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Abstract. Let My be the supremum of a random walk {S,} defined on a
finite Markov chain {x»} and let ¢(z), £ > 0, be a submultiplicative function:
¢(z +y) < ¢(z)p(y). Conditions are given for Ep(Moo | Ko = i) < 00.

Introduction

Let {xn} be a finite Markov chain with state space {1,... , N} and transition
matrix P = (p;;), where p;j = P(kp = j | kp—1 =), n =1, 2, ... . It will be
assumed throughout that {«,} is an ergodic (irreducible, aperiodic and positive
recurrent) Markov chain with stationary distribution {m1,...,7n}, where m; >
0,¢=1,..., N.

A random walk {S, } governed by the Markov chain {k,} is defined as follows.
Let probability distributions F;, 4, =1, ..., N, be given. For each pair (4, j),
let {Xn(4,7)}32_, be a sequence of independent identically distributed random
variables with common distribution F;;. Suppose the sequences {X,(4,7)}2_;,
i, J=1,..., N, and {k,} are mutually independent. We set Sp = 0, S,, =
Sn—1+ Xn(Kn-1,%n) for n > 1, and My = sup,>q Sn.

Let ¢(z), z € R, be a submultiplicative function, i.e. () is a finite, positive,
Borel measurable function such that

0) =1, o@+y) <e)p(y), =zyeR (1)
It is well known [5, Section 7.6] that

log p(z) _ sup log ¢(x)
T

—oo<r_(p):= lim
<0 z

 x——o00

< inf log p(2) = lim log (=) =ri(p) <oo. (2)
x>0 T T —roo z
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Here are some examples of such functions on [0,00): ¢(z) = (1+ )", r > 0;
¢(x) = exp(cz®) with ¢ > 0 and 8 € (0,1); ¢(z) = exp(rz), r € R. Moreover, if
R(z), ¢ € Ry, is a positive, ultimately nondecreasing regularly varying function
at infinity with a nonnegative exponent 3 (i.e. R(tz)/R(zx) — tP for t > 0 as
z — oo [4, Section VIIL8]), then there exist a nondecreasing submultiplicative
function ¢(z) and a point zg € (0, 00) such that c1R(z) < ¢(x) < coR(z) for all
x > o, where c¢; and cp are some positive constants [12, Proposition]. The prod-
uct of a finite number of submultiplicative functions is again a submultiplicative
function.

Consider the collection S(p) of all complex-valued measures 6 defined on the
o-algebra B of Borel subsets of R and such that

16ll, = /R o(2)] 0)(dz) < oo;

here |8| stands for the total variation of §. The collection S(y) is a Banach algebra
with norm || - ||, by the usual operations of addition and scalar multiplication
of measures, the product of two elements v and 6 of S(yp) is defined as their
convolution v 6 [5, Section 4.16]. The unit element of S(y) is the Dirac measure
do, i.e. the atomic measure of unit mass at the origin. The Laplace transform of
an element 0 € S(yp) is defined by (s) := Jr exp(sz) 8(dz). By (2), this integral
converges absolutely with _tespect to |6} for all s in the strip {s € C: r_(p) <
Rs <r,(p)}. Obviously, dp(s) =1.

In what follows, we shall assume that ¢(z) = 1 on (—o00,0). Then, by (1),
¢(z) is nondecreasing and, by (2), r4+(¢) > 0. Conversely, if a nondecreasing
function ¢(z), z > 0, satisfies (1) for all z, y > 0 and r4(¢) > 0, then putting
¢(z) =1 on (—00,0) we obtain a submultiplicative function on the whole real
line R.

We shall assume throughout that M., < oo almost surely. In particular,
this is the case if the “stationary” expectation of S; is negative, i.e. ExS; :=
Efjﬂ mipi; EX1(1,j) < 0. Denote P;(-) = P(- | ko =4) and let E;, i =1, ...,
N, stand for the corresponding expectations.

The aim of the present note is to derive conditions for E;io(M.,) < oo and
related results, where ¢(z), z > 0, is a nondecreasing submultiplicative function.
In the case of usual random walks, ordinary moments of the supremum, i.e. EM% |
were studied in [8] and the submultiplicative moments Ep(My,) in (see also
the references therein).

