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Abstract. In this paper, we prove a nonlinear ergodic theorem for a commuta-
tive semigroup of asymptotically nonexpansive mappings from a compact convex
subset of a strictly convex Banach space into itself. Using this result, we obtain
two nonlinear ergodic theorems proved by Yoshimoto [15].

1. Introduction

Let C be a compact convex subset of a Banach space E and let S be a
commutative semigroup with identity. A family S = {T'(s) : s € S} of mappings
from C into itself is said to be an asymptotically nonexpansive semigroup on C
with Lipschitz constants {k(s) : s € S} if the following are satisfied:

(1) 1T(s)xz — T(s)yl| < k(s)||lz — y]| for all z,y € C;
(ii) T(t+ s)z = T(t)T(s)x for all t,s € S and z € C;
(iii) k(s) > 1 for all s € S and limsup, k(s) =1.

Such a semigroup & is called a one-parameter asymptotically nonexpansive semi-
group if § = R* and moreover, S satisfies the following:

(iv) T(0)z = z for all z € C;
(v) for each z € C, the mapping t — T'(t)z is continuous;
(vi) t = K(2):[0, 00) — [0, 00) is continuous.

An asymptotically nonexpansive semigroup S is called a nonexpansive semigroup
on Cif k(s) = 1forall s € S. In 2000, Atsushiba, Lau and Takahashi [2] proved a
strong ergodic theorem for a commutative semigroup of nonexpansive mappings
from a compact convex subset of a strictly convex Banach space into itself. On
the other hand, recently Yoshimoto obtained two strong ergodic theorems for
a one-parameter asymptotically nonexpansive semigroup on a compact convex
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subset of a strictly convex Banach space.

In this paper, motivated by Atsushiba, Lau and Takahashi [2] and Yoshimoto
[15], we prove a nonlinear strong ergodic theorem for an asymptotically nonex-
pansive semigroup with compact domain in a strictly convex Banach space. This
theorem is used to prove the results obtained by Yoshimoto [15].

2. Preliminaries

Throughout this paper, we assume that a Banach space E is real and S is a
commutative semigroup with identity. Then, (S, <) is a directed system when
the binary relation < is defined by a < b if and only if there is ¢ € S such that
a+c=>b. Let E* be the dual space of E. Then, the duality mapping J on F is
defined by

J(@)={a" € B : (z,27) = lz]|* = l=*]|*}

for every z € E. By the Hahn-Banach theorem, J(z) is nonempty; see
for more details. We denote by N and Rt the sets of all positive integers and
nonnegative real numbers, respectively. We also denote by B(S) the Banach
space of all bounded real valued functions on S with supremum norm. For each
s € S and f € B(S), we define an element r,f of B(S) by (rsf)(t) = f(t +s)
for all £ € S. Let D be a subspace of B(S) containing constants and let X* be
its dual. Then, an element u of D* is said to be a mean on X if ||u|| = p(1) = 1.
We sometimes use u:(f(t)) instead of u(f) or [ fdu for p € D* and f € D. Let
D be rs;—invariant, i.e., r,(D) C D for each s € S. Then, a mean p on D is said
to be invariant if p(rsf) = p(f) for all f € D and s € S.

The following definition which was introduced by Takahashi [13] is crucial
in the nonlinear ergodic theory for abstract semigroups: see [6, 7, 8, 13, 14] for
more details. Let f be a function of S into E such that the weak closure of
{f(t) : t € S} is weakly compact. Let D be a subspace of B(S) containing
constants which is r,—invariant for every s € S. Assume that for each z* € E*,
the function ¢ — (f(t),z*) is in D. Then, for any p € D* there exists a unique
element f, such that

(furay = [(£(8), 2"t

for all z* € E*. If p is a mean on D, then f, is contained in co{f(t) : t € S}.
A Banach space F is said to be strictly convex if ijT-H/u < 1for z,y € E with
llz] = |lyll =1 and z # y. Let C be a subset of E, let T be a mapping from C
into itself and let £ > 0. We denote by F.(T) the set {z € C : ||z — Tz| < ¢}.
Let K > 0. We denote by Lip(C, K) the set of all mappings from C into itself
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satisfying || Tz—Ty|| < K|/z—y]||. We denote by I the set of all strictly increasing,
continuous convex functions v : Rt — R* with v(0) = 0. We denote by coC is
the closure of the convex hull of C. We denote by F(S) the set of all common
fixed points of S, i.e., N,cg{z € C: T(s)z = z}.

