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Abstract. The purpose of this paper is to study the existence of a surface in
the n- dimensional Euclidean unit sphere S™ with prescribed Gauss map. For a
given C*°-mapping G from a torus 72 into the complex quadric Q,_1, we show
that there exists a conformal immersion X : 72 —» S™ such that the Gauss map
of the surface S = (12,5", X) is G o w where 7 : T2 —» T2 is a covering map.
Let G be a C*°-mapping from a connected Riemann surface M into Q,_;. Under
a certain condition for G we also show that there exists a surface defined by a
C°°-conformal immersion X from M to the n-dimensional real projective space
RP™ with the property that a neighborhood of each point of X (M) is covered
by a surface in S™ with prescribed Gauss map G. By using this result we give a
characterization of certain tori immersed in RP".

1. Introduction

By a surface S in an n-dimensional (n > 3) Riemannian manifold M
we mean a triple (M, M, X) consisting of a connected Riemann surface M, the
ambient space M and a C*-conformal immersion X : M —» M.

Let S = (M,R™,X) be a surface in the (n + 1)-dimensional Euclidean
space R™*!. For each u € M we can assign an oriented tangent plane to X (M)
at X(u) to a unique point of the complex quadric Q,_; in the n-dimensional
complex projective space CP". This induces the (generalized) Gauss map G :
M — Qn_;. It is very important to study the property of the Gauss map of
surfaces in a Euclidean space. There are many studies on the Gauss map from
several points of view (see the bibliography in [1]). For a given C*°-mapping G
from a Riemann surface M into Q,_;, it is an interesting problem to find a surface
in a Euclidean space or a Euclidean sphere such that the Gauss map is G. For a
_simply-connected Riemann surface M and a C*°-mapping G : M —» Q,._; with
certain conditions, Hoffman and Osserman showed that there exists a surface
in R**! with the Gauss map G ([2]). Let S = (M, S™, X) be a surface in the
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n-dimensional Euclidean unit sphere S®. By regarding it as a surface in R*t1,
we obtain the Gauss map of S. In this paper we investigate the existence of a
surface in 8™ with prescribed Gauss map. It seems to us that the existence of
a surface in S™ with prescribed Gauss map cannot be shown directly by using
the results due to Hoffman and Osserman () In this paper, by using different
methods from theirs, we obtain an existence theorem for S™ and RP™.

Let G: M — Q,n_1 be a C®-mapping. For each u € M G(u) corresponds
to a unique oriented 2-plane G(u) in R™*! passing through the origin. On an
open set U of M we have a C°°-mapping

E =(E1,Ey,E3,-- ,Eny1) : U — SO(n+1)

such that for each u € U ET (u) := (E1(u), E2(u)) is an orthonormal frame of
G(u) giving the orientation of it. By using this E, we give sufficient conditions
(3.3), (3.11) and (3.12) for the existence of a surface in S™ with prescribed Gauss
map.

The main results of this paper are Theorems and B.3. Let G: M —
Qn-1 be a C>°-mapping which satisfies the conditions (3.3), (3.11) and (3.12).
We show in that if M is a torus T2, then there exist a covering
space (12,T2,#) over T? and a surface S = (12,8™, X) such that the Gauss
map is Go#. In we also show that there exists a surface S =
(M, RP™, X) in the n-dimensional real projective space RP™ with the property
that a neighborhood of each point of X (M) is covered by a surface in S™ with
prescribed Gauss map G.

We show in Section 4 that if we impose certain conditions on G in
3.3, then M is a torus.

We note that there are Riemann surfaces admitting C°°-mappings G : M —»
Qrn—1 with the conditions (3.3),(3.11) and (3.12). In the last section we give
examples of C*®-mappings G : T? — Q,_; with the conditions in
3.3.

2. The Gauss Map

We assume in this paper that manifolds and apparatus on them are of class
C* and that manifolds satisfy the second countability axiom, unless otherwise
stated.
Let M be a connected Riemann surface and S = (M, R™, X) a surface in the
Euclidean n-space R™. X : M —> R" is said to be conformal if for any complex
coordinate system (U, z = u; + v/—1uz) of M it satisfies

ox ax\
8z’ 8z )/
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where <, > denotes the canonical Hermitian product on C™.

