suppose $\mathrm{E}_{\pi} S_{1} \in(-\infty, 0)$ and $W_{i j} \in S(\varphi)$ for all i, j. If $\gamma:=r_{+}(\varphi)>0$, assume additionally that $\lambda(\gamma)<1$. Then $p_{i j} \int_{0}^{\infty} \varphi(x) T F_{i j}(\mathrm{~d} x)<\infty$ for all i, j.

ThEOREM 4. Let $\varphi(x), x \geq 0$, be a nondecreasing submultiplicative function. If $\gamma=r_{+}(\varphi)>0$, assume that $\lambda(\gamma)<1$. Suppose $p_{i j} \int_{0}^{\infty} \varphi(x) T F_{i j}(\mathrm{~d} x)<\infty$ for all i, j and $\mathrm{E}_{\pi} S_{1} \in[-\infty, 0)$. Then $\mathrm{E}_{i} \varphi\left(M_{\infty}\right)<\infty$ for all i. Suppose that all the $F_{i j}$ are absolutely continuous, $p_{i j} \int_{0}^{\infty} \varphi(x) T F_{i j}(\mathrm{~d} x)<\infty$ for all i, j, and $\mathrm{E}_{\pi} S_{1} \in(-\infty, 0)$. Then $W_{i j} \in S(\varphi)$ for all i, j.

Proof of Theorem 3. By (5), $\left[\hat{\mathbf{A}}_{+}(s)\right]^{-1} \in \hat{S}(\varphi) \subset \hat{S}(0, \gamma) \subset \hat{S}(0,0)$. If $\gamma>0$, then, by the discussion after Theorem 2, $\mathbf{A}_{+} \in S\left(\gamma^{\prime}, \gamma\right)$ for every $\gamma^{\prime} \in(0, \gamma)$. Since \mathbf{A}_{+}is a finite matrix measure concentrated on $[0, \infty)$, we have $\mathbf{A}_{+} \in$ $S(0, \gamma)$. Applying Lemma 1, we obtain $\mathbf{A}_{+} \in S(\varphi)$. It follows from $\mathrm{E}_{\pi} S_{1} \in$ $(-\infty, 0)$ that $\mathbf{B}(s)[\mathbf{I}-\hat{\mathbf{A}}(s)] \in \hat{S}(0,0)$, since the $(1, j)$-entry of $\mathbf{B}(s)[\mathbf{I}-\hat{\mathbf{A}}(s)]$ is equal to

$$
\begin{align*}
\frac{s+1}{s}\left[\pi_{j}-\sum_{i=1}^{N} \pi_{i} p_{i j} \hat{F}_{i j}(s)\right] & =\frac{s+1}{s} \sum_{i=1}^{N} \pi_{i} p_{i j}\left[1-\hat{F}_{i j}(s)\right] \\
& =\sum_{i=1}^{N} \pi_{i} p_{i j}\left[1-\hat{F}_{i j}(s)-\left(T F_{i j}\right)^{\wedge}(s)\right] \tag{6}
\end{align*}
$$

We have

$$
\mathbf{B}(s) \hat{\mathbf{A}}_{-}(s)=\mathbf{B}(s)[\mathbf{I}-\hat{\mathbf{A}}(s)]\left[\hat{\mathbf{A}}_{+}(s)\right]^{-1} \in \hat{S}(0,0)
$$

Since the entries of $\mathbf{B}(s) \hat{\mathbf{A}}_{-}(s)$ are the Laplace transforms of finite measures concentrated on $(-\infty, 0]$, it is clear that $\mathbf{B}(s) \hat{\mathbf{A}}_{-}(s) \in \hat{S}(\varphi)$. Therefore,

$$
\mathbf{B}(s)[\mathbf{I}-\hat{\mathbf{A}}(s)]=\left[\mathbf{B}(s) \hat{\mathbf{A}}_{-}(s)\right] \hat{\mathbf{A}}_{+}(s) \in \hat{S}(\varphi)
$$

Since all the π_{i} are positive, relation (6) implies $p_{i j} T F_{i j} \in S(\varphi)$.
Q.E.D.

Proof of Theorem 4. Let F be an arbitrary distribution. Then $T F \in S(\varphi)$ implies $F \in S(\varphi)$ [12, proof of Theorem 2]. Hence $\mathbf{B}(s)[\mathbf{I}-\hat{\mathbf{A}}(s)] \in \hat{S}(\varphi)$. Now suppose that all the $F_{i j}$ are absolutely continuous and $\mathrm{E}_{\pi} S_{1} \in(-\infty, 0)$. Applying Theorem 2, we have $\left[\hat{\mathbf{A}}_{+}(s)\right]^{-1}=\{\mathbf{B}(s)[\mathbf{I}-\hat{\mathbf{A}}(s)]\}^{-1}\left[\mathbf{B}(s) \hat{\mathbf{A}}_{-}(s)\right]$. By Lemma 1, $\{\mathbf{B}(s)[\mathbf{I}-\hat{\mathbf{A}}(s)]\}^{-1} \in \hat{S}(\varphi)$. Further, $\mathbf{B}(s) \hat{\mathbf{A}}_{-}(s)$, being a matrix of Laplace transforms of measures on $(-\infty, 0]$, is an element of $\hat{S}(\varphi)$. Hence $\left[\hat{\mathbf{A}}_{+}(s)\right]^{-1} \in \hat{S}(\varphi)$, which implies $\mathbf{W} \in S(\varphi)$.