1. Preliminaries

Denote by S(9’,v) the Banach algebra S(y) for the following choice of the
submultiplicative function ¢(z): ¢(z) := exp(y'z) for z < 0 and p(z) := exp(yz)
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for > 0; here 0 < 4/ < 7.

Suppose a matrix B = (B;;) is made up of elements of S(p). Then B(s)
will denote the matrix (B;;(s)) of the corresponding Laplace transforms, and we
shall write B(s) € §(¢).

Let ¢(z), z € R, be a submultiplicative function such that r_ (¥) =«' and
r4+(¥) = 7. In view of (2), it is clear that S(y) € S(+,7). Denote by H; and H
the collections of all homomorphisms of S(¢) and S(v/,+) into C respectively.
Looking at the structure of an arbitrary h; € H; [11, Theorem 2], we see that
hi = h|sy) for a uniquely determined h € H. Conversely, for each h € H,
hlsw) € Hi. It follows from the general theory of Banach algebras that an

~element v € S(3) is invertible in S(3) if and only if k() # 0 for all hy € H,.
Also, for v € §(v,7), there exists an inverse v~ € (v, v) if and only if h(v) #0
for all h € H. Suppose now that v € S(1) is invertible in S(4’,~). Then, in view
of the above, v=! € S(1)). The following lemma says that this property remains
valid in the matrix case.

LEMMA 1. LetU be an N x N matriz whose entries are elements of S(1). Sup-
pose that U(s) is invertible in .S’('y ’y) i.e. the entries of [U(s)]~! are elements
of 8(v',). Then [U(s)]~* € 8().

Proof. The function det U(s) is a linear combination of products of N factors.
These factors are the Laplace transforms of elements of the matrix U € S (%).
Hence det U(s) is the Laplace transform é(s) of some measure a € S (¥). Denote
by M(s) the adjugate matrix of U(s). By the same reason, M(s) € S(v). Since
[O(s)]~! € 8¢+, ), det{[U(s)]!} is the Laplace transform of some 8 € (v, 7).
We have a * 8 = dy, i.e. a is invertible in S(v,7). By the discussion precedlng
the lemma, o is invertible in S(y): 8 = a~! € S(3¥). We have [O(s))?
Ni(s)B(s) € $(v). m

Let A denote the N x N matrix (p;;F;;) and 8;; the Kronecker delta. Put

J := diag(my,... ,7n) and B(s) := U(s)J. Then
s+1 s+1 s+1
. T 2 ... ™
s s s
B(s) — 0 2 een 0
0 0 TN

Let I be the N x N identity matrix. Set n(z) :==inf{n > 1: S, > z}. Define
X(m) = Sn(a:) —x and 8y = maxi<m<n Sm.
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Denote by A(y) the maximal positive eigenvalue of the matrix A(y).
We shall need the following result [1, Theorem 2].

THEOREM 2. Let A € S(0,7) for some v > 0 and let A(y) < 1 in case of
4 > 0. Suppose the ezpectations EX,(i,j), i, j = 1, ..., N, are finite and
ExS1 € (—0,0). Assume the F;; are absolutely continuous for alli, j =1, ...,
N. Then

B(s)[I-A(s)] = [B(s)A-(s)]A+(s), O0<Rs<7,

where

A_(s) =]- (Z/ e** P;(3n-1 < Sp €dz,kn —3))
n=1
Ao =1- ([ e Pix( € daimo =) 3

moreover, the matrices B(s)A_(s) and A (s) have inverses in 5(0,7).

In general, the factorization I — A(s) = A_(s)A,(s) holds regardless of
whether the F;; are absolutely continuous or not [3, Theorem 4.1] (in the latter
case, the matrix B(s)A_(s) may not have an inverse in §(0,7)). Notice also
that the invertibility of A4 in S(0,0) is valid without the requirement that -
the F;; be absolutely continuous. Actually, G4+ := doI — A} is a matrix of
nonnegative measures such that the spectral radius of G (R) is less than 1, due
to the fact that E,S; < 0 [3, Proposition 4.2]. So we have Y .-_ [G+(R)]™ < o
[6, Corollary 5.6.13], i.e. Y .o_ GT* is a finite matrix measure; here GT** is
the m—fold convolution of the matrix measure G. It is easily checked that
AT =32 ,GT".