We define the Gauss map of a surface S = (M, R™, X) in R™ following Hoff-
man and Osserman ([1]). Let Q,_» be the complex quadric in the (n — 1)-
dimensional complex projective space CP"~!, which is defined as

Qn-2 = {[w] € CP™ w2 + .- + w,2% = 0}.
Qn—2 is diffeomorphic to the Grassmaniann manifold
G(2,n) = SO(n)/SO(2) x SO(n — 2)
consisting of all oriented 2-planes in R™ passing through the origin. For a complex

coordinate system (U, z = u; ++/—1u3) of M and a C*°-mapping A4 : U — RF,
we put

0A 1 /0A 0A 0A 1 [/0A 0A\
= ———— I — ——\/—' — 5y = —— = — —_— \/—1-——- .
4 oz 2 (3’21.1 1 6@) » Az 0z 2 (6u1 + a'll.z)

For each p € M, by identifying the tangent vectors
8 )
dX, ((a‘;)p) ,  dXp ((a—w)p)

0X 12,4
%; (P) ) 3—u2 (P)

with

respectively by parallel translations, each tangent plane of X (M) corresponds
to a unique point of Q),,_» where z = u; + v/—1us is a local coordinate function
about p. Thus the generalized Gauss map of S = (M, R"*, X) can be defined as

G:M— Q2 (p'—> [%(p)])-

In case of n = 3, the generalized Gauss map can be regarded as the classical
Gauss map. For simplicity, the generalized Gauss map will be called the Gauss
map in this paper. :

Let G : M — Qn_1 be a C*°-mapping. For each u € M, we denote by
G(u) the oriented 2-plane in R™+1 passing through the origin which corresponds
to G(u). Let (U,z = u; + v/—1uy) be a complex coordinate system of M. For
u € U we express R™*1 as the direct sum

R™! = G(u) ® G+ (u)
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where G+ (u) denotes the orthogonal complement to G(u). We set

P(M,G) = | G(w)

ueM

We denote by V the smallest linear subspace in R**! containing P(M,G). Let
V< be the orthogonal complement of V in R**!. In the following we denote by
k the dimension of V.

The following results will be used later.

LEMMA 2.1 ([3]). Let M be a connected Riemann surface and G : M —>
Qn_1 a C®-mapping. Let V and V' be as defined above. Let S = (M,S™, X)
be a surface in S™ such that the Gauss map is G. If 3 < k < n, then the following
holds:

(1) There exists a surface § = (M, S™, X) in S™ such that the Gauss map coin-
cides with G and

X(M)cVvns™.

(2) If the Gauss map of a surface Sy = (M,S™,Y) in 8™ is G, then Y can be

expressed as
Y =cX + tg

where ¢ and t are constants such that

=eV1—-12, e==41, Jt|<]1,
and g € V- NS~

LEMMA 2.2 ([3]). Let M,G and S = (M,S™, X) be as in Lemma 2.1. Let
Sy = (M, S™,Y) be a surface in S™ such that the Gauss map isG. If k =n+1,
then Y = £X. '

Let S = (M, S™, X) be a surface in S™. We take a complex coordinate system
(U, z) of M. We have

0X
5, X =0 (2.1)

on U. We set

1 /8X 86X V=1 /80X 68X
By = X(af“a?)’ By == (az‘az) (2.2)
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where

A= \/_<6X %f>

By taking U sufficiently small, we obtain a C*®°-mapping E : U — SO(n + 1)
such that £ = (E1, E3,--+ ,Ept1). Then X can be expressed as

X(u) = nz-'_:lXa )Eo(u), wuweUl. (2.3)

a=3

Let o/ (m) be the set of all m x m complex skew symmetric matrices. We set

8Ek n+1 .
EzZakEl (1<k<n+1) (2.4)

=1
and define a C*°-mapping A : U — &/(n+ 1) as A(u) = (ak(u)). We express
A in the form

A= A% _tA%

where Al(u) € #(2) and B(u) € &/(n — 1) (u € U). Here *A? stands for the
transposed matrix of A2. We set

Al—(_y 0 ) Al =(a*a*), B= _tp g )

= (a"a™™), J=<—?b g)

where J(u) € &/(2) and L(u) € &/(n — 3) (u € U). Then we have

2 n+1 n+1 o n+1
e (S na B (S0 S ) 2
a=3 a=3
By we get
n--1 n+1
S X%l=1) 3 X% = ——Vl,\, (2.5)
a=3 a=3

. n+1
aX ——Zxﬂaﬁ B<a<n+1). (2.6)
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We set X = t(X3,...,X"+1). It follows from [2.3),[2.5) and [2.6) that

O0E O P s TN ). QR
az—EA, aX—z)\, a’X = 3 A, 5 BX.
Since
O’E _ O’E
020z  0z0z’
we get
0A 0A -
==~ 3, = 44 (2.7)
where [A, A] = AA — AA. Then (2.7) is rewritten as
0Al 0A} - :
6—;——5;1:[‘4%,1‘1%] ['A3, 43), (2.8)
0A? 0A? -
55 — 5, = LA+ (B 4], (2.9)
BB BB -