The general case is considered as follows. Let $\left\{Y_{m}(i, j)\right\}_{m=1}^{\infty}, i, j=1, \ldots, N$, be sequences of independent identically distributed random variables with uniform distribution on $[0, h]$, which are independent of all $\left\{X_{m}(i, j)\right\}_{m=1}^{\infty}$ and $\left\{\kappa_{n}\right\}_{n=0}^{\infty}$. Consider the random variables $X_{m}^{\prime}(i, j):=X_{m}(i, j)$ if $X_{m}(i, j) \geq b$ and $X_{m}^{\prime}(i, j):=b$ if $X_{m}(i, j)<b$ for a sufficiently remote negative level b. We now form a new random walk $\left\{S_{n}^{*}\right\}$ just in the same way as $\left\{S_{n}\right\}$ upon replacing the $X_{m}(i, j)$ by $X_{m}^{*}(i, j):=X_{m}^{\prime}(i, j)+Y_{m}(i, j)$. Clearly, $M_{\infty}^{*}:=\sup _{n \geq 0} S_{n}^{*} \geq M_{\infty}$. By choosing $|b|$ sufficiently large and h sufficiently small, we can achieve that $\mathrm{E}_{\pi} S_{1}^{*} \in(-\infty, 0)$ and $\lambda^{*}(\gamma)<1$ (the latter follows from the fact that the maximal eigenvalue of a nonnegative matrix depends analytically on its entries; the superscript $*$ denotes the corresponding quantities for the new random walk $\left\{S_{n}^{*}\right\}$). Moreover, the underlying matrix \mathbf{A}^{*} for $\left\{S_{n}^{*}\right\}$ possesses the following property: $T \mathbf{A}^{*} \in S(\varphi)$. In fact, choose an arbitrary element $G=p_{i j} F_{i j}^{*}$ with $p_{i j}>0$, where $F_{i j}^{*}$ stands for the common distribution of the random variables $X_{m}^{*}(i, j)$. Then

$$
\begin{aligned}
\frac{1}{p_{i j}} \int_{0}^{\infty} \varphi(x) G((x, \infty)) \mathrm{d} x \leq & \int_{0}^{\infty} \varphi(x) F_{i j}((x-h, \infty)) \mathrm{d} x \\
& \leq h \varphi(h)+\varphi(h) \int_{0}^{\infty} \varphi(x) F_{i j}((x, \infty)) \mathrm{d} x<\infty
\end{aligned}
$$

By the already proven, $\mathrm{E}_{i} \varphi\left(M_{\infty}^{*}\right)<\infty$, and hence $\mathrm{E}_{i} \varphi\left(M_{\infty}\right)<\infty$.
Q.E.D.

Suppose now that $\varphi(x) / \exp \left(\gamma^{\prime} x\right), x \geq 0$, is nondecreasing for some $\gamma^{\prime} \in$ $\left(0, r_{+}(\varphi)\right]$. This assumption is not a very restrictive one since, in view of (2),
$\varphi(x) / \exp \left[r_{+}(\varphi) x\right] \geq 1$ for all $x \geq 0$. In this case we can somewhat strengthen the assertions of Theorems 3 and 4, admitting the possibility $\mathrm{E}_{\pi} S_{1}=-\infty$ in both implications.

ThEOREM 5. Let $\varphi(x), x \geq 0$, be a submultiplicative function such that $\gamma=$ $r_{+}(\varphi)>0$ and $\varphi(x) / \exp \left(\gamma^{\prime} x\right)$ is nondecreasing for some $\gamma^{\prime} \in(0, \gamma]$. Suppose $\mathrm{E}_{\pi} S_{1} \in[-\infty, 0)$ and $\lambda(\gamma)<1$. Then $\mathbf{W} \in S(\varphi)$ if and only if $\mathbf{A} \in S(\varphi)$. The relation $\mathbf{W} \in S(\varphi)$ clearly implies $\mathrm{E}_{i} \varphi\left(M_{\infty}\right)<\infty$ for all i.