3. Lemmas

In this section, we obtain some lemmas which are used to prove our main
theorem(Threorem 4.1). The following lemma was obtained by Bruck [4].

LEMMA 3.1. Let C be a nonempty compact convex subset of a strictly convex
Banach space E. Then, for each n € N, there ezists v, € I' such that for each
K >0andT € Lip(C,K),

T (i )\z.’l:z) - i )\iT:L‘i
=1

i=1

1
-1 _ _ , .
< Knp (lénigiscn (llw yll KllTwz T%Il))

holds for every {z;}; in C, {\;} in R+ with i di=1.

Following ideas in Atsushiba, Lau and Takahashi and Nakajo and Taka-
hashi [12], we can prove the following lemma. '

LEMMA 3.2. Let C be a nonempty compact convez subset of a strictly conver
Banach space E and let S = {T'(t) : t € S} be an asymptotically nonezpansive
semigroup on C with Lipschitz constants {k(t) : t € S}. ket z € C. Then, for
any finite mean p on S and € > 0, there exist wo = wo(u,€) and ho = ho(u, €)
such that

R R R CY L B

for any h > hg and w > wy.

Proof. Let p be a finite mean on S and suppose

n n
M= Zaiési (a; >0, Zai =1).
i=1 i=1
From [Lemma 3.1|, there exists ~,, € I such that

“ / T(h+ s+ w)zdu(s) —T(h) / T(s + w)edu(s)

Z a;T(h + s; + w)z — T(h) Z a;T(s; + w)z
i=1

i=1
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< k(hm ((Zmex {IT@+ )z~ T(w+ 5)a] -

1<

k(h) IT(h+w+ sz — T(h+w+ s,)mli})

for all h,w € S. Since v, € I and limsup,, k(h) = 1, for any € > 0, there exists
d > 0 such that k(h)y,;1(6) < e for all h € S. For i,j with 1 < i,j < n, we put

ri; = infyes ||T(w + s;)x — T(w + s;)z||. Then, there exists w; € S such that

: 8
Tig < “T('wl + Si)-’lf — T(w1 + sj)x” <ri;+ Z

Moreover, from lim supy, k(h) = 1, there exists h; € S such that

rij+ 4
|IT(wy + 8i)x — T(w1 + s;)z||

k(h) <

for every h > h;. Therefore, for any h > h;, we have

IT(h+ w1+ s5)z —T(h+wi + s5)z||

< K(R)IT(wn + )z — Tan + s)al] < 7o + 5.
Put wy = h; + w;. Then, we obtain

0
rig S NT(w+si)z = T(w +s5)zl| < 7ij + 5

for each w > w,. Similarly, there exists hy € S such that

]
- > b
k(h) s IT(h+ s+ wi)z —T(h+s+wj)z|| 275 - D)

for every h > hy. Therefore, for w > w; and h > hg, we obtain

0 <||T(w+si)x — T(w + 85)zl| — ;755 1T(h +w + 8:)x — T(h+w + s5)zf| <6

k(h)

Put we =}, ;w2(i,5) and hu = ), ; ha(i, j). Then, for any w > w, and h > hy,
we have

o {IT@+s)e - T(w+s))e] -
<é.

k(h) —||T(h+w+s;:)z — T(h+w+s,)w|j}

This completes the proof. O
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The following two lemmas were proved by Nakajo and Takahashi [12].

LEMMA 3.3. Let C be a nonempty compact convex subset of a strictly convex
Banach space E. For any € > 0, there exists § > 0 such that coF5(T) C F.(T)
holds for any T € Lip(C,1 + 4).

LEMMA 3.4. Let C be a nonempty compact convez subset of a strictly convex
Banach space E. Then, for any € > 0, there exist § > 0 and Ny € N such that
for anyl € N and any mapping T from C into itself satisfying T' € Lip(C,1+46),
there holds -

<e¢

lm—l ) ) 1m—l )
EZT%"*T <EZTZ.’B>

i=0 1=0

forallme N withm —1> Ny and z € C.
As in the proof of , we obtain the following lemma.