By [(2.2) and [(2.4) we have

92X 10
5707 ~ 29z \\F1 ~ V-1E))
%( _ VI ,\a2)E1+ (\/ —-+,\ )E
n+1 . n+1
—A Z aSE, ,\ Y a3E,.
a=3
Since
892X _ 892X
820z 0z0z’
we have

n+1 n+1

oA
(Ez:—\/—lAd%)El-_!-( V- —+Aa1)E2+/\Za‘{‘E — V= /\Zag‘E

A n+1 n+1
=<-5;+\/—1)\a2)E1+<\/ ——+,\a1)E2+)\Za§‘E + V- /\ZagE

a=3
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As Fy, -+, Ep41 are linearly independent, we obtain
6—% — v—l)\dé = Qﬁ + \/—lx\aé, (2.11)
0z 0z
A
%’; +v~-1xa? = —% +v/—1)a3, (2.12)
a§ =af, -—ag=ag B<a<n+1). (2.13)

The partial differential equations (2.11) and (2.12) are equivalent to the following
equation

9 VT (2.14)
0z

We now suppose that X™ and X"*! are written as
X" =fiY +hy, X""l=£fY+h (2.15)
where
fe= (e, fi) (k=1,2), Y=°X53%.-., X",

and Ay (k = 1,2) are C*-functions on U. By substituting (2.15) into [2.6), we
get

ox"

5, = (@" —bf2)Y —bhy, (2.16)
n+1
a)gz = (*a™! +bf1)Y + bh, (2.17)
oX“ — avyvf o a
5 = D" agXP — aZ(f1Y + h1) — aZy, (f2Y + ko) (2.18)
B=3

where 3 < a < n — 1. These equations imply

%E = —(L+ Df)Y — Dh (2.19)

where f and h are C°°-mappings defined as

FiU— #(2,n—3) (zu——) ( zgzg ))

h:U — #(2,1) (uH<Z;EZ; ))
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Here .# (s,t) denotes the set of all s x ¢ complex matrices and f;(u) € R"73,
hj(u) € R (j =1,2). It follows from (2.15),(2.16), (2.17) and (2.19) that

oh + QfY—f(L+Df)Y~th: (*D - Jf)Y — Jh.
0z 0Oz
This is written as
h
of _ (L+Df)-*D+Jf)Y + Q——thﬂ—Jh =0. (2.20)
0z 0z
If f and h are solutions of the following system of partial differential equations:
of ‘
b—;:f(L+Df)+ D - Jf, (2.21)
oh
E_—th_Jh’ (2.22)

then (2.20) holds. By the Frobenius theorem ([4]), a necessary and sufficient
condition for the existence of a solution of the system of the partial differential
equations (2.21) and (2.22) can be expressed as

79—2———%+[L,D]+[D,J]=O, (2.23)
oL oL . - .-
—_— = — = .24
5 - == +IL,II-D,'D] =0, (2.24)

8J 8J o A

5 — 55 —[D.Dl=0. (2.25)

These conditions (2.23),(2.24) and are equivalent to
9B 0B . -

Let f and h be solutions of the system of partial differential equations (2.21) and
(2.22). Then a necessary and sufficient condition for the existence of a solution
of the partial differential equation (2.19) is (2.26).

3. Existence of a surface in §™ with a given Gauss map

Throughout this section let M be a connected Riemann surface and G :
M — Q,_1 a C°°-mapping. Let (U, z = u; ++v/—1uz) be a complex coordinate
system of M. For G, by taking U sufficiently small if necessary, there exist a
C*°-mapping

E = (Ey,Es,Es, - yEpnt1) : U — SO(n+1) (3 1)
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such that for each uw € U ET (u) := (E;(u), E2(u)) is an orthonormal frame in
G(u) giving the orientation of it. In the following we call a pair ((U, z), ET) a

local expression of G and put E = (ET, EY).

Let (U, z = u1 + v/—1ug), ET) be a local expression of G. We set in U

OF;
Buj

(u) = EU(U) + Fij (u) (2,] =1, 2)

where E;;(u) € G(u) and Fj;(u) € G+ (u). We consider the condition

Ehi = —Eyg, By = —Es, Fi1 = Fa, Fo1 = Fia, F11 A Fy1 #0.

From now on let T denotes a 2 x 2 matrix in the form
0 1
=(1s)

E;; = ETPij, Fi; = ENQij (., =1,2)

‘unless otherwise stated. We set

(3.2)

(3.3)

(3.4)

where P;;(u) € #(2,1) and Q;;(u) € #(n—1,1). By using (3.4), we can rewrite

(3.3) as

Py = —Pp3, P31 = —Pas, Q11 = Q22, Q21 = Q12, Q11 A Q21 #0.