Proof. Put $\psi(x):=\exp \left(\gamma^{\prime} x\right)$ for $x<0$ and $\psi(x):=\varphi(x)$ for $x \geq 0$. Then $\psi(x)$, $x \in \mathbb{R}$, is obviously a submultiplicative function with $r_{-}(\psi)=\gamma^{\prime}$ and $r_{+}(\psi)=\gamma$. Suppose first $\mathbf{W} \in S(\varphi)$. For a finite measure ν, we have $\nu \in S(\psi) \Leftrightarrow \nu \in S(\varphi)$. It follows that $\mathbf{W} \in S(\psi)$. By (5), $\left[\hat{\mathbf{A}}_{+}(s)\right]^{-1} \in \hat{S}(\psi)$. By Lemma $1, \hat{\mathbf{A}}_{+}(s) \in$ $\hat{S}\left(\gamma^{\prime}, \gamma\right) \Rightarrow \hat{\mathbf{A}}_{+}(s) \in \hat{S}(\psi)$. Since \mathbf{A}_{-}is concentrated on $(-\infty, 0], \mathbf{A}_{-} \in S(\psi)$. Hence $\mathbf{A}=\delta_{0} \mathbf{I}-\mathbf{A}_{-} * \mathbf{A}_{+} \in S(\psi)$, i.e. $\mathbf{A} \in S(\varphi)$.

We now prove the converse assertion. Suppose $\mathbf{A} \in S(\varphi)$. Since \mathbf{A}_{-}is concentrated on $(-\infty, 0], \mathbf{A}_{-} \in S(\psi)$. There exists $\mathbf{A}_{-}^{-1} \in S\left(\gamma^{\prime}, \gamma\right)$ (see the corresponding discussion after Theorem 2). By Lemma $1, \mathbf{A}_{-}^{-1} \in S(\psi)$. It follows that $\mathbf{A}_{+}=\mathbf{A}_{-}^{-1} *\left(\delta_{0} \mathbf{I}-\mathbf{A}\right) \in S(\psi)$. Again by Lemma 1, we have $\mathbf{A}_{+}^{-1} \in S(\psi)$. By (5), $\mathbf{W} \in S(\psi)$.

Remark 1. Examining the proofs above, we see that assertions similar to Theorems 3,4 and 5 are also valid for submultiplicative moments of the first positive $\operatorname{sum} \chi(0)$ (see (3)). We only need to replace $\mathrm{E}_{i} \varphi\left(M_{\infty}\right)$ by $\mathrm{E}_{i} \varphi(\chi(0))$ in their statements throughout.
Remark 2. The exact tail behaviour of M_{∞} and $\chi(0)$ for Markov-modulated random walks has been studied in [1] in the context of $\mathcal{S}(\gamma)$-distributions, $\gamma \geq 0$. The subexponential tail behaviour of M_{∞} in the case of Markov-modulation has been considered in [7].
Remark 3. If $\lambda(\gamma)=1$ or if $\lambda(\gamma)>1, \gamma>0$, then the distribution of M_{∞} is highly influenced by the roots of the characteristic equation $\operatorname{det}(\mathbf{I}-\hat{\mathbf{A}}(s))=0$, which lie in the strip $\{s \in \mathbb{C}: 0<\Re s \leq \gamma\}$, and Theorems 3-5 do not hold. The cases $\lambda(\gamma)=1$ and $\lambda(\gamma)>1$ for some $\gamma>0$ will be dealt with in another paper.

Acknowledgement. I wish to express gratitude to a referee for a careful reading of the manuscript.

M. SGIBNEV

References

[1] G. Alsmeyer and M. Sgibnev, On the tail behaviour of the supremum of a random walk defined on a Markov chain, Yokohama Math. J., 46 (1999), 139-159.
[2] K. Arndt, Asymptotic properties of the distribution of the supremum of a random walk on a Markov chain, Theory Probab. Appl., 25 (1980), 309-324.
[3] S. Asmussen, Aspects of matrix Wiener-Hopf factorisation in applied probability, Math. Scientist., 14 (1989), 101-116.
[4] W. Feller An Introduction to Probability Theory and Its Applications II, Wiley, New York, 1966.
[5] E. Hille and R.S. Phillips Functional Analysis and Semi-Groups, AMS Colloquium Publications 31, Providence, 1957.
[6] R. A. Horn and C. R. Johnson Matrix Analysis, Cambridge University Press, Cambridge, 1986.
[7] P.R. Jelenković and A.A. Lazar, Subexponential asymptotics of a Markov-modulated random walk with queueing applications, J. Appl. Probab., 35 (1998), 325-347.
[8] J. Kiefer and J. Wolfowitz, On the characteristics of the general queueing process, with applications to random walk, Ann. Math. Statist., 27 (1956), 147-161.
[9] H.D. Miller, A matrix factorization problem in the theory of random variables defined on a finite Markov chain, Proc. Cambr. Phil. Soc., 58 (1962), 268-285.
[10] E.L. Presman, Factorization methods and boundary problems for sums of random variables given on a Markov chain, Math. USSR Izv., 3 (1969), 815-852.
[11] B.A. Rogozin and M.S. Sgibnev, Banach algebras of measures on the line. Siberian Math. J., 21 (1980), 265-273.
[12] M.S. Sgibnev, Submultiplicative moments of the supremum of a random walk with negative drift, Statistics and Probability Letters, 32 (1997), 377-384.
S.L. Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 90, 630090
RUSSIA.
E-mail address: sgibnevemath.nsc.ru