LEMMA 3.5. Let C be a nonempty compact convex subset of a strictly convez
Banach space E, let S = {T(t) : t € S} be an asymptotically nonezpansive
semigroup on C with Lipschitz constants {k(t) : t € S} and let x € C. Let
{ba : & € I} be a net of finite means on S such that

Bm [|pe — 7" pal =0
«

for everyt € S. Then, for anye >0 and p € S, there exists ap € I andto € S
such that

<eg

“/ T(s +p)odia(s) = Tt) [ T(a+p)adua(s)

Joralla > ag and t > t,.

Proof. Let € > 0. From [Lemma 3.3, there exist § > 0 and tg € S such that for
any t > to,

T(t) € Lip(C,1+6) and TFs5(T(t)) C Fe/a(T(2)).
From there exist 4; € S and n; € N such that for any n > nq, -

k(t) <146 and <é.

% ; T(t)'T(s)z — T(t)% ; T()T(s)e

Put t, =t +t3. Then, for ¢t > t,, we have

WF5(T(t) C Fuys(T(2)
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and

—ZT(zt—f-s z—T(t) ( ZT(zt+s )
= -Z(T &) T(s)x — T (;;Z(T(t))iT(s)x) <6
=1

=1

for every n > nj. So, it follows that

- ZT(zt + s)z € F5(T(t)) C coFs(T(t))
1——1
for every t > t., s € Sand n > n;. Let n > n; and ¢ > t.. Then, we have, for

pESandac€el,

”/ T(s-+ D)adua(s) = T(t) [ T(s +p)aduals)

/T(s +p)zdpa(s / E T (it + s + p)xdpa(s)
+ /%iT(z’t+s+p)mdua( - T(t) (/ ZT(zt+s+p zdpa(s) )”
i=1
1
+ | T(¢) (/ - ;T(zt +s +p)xdua(s)) —T(t) (/ T(s + p)xdua(s) ”
<(2+9) ” / T(s + p)zdpa(s) — / % i T(it + 5 + p)odpa(s)

+ / 1 ZT(it + s+ p)zdua(s) — T(¢) (/ 1 En: T(it+ s +p)a:dpa(s)> H
"= s

——-(2 + (S)Il + I

and

I = } /T(s + p)zdua(s) — / -71; > T(it + s + p)zdpa(s)
=1

/ T(s + p)zdua(s) — / T(it + 5+ p)edpa(s)

1
n
1
n

2
Z /T(s + p)zd(pa — 7it" ta)(8)
<L

up || z||[| ta — 7rit” pal|-
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From the assumption of the net {u, : a € I}, there exists a; € I such that
* 2 .

o — Tit* pal| < 3(2+5)SU;ZEC Tz for every @ > a3 and ¢ € {1,2,...,n}. 'So,

Iy < 2¢/3(2 +4) for every a > a; and p € S. Next we prove that there exists

ay € I such that [(1/n) > | T(it+s+p)xdus(s) € coF5(T(t)) for every p € S,

t > t. and o > as. If not, we have, for each ag € I,

/ % D_T(it+ s+ p)adpa(s) ¢ WFs(T(H))

for some p’ € S, ¢’ > t. and o’ > ay. From the separation theorem, there exists
Y™ € E* such that

/ <% > T(it’ + s+ )z, yo*> dpar(s) < inf{(z,90%) : z € WFs(T(t'))}.
=1

Then, we obtain
inf{(z,yo* : z € WFs(T(t'))} < inf 1 z": T(it' +s+p')z,yo*
b . — SES n i=1 )

< / <% Xn: T(it' +s+p)z, yo*> dpar (8)

i=1
< inf{{z,y0*) : z € TOFs(T(t'))}.

This is a contradiction. Hence, there exists ay € I such that

/ Z T(it + s + p)adia(s) € WF5(T (1)) C Fy(T(£))

=1

for every p € S, t > ¢. and @ > a,. Then, we obtain I, < £/3 for every p € S,
t>1t. and o > ag. Let ag € I with ag > a; + as. Then, we obtain