In the following we set
Pr=Py, P,=Py, Q1=Qu, Q2=Qa.
We define C°°-mappings
P:U—2), Q:U— #(2,n—-1)

by

Pu) = 3 ( Pi(w) + V=IPI(w) Pow) +v=IP(w) ),

aw=; (g ) -G (W)

respectively. Then we have

oF
3, — P4

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)
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where A(u) € &/(n+1). A can be expressed in the form

4= (ot5)

where B(u) € &/(n —1). Let us consider the following conditions

O _luewe-quer), Z-Yluge-qier), e
ZQ PQ + QB, ‘Zf_? _PQ + QB. (3.12)

We note that for a torus with an affine structure, the conditions (3.11) and
(8.12) are independent of the choice of complex coordinate systems.

We shall show that the conditions (3.11) and (3.12) are invariant under the
choice of orthonormal frame fields.

PROPOSITION 3.1. Let (U, z), ET) be a local expression of G such that C™-
mappings P and Q defined by (3.7) and (3.8) satisfy the conditions (3.11) and
(3.12). Then the conditions (3.11) and (3.12) are independent of the choice of
orthonormal frame fields EN on U which are orthogonal to ET in R™+1.

Proof. Let E = (E1,E2,--- ,Epny1) and F = (Fy,F3,--- , Fo41) be different
orthonormal frame fields of R**! on U such that

Ei=F, (i=1,2).
By (3.9) we have

OE OF .
5, =FA, 5-=FA (3.13)

where A(u), A(u) € #(n+1). By (3.10) A and A can be expressed in the form

A=(tg —BQ), A:(%—l—%z) (3.14)

where B(u), B(u) € &/(n—1). We put
o(m) ={ QUm € A (m,m)| *QnQm = I, }.

Here I,, denotes the unit matrix of degree m. Since E and F' are orthonormal
frames, there exists a C°°- mapping Qp 41 : U — €(n + 1) such that

I 0
E=FQuni1, Qpy1= .
+1 +1 ( 0 2.1 )
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This and (3.13) imply

aQn-}-l

82 = Qn+1A - AQr,H_l. (3 15)

Since E; = F; (i = 1,2), by using (3.14) and (3.15) we get

01 _ Q1B — BQ,_1, (3.16)
0z
Q= Q1. (3.17)
We now assume for A that

OP 1, ¢ OP =1, ain  an
= N — .18
5 = ;@QQ-Qen), - =Y_(T¢0-¢m), (3.19)
%9 = PQ + 0B, %—g = -PQ +QB. (3.19)

It follows from (3.17) and (3.18) that

%I; = 'l'(TQth—lﬂn_th - Q'Q_19,1'QT) = l(TQtQ - Q'QT),
O = Y 1Q*0 100 1'Q - Q' 'QT) = YL (10 - @QT).

Furthermore, using (3.16), (3.17) and (3.19), we obtain

) 2 Q1 A A
oz 0z 0z

0Q _ 8Q A 001
%z oz TS

= —PQQ_1 +QQ,_1B = —-PQ + QB.

Thus the conditions (3.11) and (3.12) are independent of the choice of orthonor-
mal frame fields EY. We complete the proof.

Let E = (ET,EN) = (Ey,E;,FE3,--- , Ent1) be as above. Since

O’E  0°’F
020z  9z0z’
by (3.9) and (3.10) we have
9B _9B _ g g (3.20)

0z 0z
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This is a necessary and sufficient condition for the existence of solutions of the
system of the partial differential equations (3.11) and (3.12). We express B in

the form
L D
so( 2 ®)  em

where J(u) € &/(2) and L(u) € &/(n — 3).

Since rank Q = 2 by assumption, we can choose a minor 2 x 2 matrix K from
Q so that K is invertible on a sufficiently small open neighborhood U;(C U) of
a point my € U. Without loss of generality we may assume that @ is expressed
as

t t
H, =K ) (3.22)

RQ=(H _K)=(tH2 —tK,

where H : Uy — #(2,n— 3) and K : U; — .#(2,2) are C*°-mappings.

Let
AU — #(2,1) (’“*> % ( —\/A—L;Lz)\(u) ))

be a C*°-mapping such that

oA oA
5 Th B
on U;. It should be noted that a solution A of the partial differential equation
exists on a sufficiently small open neighborhood Us(C U;) of mg because
(3.11) holds. For simplicity, we let U = Us.
We define C°>°-mappings f and h on U by

f:(fl ):K—lH, h=<h’1 >=K‘1A. (3.24)

— _PA (3.23)

fa ho

We shall show that f and h are solutions of the system of the partial differential
equations (2.21) and (2.22). The equation (3.12) are rewritten as

aa_fj =PH+ HL+ KD, %_Z_I =—-PH+HL+ K'D, (3.25)
K _ _ -
%?zPK—HD+KJ, %—IZ{:—PK—HD+KJ. (3.26)