Further, suppose A (y) < 00, ¥ > 0. Choose v’ € (0 ,7). The matrix I — A(s)
admits the right canonical factorization I — A(s) = A_(s)A,(s) for all 4/ <
Rs < v, where the matrices A_(s) and A, (s) have the same meaning as before
and possess inverses in §(v/,7) [2, Proposition 1] (see also [9]).

- The following relation is a consequence of [10, Theorem 2.2] (see [2]):

I— (Pi(Mo > 0, Ky 0) =.\j)) - (/:: e** dP;(Moo > T, Kp(e) = J))
| =[A(s)]7TAL(0), Rs=0. (4)

Let W denote the N x N matrix (W;;), where the measures W;; are defined
by the relations W;;((—o0,0)) :=0,

Wi.‘i((z, OO)) = Pz(Moo >z, Kn(z) = .7)’ z >0,
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and W;;({0}) := 0ij — Pi(My > 0, Kn(0) = i)ht Ji=1,..., N. It follows that
(4) may be rewritten as

W(s) = [Ap(9)]'A4(0), Rs=o. (5)

2. Main results

Let v be a finite complex-valued measure. Define
Tv(A) := / ny(z) dz, A € B,
. A

where n;(z) := —v((—o0,z]) for £ < 0 and ny(z) = v((z,00)) for z > 0. If
Jr Iz| lv|(dz) < oo, then Tv is a finite complex-valued measure and its Laplace
transform (Tv)"(s) is equal to [¥(s) — 2(0)]/s, Rs =0. If B = (Bij) is a matrix
whose entries are finite complex-valued measures, then 7B will denote the matrix
(T'By;). |

THEOREM 3. Let p(z), >0, be a nondecreasing submultiplicative function.
Suppose E»S; € (—o0,0) and Wi; € S(p) for alli,j. If v := r () > 0, assume
additionally that A(y) < 1. Then p;; [;° ¢(z) TF;(dz) < oo for all i, ;.

THEOREM 4. Let o(z), £ > 0, be a nondecreasing submultiplicative function.
If v = r4(p) > 0, assume that A\(y) < 1. Suppose p;; f0°° p(x) TF;j(dz) < oo
for all 3,5 and ExS; € [~00,0). Then Eip(Mo) < 0o for all i. Suppose that
all the F;; are absolutely continuous, pij [y ¢(x) TF;i(dz) < oo for all i, j, and
ExS1 € (—=00,0). Then W;; € S(y) for all i, ;.

Proof of Theorem 3. By (5), [AL(s)]"! € 8(p) C 8(0,7) c 8(0,0). If y > 0,
then, by the discussion after Theorem 2, A, € S(v,7) for every ' € (0,7).
Since A, is a finite matrix measure concentrated on [0,00), we have A, €
5(0,v). Applying Lemma 1, we obtain A, € S(p). It follows from E,S; €
(—00,0) that B(s)[I - A(s)] € 5(0,0), since the (1, j)-entry of B(s)[I — A(s)] is
equal to

N N :
s+l [Wj - Zﬂipijﬁij(s)] = +1 Zﬂ'ipij [1 - Fij(s)]

8 t=1 8 i=1

N
= mpy [1 — Fij(s) - (TF‘z'j)A(S)] . (6)

i=1
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We have
B(s)A_ (8) B(s)[I - A(s)][A+ ()] 7" € 5(0,0).

Since the entries of B(s)A_(s) are the Laplace transforms of finite measures
concentrated on (—o0, 0], it is clear that B(s)A_(s) € §(¢). Therefore,

B(s)[I - A(s)] = [B(s)A—(s)]A+(s) € 8(¢).
Since all the 7; are positive, relation (6) implies p;;TF;; € S(¢). Q.E.D.

Proof of Theorem 4. Let F be an arbitrary distribution. Then TF € S(y)
implies F € S(p) [12, proof of Theorem 2]. Hence B(s)[I — A(s)] € S(¢).
Now suppose that all the F;; are absolutely continuous and ExS; € (—o0,0).
Applying [Theorem 2, we have [A+(8)] ~ = {B(s)[I - A(s)]}~[B(s)A_(s)]. By
Lemma 1, {B(s)[I — A(s)]}~! € 8(yp). Further, B(s)A_(s), being a matrix
of Laplace transforms of measures on (—00,0], is an element of $(p). Hence
[AL+(8)]"! € 8(p), which implies W € S(¢p).