” / T(s + P)oduals) ~ () ( / T(s + p)wd,ua(s)>

\$(2+5)h +I;<e

for every a > ag, t > t. and p € S. This completes the proof. O

Remark. We can prove that F(S) is nonempty. In fact, let £ € C and put
To = [T(s+ pa)zdua(s) for a € I. From the compactness of C, there exists a
subnet {Z,,} such that z,, converges strongly to some zo in C. Since

lim sup lim sup sup
(o7

/ T(s + p)edua(s) — T(2) / T(s + p)eduals)|| =




138 W. TAKAHASHI AND K. ZEMBAYASHI
we have
0= limtsup limsup ||zo — T'(t)za]|
@
= limtsup lim;up “-'Dag - T(t)xaa I

= limsup ||zg — T'(t)zo||-
t

Therefore, for any s € S, we obtain
20— T(s)aoll < limsup 20 — T(t)zol| + limsup | T(1)z0 ~ T(s)zo]
= limtsup T (t + s)xo — T'(s)xol|
< limtsup k(ST (t)zo — zol|
=0
and hence zy € F(S).
We can prove the following lemma from [Lemma 3.2,

LEMMA 3.6. Let C be a nonempty compact conver subset of a strictly convex
Banach space E, let S = {T'(t) : t € S} be an asymptotically nonexpansive
semigroup on C with Lipschitz constants {k(t) : t € S} and let x € C. Let
{ta : €I} and {Ng : B € J} be nets of finite means on S such that

lim ||ppo — 7¢* ]| = 0 and lién IAg —re*Agll =0
[+ ]

for every t € S. Then, there exist nets {po : € I} and {gz: B € J} in S such
that for any z € F(S), '

lim “ / T(pe + t)adpa(t) — 2

~ lip “ / T(gs + t)zdrs(t) — 2

Proof. Let € > 0. From Lemma 3.2, for a € I and 3 € J, there exist hg, pa, as €
S with p,,gs > ho such that

sup | [ T(WT(w + pa + t)aduatt) - T(H) [ @@+ pat tzduate) H <e
hesS

and
sup ‘/T(h)T(w +gg + s)zdAg(s) — T'(h) / (T(w+qp + s):cd)\g(s))H <eg
hes
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for every h > hg and w € S. Fix z € F(S) and consider

I

L= /T(pa +t)zdpa(t) — 2

h= | [ 760+ Daua(t) [[ T(0a +1+ a5+ s)odrs(e)aas)].

3

I, = // T(pa +t+qp + s)zdAg(s)dua(t) — 2

I = / / T(pa +t+ gp + s)zdAs(s)dpa(t)

- [ 2+ ([ Ttas + s10ra() ) dua0
and

I = ” / T(pa +1) ( / T(gs + s)a:d)\g(s)) dpta(t) — 2

Then, we have L < I + I and I, < J;@ + J,(V. Suppose

n n m m
Ha = Zaidn, (a,- 2 O,Zai = 1) and /\g = Zb&sj (bj 2 O,ij = 1)
i=1 j=1 Jj=1

i=1
Then, we have
n
=Y
i=1

i=

[ Ta +9T(as + s)zdra(s)

~ T(pa + ;) ( / T(gs + s):z:d)\g(s)> H
/T(h)T(qg + s)zdAg(s) — T'(h) (/ T(gs + S)(Edz\g(S)) “ <e.

Since z € F(S), we obtain

JP < z": a;
i=1

/T(qg + 8)zdAg(s) — z

[ 7@+ ([ Taa+ 5120009 ) dia(t) - 2

<

Then, we have

L<J®+ID <ot H / T(qp + s)zdg(s) — z
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On the other hand, we obtain

I = || [ 7o+ duialt) = b [ T(oatt 45+ 5;)edua(t

j=1
< i b;
j=1
< f: b;

=1

/ T(pa + t)zdpia(t) - / T(pa +t + g5 + 5;)zdpa(t)

[ 7@+ Dadat) = [ Ta + (s 0 )0

<D bysup | T(g)al| e — Ty 4o, ball-
i=1 geSs
Therefore, from lim, I; = 0, we have
’/T(pa + t)(L'd/,La(t) -2z

lim sup = limsup L < lim sup(l; + L)

<e+ ”/T((]ﬁ + s)zdAg(s) — 2z

Then, we have

lim sup / T(pa + t)xdua(t) — 2| < e+ limﬁ inf

[ T+ 9zirs(o) - 2

Since € > 0 is arbitrary, we obtain

lim sup /T(pa + t)zdpa(t) — 2z

«

< lim inf
B

/T(q,a + s)xdAg(s) — z|].