By taking differentiation of the both sides of and by using [(3.24),
and ((3.26), we have

8f OK™! _,0H
3.~ 8, ITE 5,
S ) e L
0z 0z

=K 'HDK'H-JK 'H+ K 'HL+'D (3.27)
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and

Z—Z =K 'HDK A — JK A (3.28)

Substituting into the right hands of the equations (2.21) and (2.22), these
are written as

8f _ s

o =K 'H(L+DK™'H)+'D - JK™'H, (3.29)
% =K 'HDK™'A — JKA. (3.30)

Hence f and h are solutions of the system of the partial differential equations
(2.21) and (2.22). _
Now we shall show the following theorem.

THEOREM 3.1. Let M be a connected Riemann surface and G : M — Qp_1
a C*°-mapping. Assume that a local ezpression (U, z = u1 +vV—1up), ET) of G
satisfies the following conditions :

(1) The tangent component E;; and the normal component F;; of 6E’ in R*t1
satisfy the condition (3.3);

(2) P and Q defined by (3.7) and (3.8) satisfy the conditions (3.11) and (3.12).
Then there exzists a surface S = (Up, S™, ¥) with the Gauss map G|y, where Uy
is an open set in M such that Uy C U. '

Proof. We will use the notations stated above. We take mg € U. Let

A=—21-( _\/)‘__1)‘ ) Uy — MH(2,1)
be a C*°-mapping which is a solution of the partial differential equation
where U; (C U) is an open neighborhood of mg. Since rank Q = 2 by assumption,
we can choose a minor 2 X 2 matrix K from Q so that K is invertible on a
sufficiently small simply connected open neighborhood Uo(C Uy) of mg. Without
loss of generality, we may assume that Q is expressed as in the form (3.22). We
define C*°-mappings f and h on Uy by [3.24). We note here that f and h are
solutions of the system of the partial differential equations (2.21) and (2.22) as
showed above. Let us consider the following partial differential equation
oY

5; = ~(L+Df)Y — Dh (3.31)

on Up. Since [3.20) holds, this partial differential equation has a solution

Y =43... 1.y, — R*3



164 A. TANAKA

where we took Uy sufficiently small. Define a C'°°-mapping

wn 2
Z = \II'""H :Uo—)R

by Z=fY+h=K 'HY + K~1A. We set

By using and (3.31) we have

0z _0fy 0¥ o
0z Bz 9z

Let us define a C*°-mapping ¥ : Uy — R"*! by

=(¢D—-JK'H)Y — JKA.

n+1
U= Z\Il“Ea = ENU.

a=3

By differentiating it with respect to z, we get

ov OEN
9z 0z 8z
%l
= (—ETQ+ ENB)Y + EV ( )
%f_

:(-—ET(H —K)+EN( o J))a )

Y

A

g~ ( —(&+DEKH)Y - DK
(tD - JK- IH)Y JK-1A

—ET(H —K)(§>

L pgv( LY +DK'A+DK'HY
—tDY + JK"A+ JK1HY

BN ( —(L+DK-'H)Y — DK-A )

(D - JK-'H)Y — JK~ A
= -ET(HY - K2Z)
=-—ET(HY - K(K™'HY + K 'A))
=ETA

= % (B, — V—1E,). (3-32)
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Hence ¥ is conformal and by (3.32) we have

oy

\p.&__

0

on Up. This implies that < ¥, ¥ >% is constant on Up. Since we can take ¥
such that < ¥(mg), ¥(mg) >2=1 at mg, < ¥, ¥ >3=1 holds on Uy. Then the
surface S = (Up, S™, ¥) has the Gauss map G|y,. This completes the proof.

Let M be the Gaussian plane C. Assume that G satisfies the conditions
(1),(2) in about any point of C. In the case where k = n + 1, by
using [Theorem 3.1, and the monodromy theorem, we can show that
there exists a surface S = (C, S™, X) with the Gauss map G. Next let 3 < k < n.
It follows from and that for each point mg € M there
exist an open neighborhood Up of mg and a surface S = (Up,V N S”, X ) with
the Gauss map G|y,. Then we can apply the argument above to the (k — 1)-
dimensional unit sphere V N S™. Hence we have the following.

PROPOSITION 3.2. Let G : C — Q,_; be a C™-mapping such that k > 3.

Assume that a local ezpression of G about any point of C satisfies the conditions
(1), (2) in Theorem 3.1. Then there ezists a surface S = (C, 8™, X) with the
Gauss map G.