The general case is considered as follows. Let {Y,(%,5)}35-1, 4,5 =1,..., N,
be sequences of independent identically distributed random variables with uni-
form distribution on [0, k], which are independent of all {Xr(,4)}m=1 and
{Kkn}%0- Consider the random variables X, (i,7) := Xm(4, J) if Xm(4,5) > band
X! (i,7) 1= b if Xm(i,5) < b for a sufficiently remote negative level b. We now
form a new random walk {S%} just in the same way as {S,} upon replacing the
Xm(i,7) by X7.(4,5) = X7 (4, 5) + Ym (i, §). Clearly, Mg, := sup,>¢S; 2 M.
By choosing |b| sufficiently large and h sufficiently small, we can achieve that
ErST € (—00,0) and A*(v) < 1 (the latter follows from the fact that the maxi-
mal eigenvalue of a nonnegative matrix depends analytically on its entries; the
superscript * denotes the corresponding quantities for the new random walk
{Sr}). Moreover, the underlying matrix A* for {S;} possesses the following
property: TA* € S(¢). In fact, choose an arbitrary element G = p;; F}; with
pij > 0, where F}; stands for the common distribution of the random variables
X (%,7). Then

1 o0 o0 .
= [ e@6(@w)des [ p@)Fil(e— hyoo)ds
Dij Jo 0
< hp(h) + (1) [ 0(2)Fis(#,0)) do < co.
By the already proven, E;p(M3 ) < oo, and hence Eicp(Mo;,) < 00. Q.E.D.

‘Suppose now that ¢(x)/exp(y’z), £ > 0, is nondecreasing for some 7' €
(0,74+(p)]. This assumption is not a very restrictive one since, in view of (2),
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¢(z)/ exp[ry(p)x] > 1 for all z > 0. In this case we can somewhat strengthen
the assertions of Theorems 3 and 4, admitting the possibility ExS; = —oo in
both implications.

THEOREM 5. Let ¢(z), £ > 0, be a submultiplicative function such that v =
T+(p) > 0 and ¢(z)/exp(y'z) is nondecreasing for some v € (0,7]. Suppose
ExS1 € [~00,0) and A(y) < 1. Then W € S(p) if and only if A € S(p). The
relation W € S(yp) clearly implies E;p(Mo,) < oo for all i.

Proof. Put 9(z) := exp(y'z) for £ < 0 and ¢(z) := ¢(z) for z > 0. Then ¥(z),
z € R, is obviously a submultiplicative function with r_(¢)) = 4’ and v, (¢) =
Suppose first W € S(¢). For a finite measure v, we have v € S(¢) < v € S(p).
It follows that W € S(y). By (5), [A+(s)]"! € $(3). By Lemma 1, A,(s) €
S(+',7) = A,(s) € 8(y). Since A_ is concentrated on (—00,0], A~ € S(¥).
Hence A =doI — A_x A4 € S(¢), i.e. A € S(p).

We now prove the converse assertion. Suppose A € S(p). Since A_
concentrated on (—o0,0], A_ € S(3). There exists AZ! € S(v',7) (see the
corresponding discussion after Theorem 2). By Lemma 1, A”! € S(¥).
follows that Ay = AZ' x (6o — A) € S(¢)). Again by Lemma 1, we have
AT € S5(y). By (5), WeS(¢). m

Remark 1. Examining the proofs above, we see that assertions similar to Theo-
rems 3, 4 and 5 are also valid for submultiplicative moments of the first positive
sum x(0) (see (3)). We only need to replace E;pp(M.,) by E;p(x(0)) in their
statements throughout.

‘Remark 2. The exact tail behaviour of M,, and x(0) for Markov-modulated

random walks has been studied in [1] in the context of S(v)-distributions, v > 0.
The subexponential tail behaviour of Moo in the case of Markov-modulation has
been considered in [7].

Remark 3. If A(y) =1 or if A(y) > 1, v > 0, then the distribution of M, is
highly influenced by the roots of the characteristic equation det(I — A(s)) =0,
which lie in the strip {s € C : 0 < Rs < v}, and Theorems 3 — 5 do not hold.
The cases A(y) = 1 and A(y) > 1 for some v > 0 will be dealt with in another

paper.
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reading of the manuscript.
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