Similarly, we have

< liminf
a

lim sup /T(Q5 + 8)xdAg(s) — z
B

Therefore, we have

[ T@a+ tzdua(®) - 2|

= lién ”/T(qg + s)zdAg(s) — z

lim “ / T(pa + t)zdpe(t) — z

O

Remark. In Lemma 3.6, take nets {p,’} and {gg’} in S such that p.’ > p, and
qb 2 gg. Then, repeating the above argument, we have the following:

lim
«

’ / T(pa’ + t)zdpa(t) — z

for every z € F(S).

= lip ” / T(qs’ + 8)zdAs(s) — 2
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4. Main Result
Before proving our main theorem, we need one more lemma.

LEMMA 4.1. Let C be a nonempty compact conver subset of a strictly convex
Banach space E and let S = {T'(t) : t € S} be an asymptotically nonexpansive
semigroup on C with Lipschitz constants {k(t) : t € S}. Let D be a subspace
of B(S) such that 1 € D, D is rs-invariant for each s € S and the function
t = (T(t)z,z*) is an element of D for each x € C and =* € E*. Let {uo} be a
net of finite means on S such that

lim ||pa — 7" po|| = 0 for every t € S.

Then, for any x € C, [T(p + t)zdu.(t) converges strongly to a common fized
point yo of S uniformly inp € S. Furthermore, yo is independent of {pq : @ € I'}
and for any invariant mean p on D, yo = T,z = [ T(t)zdu(t).

Proof. Let {uq : a € I} and {Ag : B € J} be nets of finite means on S such that

lim ||ptee = 7 pa]] =0 and lim||As — 7} Ag]| =0

for each t € S. From , we can take a net {p,} in S such that for any
z € F(S),

lim H / T(pe + t)cdpa(t) — =

exists. Let {®o} = {[ T(pa + t)zdpa(t) : a € I}. As in the proof of Remark 3,
we can take a subnet {®,, } of {®,} which converges strongly to a common fixed
point of S. Therefore, we have

Hm [|@q — yol| = lim || @, —yol = 0.

This implies that ®, — yo. Next we prove that [ T(h + t)zdua(t) converges
strongly to yo € F(S) uniformly in A. In the above argument, take a net {p/, :
a € I} in S such that p/, > p, for each a € I. Then, repeating the above
argument, we see that ®, = [ T'(p/, +t)zdua(t) converges strongly to a common
fixed point y; of T'(t),t € S. We show yy = y;. From and Remark 3
, we know

lim ”‘/T(pf, + t)zdpa(t) — 2

~ lim H/T(pa + ) edpa(t) — 2
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for every z € F(S). Suppose yo # y1. Then &, does not converge strongly to
y1. Since yo and y; are in F(S), we have

0 < lim || ®a — 31| = lim | @, — 41 =0

and hence ®, — y;. This is a contradiction. So, we have yo = 11 € F(S). Since
{pl,} is an arbitrary net in S such that p/, > p, for each a € I, we have that
J T(h+ pa + t)zdua(t) converges strongly to yo uniformly in h € S. Let € > 0.
Then, there exists ag € I such that

H/T(h + Pa + 8)zdua(s) — Yo

for every a > ap and h € S. Suppose

m m
= Zbk5ak(bk >0, Zbk =1).
k=1 k=1

Put po = pao, and pp = po,. Then we have

/ / T(h +t + po + 8)zdpo(s)dAg(t) —

B H/ / T(h+1t+po + s)zdpo(s)dAs(t) - / tods (ﬂ“

/T(h+t+po+5)wduo(8) yo|l < 5

for every h € S’ and B € J. Since {Ag} satisfies limg ||Ag — 7 Ag|| = 0, there
exists 31 such that
. €
HA,B - Tpo+sk’\B” < 2max{1,M}

for every k € {1,2,... ,m} and B > (1, where M = sup g || T(g)z||. Then, we
have |

N/T(h + t)zdAg(t) — / T(h+t+po+ 3)2dﬂo($)d>\5(t)”

/ T(h+ tyadrs(t) — 3 be / T(h +t+po + sp)zdAs(t)
k=1

< Em:bk

< Zbk

* g
< ZbkM”/\ﬂ — Totan sl < 5
k=1

/ T(h + t)zdAs(t) — / T(h+1t+po+ sk)xd/\g(t)“

/ T(h + t)zdAs(t) / T(h+ ed(rt, 1, 7)) H
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for every 8 > 31 and h € S. Therefore, we have