From now on, we denote by N and Z the set of all natural numbers and
integers respectively. For ai, az > 0, let ¢; and ¢, be translations on C defined
by

v1(2) = u1 + a1 + vV —1uy, p2(2) = ur + vV—-1(uz + az) (z = u; + vV—1uz € C).

We denote by I'(a;, az) the transformation group on C generated by 1 and 3.
For k1, k2 € N, let I'(k1a1, k2a3) be the transformation group on C generated
by translations ¢;%* and %2 where

P17 (2) = w1 + kra1 + V=Tuy,  92*2(2) = uy + V=1(uz + koaz).

We denote by T2 (kia1, k2ag) the torus C /T (k1a1, k2az). For the natural projec-
tion gk, : C — T?(k1a1, k2a2), we put [2] = mx,,(2) (2 € C).
Under the notations above, we have the following.

THEOREM 3.2. Let G : T%(a;,a3) — Qn_1 be a C™-mapping such that k >
3. Assume that a local expression of G about any point of T?(ay,ay) satisfies the
following conditions:

(1) The tangent component E;; and the normal component F;; of %%1 in R*11
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satisfy the condition (3.3);

(2) P and Q defined by (3.7) and (3.8) satisfy the conditions (3.11) and (3.12).

Then there ezist a covering space (12, T?(ay,az),#) over T?(a1,a2) and a surface
= (12,8, X) such that the Gauss map is G o f.

The proof of is similar to the one of Theorem 5.2 in [3]. For
completeness of this paper we give it.

Proof. For k,, kg € N, we define C°°-mappings
Rhky - T2 (K101, k2az) — T2(a1,02), Gk, : T2 (K101, k202) — Q1
as
Tk ky ([2]) =m11(2) (2€C), Gk, = G0 Thyky

respectively. Let G : C — Qp_1 be the C*-mapping defined by G o 71;. This
mapping is I'(a1, az)-invariant. G satisfies the conditions in Proposition 3.2, since
Thyky 1S holomorphlc Then there exists a surface S; = (c, s, X 1) such that the
Gauss map is G. We define conformal immersions X :C — S™ ( j =2,3) by
X, = X104, and X3 = X1 0 @y. Then the surfaces S = (C,8" X ;) have the
same Gauss map G.

We first consider the case where k = n + 1. Since S, So and S3 have the
same Gauss map G, by Lemma 2.2, we have

X1 =1+X1 091 =£X1 0¢m.

Then the following four cases are possible:

(1) Xy = X001 = X3 opa, (2) X1 = —Xj0p1 = X100, (3) X1=Xi0p1=
~ X100z, (4) X1=-X10p1=—-X100p,.

For each case we can show that the claim of the theorem holds ([3]).

Next we consider the case where 3 < k < n. By there exist
surfaces §;/ = (C, 8", X;') (j = 2,3). Then we can apply the argument above
for Kk = n + 1 to the (k — 1)-dimensional unit sphere V' N S™. We complete the
proof of Theorem 3.2.

We denote by 7 the canonical projection from S™ to the n-dimensional real
projective space RP™.

THEOREM 3.3. Let M be a connected Riemann surface and G : M — Qp—1
a C*®-mapping such that k > 3. Assume that a local expression of G about any
point of M satisfies the conditions (1), (2) in Theorem 3.1. Then there exists a
surface S = (M, RP™, X) with the property that a neighborhood of each point of
X (M) is covered by a surface in S™ with the Gauss map G.
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Proof. We need to consider two cases: k =n+1land3 <k <n. Let k =n+1.
By hypothesis a local existence of a surface in S™ with the Gauss map G follows
from [Theorem 3.1. Let (Up, z) be a local coordinate system on M such that
Us is connected. From [Lemma 2.2, if there exist surfaces Sx = (Up, S™, X)
and Sy = (Uo, S™, 17) such that Sx and Sy have the same Gauss map, then
Y = £X. We define C°°-mapp1ngs X :Uy — RP*and Y : Uy — RP"
as X =XorandY =Yor respectively. Then surfaces Sx = (Up, RP™, X)
and Sy = (U, RP™,Y) have the property that neighborhoods of each point
of X (Uo) and Y(Uo) are covered by surfaces in S™ with the same Gauss map.
Since Y = +X, we have X =Y. Let §; = (U, S™, X1) and Sy = (Ua, S™ Xz)
be surfaces with the same Gauss map such that W = U; N U, # 0. We define
surfaces S; = (U1, RP™,X;) and Se = (Uz, RP™, X3) where X; = X; on and
Xo = X'g o7w. By the argument above we have X; = X, on W and hence
there exists a surface S3 = (Us, RP™, X3) with the property stated above where
Us = Uy UU;, X3ly, = X1 and X3|y, = X2. By using the same argument
as in the proof of Theorem 6.1 in [3], we can show the existence of a surface
S = (M,RP"™, X) with the property stated above. In case of 3 < k < n, by
the proof can be reduced to the case k = n+ 1. Hence
holds.

Next we consider the another condition for G. Let ((U, z), ET) be a local
expression of G. Let us consider the following conditions: '

Ey1 =—Ey3, Ey = —Eg2, F11 AFaa #0, Fp; = Fi2 =0. (3.33)

Let T7 and T3 denote 2 X 2 matrices in the form

10 0 0
n=(a0) 2=(0 1)

E,; =ETP;, F;=ENQi; (i,j=1,2) (3.34)

We set

where P;j(u) € #(2,1) and Q;;(u) € #(n — 1,1). By using [3.34), we can
rewrite (3.33) as

Py = —Pi3, Po; = —Py3, Qu1 A Q22 #0, Q21 = Q12 =0. (8.35)
We put

Py =Py, Po=P, Qi1=0Qu, Q2=Q2.
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Let us define C°°-mappings

P:U—H?2), Q:U— #A2,n-1) (3.36)
by
P(u) = % ( Pi(w) +V=1Pi(u) Po(u) +v=1Pz(u) ), (3.37)
ooy 1 tQ1(u) V-1 tQ1(u)
@ =37 (g ) =7 (rnty ) (3.38)
We have

%’;3 _EA, A= (%}%) € #(n+1), Bu)ec(n—1).

If a local expression ((U, 2z = u; + v—1us), ET) of G about any point of M
satisfies the following conditions:
(1) The tangent component E;; and the normal component F;; of %% in R™+1
satisfy the condition (3.33);
(2) P and Q defined by and (3.38) satisfy the conditions

%1‘; = (TQ'QT: - TIQ'QT), Z—f =V-UTQ'QT1 - ThQ'QT), (3.39)
5Q 0Q _ 5.5
5> =PQ+QB, 5; = ~PR+@B, (3.40)

then we obtain the same results as Theorems and B.3.
We note that the conditions (3.39) and (3.40) are independent of the choice
of orthonormal frame fields EV on U which are orthogonal to ET in R™*1.

4. Conformal immersions of a torus into RP™

Let M be a connected Riemann surface. In this section we use same notations
as in Section 3. Let G : M — @),—1 be a C'°°-mapping satisfying the conditions
in [Theorem 3.3. Then we have a surface S = (M, RP™, X) with the property
that a neighborhood of each point of X (M) is covered by a surface in S™ with
the Gauss map G. In the following we also regard M as a Riemannian manifold
with the metric induced by X. We take a complex coordinate system (U, z =
u1 + v/—1ug) of M such that X : U — RP™ is an embedding and X(U) is
covered by a surface in S™ with the Gauss map G. By taking U sufficiently
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small, there exists a conformal embedding X :U — 8™ such that X = 7o X
and X(U) is isometric to X (U). Moreover, by taking U sufficiently small if
necessary, we may assume that the assumption in holds on U.
Then we have

2% 2
8z 2 V1
where A is a p051tlve function in U. We define an orthonormal frame field

E = (E1,--,Bny1) along X(U) by Bi = (X,Ei) (1 £ i < n+1) where X
denotes the base point of E;. Then we have

OF
5. =FA

where E = (E1,Ey, -+ , Eny1). We define C*°-mappings

—V—1E3) (4.1)

=(a%): U — L(n+1) (i=1,2) (4.2)

A1=A+A, A2=V—1(A~A).

Let V be the standard connection of R™*t! and V the connection on U induced
by the embedding X. Then from (3.9) and (4.1) we have on U

n+1
Ve B =V B+ h(Ei, Ej)Eq (6,5 =1,2)
a=3

where

a(fr T 1
he(Bi, By) = — sl

Here aJ_ is the (4, &) component of 4; in (4.2). Let K(M) be the Gauss curvature
of M. By (3.3) we have

Tild ¢ E1,E1) he (El,Ez)
h°‘ (Ba, By) h*(E, Es)

a=3
n+1
Z det a’la a’%a
a=3 a’2a a%a
n+1
A2 Z((ala)z (a'la) ) (4 3)
a=3

Under the notations above, we have the following.
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THEOREM 4.1. Let M be a compact, connected Riemann surface. Let G :
M — Qn—1 be a C*®-mapping such that k > 3. Assume that a local expression
(U, z = ug + vV—1up), ET) of G about any point of M satisfies the following
conditions:

(1) The tangent component E;; and the normal component F;; of ggji in B!
satisfy the condition (3.3);

(2) P and Q defined by (3.7) and (3.8) satisfy the conditions

TQ'Q = Q*QT, (4.4)
oQ 0Q _
- =PQ+QB, Z=-PQ+QB. (4.5)

Then M is a torus.