H / T(h + t)zdAs(t) — yo

< “/T(h + t)zdAs(t) — // T(h+t+p+ S)xdﬂo(s)d)\ﬂ(t)“
/ / T(h+1t+ po + s)zdpo(s)dAs(t) — yo

g g
<5+§—6

d

for every 8 > 1 and h € S. Hence, [ T(h+ t)zdAg(t) converges strongly to yo
uniformly in h € S. Since nets {u, : @ € I} and {\g : B € J} of finite means
such that

lin [l = 77 ol = 0 and lim | Ag — r{Agl] = 0

are arbitrary, we can obtain that yo € F(S) is independent of such nets of finite
means. Finally, we show that, for any invariant mean p, yo = T,z. Asin the
proof of [5], for any invariant mean p, there exists a net {uo} of finite means

such that lim, ||ta — rfpall = 0 and {u.} converges to p in weak™ topology.
Therefore, we can obtain

lig1 </T(s)mdga(s),y*> = lién/(T(s)m,y*)dpa(s)
= [F(6)z,v")du(s

= ([ T(e)aduts) v+

= (Tyz,y*)

for every y* € E*. On the other hand, we have that [ T(s)xduq(s) converges
strongly to yo. Since C is compact, we obtain yg = T,x. O

Now, we can prove a nonlinear ergodic theorem for an asymptotically non-
expansive semigroup with compact domain in a Banach space.

THEOREM 4.1. Let C be a nonempty compact convex subset of a strictly conver
Banach space E and let S = {T(t) : t € S} be an asymptotically nonezpansive
semigroup on C with Lipschitz constants {k(t) : t € S}. Let D be a subspace
of B(S) such that 1 € D, D is r,-invariant for each s € S and the function
t = (T(t)z,z*) is an element of D for each = € C and z* € E*. Let {)\,} be a
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strongly reqular net of continuous linear functionals on D and let x € C. Then
[ T(h+ t)dAa(t) converges strongly to a common fized point yo of S uniformly
in p € S. Further, yo is independent of {A\a} and for any invariant mean p on
D, yo =T,z = [T(t)xdu(t). In this case, putting Qz = lim, [ T(t)zdAo(t) for
each x € C, Q is a nonezpansive mapping of C onto F(S) such that QT (t) =
T(t)Q = Q for everyt € S and Qz € co{T'(s)z : s € S} for everyz € C.

Proof. Let {\, : a € A} be a strongly regular net of continuous linear functionals
on D and let {ug} be a net of finite means on S such that

lig,n lug —riugll =0

for every t € S. From , we have that [T'(h + t)zdps(t) converges
strongly to a common fixed point yo of S uniformly in h € S. Let € > 0 and
let u be an invariant mean on D. From , we also know yo = T,z.
Further, there exists ;1 such that

for all B > (3; and h € S. Suppose

Hp, = Zbi‘sf«z‘ (bi >0, Zbﬁ = 1)
i=1 =1

and put u; = pg,. Then, we have

g

< rr————————————
SUpPg || Aa|

/ T(h + t)zdus(t) — Toz

H / T(h + t)zdus () — Tiu)z

<t
Supg [| Aal|

for every h € S. Since {A,} is strongly regular, there exists ag such that

€
1—-Aa(1)| <
OIS T, 1Ty
and
N €
”)‘Ot - T'ti)\aH < ma.x{l,M}
for every i € {1,2,... ,n} and o > ag, where M = sup;cg [|T'(h)z|. Then, we
have
T,z — /T”:cd)\a(s) = sup ((Tuz,z*)— /(Tum, z*)dAa(8)
x*eSl(E"‘)

< sup  |[(Tuz,z™)|- 11— Aa(s)| <e
z*€S1(E*)



NONLINEAR ERGODIC THEOREM 145

for every a > ag and

'// (h+ s+ t)axdp (t)dAa( /TNJI

< [ Aall - sup /T (h+ s +t)zdpi(t) — Tux

for every h € S and a € A. Thus, we obtain

“/ T(h+ s+ t)zdus(t)dra(s) — Tuz|| <et+e=2¢

for every h € S and a > ag. On the other hand, we have

| [ 70+ s)0ra(s) = [[ 70+ + tyadin t)ira(s

= H / T(h + s)zdAa(s) — Enj bi / T(h+ s+ ti)zdAa(s)

<Zb

i=1

__Zb

=1

< Zbi”)\a —ridal M <e

/T(h + s)xzdAo(8) — /T(h + 8+ t;)xdAo(8)

/T (h+ s)xd(Aa — 75, Xa)(s

for every h € S and a > ag. Therefore, we obtain

“/T(h + 8)xdAa(s) — T,z

< H / T(h + s)xdA,(s) — / T(h+ s + t)zdu: (t)dAa(s)

+ / / T(h + 5 + t)odp (£)dra(s) —
<e+2e=3¢

for every h € S and a > «p. Then, J T(h + t)zdA,(t) converges strongly to
a common fixed point gy of S uniformly in h. Further, such an element yq is
independent of {A\,} and yo = T,z for any invariant mean p on D. If Qzr =
limg [ T(t)zdAq(t) for each z € S, then Q is a nonexpansive mapping of C onto
F(S) such that QT'(t) = T(t)Q = Q for every t € S and Qx € co{T'(s)z : s € S}
for every z € C. O
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5. Yoshimoto’s theorems

Using Theorem 4.1, we can prove the following two theorems which are ob-
tained by Yoshimoto [15].

THEOREM 5.1. Let C be a nonempty compact convex subset of a strictly con-
vez Banach space E and let {T'(t) : t > 0} be a one-parameter asymptotically
nonezpansive semigroup on C. Letz, € C andr > 0. Thenr f0°° e T (t+s)zdt
converges strongly as  — 0+ to a common fized point of T(t),t > 0 uniformly
ins=>0.

Proof. Let § =R*, S = {T(t):t € S}, D =B(S) and A (f) =7 [ e " f(t)dt

for r > 0 and f € B(S). Then, we prove that {A,} is a strongly regular net of
means. In fact, for f € B(S),

‘Ar(f)l =

r /ooo e""tf(t)dtl
<r [ et fldt = |

and
Mu)=rﬁwe“ﬁ1ﬁ=1.
Then, we have ||A.|| = A\-(1) = 1. Next, for h € R*tand f € B(S), we have
M) =2l =|r [ s [ e s+ ma
=|r /Ooo e "t f(t)dt — e™"r /hoo e"’"tf(t)dt'

+

< |r(1—e™) /oo e F(t)dt| + |re™ /h e'"f(t)dt'
0 0

<[1—e™|| ]l + ™1 —e ||l
=2[1—e™|[|f| =0

as r — 0+4. Therefore {)\.} is strongly regular. From [Theorem 4.1, we obtain
the conclusion. O

THEOREM 5.2. Let C be a nonempty compact convex subset of a strictly convex
Banach space E and let {T'(t) : t > 0} be a one-parameter asymptotically nonez-
pansive semigroup on C. Letz; € C andr > 0. Then % [/ (r—t)* " T(t+s)xdt
converges strongly as r — 0o to a common fized point of T(t),t > 0 uniformly
ins>0.
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Proof. Let § = R*, § = {T(t) : t € S}, D = B(S) and A\ (f) = & [, (r —

t)*~1f(t)dt for r > 0 and f € B(S). Then, we prove that {)\.} is a strongly
regular net of means. In fact, for f € B(S), we have

= |5 [ e -i= s
2 ey fyds =
<2 [e-v= sl = i)

and
Ar(l) = — / (r—t)>"1.1dt = 1.
re 0

Then, we have ||As|| = A,(1) = 1. Next, for h € R*and f € B(S), we get

o) =2l = | [ =t p0a - [ -+ wyan

a r o r+h a1
-—/O(r-t) lf(t)dt—/h (r — t + h)> L f()de

xQ

<

+

IA

r+h
/ (r —t+ h)*"1f(t)dt

a & a—1
— /0 (r—t)* ' f(t)dt

o

3

T e T R YO
h r+h
< 7%/0 (r—t)"‘"1||f{|dt+/r (r —t+h)>71 flidt

+ [ T = 9% = (r = t 4+ B2 | fllat

For o € (0,1), we have

h r+h
|’\r(f) - )"r(rhf)l < ”f”{r—aa' A (’I" - t)a_—ldt + / (7‘ —t+ h)a_ldt

+ /hr(r —t+h)* = (r— t)“"ldt}
=2(3)" 1711
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For a € (1, 00), we also have

a h r+h
M = DD < 1A 5 [T =it [ - e mytas

+ / (r—t)*" = (r—t+h)*"ldt
h

~aa- (- 3)"

Therefore, for each o € R*, {).} is strongly regular. From [Theorem 4.1, we
obtain the conclution. O
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