Proof. 1t follows from that there exists a surface with the property
stated above. Let ((U,z = u1 + v/—1uy), ET) be a local expression of G. Since
the conditions (4.4) and (4.5) are independent of the choice of orthonormal frame
fields EN on U which are orthogonal to ET in R*t!, we take an orthonormal
frame field F = (Fy, -+ ,Fn41) in R™*! so that

Fi=FE\, Fp=E;, F,u=2X
where X = 7 0 X. Then from (4.4) and (4.5) we have

OF -
Ez—_FA

where

The components of A satisfy

TQ'Q = Q*QT, (4.6)
3@  pA ~ a aQ _ BA A%
5, =PQ+QB, = =-PQ+QB. 4.7)

Since X satisfies (4.1), we get

1
Al A2
a 1 — _2_A’ an 1 foend _.._._._A.
These are equivalent to

A2 a1 _ A1 _ A2 _
Q141 = Q2041 =Yy Gipy1 =A2p41 = A.
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By using this and [(4.3), we have

KO = 55 (30 (@a)? ~ @)+ X2) =1+ > (@) - @)

a=3
(4.8)
It follows from (4.6) that
n+1 n
0=TQ'Q-QQT =Y ((al.)* - (a3a)®) = D_((a} )2 - (a2.)?) + \2.
a=3 a=3
(4.9)

From (4.8) and (4.9) we obtain K (M) = 0. Hence, by Gauss-Bonnet Theorem,
the Euler characteristic of M equals zero. Thus M is a torus. We complete the
proof.

5. Examples

We will give examples of C*°-mappings G : M — Q,_; with the condi-
tions in Theorems 3.3. Let I' be the transformation group on C generated by
translations ¢; and ¢ such that

p1(z)=u1 + 2 + vV —1ug, pa(2)=u; +v—1(ug + 27) (z = u; + vV—1ug € C).
We define a torus 72 as C/T.

EXAMPLE 5.1. Let G : T? — Q3 be a C*°-mapping such that

— sin u; cos ug — cos u1 sin ug
— sin uy sin us COS U1 COS Ug
G(z) = +v-1 . .
(2) COS U3 COS U2 — sin u; sin ug
COS U Sin us sin 4 cos ug

This G satisfies the conditions (3.3), (3.11) and (3.12).
EXAMPLE 5.2. We define a C*°-mapping G : T2 — Q,, as
G(z) = [*(—sinuy, cosuy, —v/—1sinuy, v—1 cosuy)].

Then G satisfies the conditions (3.33), (3.39) and (3.40).
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By using Example 5.1 we can give another examples of G with the conditions
(3.3),(3.11) and (3.12). We shall show it. Let M be a connected Riemann
surface and G : M — Qn_1 a C°-mapping. Assume that a local expression
((U,z = u; + vV—1ug), ET) of G about any point of M satisfies the condition
(3.3) and such that C*°-mappings P and Q defined by (3.7) and (3.8) satisfy the
conditions (3.11) and (3.12). Let E = (ET,EN) = (E1,E3, F3,-++ ,Epy1) be an
orthonormal frame field in R”*!. We define a C°°-mapping G: M — Qo §uch
that for each u € U FT(u) := (Fy(u), F2(u)) is an orthonormal frame in G(u)
where '

F;: U — R*X™D\ {0} (i=1,2)

are C°°-mappings defined as

Fu) = L ( Ei(w) ) (we ).

V2 \ Ei(u)
Let‘ F:=(F,F,,--- aF2(n+l)) be an orthonormal frame field on U where
Fe 1 ( ET E EN ) .
V2 \ ET —-E EV
Then we have
%I;: =FA

where A(u) € & (2(n + 1)). A can be expressed in the form

( P o | o \
A= 0 B 0
tQ 0 B

\ | )

where B(u) € &/ (n +1). We set

- ~ - B 0'
P=P, Q=(0 Q), B=<T*-§—).
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Since (3.11) and (3.12) hold, we have

oF %P _Lrqia-qam)

%é _ %_’; - —‘/;E(TQtQ - Q*QT),

%‘Zz _ (o %%) = (0 PQ+Q@B)=P0+Q5,
%g: = (0 %g_-) — -PQ+QB.

Hence we have a C*-mapping G : M — Qa,, with the same conditions as G.

By induction, we have the following.

PROPOSITION 5.1. Let M be a connected Riemann surface. If a C™-mapping
G : M — Q.1 satisfies the conditions in Theorem 3.3, there ezxists a C*°-

mapping
G:M—Q_1, l=mn+1)-1, m>2(meN)
with the same conditions as G.

For the conditions (3.33), (3.39) and (3.40) of G, we have the same results as
[Proposition 5.1l.
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